(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-07
(45)【発行日】2022-12-15
(54)【発明の名称】エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
(51)【国際特許分類】
C08G 59/32 20060101AFI20221208BHJP
C08J 5/24 20060101ALI20221208BHJP
【FI】
C08G59/32
C08J5/24 CFC
(21)【出願番号】P 2018050276
(22)【出願日】2018-03-16
【審査請求日】2021-02-01
【前置審査】
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】100163120
【氏名又は名称】木村 嘉弘
(72)【発明者】
【氏名】小澤 優
(72)【発明者】
【氏名】鈴木 貴也
(72)【発明者】
【氏名】桑原 広明
【審査官】三宅 澄也
(56)【参考文献】
【文献】特開平02-169618(JP,A)
【文献】国際公開第2011/118106(WO,A1)
【文献】特開2011-057736(JP,A)
【文献】特開2017-008316(JP,A)
【文献】特開2014-148572(JP,A)
【文献】特開2017-119813(JP,A)
【文献】特開2003-026768(JP,A)
【文献】特開昭62-183340(JP,A)
【文献】国際公開第2016/148175(WO,A1)
【文献】国際公開第2016/017371(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G59/00-59/72
B29B11/16
B29B15/08-15/14
C08J 5/04- 5/10
C08J 5/24
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記化学式(1)
【化1】
(ただし、化(1)中、R
1~R
4は、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-O-を表す。)
で示されるエポキシ樹脂[A]をエポキシ樹脂の総量に対して
55~90質量%と、
トリグリシジルアミノフェノール誘導体であって、エポキシ当量が110g/eq以下であるエポキシ樹脂[B]をエポキシ樹脂の総量に対して
10~45質量%と、
を含んで成り、
前記エポキシ樹脂[A]と前記エポキシ樹脂[B]との質量比が、
50:50~95:5であることを特徴とするエポキシ樹脂組成物。
【請求項2】
前記エポキシ樹脂[A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである請求項1に記載のエポキシ樹脂組成物。
【請求項3】
繊維強化基材と、
前記繊維強化基材内に含浸された請求項1又は2に記載のエポキシ樹脂組成物と、
から成ることを特徴とするプリプレグ。
【請求項4】
請求項1又は2に記載のエポキシ樹脂組成物を硬化して成る樹脂硬化物と、繊維強化基材と、を含んで構成される繊維強化複合材料。
【請求項5】
請求項3に記載のプリプレグを硬化して成る繊維強化複合材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料に関する。更に詳述すれば、樹脂硬化物の耐熱性及び弾性率が高いとともに、取扱性が高いエポキシ樹脂組成物;該エポキシ樹脂組成物を用いて作製するプリプレグ;該プリプレグを用いて作製する繊維強化複合材料に関する。
【背景技術】
【0002】
強化繊維と樹脂とからなる繊維強化複合材料は、軽量、高強度、高弾性率等の特長を有し、航空機、スポーツ・レジャー、一般産業に広く応用されている。この繊維強化複合材料は、強化繊維と、マトリクス樹脂と呼ばれる樹脂と、が予め一体化されているプリプレグを経由して製造されることが多い。
【0003】
プリプレグを構成する樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が使用されている。特に、そのタック性、ドレープ性による成形自由度の高さから、熱硬化性樹脂を用いたプリプレグが広く使用されている。熱硬化性樹脂は、一般に低靱性であるため、プリプレグを構成する樹脂として熱硬化性樹脂を用いる場合、このプリプレグを用いて作製されるCFRPは耐衝撃性が低くなるという課題がある。そのため、耐衝撃性を改善する方法が検討されている。
【0004】
かかる耐衝撃性を改善する方法としては、特許文献1~4に記載の方法が従来から知られている。
特許文献1には、熱硬化性樹脂に熱可塑性樹脂を溶解させることにより、熱硬化性樹脂に靱性を付与させる方法が記載されている。この方法によれば、熱硬化性樹脂に対してある程度の靱性を付与させることができる。しかし、高い靱性を付与させるためには、熱硬化性樹脂に多量の熱可塑性樹脂を溶解させなければならない。その結果、多量の熱可塑性樹脂が溶解している熱硬化性樹脂は、粘度が著しく高くなり、炭素繊維からなる繊維強化基材内部に、十分な量の樹脂を含浸させることが困難となる。この様なプリプレグを用いて作製されるコンポジットは、ボイド等の多くの欠陥を内在する。その結果、コンポジット構造体の圧縮性能及び損傷許容性などにマイナスの影響を及ぼす。
特許文献2~4には、プリプレグ表面に熱可塑性樹脂微粒子を局在化させたプリプレグが記載されている。これらのプリプレグは、表面に粒子形状の熱可塑性樹脂が局在しているため、初期のタック性が低い。また、表層に内在する硬化剤との硬化反応が進行するため、保存安定性が悪く、経時的にタック性やドレープ性が低下する。さらに、この様な硬化反応の進行してしまったプリプレグを用いて作製されるコンポジットは、多くのボイド等の欠陥が内在し、コンポジット構造体の機械物性が著しく低下する。
【先行技術文献】
【特許文献】
【0005】
【文献】特開昭60-243113
【文献】特開平07-41575
【文献】特開平07-41576
【文献】特開平07-41577
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、上記従来技術の問題点を解決し、耐熱性及び弾性率が高い樹脂硬化物を製造することができ、且つ繊維強化基材への含浸性が高く、取扱性に優れるエポキシ樹脂組成物を提供することにある。また、本発明の更なる目的は、このエポキシ樹脂組成物を使用して作製するプリプレグ、及び繊維強化複合材料(以下、「FRP」と略記する場合があり、特に繊維強化基材が炭素繊維である場合は「CFRP」と略記する場合がある)を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題を解決すべく検討した結果、所定のエポキシ樹脂の組み合わせから成るエポキシ樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0008】
上記課題を達成する本発明は、以下に記載のものである。
【0009】
〔1〕 下記化学式(1)
【0010】
【0011】
(ただし、化(1)中、R1~R4は、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH2-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO2-から選ばれる1つを表す。)
で示されるエポキシ樹脂[A]と、
エポキシ当量が110g/eq以下であるエポキシ樹脂[B]と、
を含んで成ることを特徴とするエポキシ樹脂組成物。
【0012】
上記〔1〕に記載の発明は、エポキシ樹脂[A]とエポキシ樹脂[B]とが混合して成るエポキシ樹脂組成物である。
【0013】
〔2〕 前記エポキシ樹脂[B]が3官能エポキシ樹脂である〔1〕に記載のエポキシ樹脂組成物。
【0014】
上記〔2〕に記載の発明は、エポキシ樹脂[B]が3官能エポキシ樹脂であることを特徴とする。3官能エポキシ樹脂を用いることにより、得られる樹脂組成物の粘度を低く維持することができる。さらに、得られるエポキシ樹脂組成物の繊維強化基材に対する含浸性や取扱性を十分に高くすることができる。
【0015】
〔3〕 前記エポキシ樹脂[B]がトリグリシジルアミノフェノール誘導体である〔1〕に記載のエポキシ樹脂組成物。
【0016】
〔4〕 前記エポキシ樹脂[A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである〔1〕~〔3〕の何れかに記載のエポキシ樹脂組成物
【0017】
〔5〕 前記エポキシ樹脂[A]の含有量がエポキシ樹脂の総量に対して20~95質量%であり、前記エポキシ樹脂[B]の含有量がエポキシ樹脂の総量に対して5~80質量%である〔1〕~〔4〕の何れかに記載のエポキシ樹脂組成物。
【0018】
上記〔5〕に記載の発明は、エポキシ樹脂[A]及びエポキシ樹脂[B]の含有量が所定の範囲である。この割合で含有することにより、得られる硬化樹脂の耐熱性及び弾性率を高く維持しつつも、エポキシ樹脂組成物の繊維強化基材に対する含浸性や取扱性を十分に高くすることができる。
【0019】
〔6〕 繊維強化基材と、
前記繊維強化基材内に含浸された〔1〕~〔5〕の何れかに記載のエポキシ樹脂組成物と、
から成ることを特徴とするプリプレグ。
【0020】
上記〔6〕に記載の発明は、〔1〕~〔5〕の何れかに記載のエポキシ樹脂組成物が繊維強化基材に含浸して成るプリプレグである。
【0021】
〔7〕 〔1〕~〔5〕の何れかに記載のエポキシ樹脂組成物を硬化して成る樹脂硬化物と、繊維強化基材と、を含んで構成される繊維強化複合材料。
【0022】
〔8〕 〔6〕に記載のプリプレグを硬化して成る繊維強化複合材料。
【0023】
上記〔7〕、〔8〕に記載の発明は、〔1〕~〔5〕の何れかに記載のエポキシ樹脂組成物の硬化樹脂と、繊維強化基材と、が複合化されて成る繊維強化複合材料である。
【発明の効果】
【0024】
本発明のエポキシ樹脂組成物は、耐熱性及び弾性率が高い硬化樹脂を製造することができる。また、本発明のエポキシ樹脂組成物は繊維強化基材に対する含浸性や取扱性が高いため、優れた特性を有するFRPを作製することができる。
【発明を実施するための形態】
【0025】
以下、本発明のエポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法の詳細について説明する。
【0026】
1. エポキシ樹脂組成物
本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂[A]と、エポキシ樹脂[B]とを含んで成る。本発明のエポキシ樹脂組成物は、これらの他に、熱可塑性樹脂や硬化剤、その他の添加剤を含んでいても良い。
【0027】
本発明のエポキシ樹脂組成物は、100℃における粘度が、0.1~500Pa・sであることが好ましく、1~100Pa・sであることがより好ましい。0.1Pa・s未満である場合、プリプレグから樹脂が流出し易くなる。500Pa・sを超える場合、プリプレグに未含浸部分が生じ易くなる。その結果、得られる繊維強化複合材料においてボイド等が形成され易くなる。
【0028】
本発明のエポキシ樹脂組成物を硬化させて得られる硬化樹脂は、ガラス転移温度が150℃以上であることが好ましく、170℃~400℃であることがより好ましい。150℃未満である場合は耐熱性が不十分である。その結果、得られる繊維強化複合材料においてボイド等が形成され易くなる。
【0029】
本発明のエポキシ樹脂組成物を硬化させて得られる硬化樹脂は、JIS K7171法で測定する曲げ弾性率が3.0GPa以上であることが好ましく、3.5GPa~30GPaであることがより好ましく、4.0GPa~20GPaであることが更に好ましい。3.0GPa未満である場合、得られる繊維強化複合材料の特性が低下し易い。
【0030】
(1-1) エポキシ樹脂[A]
本発明のエポキシ樹脂組成物は、下記化学式(1)
【0031】
【0032】
(ただし、化(1)中、R1~R4は、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH2-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO2-から選ばれる1つを表す。)
で示されるエポキシ樹脂[A]を含む。R1~R4が、脂肪族炭化水素基または脂環式炭化水素基の場合、その炭素数は1~4であることが好ましい。
【0033】
エポキシ樹脂[A]は4官能のエポキシ樹脂であり、2個のグリシジル基を有するアミノ基がジアミノジフェニル骨格にパラ位およびメタ位でそれぞれ結合されている。この構造により生じる硬化樹脂の特殊な立体構造に起因して、硬化樹脂の弾性率及び耐熱性が高くなると本発明者らは推定している。
【0034】
エポキシ樹脂[A]としては、テトラグリシジル-3,4’-ジアミノジフェニルエーテルであることが好ましい。R1~R4が水素原子である場合、硬化樹脂の特殊な立体構造形成が阻害されにくいため好ましい。また、当該化合物の合成が容易になるためXが-O-であることが好ましい。
【0035】
本発明のエポキシ樹脂組成物における、エポキシ樹脂の総量に対する、エポキシ樹脂[A]が占める割合は、20~95質量%であることが好ましく、40~95質量%であることがより好ましく、55~90質量%であることが更に好ましい。20質量%未満の場合、得られる硬化樹脂の耐熱性及び弾性率が低下する場合がある。95質量%を超える場合、エポキシ樹脂組成物の粘度が高く、繊維強化基材への含浸性が低下し易い。その結果、何れの場合も、得られるCFRPの各種物性が低下する場合がある。
【0036】
(1-2) エポキシ樹脂[B]
本発明のエポキシ樹脂組成物は、エポキシ当量が110g/eq以下であるエポキシ樹脂[B]を含む。
エポキシ樹脂[B]は、エポキシ樹脂[A]の粘度を低下させて、プリプレグ作製時の樹脂含浸性を向上させるとともに、硬化樹脂の弾性率を向上させる。そのため、エポキシ樹脂[A]とエポキシ樹脂[B]とを組み合わせて用いることにより、耐熱性及び高弾性率を維持しつつ、FRPの各種物性を向上できる。
【0037】
エポキシ樹脂[B]としては、エポキシ当量が110g/eq以下のエポキシ樹脂であれば特に限定されないが、トリグリシジルアミノフェノール、テトラグリシジル-m-キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサン、及びこれらの誘導体のようなグリシジルアミン型のエポキシ樹脂を用いることが好ましく、トリグリシジルアミノフェノール、テトラグリシジル-m-キシリレンジアミンのような芳香基を含有するエポキシ樹脂を用いることがより好ましく、特にトリグリシジルアミノフェノール及びその誘導体のような3官能のエポキシ樹脂を用いることが好ましい。
【0038】
本発明のエポキシ樹脂組成物における、エポキシ樹脂の総量に対する、エポキシ樹脂[B]が占める割合は、5~80質量%であることが好ましく、5~60質量%であることがより好ましく、10~45質量%であることが更に好ましい。5質量%未満である場合、エポキシ樹脂組成物の粘度が高く、繊維強化基材への含浸性が低下し易い。80質量%を超える場合、得られる硬化樹脂の耐熱性及び弾性率が低下する場合がある。その結果、何れの場合も、得られるCFRPの各種物性が低下する場合がある。
【0039】
本発明のエポキシ樹脂組成物における、エポキシ樹脂[A]とエポキシ樹脂[B]との質量比は、20:80~98:2であることが好ましく、50:50~95:5であることがより好ましく、60:40~80:20であることが更に好ましい。この比率で配合することにより、プリプレグの作製に適した粘度を有するエポキシ樹脂組成物を作製でき、プリプレグの取扱い性が良好かつ耐熱性及び弾性率が高い硬化物を得ることができる。また、エポキシBが多い方がプリプレグの取扱い性に優れる。
【0040】
本発明のエポキシ樹脂組成物は、上記2種類のエポキシ樹脂を必須とするが、その他のエポキシ樹脂を含んでいても良い。
【0041】
その他のエポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。具体的には、以下に例示されるものを用いることができる。これらの中でも芳香族基を含有するエポキシ樹脂が好ましく、グリシジルアミン構造、グリシジルエーテル構造のいずれかを含有するエポキシ樹脂が好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。
グリシジルアミン構造を含有するエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-3-メチル-4-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体などが例示される。
グリシジルエーテル構造を含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。
また、これらのエポキシ樹脂は、必要に応じて、芳香族環構造などに、非反応性置換基を有していても良い。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基やフェニルなどの芳香族基やアルコキシル基、アラルキル基、塩素や臭素などの如くハロゲン基などが例示される。
【0042】
(1-3) 硬化剤
本発明のエポキシ樹脂組成物に含有されるエポキシ樹脂[A]及びエポキシ樹脂[B]は、硬化剤によって硬化される。本発明のエポキシ樹脂組成物は、この硬化剤を予め含有していても良いし、含有していなくてもよい。硬化剤を含有していないエポキシ樹脂組成物は、硬化前又は硬化時において、硬化剤と混合可能な状態とされる。
【0043】
本発明に用いられる硬化剤は、エポキシ樹脂を硬化させる公知の硬化剤である。硬化剤としては、エポキシ樹脂[A]及びエポキシ樹脂[B]を硬化させる物であれば良く、使用目的等に応じて適宜選択される。
具体的には、ジシアンジアミド、芳香族アミン系硬化剤の各種異性体、アミノ安息香酸エステル類が挙げられる。ジシアンジアミドは、プリプレグの保存安定性に優れるため好ましい。また、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミン化合物及びこれらの非反応性置換基を有する誘導体は、耐熱性が高い硬化物を得ることができるため、特に好ましい。さらに、3,3’-ジアミノジフェニルスルホンは、得られる樹脂硬化物の耐熱性や弾性率が高いため最も好ましい。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基、フェニルなどの芳香族基、アルコキシル基、アラルキル基、塩素や臭素などのようなハロゲン基が例示される。
【0044】
アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好ましく用いられる。これら硬化剤を用いて硬化させた複合材料は、ジアミノジフェニルスルホンの各種異性体を用いて硬化させた複合材料と比較して、耐熱性は低いが、引張伸度が高い。そのため、複合材料の用途に応じて硬化剤は適宜選択される。
【0045】
エポキシ樹脂組成物に含まれる硬化剤の量は、エポキシ樹脂組成物中に配合されている全てのエポキシ樹脂を硬化させるのに適した量であり、用いるエポキシ樹脂や硬化剤の種類に応じて適宜調節される。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂量100質量部に対して25~65質量部であることが好ましく、35~55質量部であることがより好ましい。
【0046】
(1-4) 熱可塑性樹脂
本発明のエポキシ樹脂組成物は熱可塑性樹脂を含んでいても良い。熱可塑性樹脂としては、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが挙げられる。
【0047】
(1-4-1) エポキシ樹脂可溶性熱可塑性樹脂
エポキシ樹脂組成物は、エポキシ樹脂可溶性熱可塑性樹脂を含有することもできる。このエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物の粘度を調整するとともに、得られるFRPの耐衝撃性を向上させる。
【0048】
エポキシ樹脂可溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に一部又は全部が溶解し得る熱可塑性樹脂である。ここで、エポキシ樹脂に一部が溶解するとは、エポキシ樹脂100質量部に対して、平均粒子径が20~50μmの熱可塑性樹脂10質量部を混合して190℃で1時間撹拌した際に粒子が消失するか、粒子の大きさが10%以上変化することを意味する。
一方、エポキシ樹脂不溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に実質的に溶解しない熱可塑性樹脂をいう。即ち、エポキシ樹脂100質量部に対して、平均粒子径が20~50μmの熱可塑性樹脂10質量部を混合して190℃で1時間撹拌した際に、粒子の大きさが10%以上変化しない熱可塑性樹脂をいう。なお、一般的に、FRPを成形する温度は100~190℃である。また、粒子径は、顕微鏡によって目視で測定され、平均粒子径とは、無作為に選択した100個の粒子の粒子径の平均値を意味する。
【0049】
エポキシ樹脂可溶性熱可塑性樹脂が完全に溶解していない場合は、エポキシ樹脂の硬化過程で加熱されることによりエポキシ樹脂に溶解し、エポキシ樹脂組成物の粘度を増加させることができる。これにより、硬化過程における粘度低下に起因するエポキシ樹脂組成物のフロー(プリプレグ内から樹脂組成物が流出する現象)を防止することができる。
【0050】
エポキシ樹脂可溶性熱可塑性樹脂は、190℃でエポキシ樹脂に80質量%以上溶解する樹脂が好ましい。
【0051】
エポキシ樹脂可溶性熱可塑性樹脂の具体的例としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネート等が挙げられる。これらは、単独で用いても、2種以上を併用しても良い。エポキシ樹脂組成物に含まれるエポキシ樹脂可溶性熱可塑性樹脂は、ゲル浸透クロマトグラフィーにより測定される重量平均分子量(Mw)が8000~100000の範囲のポリエーテルスルホン、ポリスルホンが特に好ましい。重量平均分子量(Mw)が8000よりも小さいと、得られるFRPの耐衝撃性が不十分となり、また100000よりも大きいと粘度が著しく高くなり取扱性が著しく悪化する場合がある。エポキシ樹脂可溶性熱可塑性樹脂の分子量分布は均一であることが好ましい。特に、重量平均分子量(Mw)と数平均分子量(Mn)の比である多分散度(Mw/Mn)が1~10の範囲であることが好ましく、1.1~5の範囲であることがより好ましい。
【0052】
エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂と反応性を有する反応基又は水素結合を形成する官能基を有していることが好ましい。このようなエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂の硬化過程中における溶解安定性を向上させることができる。また、硬化後に得られるFRPに靭性、耐薬品性、耐熱性及び耐湿熱性を付与することができる。
【0053】
エポキシ樹脂との反応性を有する反応基としては、水酸基、カルボン酸基、イミノ基、アミノ基などが好ましい。水酸基末端のポリエーテルスルホンを用いると、得られるFRPの耐衝撃性、破壊靭性及び耐溶剤性が特に優れるためより好ましい。
【0054】
エポキシ樹脂組成物に含まれるエポキシ樹脂可溶性熱可塑性樹脂の含有量は、粘度に応じて適宜調整される。プリプレグの加工性の観点から、エポキシ樹脂組成物に含有されるエポキシ樹脂100質量部に対して、5~90質量部が好ましく、5~40質量部がより好ましく、15~35質量部がさらに好ましい。5質量部未満の場合は、得られるFRPの耐衝撃性が不十分となる場合がある。エポキシ樹脂可溶性熱可塑性樹脂の含有量が高くなると、粘度が著しく高くなり、プリプレグの取扱性が著しく悪化する場合がある。
【0055】
エポキシ樹脂可溶性熱可塑性樹脂には、アミン末端基を有する反応性芳香族オリゴマー(以下、単に「芳香族オリゴマー」ともいう)を含むことが好ましい。
【0056】
エポキシ樹脂組成物は、加熱硬化時にエポキシ樹脂と硬化剤との硬化反応により高分子量化する。高分子量化により二相域が拡大することによって、エポキシ樹脂組成物に溶解していた芳香族オリゴマーは、反応誘起型の相分離を引き起こす。この相分離により、硬化後のエポキシ樹脂と、芳香族オリゴマーと、が共連続となる樹脂の二相構造をマトリックス樹脂内に形成する。また、芳香族オリゴマーはアミン末端基を有していることから、エポキシ樹脂との反応も生じる。この共連続の二相構造における各相は互いに強固に結合しているため、耐溶剤性も向上している。
【0057】
この共連続の構造は、FRPに対する外部からの衝撃を吸収してクラック伝播を抑制する。その結果、アミン末端基を有する反応性芳香族オリゴマーを含むプリプレグを用いて作製されるFRPは、高い耐衝撃性及び破壊靭性を有する。
【0058】
この芳香族オリゴマーとしては、公知のアミン末端基を有するポリスルホン、アミン末端基を有するポリエーテルスルホンを用いることができる。アミン末端基は第一級アミン(-NH2)末端基であることが好ましい。
【0059】
エポキシ樹脂組成物に配合される芳香族オリゴマーは、ゲル浸透クロマトグラフィーにより測定される重量平均分子量が8000~40000であることが好ましい。重量平均分子量が8000未満である場合、マトリクス樹脂の靱性向上効果が低い。また、重量平均分子量が40000を超える場合、樹脂組成物の粘度が高くなり過ぎて、強化繊維層内に樹脂組成物が含浸しにくくなる等の加工上の問題点が発生しやすくなる。
【0060】
芳香族オリゴマーとしては、「Virantage DAMS VW-30500 RP(登録商標)」(Solvay Specialty Polymers社製)のような市販品を好ましく用いることができる。
【0061】
エポキシ樹脂可溶性熱可塑性樹脂の形態は、特に限定されないが、粒子状であることが好ましい。粒子状のエポキシ樹脂可溶性熱可塑性樹脂は、樹脂組成物中に均一に配合することができる。また、得られるプリプレグの成形性が高い。
【0062】
エポキシ樹脂可溶性熱可塑性樹脂の平均粒子径は、1~50μmであることが好ましく、3~30μmであることが特に好ましい。1μm未満である場合、エポキシ樹脂組成物の粘度が著しく増粘する。そのため、エポキシ樹脂組成物に十分な量のエポキシ樹脂可溶性熱可塑性樹脂を添加することが困難となる場合がある。50μmを超える場合、エポキシ樹脂組成物をシート状に加工する際、均質な厚みのシートが得られ難くなる場合がある。また、エポキシ樹脂への溶解速度が遅くなり、得られるFRPが不均一となるため、好ましくない。
【0063】
(1-4-2) エポキシ樹脂不溶性熱可塑性樹脂
エポキシ樹脂組成物には、エポキシ樹脂可溶性熱可塑性樹脂の他に、エポキシ樹脂不溶性熱可塑性樹脂を含有しても良い。本発明において、エポキシ樹脂組成物はエポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂の両者を含有していることが好ましい。
【0064】
エポキシ樹脂不溶性熱可塑性樹脂やエポキシ樹脂可溶性熱可塑性樹脂の一部(硬化後のマトリクス樹脂において溶解せずに残存したエポキシ樹脂可溶性熱可塑性樹脂)は、その粒子がFRPのマトリクス樹脂中に分散する状態となる(以下、この分散している粒子を「層間粒子」ともいう)。この層間粒子は、FRPが受ける衝撃の伝播を抑制する。その結果、得られるFRPの耐衝撃性が向上する。
【0065】
エポキシ樹脂不溶性熱可塑性樹脂としては、ポリアミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンナフタレート、ポリエーテルニトリル、ポリベンズイミダゾールが例示される。これらの中でも、ポリアミド、ポリアミドイミド、ポリイミドは、靭性及び耐熱性が高いため好ましい。ポリアミドやポリイミドは、FRPに対する靭性向上効果が特に優れている。これらは、単独で用いてもよいし、2種以上を併用しても良い。また、これらの共重合体を用いることもできる。
【0066】
特に、非晶性ポリイミドや、ナイロン6(登録商標)(カプロラクタムの開環重縮合反応により得られるポリアミド)、ナイロン11(ウンデカンラクタムの開環重縮合反応により得られるポリアミド)、ナイロン12(ラウリルラクタムの開環重縮合反応により得られるポリアミド)、ナイロン1010(セバシン酸と1,10-デカンジアミンとの共重反応により得られるポリアミド)、非晶性のナイロン(透明ナイロンとも呼ばれ、ポリマーの結晶化が起こらないか、ポリマーの結晶化速度が極めて遅いナイロン)のようなポリアミドを使用することにより、得られるFRPの耐熱性を特に向上させることができる。
【0067】
エポキシ樹脂組成物中のエポキシ樹脂不溶性熱可塑性樹脂の含有量は、エポキシ樹脂組成物の粘度に応じて適宜調整される。プリプレグの加工性の観点から、エポキシ樹脂組成物に含有されるエポキシ樹脂100質量部に対して、5~50質量部であることが好ましく、10~45質量部であることがより好ましく、20~40質量部であることがさらに好ましい。5質量部未満の場合、得られるFRPの耐衝撃性が不十分になる場合がある。50質量部を超える場合、エポキシ樹脂組成物の含浸性や、得られるプリプレグのドレープ性などを低下させる場合がある。
【0068】
エポキシ樹脂不溶性熱可塑性樹脂の好ましい平均粒子径や形態は、エポキシ樹脂可溶性熱可塑性樹脂と同様である。
【0069】
(1-5) その他の添加剤
本発明のエポキシ樹脂組成物には、導電性粒子や難燃剤、無機系充填剤、内部離型剤が配合されてもよい。
【0070】
導電性粒子としては、ポリアセチレン粒子、ポリアニリン粒子、ポリピロール粒子、ポリチオフェン粒子、ポリイソチアナフテン粒子及びポリエチレンジオキシチオフェン粒子等の導電性ポリマー粒子;、カーボン粒子;、炭素繊維粒子;、金属粒子;、無機材料又は有機材料から成るコア材を導電性物質で被覆した粒子が例示される。
【0071】
難燃剤としては、リン系難燃剤が例示される。リン系難燃剤としては、分子中にリン原子を含むものであれば特に限定されず、例えば、リン酸エステル、縮合リン酸エステル、ホスファゼン化合物、ポリリン酸塩などの有機リン化合物や赤リンが挙げられる。
【0072】
無機系充填材としては、例えば、ホウ酸アルミニウム、炭酸カルシウム、炭酸ケイ素、窒化ケイ素、チタン酸カリウム、塩基性硫酸マグネシウム、酸化亜鉛、グラファイト、硫酸カルシウム、ホウ酸マグネシウム、酸化マグネシウム、ケイ酸塩鉱物が挙げられる。特に、ケイ酸塩鉱物を用いることが好ましい。ケイ酸塩鉱物の市販品としては、THIXOTROPIC AGENT DT 5039(ハンツマン・ジャパン株式会社 製)が挙げられる。
【0073】
内部離型剤としては、例えば、金属石鹸類、ポリエチレンワックスやカルバナワックス等の植物ワックス、脂肪酸エステル系離型剤、シリコンオイル、動物ワックス、フッ素系非イオン界面活性剤を挙げることができる。これら内部離型剤の配合量は、前記エポキシ樹脂100質量部に対して、0.1~5質量部であることが好ましく、0.2~2質量部であることがさらに好ましい。この範囲内においては、金型からの離型効果が好適に発揮される。
【0074】
内部離型剤の市販品としては、“MOLD WIZ(登録商標)” INT1846(AXEL PLASTICS RESEARCH LABORATORIES INC.製)、Licowax S、Licowax P、Licowax OP、Licowax PE190、Licowax PED(クラリアントジャパン社製)、ステアリルステアレート(SL-900A;理研ビタミン(株)製が挙げられる。
【0075】
(1-6) エポキシ樹脂組成物の製造方法
本発明のエポキシ樹脂組成物は、エポキシ樹脂[A]と、エポキシ樹脂[B]と、必要に応じて熱可塑性樹脂、硬化剤、その他の成分と、を混合することにより製造できる。これらの混合の順序は問わない。
【0076】
エポキシ樹脂組成物の製造方法は、特に限定されるものではなく、従来公知のいずれの方法を用いてもよい。混合温度としては、40~120℃の範囲が例示できる。120℃を超える場合、部分的に硬化反応が進行して繊維強化基材層内への含浸性が低下したり、得られるエポキシ樹脂組成物及びそれを用いて製造されるプリプレグの保存安定性が低下したりする場合がある。40℃未満である場合、エポキシ樹脂組成物の粘度が高く、実質的に混合が困難となる場合がある。好ましくは50~100℃であり、さらに好ましくは50~90℃の範囲である。
【0077】
混合機械装置としては、従来公知のものを用いることができる。具体的な例としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を備えた混合容器、横型混合槽などが挙げられる。各成分の混合は、大気中又は不活性ガス雰囲気下で行うことができる。大気中で混合が行われる場合は、温度、湿度が管理された雰囲気が好ましい。特に限定されるものではないが、例えば、30℃以下の一定温度に管理された温度や、相対湿度50%RH以下の低湿度雰囲気で混合することが好ましい。
【0078】
2. プリプレグ
本発明のプリプレグは、繊維強化基材と、前記繊維強化基材内に含浸された上述の本発明のエポキシ樹脂組成物(以下、「本エポキシ樹脂組成物」ともいう)と、から成る。
【0079】
本発明のプリプレグは、繊維強化基材の一部又は全体に本エポキシ樹脂組成物が含浸されたプリプレグである。プリプレグ全体における本エポキシ樹脂組成物の含有率は、プリプレグの全質量を基準として、15~60質量%であることが好ましい。樹脂含有率が15質量%未満である場合、得られる繊維強化複合材料に空隙などが発生し、機械物性を低下させる場合がある。樹脂含有率が60質量%を超える場合、強化繊維による補強効果が不十分となり、実質的に質量対比機械物性が低いものになる場合がある。樹脂含有率は、20~55質量%であることが好ましく、25~50質量%であることがより好ましい。
【0080】
(2-1) 繊維強化基材
本発明で用いる繊維強化基材としては、特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などが挙げられる。
【0081】
これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。比強度、比弾性率が良好で、軽量かつ高強度の繊維強化複合材料が得られる点で、炭素繊維がより好ましい。引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維が特に好ましい。
【0082】
強化繊維にPAN系炭素繊維を用いる場合、その引張弾性率は、100~600GPaであることが好ましく、200~500GPaであることがより好ましく、230~450GPaであることが特に好ましい。また、引張強度は、2000MPa~10000MPaであることが好ましく、3000~8000MPaであることがより好ましい。炭素繊維の直径は、4~20μmが好ましく、5~10μmがより好ましい。このような炭素繊維を用いることにより、得られる繊維強化複合材料の機械的性質を向上できる。
【0083】
強化繊維はシート状に形成して用いることが好ましい。強化繊維シートとしては、例えば、多数本の強化繊維を一方向に引き揃えたシートや、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙を挙げることができる。これらの中でも、強化繊維を連続繊維としてシート状に形成した一方向引揃えシートや二方向織物、多軸織物基材を用いると、より機械物性に優れた繊維強化複合材料が得られるため好ましい。シート状の繊維強化基材の厚さは、0.01~3mmが好ましく、0.1~1.5mmがより好ましい。
【0084】
(2-2) プリプレグの製造方法
本発明のプリプレグの製造方法は、特に制限がなく、従来公知のいかなる方法も採用できる。具体的には、ホットメルト法や溶剤法が好適に採用できる。
【0085】
ホットメルト法は、離型紙の上に、樹脂組成物を薄いフィルム状に塗布して樹脂組成物フィルムを形成し、繊維強化基材に該樹脂組成物フィルムを積層して加圧下で加熱することにより樹脂組成物を繊維強化基材層内に含浸させる方法である。
【0086】
樹脂組成物を樹脂組成物フィルムにする方法としては、特に限定されるものではなく、従来公知のいずれの方法を用いることもできる。具体的には、ダイ押し出し、アプリケーター、リバースロールコーター、コンマコーターなどを用いて、離型紙やフィルムなどの支持体上に樹脂組成物を流延、キャストをすることにより樹脂組成物フィルムを得ることができる。フィルムを製造する際の樹脂温度は、樹脂組成物の組成や粘度に応じて適宜決定する。具体的には、前述のエポキシ樹脂組成物の製造方法における混合温度と同じ温度条件が好適に用いられる。樹脂組成物の繊維強化基材層内への含浸は1回で行っても良いし、複数回に分けて行っても良い。
【0087】
溶剤法は、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを繊維強化基材層内に含浸させる方法である。
【0088】
本発明のプリプレグは、これらの従来法の中でも、溶剤を用いないホットメルト法により好適に製造することができる。
【0089】
エポキシ樹脂組成物フィルムをホットメルト法で繊維強化基材層内に含浸させる場合の含浸温度は、50~120℃の範囲が好ましい。含浸温度が50℃未満の場合、エポキシ樹脂の粘度が高く、繊維強化基材層内へ十分に含浸しない場合がある。含浸温度が120℃を超える場合、エポキシ樹脂組成物の硬化反応が進行し、得られるプリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。含浸温度は、60~110℃がより好ましく、70~100℃が特に好ましい。
【0090】
エポキシ樹脂組成物フィルムをホットメルト法で繊維強化基材層内に含浸させる際の含浸圧力は、その樹脂組成物の粘度・樹脂フローなどを勘案し、適宜決定する。
具体的な含浸圧力は、 0.01~250(N/cm)であり、0.1~200(N/cm)であることが好ましい。
【0091】
3.繊維強化複合材料
繊維強化基材と、本発明のエポキシ樹脂組成物に各種硬化剤や熱可塑性樹脂を配合して成る樹脂組成物と、を複合化して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。また、本発明のプリプレグを特定の条件で加熱加圧して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。本発明のプリプレグを用いて、FRPを製造する方法としては、オートクレーブ成形やプレス成形等の公知の成形法が挙げられる。
【0092】
(3-1) オートクレーブ成形法
本発明のFRPの製造方法としては、オートクレーブ成形法が好ましく用いられる。オートクレーブ成形法は、金型の下型にプリプレグ及びフィルムバッグを順次敷設し、該プリプレグを下型とフィルムバッグとの間に密封し、下型とフィルムバッグとにより形成される空間を真空にするとともに、オートクレーブ成形装置で、加熱と加圧をする成形方法である。成形時の条件は、昇温速度を1~50℃/分とし、0.2~0.7MPa、130~180℃で10~30分間、加熱及び加圧することが好ましい。
【0093】
(3-2) プレス成形法
本発明のFRPの製造方法としては、プレス成形法が好ましく用いられる。プレス成形法によるFRPの製造は、本発明のプリプレグ又は本発明のプリプレグを積層して形成したプリフォームを、金型を用いて加熱加圧することにより行う。金型は、予め硬化温度に加熱しておくことが好ましい。
【0094】
プレス成形時の金型の温度は、150~210℃が好ましい。成形温度が150℃以上であれば、十分に硬化反応を起こすことができ、高い生産性でFRPを得ることができる。また、成形温度が210℃以下であれば、樹脂粘度が低くなり過ぎることがなく、金型内における樹脂の過剰な流動を抑えることができる。その結果、金型からの樹脂の流出や繊維の蛇行を抑制できるため、高品質のFRPが得られる。
【0095】
成形時の圧力は、0.05~2MPaであり、0.2~2MPaが好ましい。圧力が0.05MPa以上であれば、樹脂の適度な流動が得られ、外観不良やボイドの発生を防ぐことができる。また、プリプレグが十分に金型に密着するため、良好な外観のFRPを製造することができる。圧力が2MPa以下であれば、樹脂を必要以上に流動させることがないため、得られるFRPの外観不良が生じ難い。また、金型に必要以上の負荷をかけることがないため、金型の変形等が生じ難い。
成形時間は1~8時間が好ましい。
【実施例】
【0096】
以下、実施例によって本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。本実施例、比較例において使用する成分や試験方法を以下に記載する。
【0097】
〔成分〕
(エポキシ樹脂)
エポキシ樹脂[A]
・テトラグリシジル-3,4’-ジアミノジフェニルエーテル(合成例1の方法で合成、以下「3,4’-TGDDE」と略記する)
エポキシ樹脂[B]
・トリグリシジル-p-アミノフェノール(ハンツマン社製 Araldite MY0510、エポキシ当量=97g/eq、以下「TG-pAP」と略記する)
・トリグリシジル-m-アミノフェノール(ハンツマン社製 Araldite MY0600、エポキシ当量=106g/eq、以下「TG-mAP」と略記する)
その他のエポキシ樹脂
・テトラグリシジル-4,4’-ジアミノジフェニルメタン(ハンツマン社製 Araldite MY721、エポキシ当量=112g/eq、以下「TGDDM」と略記する)
・テトラグリシジル-4,4’-ジアミノジフェニルエーテル (合成例2の方法で合成、エポキシ当量=112g/eq、以下「4,4’-TGDDE」と略記する)
・ビスフェノールA-ジグリシジルエーテル(三菱化学社製 jER825、エポキシ当量=176g/eq、以下「DGEBA」と略記する)
(硬化剤)
・3,3’-ジアミノジフェニルスルホン(小西化学工業株式会社製、以下「3,3’-DDS」と略記する)
(エポキシ樹脂不溶熱可塑性樹脂)
・ポリアミド12(エムスケミージャパン社製 TR-55、平均粒子径20μm、以下「PA12」と略記する)
(エポキシ樹脂可溶熱可塑性樹脂)
・ポリエーテルスルホン(住友化学工業株式会社製 スミカエクセルPES-5003P、平均粒子径20μm、以下「PES」と略記する)
(炭素繊維ストランド)
・“テナックス(登録商標)” IMS65 E23 830tex(炭素繊維ストランド、 引張強度5.8GPa、 引張弾性率290GPa、東邦テナックス(株)製)
【0098】
〔合成例1〕(3,4’-TGDDEの合成)
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110.2g(12.0mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1000gに溶解させた3,4’-ジアミノジフェニルエーテル200.2g(1.0mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液500.0g(6.0mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、400gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が361.7g(収率85.2%)得られた。主生成物である3,4’-TGDDEの純度は、84%(HPLC面積%)であった。
【0099】
〔合成例2〕(4,4’-TGDDEの合成)
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110.2g(12.0mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1000gに溶解させた。4,4’-ジアミノジフェニルエーテル200.2g(1.0mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-4,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液500.0g(6.0mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、400gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が377.8g(収率89.0%)得られた。主生成物である4,4’-TGDDEの純度は、87%(HPLC面積%)であった。
【0100】
[評価方法]
(1) 樹脂硬化物の物性
(1-1) エポキシ樹脂組成物の調製
表1に記載する割合でエポキシ樹脂に硬化剤を添加し、撹拌機を用いて40℃で30分間混合し、エポキシ樹脂組成物を調製した。なお、表1に記載の組成においては、エポキシ樹脂のグリシジル基と硬化剤のアミノ基は当量となる。
【0101】
(1-2) 樹脂硬化物の作成
(1-1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、4mm厚のシリコン樹脂製スペーサーにより厚み4mmになるように設定したシリコン樹脂製モールド中に注入した。180℃の温度で2時間硬化させ、厚さ4mmの樹脂硬化物を得た。
【0102】
(1-3) 曲げ弾性率
JIS K7171法に準じて、試験を実施した。その際の、樹脂試験片の寸法は80mm×10mm×h4mmで準備した。支点間距離Lは、16×h(厚み)、試験速度2mm/minで曲げ試験を行い、曲げ弾性率を測定した。
【0103】
(1-4) DMA-Tg
SACMA 18R-94法に準じて、ガラス転移温度を測定した。樹脂試験片の寸法は50mm×6mm×2mmで準備した。UBM社製動的粘弾性測定装置Rheogel-E400を用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.0167%の条件で、チャック間の距離を30mmとし、50℃からゴム弾性領域まで貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の平坦領域の近似直線と、E’が転移する領域の近似直線との交点から求められる温度をガラス転移温度(Tg)として記録した。
【0104】
(2) CFRP物性
(2-1) エポキシ樹脂組成物の調製
表2に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶熱可塑性樹脂を120℃で溶解させた。その後、80℃まで降温し、硬化剤およびエポキシ樹脂不溶熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物を調製した。
【0105】
(2-2) プリプレグの作製
リバースロールコーターを用いて、離型紙上に、(2-1)で得られたエポキシ樹脂組成物を塗布して50g/m2目付の樹脂フィルムを作製した。次に、単位面積当たりの繊維質量が190g/m2となるように炭素繊維を一方向に整列させてシート状の繊維強化基材層を作製した。この繊維強化基材層の両面に上記樹脂フィルムを積重し、温度95℃、圧力0.2MPaの条件で加熱加圧して、炭素繊維含有率が65質量%の一方向プリプレグを作製した。
【0106】
(2-3) 衝撃後圧縮強度(CAI)
(2-2)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmの寸法に切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。供試体(サンプル)は各試験片の寸法測定後、衝撃試験は落錘型衝撃試験機(インストロン社製 Dynatup)を用いて、30.5Jの衝撃エネルギーを与えた。衝撃後、供試体の損傷面積は、超音波探傷試験機(クラウトクレーマー社製 SDS3600、HIS3/HF)にて測定した。衝撃後、供試体の強度試験は、供試体の上から25.4mmでサイドから25.4mmの位置に、歪みゲージを左右各1本ずつ貼付し、同様に表裏に合計4本/体の歪みゲージを貼付けた後、試験機(島津製作所製オートグラフ)のクロスヘッド速度を1.27mm/minとし、供試体の破断まで荷重を負荷した。
【0107】
(2-4) 層間破壊靭性モードI(GIc)
(2-2)で得られたプリプレグを一辺が360mmの正方形にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅 12.7 mm × 長さ 330.2 mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。
GIcの試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、離型シートの先端から12.7mmの予亀裂(初期クラック)を発生させた後に、さらに亀裂を進展させる試験を行った。予亀裂の先端から、亀裂進展長さが127mmに到達した時点で試験を終了させた。試験片引張試験機のクロスヘッドスピードは12.7mm/分とし、n=5で測定を行った。
亀裂進展長さは顕微鏡を用いて試験片の両端面から測定し、荷重、及び亀裂開口変位を計測することにより、GIc算出した。
【0108】
(2-5) 層間破壊靭性モードII(GIIc)
(2-2)で得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを形成させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅 12.7 mm × 長さ 330.2 mmの寸法に切断し、層間破壊靭性モードII(GIIc)の試験片を得た。この試験片を用いて、GIIc試験を行った。
GIIc試験方法として、3点曲げ荷重を負荷するENF(end notched flexure test)試験を行った。支点間距離は101.6mmとした。厚さ25μmのPTFEシートにより作製したシートの先端が、支点から38.1mmとなるように試験片を配置し、この試験片に2.54mm/分の速度で曲げの負荷を与えて初期クラックを形成させた。
その後、クラックの先端が、支点から25.4mmの位置になるように試験片を配置し、2.54mm/分の速度で曲げの負荷を与えて試験を行った。同様に、3回の試験を実施し、それぞれの曲げ試験の荷重―ストロークから各回のGIIcを算出した後、それらの平均値を算出した。
クラックの先端は顕微鏡を用いて、試験片の両端面から測定を行った。GIIc試験の測定は、n=5の試験片で測定を行った。
【0109】
(2-6) OHC
(2-2)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]2Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅38.1mm × 長さ304.8mmの寸法に切断し、試験片中心に直径6.35mmの穴あけ加工を施し、有孔圧縮強度(OHC)試験の試験片を得た。
試験は、SACMA SRM3に則って実施し、最大点荷重から有孔圧縮強度を算出した。
【0110】
(3)プリプレグ取扱い性
(3-1) 含浸性
繊維基材への樹脂の含浸性をプリプレグの吸水率により評価した。得られたプリプレグの吸水率が低い方が樹脂の含浸性が高い。
(2-2)で得られたプリプレグを一辺が100mmの正方形にカットし、質量(W1)を測定した。その後、デシケーター中で、プリプレグを水中に沈めた。デシケーター内を、10kPa以下に減圧し、プリプレグ内部の空気と水を置換させた。プリプレグを水中から取り出し、表面の水を拭き取り、プリプレグの質量(W2)を測定した。これらの測定値から下記式
吸水率(%)=[(W2-W1)/W1]×100
W1:プリプレグの質量(g)
W2:吸水後のプリプレグの質量(g)
を用いて吸水率を算出した。評価結果は以下の基準(○~×)で表した。
○:吸水率が10%未満。
×:吸水率が10%以上
【0111】
〔実施例1~4、比較例1~3〕
表1に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表1に示した。実施例1~4は210℃以上の高Tgおよび4.3GPa以上の高弾性率を示した。
【0112】
〔実施例5~8、比較例4~7〕
表2に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られた各エポキシ樹脂組成物を用いてプリプレグを作製した。得られたプリプレグを用いて作製したCFRPの各種物性を表2に示した。実施例5~8は330MPa以上の高CAI、550J/m2以上の高G1c、2100J/m2以上の高G2c、335MPa以上の高OHCを示した。また、実施例6はプリプレグの取扱い性も良かった。実施例5は実施例6、7と比較して、エポキシ樹脂[B]が少ないため、問題はないものの取扱い性に劣った。
【0113】
【0114】
【0115】
比較例1及び比較例4は、エポキシ樹脂[B]を用いずに、DGEBAを用いてエポキシ樹脂組成物を作製したが、各種物性が低くなった。
比較例2、3及び比較例5、6は、エポキシ樹脂[A]を用いずに、TGDDM、4,4’-TGDDEをそれぞれ用いてエポキシ樹脂組成物を作製したが、各種物性が低くなった。
比較例7はエポキシ樹脂[B]を用いずにエポキシ樹脂組成物を作製したが、樹脂含浸性が低くなった。