(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-07
(45)【発行日】2022-12-15
(54)【発明の名称】フェノール樹脂発泡体積層板および複合板
(51)【国際特許分類】
B32B 27/42 20060101AFI20221208BHJP
B32B 5/18 20060101ALI20221208BHJP
C08J 9/14 20060101ALI20221208BHJP
B29C 44/00 20060101ALI20221208BHJP
B29C 44/24 20060101ALI20221208BHJP
B29C 44/28 20060101ALI20221208BHJP
B29C 44/32 20060101ALI20221208BHJP
B29C 39/16 20060101ALN20221208BHJP
B29C 39/18 20060101ALN20221208BHJP
B29K 61/04 20060101ALN20221208BHJP
B29L 7/00 20060101ALN20221208BHJP
B29L 9/00 20060101ALN20221208BHJP
【FI】
B32B27/42 101
B32B5/18
C08J9/14 CEZ
B29C44/00 A
B29C44/24
B29C44/28
B29C44/32
B29C39/16
B29C39/18
B29K61:04
B29L7:00
B29L9:00
(21)【出願番号】P 2021571255
(86)(22)【出願日】2021-01-15
(86)【国際出願番号】 JP2021001213
(87)【国際公開番号】W WO2021145417
(87)【国際公開日】2021-07-22
【審査請求日】2022-05-11
(31)【優先権主張番号】P 2020005370
(32)【優先日】2020-01-16
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】390018717
【氏名又は名称】旭化成建材株式会社
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100165951
【氏名又は名称】吉田 憲悟
(74)【代理人】
【識別番号】100132045
【氏名又は名称】坪内 伸
(72)【発明者】
【氏名】平松 信希
(72)【発明者】
【氏名】三堀 寿
(72)【発明者】
【氏名】黒田 敬之
【審査官】大村 博一
(56)【参考文献】
【文献】特開2018-095869(JP,A)
【文献】国際公開第2016/152155(WO,A1)
【文献】特表2014-530939(JP,A)
【文献】特表2014-504675(JP,A)
【文献】国際公開第2019/078062(WO,A1)
【文献】特開2019-089292(JP,A)
【文献】国際公開第2021/002097(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00-43/00
C08J 9/00- 9/42
B29C 44/00-44/60;67/20
B29C 39/00-39/44
B29C 48/00-48/96
(57)【特許請求の範囲】
【請求項9】
請求項1~8のいずれか1項に記載のフェノール樹脂発泡体積層板と外部部材とを積層させた複合板。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、2020年1月16日に、日本国に特許出願された特願2020-5370の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
【技術分野】
【0002】
本発明は、フェノール樹脂発泡体積層板に関するものである。
【背景技術】
【0003】
フェノール樹脂発泡体は、発泡プラスチック系断熱材の中でも高い断熱性、難燃性、及び、耐熱性を有しており、特に、施工時の取り扱いやすさを付与する目的で、その表面に面材を直接積層させたフェノール樹脂発泡体積層板が知られている。
【0004】
フェノール樹脂発泡体積層板は、昨今の建築物の断熱需要の高まりによって更なる高断熱化が求められており、発泡剤としてとりわけ低い熱伝導率を有する、HCFO-1224yd(Z)(化学名:(Z)-1-Chloro-2,3,3,3-Tetrafluoropropene)をフェノール樹脂発泡体積層板に適用する技術が求められている。
【0005】
特許文献1には、フェノール樹脂発泡体に対し、HCFO-1224yd(Z)および他の発泡剤との組み合わせを使用できることが開示されている。
【0006】
特許文献2には、同じ熱硬化性樹脂のウレタン発泡体において、HCFO-1224yd(Z)を使用することで熱伝導率が低減できることが開示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開2019/036049号公報
【文献】特開2015-105343号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、HCFO-1224yd(Z)は、数あるハイドロフルオロオレフィンの中では比較的、レゾール型フェノール樹脂への溶解性が低く、さらには、2-クロロプロパンやシクロペンタンといった発泡剤に比べて物質量あたりの体積が大きいことから、レゾール型フェノール樹脂に分散し難いという問題があった。
【0009】
HCFO-1224yd(Z)をレゾール型フェノール樹脂中に必要モル量を分散させようとすると、その分散に時間がかかる上、分散が不十分な状態で、発泡性フェノール樹脂組成物として面材上に吐出せざるを得ないという問題があった。さらに、HCFO-1233zd(E)やHFO-1336mzz(Z)に比べて沸点が低いため、分散が不十分なままだとHCFO-1224yd(Z)がレゾール型フェノール樹脂の硬化前に放散し易くなる。結果的に、フェノール樹脂中へのHCFO-1224yd(Z)の含有量が少なくなるため、発泡倍率を大きくすると十分なセル内圧が得られ難いことがわかった。
【0010】
それ故に、フェノール樹脂に対してHCFO-1224yd(Z)を適用しようとすると、製造工程中の硬化収縮に対抗する内圧が得られず、フェノール樹脂発泡体部分が、表面に積層した面材よりも収縮し易くなるということがわかった。これに伴い、面材に皺が生じ易く、フェノール樹脂発泡体積層板として十分な平滑性が得られ難いという、HCFO-1224yd(Z)特有の課題を有していた。
【0011】
面材に皺が生じると、フェノール樹脂発泡体積層板の面材表面の平滑性が損なわれ、施工性が悪化する。それゆえ、HCFO-1224yd(Z)を適用したフェノール樹脂発泡体積層板において、高断熱化と皺の抑制の両立が求められていた。
【0012】
本発明者らは、フェノール樹脂発泡体積層板の気泡内にHCFO-1224yd(Z)を高い圧力で存在させる、すなわち、物質量あたりの体積が大きいHCFO-1224yd(Z)を、フェノール樹脂中に、目標量かつより均一に分散させる方法を見出し、前記課題を解決するに至った。
【課題を解決するための手段】
【0013】
即ち本発明は以下の通りである。
[1]
フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に面材が配されたフェノール樹脂発泡体積層板であって、前記フェノール樹脂発泡体は、密度が22kg/m3以上50kg/m3以下、気泡径50μm以上170μm以下、独立気泡率80%以上であり、HCFO-1224yd(Z)、炭素数6以下の脂肪族炭化水素、炭素数5以下の塩素化飽和炭化水素及びハイドロフルオロオレフィンをガス成分とした際に、前記ガス成分としてHCFO-1224yd(Z)のみを含有し、気泡のセル内圧が0.20atm以上であることを特徴とする、フェノール樹脂発泡体積層板。
[2]
フェノール樹脂発泡体の一面および当該一面の裏面の少なくとも一方に面材が配されたフェノール樹脂発泡体積層板であって、前記フェノール樹脂発泡体は、密度が22kg/m3以上50kg/m3以下、気泡径50μm以上170μm以下、独立気泡率80%以上であり、HCFO-1224yd(Z)および炭素数6以下の脂肪族炭化水素、炭素数5以下の塩素化飽和炭化水素、ハイドロフルオロオレフィンから選ばれる少なくとも一つのガス成分を含有し、前記ガス成分の合計量に対して20質量%以上がHCFO-1224yd(Z)であり、気泡のセル内圧が0.20atm以上であることを特徴とする、フェノール樹脂発泡体積層板。
[3]
前記セル内圧が0.26atm以上である、[1]又は[2]に記載のフェノール樹脂発泡体積層板。
[4]
表層部の圧縮弾性率が4.9MPa以上である、[1]~[3]のいずれか1つに記載のフェノール樹脂発泡体積層板。
[5]
前記フェノール樹脂発泡体は空気を3.0vol%以下含有する、[1]~[4]のいずれか1つに記載のフェノール樹脂発泡体積層板。
[6]
23℃における熱伝導率が0.0180W/(m・K)以下である、[1]~[5]のいずれか1つに記載のフェノール樹脂発泡体積層板。
[7]
23℃における熱伝導率が0.0159W/(m・K)以下である、[1]~[5]のいずれかに1つに記載のフェノール樹脂発泡体積層板。
[8]
10℃における熱伝導率が0.0164W/(m・K)以下である、[1]~[7]のいずれか1つに記載のフェノール樹脂発泡体積層板。
[9]
[1]~[8]のいずれか1つに記載のフェノール樹脂発泡体積層板と外部部材とを積層させた複合板。
【発明の効果】
【0014】
本発明によれば、高い断熱性能を有し、面材の皺が少なく面材表面上の平滑性が良好である高性能のフェノール樹脂発泡体積層板を提供し得る。
【図面の簡単な説明】
【0015】
【
図1】本実施形態のフェノール樹脂発泡体積層板の斜視図である。
【発明を実施するための形態】
【0016】
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。
【0017】
本実施形態のフェノール樹脂発泡体積層板は、フェノール樹脂発泡体の上下面の少なくとも一方に面材が配されたフェノール樹脂発泡体積層板であって、面材が配された面の表面平滑性が0.80mm以下である。なお、表面平滑性は、好ましくは0.70mm以下であり、より好ましくは0.50mm以下であり、さらに好ましくは0.41mm以下であり、とりわけ好ましくは0.37mm以下であり、最も好ましくは0.33mm以下である。表面平滑性が0.80mm以下であると、表面の起伏が少なく、十分な施工性が得られやすい。
【0018】
図1は、本実施形態のフェノール樹脂発泡体積層板の斜視図である。
図1に示すとおり、フェノール樹脂発泡体積層板10は、フェノール樹脂発泡体1および可撓性面材2から構成されている。可撓性面材2は、芯材としての板状のフェノール樹脂発泡体1の6面の中の1面および当該1面の裏側の面の少なくとも一方の面に貼合わされているが、一般的に、フェノール樹脂発泡体1の主面に貼合わされている。主面とは、最も広い面である。本実施形態においては、可撓性面材2は、両主面に可撓性面材2が貼合わされている。可撓性面材2は、フェノール樹脂発泡体1を構成する樹脂の一部が面材2に含浸することにより貼合わされていることが多い。
【0019】
本実施形態のフェノール樹脂発泡体積層板は、例えば、「フェノール樹脂」に界面活性剤を加えた「フェノール樹脂組成物」に、更に、発泡剤、有機酸を含有する硬化触媒を添加して、発泡性および硬化性を付与した「発泡性フェノール樹脂組成物」を混合機に仕込み、混合した後に混合器から「発泡性フェノール樹脂組成物」を面材上に吐出し、加熱下に発泡・硬化させて製造される。
【0020】
フェノール樹脂としては、アルカリ金属水酸化物またはアルカリ土類金属水酸化物の存在下に、フェノール類とアルデヒド類を40~100℃の温度範囲で加熱合成して得られるレゾール型フェノール樹脂を用いる。フェノール類とアルデヒド類の使用モル比は1:1から1:4.5の範囲内が好ましく、より好ましくは1:1.5から1:2.5の範囲内である。
【0021】
フェノール樹脂合成の際に好ましく使用されるフェノール類としては、フェノールの他、レゾルシノール、カテコール、o-、m-およびp-クレゾール、キシレノール類、エチルフェノール類、p-tertブチルフェノール等が挙げられる。また、2核フェノール類も使用できる。
【0022】
またフェノール樹脂合成の際に好ましく使用されるアルデヒド類としては、ホルムアルデヒドの他、グリオキサール、アセトアルデヒド、クロラール、フルフラール、ベンズアルデヒド等が挙げられ、これらの誘導体もまた使用できる。
【0023】
レゾール型フェノール樹脂の合成時、もしくは合成後には、必要に応じて尿素、ジシアンジアミドやメラミン等の添加剤を添加してもよい。尿素を添加する場合は、予めアルカリ触媒でメチロール化した尿素をレゾール型フェノール樹脂に混合することが好ましい。
【0024】
合成後のレゾール型フェノール樹脂は、通常過剰な水分を含んでいるので、発泡に適した粘度にするために脱水操作を行う。
【0025】
フェノール樹脂中の水分率は2.0質量%以上20質量%以下が好ましく、より好ましくは2.0質量%以上15質量%以下、さらに好ましくは2.0質量%以上9.0質量%以下、とりわけ好ましくは3.0質量%以上8.0質量%以下、最も好ましくは3.0質量%以上7.0質量%以下である。フェノール樹脂に含まれる水分率を2.0質量%未満にするためには、脱水時に非常に多くのエネルギーと時間がかかるため、生産性の観点で2.0質量%以上が好ましくHCFO-1224yd(Z)を充分に分散させる観点から20質量%以下が好ましい。
【0026】
フェノール樹脂には、脂肪族炭化水素または高沸点の脂環式炭化水素、或いは、それらの混合物や、エチレングリコール、ジエチレングリコール等の粘度調整用の希釈剤、その他必要に応じてフタル酸系化合物等、種々の添加剤を添加することもできる。フェノール樹脂、およびフェノール樹脂組成物の40℃における粘度は、好ましくは5,000mPa・s以上25,000mPa・s以下である。
【0027】
フェノール樹脂に加える界面活性剤としては、ノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油との縮合物、アルキレンオキサイドと、ノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合生成物、アルキルエーテル部分の炭素数が14~22のポリオキシエチレンアルキルエーテル、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、ポリジメチルシロキサン、ジメチルポリシロキサンとポリエーテルのブロックコポリマー、等であるシリコーン系化合物、ポリアルコール類等が好ましい。これらの界面活性剤は単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。
【0028】
界面活性剤の使用量は、フェノール樹脂100質量部に対して0.3質量部以上10質量部以下が好ましい。
【0029】
フェノール樹脂組成物は、発泡剤と混合する直前の工程で、15~40℃、25~50kPa absの減圧環境で1時間以上保管されることが好ましく、2時間以上保管されることがより好ましい。前述の範囲内であれば、水の沸騰を避けながら脱泡することができ、フェノール樹脂を撹拌した際に混入した空気を除去することができる。これによって、気泡内に内包される空気を減らし、熱伝導率を低減させることができる。
【0030】
フェノール樹脂へ直接混合する界面活性剤とは別に、発泡剤と混合した界面活性剤をフェノール樹脂組成物へ混合することが好ましい。
【0031】
発泡剤と混合する界面活性剤は、HLBが14以下であることが好ましい。また、その添加量はフェノール樹脂へ直接混合する界面活性剤の70質量%以下であり、発泡剤100質量部に対して1部以上であることが好ましい。上述の範囲内であれば、W/OエマルションからO/Wエマルションへの転相乳化によって微細で均一な分散状態が得やすくなるため、HCFO-1224yd(Z)の放散が抑制されて内圧を大きくすることができる。また、発泡剤の凝集によって生じるボイドが抑制されるため、後に製造されるフェノール樹脂発泡体の表層部の圧縮弾性率を増大させることができる。
【0032】
本実施形態のフェノール樹脂発泡体は、発泡剤を含有し、発泡剤のうち20質量%以上がHCFO-1224yd(Z)であり、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは64質量%以上、最も好ましくは72質量%以上である。
【0033】
HCFO-1224yd(Z)はHCFOの中でも熱伝導率が低いため、発泡剤中のHCFO-1224yd(Z)の成分比は断熱性能に影響する。また、HCFO-1224yd(Z)はHCFOの中ではフェノール樹脂への溶解性が低いため、発泡体の疎水性を高め、水による樹脂の反応率低下が起こり難い。そのため、発泡剤のうち20質量%以上がHCFO-1224yd(Z)であると、断熱性能が向上し、表層部の圧縮弾性率が向上する。
【0034】
さらに、発泡剤として、HCFO-1224yd(Z)とともに、他のハイドロフルオロオレフィン、炭化水素、および塩素化炭化水素と組み合わせることができる。
【0035】
炭化水素としては、炭素数が3~7の環状または鎖状のアルカン、アルケン、アルキンが好ましく、具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン、等を挙げることができる。その中でも、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタンのペンタン類およびノルマルブタン、イソブタン、シクロブタンのブタン類が好適に用いられる。
【0036】
他のハイドロフルオロオレフィンは、塩素化ハイドロフルオロオレフィンおよび非塩素化ハイドロフルオロオレフィンを含む。
【0037】
塩素化ハイドロフルオロオレフィンとしては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd、例えば、E体(HCFO-1233zd(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)LBA)、1,1,2-トリクロロ-3,3,3-トリフルオロプロペン(HCFO-1213xa)、1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd)、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za)、1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb)、2,3,3-トリクロロ-3-フルオロプロペン(HCFO-1231xf)、2,3-ジクロロ-3,3-ジフルオロプロペン(HCFO-1232xf)、2-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233xc)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、1-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233yb)、3-クロロ-1,1,3-トリフルオロプロペン(HCFO-1233yc)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)、3-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yf)、1-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。さらに、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))も挙げられる。
【0038】
非塩素化ハイドロフルオロオレフィンとしては、1,3,3,3-テトラフルオロプロパ-1-エン(HFO-1234ze、例えば、E体(HFO-1234ze(E))である、ハネウェルジャパン株式会社製、製品名:Solstice(商標)ze)、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz、例えば、Z体(HFO-1336mzz(Z))である、ケマーズ株式会社製、Opteon(商標)1100)、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、1,1,3,3,3-ペンタフルオロプロペン(HFO-1225zc)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,1,1,4,4,5,5,5-オクタフルオロ-2-ペンテン(HFO-1438mzz)などが挙げられ、これらの立体配置異性体、すなわちE体またはZ体の、一方または混合物が用いられる。
【0039】
塩素化炭化水素としては、炭素数が2~5の直鎖状または分岐状の塩素化脂肪族炭化水素を好ましく利用できる。結合している塩素原子の数は1~4が好ましく、例えば、ジクロロエタン、プロピルクロリド、2-クロロプロパン、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリドなどが挙げられる。これらのうち、クロロプロパンであるプロピルクロリド、2-クロロプロパンが、より好ましく用いられる。
【0040】
なお、HCFO-1224yd(Z)は単独で用いられてもよいし、上述の発泡剤1種以上と組み合わせられてもよい。HCFO-1224yd(Z)と組み合わす発泡剤としてはHCFO-1233zd(E)、シクロペンタン、イソペンタン、2-クロロプロパンが好ましく、より好ましくはシクロペンタン、イソペンタンであり、さらに好ましくはシクロペンタンである。これらの発泡剤はHCFO-1224yd(Z)より沸点が高く、他の発泡剤に比べHCFO-1224yd(Z)の分散状態に影響を与えにくいため、HCFO-1224yd(Z)の使用時の内圧低下を抑制しやすい。
【0041】
本実施形態の他のフェノール樹脂発泡体は、HCFO-1224yd(Z)、炭素数6以下の脂肪族炭化水素、炭素数5以下の塩素化飽和炭化水素及びハイドロフルオロオレフィンをガス成分とした際に、前記ガス成分としてHCFO-1224yd(Z)のみを含有する。
【0042】
ここで、ガス成分とは、フェノール樹脂発泡体に対するGC/MSにて分析されたHCFO-1224yd(Z)、炭素数6以下の脂肪族炭化水素、炭素数5以下の塩素化飽和炭化水素及びハイドロフルオロオレフィンをいう。
【0043】
HCFO-1224yd(Z)をフェノール樹脂組成物へ混合する際には、加圧下で行い、硬化触媒との混合より前に30~55℃で予混練を行うことが好ましい。加圧下で行うことで、温度を上げたとしても、HCFO-1224yd(Z)を液体として分散させることができる。
【0044】
30℃以上で混練することで、HCFO-1224yd(Z)のフェノール樹脂への溶解性を上げるともに、フェノール樹脂組成物としての粘度を下げることができる。これによって、硬化触媒との混合前にあらかじめ分散状態を形成することができ、HCFO-1224yd(Z)の飛散を抑制し、内圧を増大させやすくなる。一方で、55℃を超えてしまうと、硬化触媒との混合時に冷却することが困難になり、HCFO-1224yd(Z)の飛散を生じ、内圧低下が起きやすくなる傾向がある。
【0045】
本実施形態においては、フェノール樹脂発泡体積層板の製造に発泡核剤をさらに使用してもよい。発泡核剤としては、窒素、ヘリウム、アルゴンなどの、発泡剤よりも沸点が50℃以上低い低沸点物質のような気体発泡核剤を添加することができる。また、水酸化アルミニウム粉、酸化アルミニウム粉、炭酸カルシウム粉、タルク、はくとう土(カオリン)、珪石粉、珪砂、マイカ、珪酸カルシウム粉、ワラストナイト、ガラス粉、ガラスビーズ、フライアッシュ、シリカフューム、石膏粉、ホウ砂、スラグ粉、アルミナセメント、ポルトランドセメント等の無機粉、および、フェノール樹脂発泡体の粉砕粉のような有機粉等の固体発泡核剤を添加することもできる。これらは、単独で使用してもよいし、気体及び固体の区別なく、2種類以上を組み合わせて使用してもよい。発泡核剤の添加タイミングは、発泡性フェノール樹脂組成物を混合する混合機内に供給されていればよく、任意に決めることができる。
【0046】
気体発泡核剤の発泡剤に対する添加量は、発泡剤の量を100質量%として、0.1質量%以上1.0質量%以下であることが好ましく、0.1質量%以上0.5質量%以下であることがより好ましい。また、固体発泡核剤の添加量は、フェノール樹脂および界面活性剤との合計100質量部に対して、3.0質量部以上10.0質量部以下であることが好ましく、より好ましくは4.0質量部以上8.0質量部以下である。
【0047】
フェノール樹脂組成物に加える硬化触媒としては、酸成分として有機酸を含むものを用いることが好ましい。有機酸としては、アリールスルホン酸、或いは、これらの無水物が好ましい。アリールスルホン酸およびその無水物としては、トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、置換フェノールスルホン酸、キシレノールスルホン酸、置換キシレノールスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸等、および、それらの無水物が挙げられる。これらは、一種類で用いても、二種類以上組み合わせてもよい。なお、本実施形態では、硬化助剤として、レゾルシノール、クレゾール、サリゲニン(o-メチロールフェノール)、p-メチロールフェノール等を添加してもよい。また、これらの硬化剤は、エチレングリコール、ジエチレングリコール等の溶媒で希釈してもよい。
【0048】
硬化触媒の使用量は、その種類により異なり、パラトルエンスルホン酸一水和物60質量%とジエチレングリコール40質量%との混合物を使用する場合には、フェノール樹脂と、界面活性剤との合計100質量部に対して、好ましくは8質量部以上20質量部以下、より好ましくは10質量部以上15質量部以下で使用される。
【0049】
なお、発泡性フェノール樹脂組成物に含まれる界面活性剤、発泡剤は、予めフェノール樹脂に添加しておいてもよいし、硬化触媒と同時にフェノール樹脂に添加してもよい。
【0050】
本実施形態のフェノール樹脂発泡体では、発泡剤成分のセル内圧が0.20atm(20.3kPa)以上である。好ましくは0.23atm(23.3kPa)以上、より好ましくは0.26atm(26.3kPa)以上、さらに好ましくは0.30atm(30.4kPa)、最も好ましくは0.35atm(35.5kPa)以上である。なお、セル内圧とは、フェノール樹脂発泡体の気泡の内圧である。発泡剤成分のセル内圧は、発泡体内部の収縮力や、気泡内に混在する窒素や酸素に対するガス比率に作用する。フェノール樹脂発泡体積層板は製品の強度を高めるため加熱して硬化されるが、硬化中には高温による樹脂の軟化と硬化による収縮とが同時進行するため、セル内圧が低いと、フェノール樹脂発泡体が収縮して、表面に配される面材に皺が発生しやすくなる。発泡剤成分のセル内圧が0.20atm(20.3kPa)以上であると、発泡体内部の収縮力が緩和されて、皺の発生が抑制され、表面平滑性が向上する。さらに、混在する酸素や窒素の存在比率が小さくなるため、断熱性能が改善する。
【0051】
発泡剤成分のセル内圧を高めるには、温度上昇による発泡剤の体積増大を抑制し、代わりに気泡内に残留する発泡剤物質量を増やして所望の発泡体密度を得ればよい。具体的には、第一に、多くの発泡剤を添加しつつ、発泡剤の放散を抑制して発泡剤の残留率を高めるとともに、第二に、発泡性フェノール樹脂組成物の温度を下げて発泡剤の物質量当たりの蒸気圧を抑制することで発泡剤成分のセル内圧を高めることができる。
【0052】
発泡剤の放散を抑制する方法としては、発泡剤をフェノール樹脂組成物に均一に分散させることが挙げられる。特に、HCFO-1224yd(Z)を均一に分散させるには、発泡剤と界面活性剤を予混練してからフェノール樹脂組成物に添加する、発泡性フェノール樹脂組成物を2段階の温度で撹拌するといった方法が挙げられる。
【0053】
発泡性フェノール樹脂組成物の温度を下げる方法としては、発泡および硬化反応を行わせる主工程である本成形を行う工程の温度を下げる方法、面材上に吐出した発泡性フェノール樹脂組成物に、上方から面材を被せて発泡、硬化させつつ、予成形を行う工程への滞留時間を長くして時間当たりのフェノール樹脂の反応熱を小さくする方法、硬化触媒として用いられる有機酸の添加量を下げる方法、およびフェノール樹脂の分子量を大きくして反応熱を低減する方法、の少なくともいずれかが挙げられる。
【0054】
本実施形態のフェノール樹脂発泡体では、気泡内に内包される空気量が3.0vol%以下であることが好ましく、より好ましくは2.2vol%以下であり、さらに好ましくは1.5vol%以下であり、最も好ましくは0.9vol%以下である。空気量を低減する方法としては、フェノール樹脂組成物を、減圧されたタンク内に保管し、脱泡する方法が挙げられる。空気はフェノール樹脂の送液と撹拌の際に混入し、フェノール樹脂の粘度が高いために小さな泡として内部に存在する。空気はボイドの起点になりやすく、発泡剤よりも熱伝導率が高いため、断熱性能を悪化させる場合がある。空気量が3.0vol%以下であると、発泡剤の存在比に対する空気量が小さくなるため、優れた断熱性能が得られやすい。
【0055】
本実施形態のフェノール樹脂発泡体の密度は、22kg/m3以上50kg/m3以下であり、好ましくは22kg/m3以上41kg/m3以下、よりこのましくは22kg/m3以上34kg/m3以下である。密度が22kg/m3以上であると圧縮強度、曲げ強さ等の機械的強度が確保でき、発泡体の取り扱い時に破損が起こることを回避することができる。また、密度が22kg/m3以上であると表層部の圧縮弾性率を増大させやすい。一方、密度が50kg/m3以下であると、樹脂部の伝熱が増大しにくいため、断熱性能を保つことができる。
【0056】
密度は主に、発泡剤の割合、発泡性フェノール樹脂組成物の温度、混合した発泡性フェノール樹脂組成物を下面材上に吐出する工程における予成形のタイミング、更には、発泡剤の添加量と硬化触媒として用いられる有機酸の添加量との比、温度や滞留時間等の硬化条件などの変更により所望の値に調整できる。
【0057】
本実施形態のフェノール樹脂発泡体の平均気泡径は、50μm以上170μm以下であり、好ましくは50μm以上150μm以下、より好ましくは50μm以上130μm、さらに好ましくは50μm以上110μm以下、最も好ましくは50μm以上100μm以下である。平均気泡径が50μm以上であると、気泡壁が薄くなりすぎるのを避け、変形による強度劣化を抑制することができる。また、平均気泡径が170μm以内であれば、輻射による熱伝導を抑制することができる。平均気泡径は、例えば、フェノール樹脂の反応性や温度の調整、発泡核剤の添加量、発泡剤の添加量と硬化触媒として用いられる有機酸の添加量との比、更には硬化温度条件などの変更により所望の値に調整できる。
【0058】
本実施形態のフェノール樹脂発泡体の独立気泡率は、80%以上であり、好ましくは90%以上、より好ましくは95%以上である。独立気泡率が80%以上であると、フェノール樹脂発泡体中の発泡剤が製造時の高温環境下で圧力が高まって放散することによる、断熱性能の低下を抑制し易い。
【0059】
なお、フェノール樹脂発泡体の独立気泡率は、例えば、フェノール樹脂の反応性や温度の調整、発泡剤の添加量、硬化触媒として用いられる有機酸の添加量との比、更には、硬化条件などの変更により所望の値に調整できる。
【0060】
本実施形態のフェノール樹脂発泡体では、表層部の圧縮弾性率が好ましくは4.9MPa以上であり、より好ましくは5.2MPa以上であり、さらに好ましくは5.5MPa以上であり、とりわけ好ましくは5.8MPa以上であり、最も好ましくは6.0MPa以上である。表層部は樹脂密度の高いスキン層を持つため、内層に比べ硬化収縮量が小さい傾向がある。そのため、表層部の硬化の進行は、硬化による収縮以上に、内層の収縮力によって生じる表面の収縮を抑制するという利点が得られる。また、表層部は面材と直接接する部位であるため、最終的な表面平滑性を決める部位である。故に、表層部の圧縮弾性率が4.9MPa以上であると、発泡体の収縮による面材の皺の発生が抑制され、表面平滑性が向上する。
【0061】
表層部の圧縮弾性率は硬化の進行によって増大し、例えば、後硬化工程の開始時に、その後に行う温度よりも高い温度で、5分以上40分以下の間、かつ後硬化工程全体の半分以下の時間だけ加熱する条件を追加することで増大できる。また、HCFO-1224yd(Z)成分の放散を抑え、表層の気泡構造が緻密化することで表層部の圧縮弾性率を増大できる。HCFO-1224yd(Z)成分の放散は、HCFO-1224yd(Z)をフェノール樹脂組成物に均一に分散させることによって抑えることができる。
【0062】
本実施形態におけるフェノール樹脂発泡体は、23℃における熱伝導率が好ましくは0.0180W/(m・K)以下である。より好ましくは0.0174W/(m・K)以下であり、さらに好ましくは0.0164W/(m・K)以下であり、最も好ましくは0.0159W/(m・K)以下である。
【0063】
本実施形態におけるフェノール樹脂発泡体は、10℃における熱伝導率が好ましくは0.0164W/(m・K)以下である。より好ましくは0.0160W/(m・K)以下であり、さらに好ましくは0.0157W/(m・K)以下であり、最も好ましくは0.0155W/(m・K)以下である。
【0064】
熱伝導率は、例えば、フェノール樹脂の組成や含有する空気量、粘度、発泡剤の種類や割合、気泡核剤の割合、硬化条件、発泡条件等により調整できる。
【0065】
本実施形態のフェノール樹脂発泡体積層板は、これを単体で使用できる他、外部部材と積層させた複合板として様々な用途に用いることもできる。外部部材の例としては、ボード状材料およびシート状・フィルム状材料の少なくとも1つ、およびその組み合わせがある。ボード状材料としては、普通合板、構造用合板、パーティクルボード、OSB、などの木質系ボード、および、木毛セメント板、木片セメント板、石膏ボード、フレキシブルボード、ミディアムデンシティファイバーボード、ケイ酸カルシウム板、ケイ酸マグネシウム板、火山性ガラス質複層板などが好適である。また、シート状・フィルム状材料としては、ポリエステル不織布、ポリプロピレン不織布、無機質充填ガラス繊維不織布、ガラス繊維不織布、紙、炭酸カルシウム紙、ポリエチレン加工紙、ポリエチレンフィルム、プラスチック系防湿フィルム、アスファルト防水紙、アルミニウム箔(孔あり・孔なし)が好適である。
【0066】
次に、上述したフェノール樹脂発泡体積層板の製造方法の詳細について説明する。
【0067】
フェノール樹脂発泡体積層板の製造方法としては、フェノール樹脂、界面活性剤、発泡剤、および、有機酸を含有する硬化触媒とを含む発泡性フェノール樹脂組成物を、混合機を用いて混合する工程と、混合した発泡性フェノール樹脂組成物を面材上に吐出する工程、前記面材上に吐出した発泡性フェノール樹脂組成物に、上方から面材を被せて発泡、硬化させつつ、予成形を行う工程と、発泡および硬化反応を行わせる主工程である本成形を行う工程と、その後にフェノール樹脂組成物中の水分を放散させる後硬化を行う工程と、を備える連続製造方式を採用することが可能である。
【0068】
連続製造方式における、予成形工程および本成形工程において夫々予成形および本成形を行う方法としては、スラット型ダブルコンベアを利用する方法や、金属ロールもしくは鋼板を利用する方法、さらには、これらを複数組み合わせて利用する方法等、製造目的に応じた種々の方法が挙げられる。このうち、例えば、スラット型ダブルコンベアを利用して成形する場合には、上下の面材で被覆された発泡性フェノール樹脂組成物をスラット型ダブルコンベア中へ連続的に案内した後、加熱しながら上下方向から圧力を加えて、所定の厚みに調整しつつ、発泡および硬化させ、板状に成形することができる。
【0069】
フェノール樹脂発泡体の少なくとも上下面に配される面材としては、可撓性を有する面材(可撓性面材)が用いられる。使用される可撓性面材としては、主成分がポリエステル、ポリプロピレン、ナイロン等からなる不織布および織布や、クラフト紙、ガラス繊維混抄紙、水酸化カルシウム紙、水酸化アルミニウム紙、珪酸マグネシウム紙等の紙類や、ガラス繊維不織布のような無機繊維の不織布等が好ましく、これらを混合(または積層)して用いてもよい。
【0070】
予成形を行う工程の加熱温調条件は、雰囲気温度が本成形工程より4℃から12℃低く、かつ予成形工程への滞留時間が10分以上である。本成形工程の前にこの条件で加熱することで、フェノール樹脂の反応熱を分散し、本成形工程中の発泡性フェノール樹脂組成物の温度上昇を抑制することができるため、発泡剤成分のセル内圧を高くすることができる。本成形工程の温度から4℃低い温度より高温であると、急速に発泡が進行し、気泡径が大きくなるため、熱伝導率が悪化する傾向がある。本成形工程より12℃を超えて低い温度である、または、滞留時間が10分未満であると、充分に反応熱を時間的に分散することができず、本成形工程において発泡性フェノール樹脂組成物の温度が上がりすぎ、発泡剤成分のセル内圧が低下するため、面材に皺が発生して表面平滑性が低下しやすい。
【0071】
予成形工程に続く本成形工程の加熱温調条件は、60℃以上80℃以下が好ましく、より好ましくは60℃以上75℃以下である。該工程において、無端スチールベルト型ダブルコンベアまたはスラット型ダブルコンベア、もしくはロール等を用いて本成形を行うことができる。
【0072】
本成形工程の加熱温度は、発泡性フェノール樹脂組成物の温度に作用し、この温度が高いと発泡剤成分のセル内圧は低くなりやすい。本成形工程の加熱温度が80℃以下であると発泡剤および水の蒸気圧が抑えられ、セル内圧が高まりやすい。また、60℃以上であるとフェノール樹脂の硬化が促進されるため、発泡剤の放散を抑制しやすい。
【0073】
後硬化工程は、予成形工程および本成形工程後に行われる。後硬化工程の加熱は、発泡体内部の水蒸気によって発泡体が破裂することを防止する為、二段階で行い、第一段階では140℃以上150℃以下で5分以上40分以内、かつ後硬化工程全体の半分以下の時間だけ加熱することが好ましい。また、第二段階では、90℃以上120℃以下で90分以上加熱することが好ましい。第二段階の温度が120℃を超えると、第一段階と同様、発泡体内部の水蒸気によって発泡体の破裂を招く傾向があり、90℃未満であると、フェノール樹脂の反応を進ませるために要する時間がかかりすぎる傾向がある。
【実施例】
【0074】
以下に、実施例および比較例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0075】
<フェノール樹脂Aの合成>
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)を仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液をpHが8.7になるまで加えた後85℃まで昇温して、反応を行わせた。反応液のオストワルド粘度が120平方ミリメートル毎秒(=120mm2/s、25℃における測定値)に到達した段階で、反応液を冷却しつつ、フェノール樹脂中の尿素含有量が4.6質量%となるように尿素を添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.3になるまで添加した。得られた反応液を薄膜蒸発機によって濃縮処理し粘度および水分率を以下の方法で測定した。その結果、40℃における粘度が11,500mPa・s、水分率が8.5%である、フェノール樹脂を得た。これをフェノール樹脂Aとした。
【0076】
<フェノール樹脂Bの合成>
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)を仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液をpHが8.7になるまで加えた後85℃まで昇温して、反応を行わせた。反応液のオストワルド粘度が80平方ミリメートル毎秒(=80mm2/s、25℃における測定値)に到達した段階で、反応液を冷却しつつ、フェノール樹脂中の尿素含有量が4.6質量%となるように尿素を添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.3になるまで添加した。得られた反応液を薄膜蒸発機によって濃縮処理し粘度および水分率を以下の方法で測定した。その結果、40℃における粘度が12,000mPa・s、水分率が6.9%である、フェノール樹脂を得た。これをフェノール樹脂Bとした。
【0077】
<フェノール樹脂の水分率>
フェノール樹脂原料の水分率
水分量を測定した脱水メタノール(関東化学(株)製)に、フェノール樹脂原料を3質量%から7質量%の範囲で溶解して、その溶液の水分量から脱水メタノール中の水分を除して、フェノール樹脂原料の水分量を求めた。測定した水分量から、フェノール樹脂原料の水分率を計算した。測定にはカールフィッシャー水分計(京都電子工業(株)製、MKC-510)を用いた。水分量の測定にはカールフィッシャー試薬としてSigma-Aldrich製のHYDRANAL-Composite 5Kを用い、カールフィッシャー滴定用として林純薬工業製のHAYASHI-Solvent CE 脱水溶剤(ケトン用)を用いた。また、カールフィッシャー試薬の力価測定用として三菱化学製のアクアミクロン標準水・メタノール(水分2mg)を用いた。水分量の測定は装置内に設定されているメソッド1、またカールフィッシャー試薬の力価はメソッド5を用いて求めた。得られた水分量の、フェノール樹脂原料の質量に対する割合を求め、これをフェノール樹脂原料の水分率とした。
【0078】
<粘度測定>
回転粘度計(東機産業(株)製、R-100型、ローター部は3°×R-14)を用い、40℃で3分間安定させた後の測定値をフェノール樹脂の粘度とした。
【0079】
(実施例1)
<フェノール樹脂発泡体積層板の製造>
フェノール樹脂A100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体プルロニック(登録商標)F-127を2.0質量部の割合で混合することでフェノール樹脂組成物を得た。このフェノール樹脂組成物100質量部に対して、発泡剤としてHCFO-1224yd(Z)34質量%とHCFO-1233zd(E)62質量%とイソブタン4質量%の混合物12.1質量部を添加し、7bar、40℃環境下で1段階目の撹拌を行った。続けて、7bar以上を保ったまま、15℃に温調した回転数可変式のミキシングヘッドに供給した。
【0080】
続いて、フェノール樹脂組成物100質量部に対して(すなわち混合物から発泡剤を除いた量を100質量部として)、硬化触媒としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物14質量部を、ミキシングヘッドへ投入し、混合機で2段階目の撹拌を行った。ミキシングヘッドの回転数は450rpmに設定した。得られた発泡性フェノール樹脂組成物をマルチポート分配管にて分配し、移動する下面材上に供給した。なお、混合機(ミキサー)は、特開平10-225993号に開示されたものを使用した。即ち、混合機の上部側面に、フェノール樹脂組成物、および、発泡核剤を含む発泡剤の導入口があり、回転子が攪拌する攪拌部の中央付近の側面に硬化触媒の導入口を備えている混合機を使用した。攪拌部以降は発泡性フェノール樹脂組成物を吐出するためのノズルに繋がっている。また、混合機は、硬化触媒導入口までを混合部(前段)、硬化触媒導入口~攪拌終了部を混合部(後段)、攪拌終了部~ノズルを分配部とし、これらにより構成されている。分配部は先端に複数のノズルを有し、混合された発泡性フェノール樹脂組成物が均一に分配されるように設計されている。ここで、混合機およびノズルは、各々温調水により温度を調節できるようになっており、温調水温度はともに25℃とした。また、マルチポート分配管の吐出口には、発泡性フェノール樹脂組成物の温度を検出できるように熱電対が設置してあり、このとき面材上に吐出した発泡性フェノール樹脂組成物の温度は45℃であった。面材上に供給した発泡性フェノール樹脂組成物は、予成形工程に導入されるが、このときの予成形工程の設備温度は74℃とした。この工程の滞留時間は11分間だった。なお、予成形は、上面材上方より、フリーローラーにて行った。
【0081】
続けて、二枚の面材で挟み込むようにして、空間温度が79℃に加熱されたスラット型ダブルコンベアに導入した(本成形工程)。本成形工程において、11分の滞留時間で硬化させた後、走行方向に対して垂直な方向に切断することで、1820mm長さのフェノール樹脂発泡板中間体を得た。その後更に、110℃のオーブンで3時間加熱し(後硬化工程)、フェノール樹脂発泡板を得た。予成形、本成形、および後硬化工程の条件を表1に示す。なお、面材としては、上下面材ともに、ポリエステル不織布(旭化成(株)エルタスE05060、目付量60g/m2)を使用した。
【0082】
【0083】
得られたフェノール樹脂発泡体に対し、後述する方法でフェノール樹脂発泡体の密度、平均気泡径、独立気泡率、全厚の圧縮弾性率、表層部の圧縮弾性率、発泡剤の種類の同定と組成比、発泡剤成分のセル内圧、含有する空気量、表面平滑性、熱伝導率(23℃)、および熱伝導率(10℃)の測定を行った。密度、平均気泡径、独立気泡率、発泡体の圧縮弾性率、発泡体表層部の圧縮弾性率、発泡剤成分のセル内圧、含有する空気量、表面平滑性、熱伝導率(23℃)、および熱伝導率(10℃)の測定結果を表2に示す。発泡剤の種類の同定と組成比の測定結果を表3に示す。
【0084】
【0085】
【0086】
<フェノール樹脂発泡体の密度>
20cm角のフェノール樹脂発泡板を試料とし、JIS K7222に従い質量と見かけ容積を測定して求めた。
【0087】
<フェノール樹脂発泡体の平均気泡径>
フェノール樹脂発泡板の厚み方向のほぼ中央を表裏面に平行に切削して得た試験片の切断面を50倍に拡大した写真を撮影し、得られた写真上にボイドを避けて9cmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数に準じて測定したセル数を各直線で求め、それらの平均値で1,800μmを割った値を平均気泡径とした。なお、本方法はJIS K6402に記載の方法を参考にしている。
【0088】
<フェノール樹脂発泡体の独立気泡率>
樹脂発泡体の厚み方向中心位置において、バンドソー等の切断具を用いて、樹脂発泡体の厚みが25mm以上の場合は25mm角の立方体を試料として切り出す。また、樹脂発泡体の厚みが25mm未満の場合は面材除去(面材由来の繊維体が残存する場合、または、裏面側の面材がある場合)後の厚みを有し、縦横ともに25mmの直方体を試料として切り出す。そして、空気比較式比重計(1000型、東京サイエンス社製)の標準使用方法により、試料体積V(cm3)を測定する。樹脂発泡体における独立気泡率は、下記式の通り前記試料体積Vから、試料質量W(g)と樹脂発泡体を構成する樹脂組成物の密度ρとから計算した気泡壁の体積(W/ρ)を差し引いた値を、試料の外寸から計算した見かけの体積Va(cm3)で割った値であり、ASTM D 2856(C法)に従い測定する。
独立気泡率(%)=((V-W/ρ)/Va)×100
【0089】
<発泡体表層部の圧縮弾性率>
実施例及び比較例で得られたフェノール樹脂発泡体積層板から、長さ100mm、幅100mm、最表層から厚み10mmの試験片を切り出し、面材を取り除いて試験片を得た。試験片厚みは10mmのまま、JIS K 7220に準拠して10%圧縮強さを測定した。圧縮弾性率は、歪み0%から降伏点までの区間で、次の計算式から得る値eの最大値とした。
e= (b2-b1)/{(a2+Δx)-a2}
ただし、
b1:a2における圧縮応力(MPa)
b2:a2+Δxにおける圧縮応力(MPa)
a2:任意(ただし降伏点における歪みより小さい)の歪み(%)
Δx:0.0001以上0.0002以下の任意の歪み(%)
【0090】
通常、圧縮弾性率の計算は荷重-変形量曲線で直線関係が明らかな部分を対象とするが、フェノールフォームにおいては力-変形量曲線に明確な直線部分がない(曲線が下に凸から上に凸へとなだらかに変わる)場合があるため、降伏点以前の微小区間のおける最大傾きを圧縮弾性率とした。
【0091】
<発泡体の圧縮弾性率>
実施例及び比較例で得られたフェノール樹脂発泡体積層板から、長さ100mm、幅100mmの試験片を切り出し、面材を取り除いて発泡体の試験片を得た。
試験片厚みはこのままで、JIS K 7220に準拠して10%圧縮強さを測定した。圧縮弾性率は、上述した式と同様に、歪み0%から降伏点までの区間で、次の計算式から得る値の最大値とした。
e= (b2-b1)/{(a2+Δx)-a2}
ただし、
b1:a2における圧縮応力(MPa)
b2:a2+Δxにおける圧縮応力(MPa)
a2:任意(ただし降伏点における歪みより小さい)の歪み(%)
Δx:0.0001以上0.0002以下の任意の歪み(%)
なお、表層部の圧縮弾性率の測定結果は、通常、全厚のサンプルよりも低い値になる。表層部を切り出した際には、片面がスキン層を持たないサンプルになるため、両者は異なる前提の評価であることに留意する。
【0092】
<フェノール樹脂発泡体中の発泡剤の種類の同定と組成比>
はじめに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、ハロゲン化炭化水素、炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。
【0093】
実施例及び比較例で得られたフェノール樹脂発泡体積層板から面材を剥がし、フェノール樹脂発泡体から試料100mgをカッターで切り出した。試料をテドラーバッグ内に入れてポンプで脱気した後、試料を手で潰した。さらに、試料をテドラーバッグに入れたまま、81℃に温調された温調機内に10分間入れた。テドラーバック中で発生したガスを100μL採取し、以下に示す測定条件にて、GC/MS分析を行い、フェノール樹脂発泡体中の発泡剤の種類を同定した。
【0094】
ハイドロフルオロオレフィン、ハロゲン化炭化水素、および炭化水素の有無を、GC/MSの分析結果より確認した。ハイドロフルオロオレフィン、ハロゲン化炭化水素、および炭化水素の種類は、事前に求めた保持時間とマススペクトルから同定した。別途、発生したガス成分の検出感度を各々標準ガスによって測定し、GC/MSで得られた各ガス成分の検出エリア面積と検出感度より、組成比を算出した。同定した各ガス成分の組成比とモル質量より各ガス成分の質量比を算出した。
(GC/MS測定条件)
ガスクロマトグラフィー:アジレント・テクノロジー社製「Agilent7890型」
カラム:DB-5MS(0.25mmφ×30m、膜厚1μm)
キャリアガス:ヘリウム
流量:1ml/分
注入口の温度:150℃
注入方法:スプリット法(1/10)
試料の注入量:溶液1μL(気体試料の場合はガスタイトシリンジを用いて100μl)
カラム温度:40℃(5分)の後、50℃/minで150℃まで昇温し、4.8分保持 質量分析:日本電子株式会社製「Q1000GC型」
イオン化方法:電子イオン化法(70eV)
スキャン範囲:m/Z=10~500
電圧:-1300V
イオン源温度:230℃
インターフェース温度:150℃
【0095】
<発泡剤成分のセル内圧>
フェノール樹脂発泡体の密度の測定と同様に、20cm角のフェノール樹脂発泡板を試料とし、JIS K7222に従い質量と見かけ容積を測定して求めた密度をI(g/m3)とする。フェノール樹脂の密度を1.27×106(g/m3)とし、この試料体積に対する気泡体積の割合J、試料の単位質量当たりの気泡体積K(m3/g)を求めた。J=1-{I/1.27×106}
K=I-1×J (m3/g)
【0096】
次に、試料の中心付近からカッターで約0.25gを切り出した。試料中の発泡剤の抽出にはホモジナイザー(ULTRA-TURRAX(登録商標)チューブドライブ、IKAジャパン株式会社)を用いた。装置付属の密封型容器に切り出した試料を入れ、さらにクロロホルム10mL、および粉砕用ガラス球12粒を入れ、蓋をして密封した。回転数6000rpmにて試料を3分間粉砕し、発泡剤を抽出した。抽出液を孔径0.45μmのポリテトラフルオロエチレン製ディスクフィルタで濾過し、上記と同じ条件でGC/MS測定を行った。
【0097】
続いて、GC/MSの分析結果より検出された発泡剤成分について、各成分の溶液濃度に対する面積値の検量線を作成した。常温で液体である発泡剤に対しては、クロロホルムで種々の濃度に希釈した試料を調製した。常温で気体である発泡剤に対しては、ポリフッ化ビニル製サンプリングバッグ(テドラー(登録商標)バッグ)内にて、窒素ガスを用いて種々の濃度に希釈した試料を調製した。その後、上記と同じ条件でGC/MS測定を行った。
【0098】
検量線との関係から求めた発泡剤成分の各質量から、試料単位質量あたりの各発泡剤成分の物質量を求めた。試料単位質量あたりの各発泡剤成分の物質量の合計をM(mol/g)、発泡剤成分の気泡内圧をP(atm)、標準大気圧を101325(Pa)とし、先の気泡体積Kを下記式に代入して値を求めた。
P=[(M×8.314×273.15)/K]/101325 (atm)
【0099】
<フェノール樹脂発泡体が含有する空気量>
手順1.フェノール樹脂発泡体積層板の厚み方向中心位置において、カッターナイフを用いて、樹脂発泡体の厚みが20mm以上の場合は20mm角の立方体を試料として切り出した。また、樹脂発泡体の厚みが20mm未満の場合は面材除去(面材由来の繊維体が残存する場合、または、裏面側の面材がある場合)後の厚みを有し、縦横ともに20mmの直方体を試料として切り出した。切り出した試料の体積A(単位:L)を測定した。
手順2.グローブボックス前室内に、切り出した発泡体と粉砕機、粉砕用のガラス玉6個、グローブバッグ、酸素濃度計、カッターナイフを入れた。
手順3.グローブボックス前室の真空引きを行い、酸素濃度を0.0%にした。前室の内容物をグローブボックス本体に移した。
手順4.グローブボックス内でカッターナイフを用いて、この試料の厚み方向に刃を降ろし、十字に切断することで4等分に分割した。手順5.4分割にした試料すべてとガラス玉6個を密閉容器に入れて蓋をした。
手順6.密閉容器を粉砕機に装着し、6000rpm、15分間の条件で試験片を粉砕した。
手順7.密閉容器を取り外し、グローブバッグに入れ、グローブバッグを閉めた。
手順8.グローブボックス内に設置したエアポンプで定量しながら、グローブボックス内の窒素ガス30Lをグローブバッグに送り込んだ。
手順9.グローブバッグ内で密閉容器を開け、グローブバック全体に密閉容器内のガスが充満する様に静置した。
手順10.グローブバッグに酸素濃度計を接続し、この時のブランク酸素濃度をB0として記録した。
手順11.続けてエアポンプで0.5L/minで2分間吸引し、安定した酸素濃度を記録した。この値を酸素濃度B(ppm)とした。
手順12.30L中の酸素量Cを以下の式で求めた。
C=30×(B―B0) (単位:L)
手順13.以下の式からフェノール樹脂発泡体中の酸素濃度Dを求めた。
D = C / A (単位:vol%)
A:試料の体積
C:グローブバッグ内の気体30L中の酸素量
D:フェノール樹脂発泡体中の酸素濃度
空気中の酸素濃度を20.95%とし、フェノール発泡体中の空気濃度は酸素濃度の4.77倍として計算した。
なお、粉砕機には以下を使用した。
IKAジャパン(株)製 使い捨てチューブ式乾式粉砕機
【0100】
<フェノール樹脂発泡体積層板の熱伝導率>
JIS A 1412-2:1999に準拠し、10℃における熱伝導率を測定した。具体的には、フェノール樹脂発泡体積層板サンプルを600mm角に切断し、試片を23±1℃・湿度50±2%の雰囲気に入れ、24時間ごとに質量の経時変化を測定し、24時間経過の質量変化が0.2質量%以下になるまで、状態調節をした。状態調節された試片は、23±1℃・湿度50±2%の雰囲気に置かれた熱伝導率装置に導入した。
【0101】
10℃の熱伝導率は低温板0℃高温板20℃の条件で、23℃の熱伝導率は低温板13℃高温板33℃の条件で、それぞれ試験体1枚・対称構成方式の測定装置(英弘精機社、商品名「HC-074/600」)を用い行った。
【0102】
<表面平滑性>
幅65cm、長さ65cmに切断した任意の厚みのフェノール樹脂発泡体積層板を平坦な定盤上に置き、中央50cm四方の表面を測定対象とした。この範囲内で、長さ方向にレーザー変位計を用いて走査速度1.0cm/sで50cmに渡って測定した。得られた50点の高さの最大値と最小値の差を求めた。さらに2回位置を変えて測定を行い、最大値と最小値の差の、3回の平均値を片面の表面平滑性とした。続けて、面材を裏返して同様にもう片面の表面平滑性を求めた。両面の表面平滑性のうち、大きい方をフェノール樹脂発泡体積層板の表面平滑性とした。
【0103】
なお、長さ方向とは、帯状に吐出された発泡性樹脂組成物同士が接合する面(ウェルドライン)が連続する方向である。面材をはがした表面において視認される陥没した筋の延びる方向を長さ方向とみなし得る。または、切断面を見た際に、中層付近に色調の濃い部位が存在し、その部位が反対側の面にわたって続く方向を、当該長さ方向とみなし得る。幅方向とは、長さ方向と直行する方向のことである。
【0104】
(実施例2)
後硬化工程において、110℃のオーブンで3時間硬化させる前に140℃のオーブンで10分間加熱した以外は、実施例1と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0105】
(実施例3)
フェノール樹脂Aをフェノール樹脂Bに変え、フェノール樹脂に対して添加する発泡剤を12質量部とする以外は実施例2と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0106】
(実施例4)
界面活性剤を混合して得たフェノール樹脂組成物を、30kPaに減圧されたタンク内に1時間保管してから発泡剤を添加した以外は、実施例3と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0107】
(実施例5)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)46質量%とHCFO-1233zd(E)50質量%とイソブタン4質量%の混合物12.3質量部とする以外は実施例4と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0108】
(実施例6)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)46質量%と2-クロロプロパン50質量%とイソペンタン4質量%の混合物9.3質量部とする以外は実施例5と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0109】
(実施例7)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)46質量%とシクロペンタン54質量%の混合物8.7質量部とする以外は実施例5と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0110】
(実施例8)
フェノール樹脂Bの100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体プルロニック(登録商標)F-127を2.0質量部の割合で混合することでフェノール樹脂組成物を得た。このフェノール樹脂組成物を20kPaに減圧されたタンク内に1時間保管した。
【0111】
HCFO-1224yd(Z)46質量%とシクロペンタン54質量%の混合物8.7質量部に、界面活性剤ポリオキシエチレンノニルフェニルエーテル(HLB13.1)を発泡剤100質量部に対して4質量部の割合で添加し、スタティックミキサーで混合しながらフェノール樹脂組成物に添加した。同時に、7bar、40℃環境下で1段階目の撹拌を行った。続けて、7bar以上を保ったまま送液し、15℃に温調した回転数可変式のミキシングヘッドに供給した。これら以外は、実施例2と同様にして、フェノール樹脂組成物を作成し、評価を行った。
【0112】
(実施例9)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)68質量%とシクロペンタン32質量%の混合物10.2質量部とした以外は実施例8と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0113】
(実施例10)
フェノール樹脂に対して添加する発泡剤を11質量部とし、さらに、予成形工程の温度を69℃、滞留時間を12分とし、本成形工程の温度を74℃とした。これら以外は実施例9と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0114】
(実施例11)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)81質量%とシクロペンタン19質量%の混合物12.3質量部とした以外は実施例10と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0115】
(実施例12)
30kPaに減圧されたタンク内に保管する時間を2時間に変え、フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)15.2質量部とし、さらに、予成形工程の温度を62℃、滞留時間を12分とし、本成形工程の温度を70℃とした。これら以外は実施例10と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0116】
(実施例13)
フェノール樹脂に対して添加する発泡剤を、HCFO-1224yd(Z)22質量%とHCFO-1233zd(E)78質量%の混合物12.1質量部とした以外は、実施例1と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【0117】
(比較例1)
実施例1において、発泡剤の混合を2段階の温度で行うことをやめ、硬化触媒と同時にミキシングヘッドに供給した。すなわち、フェノール樹脂A100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体プルロニック(登録商標)F-127を2.0質量部の割合で混合することでフェノール樹脂組成物を得た。このフェノール樹脂組成物100質量部に対して、発泡剤としてHCFO-1224yd(Z)34質量%とHCFO-1233zd(E)62質量%とイソブタン4質量%の混合物12.3質量部、更に、硬化触媒としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を14質量部添加し、15℃に温調した回転数可変式のミキシングヘッドに供給した。また、予成形工程の温度を63℃、滞留時間を3分に変えた以外は、実施例1と同様にして、フェノール樹脂発泡体積層板を作製し、評価を行った。
【産業上の利用可能性】
【0118】
本発明によれば、面材の皺を抑制し、表面平滑性と高い熱伝導率を両立したフェノール樹脂発泡体積層板が利用可能になる。
【符号の説明】
【0119】
1 フェノール樹脂発泡体(芯材)、2 可撓性面材、10 フェノール樹脂発泡体積層板