IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アンダーグラウンド システムズ,インコーポレーテッドの特許一覧

<>
  • 特許-遠隔監視システム 図1
  • 特許-遠隔監視システム 図2
  • 特許-遠隔監視システム 図3A
  • 特許-遠隔監視システム 図3B
  • 特許-遠隔監視システム 図4A
  • 特許-遠隔監視システム 図4B
  • 特許-遠隔監視システム 図4C
  • 特許-遠隔監視システム 図5
  • 特許-遠隔監視システム 図6
  • 特許-遠隔監視システム 図7A
  • 特許-遠隔監視システム 図7B
  • 特許-遠隔監視システム 図7C
  • 特許-遠隔監視システム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-07
(45)【発行日】2022-12-15
(54)【発明の名称】遠隔監視システム
(51)【国際特許分類】
   G08C 15/00 20060101AFI20221208BHJP
   G08C 17/02 20060101ALI20221208BHJP
   H04W 4/38 20180101ALI20221208BHJP
   H04W 52/02 20090101ALI20221208BHJP
   H04W 84/18 20090101ALI20221208BHJP
【FI】
G08C15/00 E
G08C17/02
H04W4/38
H04W52/02 111
H04W84/18 110
【請求項の数】 24
(21)【出願番号】P 2022504028
(86)(22)【出願日】2020-02-05
(65)【公表番号】
(43)【公表日】2022-05-17
(86)【国際出願番号】 US2020016785
(87)【国際公開番号】W WO2020190403
(87)【国際公開日】2020-09-24
【審査請求日】2021-10-21
(31)【優先権主張番号】16/360,256
(32)【優先日】2019-03-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521435053
【氏名又は名称】アンダーグラウンド システムズ,インコーポレーテッド
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】スミス,ロバート,エフ.
(72)【発明者】
【氏名】ウィルズ,チャールズ,ジェイ.,ザ フォース
(72)【発明者】
【氏名】ブリーズ,ダンカン,キャンベル
(72)【発明者】
【氏名】アレックス,ポール,アラン
【審査官】森 雅之
(56)【参考文献】
【文献】特許第5368295(JP,B2)
【文献】特開2012-4947(JP,A)
【文献】特許第7075014(JP,B2)
【文献】米国特許出願公開第2017/0230074(US,A1)
【文献】米国特許第5550476(US,A)
【文献】特表2020-503730(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08C
H04W
(57)【特許請求の範囲】
【請求項1】
地下ケーブルシステムのパラメータを監視するための遠隔監視システムであって、
前記地下ケーブルシステムのそれぞれの可変監視パラメータを表す電気信号を提供するように構成された分散パラメータ検出器、
地下に配置され、前記パラメータ検出器に結合され、前記パラメータ検出器によって提供された信号を収集するように構成された地下ハブ、
を備え、
前記地下ハブは、
前記パラメータ検出器によって提供された前記信号をサンプリングして、前記サンプリング時におけるパラメータ値を表すデータサンプルを提供するようにプログラムされたコントローラ
低電力広域ネットワーク(LP-WAN)セルラ通信を介して、地下からセルラ通信周波数で、前記パラメータ値の前記データサンプル、前記地下ハブから離れておりかつ地上にある中央位置へ送信するとともに前記コントローラを制御するための命令をセルラ通信周波数で前記中央位置からLP-WANセルラ通信を介して受信するためのトランシーバ
を有し、
前記データサンプルは、変更可能なサンプリング頻度で制御可能な持続時間を有するサンプリング間隔の間に生成されサンプルは、変更可能な送信レートで制御可能な持続時間を有する送信間隔内において前記セルラ通信周波数で前記中央位置へ送信され
前記サンプリング間隔、前記サンプリング頻度、前記送信間隔、および前記送信レートは、前記中央位置から受信した前記命令によって、または前記パラメータ検出器が提供する前記信号が決定する前記地下ケーブルシステムの動作状態によって、規定される、
遠隔監視システム。
【請求項2】
連続する送信間隔がスリープ間隔によって分離され前記コントローラが起動してアクティブ動作モード中に前記サンプルを送信し、その後、スリープモードに戻る、
請求項1記載の遠隔監視システム。
【請求項3】
前記コントローラは、前記パラメータ検出器が提供する前記信号に基づき前記地下ケーブルシステムの特定の動作状態を判定するようにプログラムされたプロセッサを有する、
請求項1記載の遠隔監視システム。
【請求項4】
前記コントローラは通常、第1送信レートで前記サンプルを送信する第1動作モードと、第2送信レートで前記サンプルを送信する第2動作モードとで動作可能であり、前記第1送信レートは、前記第2送信レート未満である、
請求項1記載の遠隔監視システム。
【請求項5】
前記コントローラは通常、第1サンプリング頻度で前記信号をサンプリングする第1動作モードで動作可能であり、第2サンプリング頻度で前記信号をサンプリングする第2動作モードで動作可能であり、前記第1サンプリング頻度は、前記第2サンプリング頻度未満である、
請求項1記載の遠隔監視システム。
【請求項6】
前記中央位置から受信された前記命令は、前記コントローラの動作モードを決定する、 請求項記載の遠隔監視システム。
【請求項7】
前記コントローラは、サンプリング間隔で取得されたサンプル値を表す統計的に導出された値のセットを決定し、前記決定された値のセットを前記送信間隔中に前記中央位置に対して送信するようにプログラムされている、
請求項1記載の遠隔監視システム。
【請求項8】
前記決定された値のセットは選択されたサンプル数を表す値であり、前記サンプル数はサンプリング間隔で取得されたサンプル数よりも少ない、
請求項記載の遠隔監視システム。
【請求項9】
前記コントローラは、前記サンプル値を最低サンプル値から最高サンプル値に並べ替えるようにプログラムされ、
前記決定された値のセットは、前記サンプリング間隔中に取得された最小サンプル値、前記サンプリング間隔中に取得された最大サンプル値、前記サンプリング間隔中に取得された中央サンプル値、および前記並べ替えられたサンプル値の25パーセンタイルと75パーセンタイルに対応するサンプル値である、
請求項記載の遠隔監視システム。
【請求項10】
前記コントローラは、前記中央位置に対して送信された前記データが所定の閾値を超える量だけ経時的に変化しない場合、前記第1動作モードに変化する、
請求項記載の遠隔監視システム。
【請求項11】
前記コントローラは、前記中央位置に対して送信された前記データが所定の閾値未満の変化率で変化する場合、前記第1動作モードに変化する、
請求項記載の遠隔監視システム。
【請求項12】
前記中央位置は、前記地下ハブから送信された前記サンプルを処理して前記地下ケーブルシステムの動作状態を決定するデータプロセッサを含む、
請求項記載の遠隔監視システム。
【請求項13】
前記地下ハブは、マンホール地下室内に取り付けられている、
請求項1記載の遠隔監視システム。
【請求項14】
前記地下ハブは、LP-WANセルラ通信を介して地下からセルラ通信周波数で前記データを送信し、LP-WANセルラ通信を介して前記中央位置からセルラ通信周波数で送信された前記命令を受信する、前記マンホール地下室内かつ地下に配置されたアンテナを有する、
請求項1記載の遠隔監視システム。
【請求項15】
前記コントローラは、前記地下ハブへの電力が中断され、次いで回復された場合、または、前記地下ハブと前記中央位置との間の通信が中断され、次いで再確立された場合に、前記コントローラを回復モードで動作させて前記中央位置との通信を確立する起動命令を記憶する記憶装置を含む、
請求項1記載の遠隔監視システム。
【請求項16】
前記コントローラは、前記電力が前記地下ハブに対して復旧したとき、または前記地下ハブと前記中央位置との間の通信が再確立されたとき、前記中央位置から送信された命令に応答して、前記パラメータ検出器によって提供された信号を前記命令によって決定されたサンプリング間隔およびサンプリング頻度でサンプリングし、前記命令によって決定された前記送信間隔内および送信レートで前記サンプルを送信する、
請求項15記載の遠隔監視システム。
【請求項17】
前記地下ハブは、前記コントローラによって提供されたデータを記憶するための記憶装置を有し、
前記中央位置は、前記地下ハブから送信されたデータを記憶し、処理するためのデータプロセッサを含み、
前記コントローラは、前記地下ハブの前記記憶装置に記憶されたデータを、前記中央位置に対して送信された前記データと比較するように動作可能であり、それらの間に不一致がある場合に、前記コントローラは、以前に送信されていなかったデータを前記中央位置に対して送信す
請求項1記載の遠隔監視システム。
【請求項18】
前記地下ケーブルシステムは電力伝送ケーブルである、請求項1記載の遠隔監視システム。
【請求項19】
前記地下ケーブルシステムは石油パイプラインである、請求項1記載の遠隔監視システム。
【請求項20】
前記地下ケーブルシステムはガスパイプラインである、請求項1記載の遠隔監視システム。
【請求項21】
前記遠隔監視システムはさらに、前記地下ハブに対して電力を供給するためのバッテリを有する、
請求項1記載の遠隔監視システム。
【請求項22】
前記遠隔監視システムはさらに、前記地下ケーブルシステムから電力を導出し、前記導出された電力を前記地下ハブに対して供給するための集電装置を有する、
請求項1記載の遠隔監視システム。
【請求項23】
前記ハブは、前記データサンプルを記憶し、前記パラメータ検出器から収集された前記信号が所定の基準を満たすかまたは超えたときに、前記記憶されたデータサンプルの少なくとも一部送信するための記憶装置を有する、
請求項1記載の遠隔監視システム。
【請求項24】
前記記憶装置は、前記収集された信号が前記所定の基準を満たさないかまたは超える場合に、古い記憶されたデータサンプルを新しいデータサンプルに置き換える、
請求項2記載の遠隔監視システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、米国エネルギー省からの許可DE-SC0004280に基づく政府の支援によりなされた。政府は、発明について一定の権利を有する。
(1)発明の属する技術分野
本発明は一般に、地下ケーブルシステム、パイプライン、水ライン、下水ライン等の地下資産のパラメータをモニタリングするためのモニタリングシステムに関する。
【背景技術】
【0002】
(2)背景
一般に地下資産と呼ばれる、地下電力ケーブル、水道管路、石油・ガス管路、下水道管路などの分野においては、これらの資産の運転状態および/または環境状態を監視することが重要である。予期しない、または異常な挙動は、将来の危険または故障状態を示すことがある。地下資産におけるそのような挙動を通知することにより、保守または改善措置を加速することができ、それによって、資産が長期間にわたって動作不能になるか、またはオフラインになることを防止することができる。
【0003】
そのようなアンダーグラウンド資産の挙動を監視することにより、修理するのが困難で時間がかかるようになる前に、修理することができる問題状況を予見することができる。しかし、電力ケーブルのような地下資産は、容易にアクセスできず、その動作特性を監視することが困難である場合がある。さらに、資産が移動するルート、ならびに資産の寿命にわたって、熟練した技術者による定期的な検査を実施することは、労働集約的であり、設備検査のためのサービス停止を必要とする場合がある。このような検査は一般に、地下室、マンホール、およびハンドホールとして知られるより小さいグレードのエンクロージャ、ならびに資産が並んでいるルートに沿って間隔を置いて配置されたカーブボックスに限定される。大きなエンクロージャ、例えばマンホール内の資産へアクセスするためには、安全装置および手順が必要であり、多くの場合、マンホールカバーを通ってまたはパイプもしくは導管貫通シールを通って入った残留定在水の「ポンプダウン」が必要である。資産の実際の検査を実行するために必要な時間は、閉鎖空間に安全に入る準備をするために必要な時間よりも著しく短いことがわかっている。その結果、検査は頻繁に実施されることはなく、原因を調査してシステム全体で同様に発生したシナリオを確認するために、動作不良後に実施されることが多い。
【0004】
地下資産の動作特性を監視し、人間の介入なしに、分析のために、遠く離れた監視センタに対して資産の状態通知を送ることができるシステムが必要とされている。このような通知は、あらかじめ設定された動作限界に到達しまたはその限界を超えた機器に基づく単純な警報を超えて拡張することができるので、有用である。そのような通知が、履歴的要因に基づいて予想される挙動から逸脱していることの通知を含む場合、有益である。地下資産の動作および/または環境パラメータを表す電気信号を生成するためのセンサが知られている。しかしながら、このようなセンサは地下に配置しなければならず、信号を送信することが困難であり、またはセンサによって測定されたパラメータを表すデータを地下から監視センタに対して直接送信することは困難である。このようなセンサから監視センタへの通信リンクを提供するための光ファイバケーブルのような物理的導管の設置は、特に既存のシステムに対して追加設置する場合は非常に高価であり、しばしばこのような通信リンクのために追加の電源を必要とする。
【0005】
さらに、資産に沿って(特に資産が通過する地下室内に)配置される監視装置は、自己完結型でなければならない。したがって、監視装置は、比較的長い寿命を有する電源を備えるべきである。監視装置のための電力は金庫内の電力ケーブルから得ることができる。しかしこのような電力は、資産の搭載設備が少ないかまたは電源が切られているときは、長期間にわたって利用することはできない。また、電力ケーブルから電力を取り込むことができる一方で、他の地下資産(例えば、水道、ガスパイプライン等)からの電力取得ができない場合がある。近くの公用電力源からの電力は土木掘削および道路修復を必要とすることがあり、これらは好ましくなく、可能な限り避けるべきである。したがって、監視装置のためのバッテリ電力が好ましい。しかしながら、このようなバッテリ電力を節約することは、特に遠隔地に設置された地下監視装置にとって望ましい。したがって、頻繁なデータ送信が必要とされない「ウォッチドッグ」モードで監視装置を作動させることによって、可能であればバッテリ寿命を延ばすために、監視装置および全体の監視システムの慎重な作動を提供することが有用である。
【0006】
さらに、遠隔地に配置された地下監視装置において、装置に対して供給される電力の中断、または装置と監視センタとの間の通信がしばしば中断することは、珍しくない。このような中断が発生すると、電力または通信が回復するまで、監視装置の動作状態が正確に分からないことがある。したがって、遠隔監視装置がその動作を自動的かつ独立して復元し、システムが最後に成功した送信以降に利用可能なすべてのデータを復元することが有用である。
【発明の概要】
【課題を解決するための手段】
【0007】
したがって、本発明は、電気ケーブルシステム、水、ガス、石油、下水等の導管として機能するパイプライン等の地下資産のパラメータを監視するための遠隔監視システムに関する。センサなどのパラメータ検出器は、資産に沿って分散された別個の位置に設置され、資産のそれぞれの監視されたパラメータを表す電気信号を提供する。パラメータは、パイプまたは導管システムを含む地下室またはマンホールの状態評価を提供するパラメータを含む。センサの例としては、温度、電圧、電流、水分、ガス含有量、油および水の汚染などを測定するセンサが挙げられる。1実施形態において、地下ハブがパラメータ検出器に対して結合され、パラメータ検出器によって提供される信号を取得する。好ましくは、ハブは資産の経路に沿って、地下室、または資産が通過するマンホール、または地下カーブボックス、または資産へのアクセスリードを有するハンドホールに、配置される。ハブは取得された信号から導出されたデータを提供するためのコントローラを含み、データはトランシーバまたはモデムによって遠隔センタ位置に対して送信される。
【0008】
1実施形態において、トランシーバはハブまたは地下室内の地下部分に配置され、低電力広域(LP-WAN)ネットワーク通信を介して地下室から中央位置に対してデータを無線で送信し、中央位置は送信されたデータを分析して資産を特徴付ける。中央位置は、ハブによって送信されたデータから、好ましくは複数のハブによって送信されたデータから、資産の挙動および状態を決定する。
【0009】
トランシーバはまた、コントローラを制御するために、中央ロケーションから、低電力広域ネットワーク通信を介して通信を受信するように動作することができる。1実施形態において、この通信は、パラメータ検出器から取得される信号の数、パラメータ検出器から信号が取得される頻度または回数、およびハブから中央位置へセンサデータが送信される速度を制御する命令である。ハブ動作に関連する他の命令は、場合によっては、コントローラに対して発行してもよい。
【0010】
1実施形態において、ハブはパラメータ検出器から取得された信号から導出された、低量化されたデータを処理し、送信する。好ましくは、パラメータ検出器からの信号は、資産の異常な挙動が見られない場合には比較的低いレートでサンプリングされ、資産の挙動を適切に決定するためにより多くのデータが必要とされる場合には増加される。送信されるデータは、サンプル値を表す値の導出セットである。その結果、バッテリ電力が節約され、同時に、資産の挙動を満足に決定するのに十分な情報が中央位置に対して送信される。
【図面の簡単な説明】
【0011】
例として提供される以下の詳細な説明は、添付の図面と併せて読むと最もよく理解されるであろう:
図1】本発明の遠隔監視システムの1実施形態のブロック図である;
図2図1に示すハブの一部のブロック図である;
図3A図1に示すハブの動作モードを説明するタイミング図である;
図3B】ハブの別の動作モードを説明するタイミング図である;
図4A】ハブから中央位置に対して送信されるデータ量を低減するための1つの技法を説明する;
図4B】ハブから中央位置に対して送信されるデータ量を低減するための1つの技法を説明する;
図4C】ハブから中央位置に対して送信されるデータ量を低減するための1つの技法を説明する;
図5】システムの初期化を示すフローチャートである;
図6】システムのデフォルト動作を示すフローチャートである;
図7A】複数のハブを備える遠隔監視システムの実施形態のブロック図を示す;
図7B】複数のハブを備える遠隔監視システムの実施形態のブロック図を示す;
図7C】中央サーバによって実行される機能を示すフローチャートである;
図8】ウォッチドッグモードにおけるハブの動作を示すフローチャートである。
【発明を実施するための形態】
【0012】
ここで図面を参照する。図1は本発明による遠隔監視システムの1実施形態のブロック図である。地下室108内に配置されたハブ104は、地下資産102のパラメータを監視し、監視されたパラメータから導出されたデータを処理し、中央位置120(例えば中央サーバ)に対して送る。あるいは、ハブは地下カーブボックスまたはハンドホール内に設置されてもよい。この実施形態において、ハブ104は、センサ106a、106b、・・・106nに対して結合されたサンプラ107を有し、センサによって生成された信号をサンプリングする。センサは、ハブの外部に分散され、温度、圧力、電圧、電流などのような地下資産の検出または感知されたパラメータを表す信号を生成するように構成されている。センサは、単純なリード線タップ、またはより洗練された、または複雑なトランスデューサであってもよい。資産は、電力ケーブル、石油、ガス、水道パイプライン、または資産に関連する他の導管、アクセサリ、または補助機器であってもよい。便宜上、資産102は、本明細書では電力ケーブルとして説明され、地下ケーブルシステムまたは単にケーブルと呼ばれることもある。しかしながら、本明細書においてケーブルシステムへ言及する場合、水パイプライン、石油およびガスパイプラインおよび下水ライン、並びにマンホール、リンクボックス等に含まれる設備のような上述の資産を含むことが意図されるが、これらに限定されない。
【0013】
地下室108は、カバー109を通してアクセス可能である;地下室108は、電気事業者の当業者にとって公知の典型的なマンホールであってもよい。電気ケーブルは例えば、高圧または高圧送電用に適合された電力ケーブル、または低圧2次回路である。ハブ104は、典型的にはケーブル102が通過するマンホール内に設置される。しかしながら、ハブは、地下のカーブボックスまたは地下の資産に取り付けられたリード線を含むハンドホールに設置されてもよい。資産は、マンホール自体であってもよく、マンホール内の他の機器であってもよい。当業者は、地下室がマンホールよりも大きな構造であり、変圧器、スイッチ等を含む複数の資産を有することを認識している;一方、マンホールはハンドホールと同様に、地下室よりも小さく、より単純である。ハブ104は、資産の動作パラメータを取得する役割を果たす。ハブは好ましくは地下室またはマンホール内に配置されるが、地面の直下に埋設されてもよい。
【0014】
サンプラ107は、センサ106a、・・・106nから供給される信号のデジタル化されたサンプリング値を生成する、従来のA/Dコンバータおよびサンプラであってもよい。ハブ104内に配置されたコントローラ110は、サンプラ107からセンササンプルを受け取るように構成されている。好ましくはサンプラはハブ104内に配置されるが、任意選択で、サンプラはハブの外部にあってもよい。
【0015】
ハブはまた、中央サーバ120と通信するための無線トランシーバ114またはモデムを有する。中央サーバはハブ104から離れており、後述するように、ハブから送信され、好ましくは複数のハブから送信されたデータを分析する。このデータは、後述するようにサンプラから導出され、センサによって監視されるパラメータを表す。1実施形態において、中央サーバはデータプロセッサを有し、ハブから送信されたデータに基づいてケーブル102のローカル動作状態の通知を提供するように構成される。
【0016】
ハブ104からのデータは、他の場所に設置された地下室108’内の他のハブ104’から受信したデータと統合されて、ケーブルシステム全体を特徴付け、資産管理者が固定的な定期監査に依拠することなく、必要に応じて異常を識別し、システム保守をスケジュールすることを可能にすることができる。例えば、中央サーバは、測定されたパラメータ、すなわちケーブルシステムが正常範囲内で動作しているかまたは予想される範囲内で動作しているかを判定するように構成される。中央サーバはまた、ケーブルの現在の動作状態が履歴値に基づいて過去の動作と一致するかどうかを判定するように構成される。ケーブルシステムの動作条件における、別のハブからのセンサ信号と比較したときのあるハブからのセンサ信号が変動している場合、これは中央サーバによって検知され、中央サーバはそのような変動がケーブルシステムの通常動作範囲外であるかどうかを判断し、範囲外であれば、アラームが生成される。
【0017】
サンプリングされたセンサ信号を表すデータは、無線トランシーバ114を介して中央サーバに対してデータパケットとして送信される。トランシーバは、AT&T、Verizon、および当業者に知られている他のセルラサービスプロバイダなどのセルラキャリアによってインストールされ運用されるLTE-MおよびNB-IoT通信技術などのセルラ低電力広域ネットワーク(LP-WAN)にしたがって動作する。1実施形態において、ハブトランシーバは異なるネットワークのいくつかのサービスプロバイダにアクセスし、信号強度および品質に基づいて好ましいネットワークをシームレスに選択することができる。したがって、トランシーバは地下から直接セルラネットワーク122に対して、次いでインターネット接続、セルラ通信などによってサーバに対してデータを送信することができる。1実施形態において、ハブは、トランシーバ114と、LP-WAN通信を介してデータを送信するための適切に設計されたアンテナとを含む。別の実施形態において、ハブ104内に配置されたトランシーバは、地下室内にありハブ104の外側に配置されたアンテナに対して接続される。さらに別の実施形態において、アンテナは地下に位置するが、地下室、マンホールまたはハンドホールの外側に位置し、トランシーバに対してワイヤ接続される。別実施形態において、アンテナおよびトランシーバはハブ104の外部かつ地下に配置される。これは、セルラネットワークの使用を省略することができ、データをハブから中央サーバに対して直接送信できることを意図している。
【0018】
ハブへの電力は、バッテリ105のような適当な電源によって供給される。あるいは、必要な電力は、インダクタンスコイル、ロゴスキーコイル、または他の公知の装置などの集電装置111によって、電力ケーブル102またはその関連する遮蔽システムから収穫されるか、または局所的に利用可能な公共電源から地下室に対してルーティングされる。好ましい実施形態において、バッテリ105は2年以上のオーダーなどの比較的長い寿命を有し、電力を収集してハブ活動をサポートするためにまたはバッテリを再充電するために必要とされる電力を補うことによって、寿命を延長する場合がある。後述するように、サンプラおよびトランシーバを制御可能かつ好ましくは短い間隔で連続的に作動させないことによって、バッテリ寿命が向上し、電力が節約される。さらに、後述するように、デジタル化されたサンプルのすべてが中央サーバに対して送信されるわけではなく、それによって、送信されるデータの量が低減され、したがって、バッテリから引き出される電力が低減される。
【0019】
図1に示す実施形態において、端末124および126は中央サーバ120を介して監視システムと通信する。端末124は管理端末として機能するとともに、遠隔監視装置を管理し、ハブを制御するためのハブ命令をハブへダウンロードまたは送信するために中央サーバにアップロードするヒューマンインターフェースとして機能する。端末126は管理機能のために使用してもよいが、システム管理動作は適切な権限およびセキュリティ許可を有する個人に限定されることが望ましい。この目的のために、端末124は、そのような個人によって操作され、そのような個人とのインターフェースとして動作することが想定される。端末124、126と中央サーバ120との間の通信は、セルラまたはインターネットネットワークにしたがって、無線または有線とすることができる。
【0020】
以下に説明するように、中央サーバ120は、セルラネットワークLP-WAN通信を介してハブ104に対して操作指示を送るように構成されている。端末124から中央サーバに対してアップロードされる命令は、コントローラを制御するためにトランシーバ114によって受信される。1実施形態において、端末124は、中央サーバ120によって提供される指示およびデータを分析し、ハブに送られる命令を生成するように構成されたコンピュータ機能を備えることができる;端末126は、中央サーバからの指示およびデータにアクセスするが、命令を生成する機能を持たないように構成することができる。例えば、以下に説明するように、中央サーバに対してアップロードされた命令は、センサ信号をサンプリングするためのサンプリング間隔(サンプルサイズ)、サンプリング頻度(センサ信号が取得される頻度)、および送信頻度(センサ信号を表すデータが中央サーバに対して送信される頻度)を確立する。通常、周期的サンプリングまたは「ウォッチドッグ」モードにおいては、中央サーバを介して端末124の技術者によってハブに対して発行される命令は、バッテリ電力を節約するために、サンプリングされ送信されるデータをあまり頻繁に要求しない。しかしながら、ケーブルシステム内の異なるハブによって感知されたパラメータに基づいて、中央サーバによってなされた決定に応じて、中央サーバはバッテリ寿命を犠牲にして追加のデータを取得するために監視パラメータを調整するように、サンプリング間隔、サンプリング頻度、および送信頻度を増加または減少させる命令を送信することができる。1実施形態において、コントローラ110は、自律的に動作して、サンプリング間隔、サンプリング頻度、送信間隔および/または送信頻度を、本明細書で説明するように、センサから導出された局所的に感知された条件に基づいて変化させてもよい。
【0021】
ハブ104は、記憶装置112と呼ばれる、メモリなどの記憶装置を含む。記憶装置は、サンプリングされたセンサ信号を表すデータを記憶するように構成される。ハブへの電力の中断、またはハブと中央サーバとの間の通信が喪失した場合、記憶装置112に記憶されたデータは、電力または通信が回復されたときに、中央サーバ120に対して送信してもよい。これにより、電力または通信中断時に取得されたが送信されず、ケーブルシステムの動作状態を判定するために必要とされる可能性があるデータは、復旧時に送信される。
【0022】
記憶装置112、または好ましくは別のメモリ(図示せず)は、ハブ104が使用状態に置かれたときなどにおいて、コントローラ110を初期化するための命令を記憶するように適合される。このメモリはまた、電力または通信の回復時にコントローラを回復モードで動作させるための命令を記憶することができる。これらの命令によって実行される機能を以下に説明する。このメモリ、またはさらに別のメモリは、トランシーバ114を介して、中央サーバから受信したコントローラの動作モードを決定する命令を記憶するように構成される。これらの命令は、データをサンプリングして中央サーバに送信するためのウォッチドッグモードをあまり頻繁に確立しない場合もあれば、データをサンプリングして送信するための高速モードをより頻繁に確立する場合もある。以下で説明するように、命令はデータ収集およびその後の中央サーバへの送信を制御するために、サンプリング間隔、サンプリング頻度、送信間隔、および送信頻度のうちの1つまたは複数を確立する。
【0023】
動作中、センサ106a、・・・106nからのセンサ信号は、サンプラ107によってサンプリングされる。サンプラは、中央サーバ120からハブ104に対して送られる命令によって確立された、所定のサンプリング頻度における周期的なサンプリング間隔の間、センサ信号をサンプリングする。さらに、システムオペレータは中央サーバを介してコントローラ110に対して命令を提供して、センサによって提供される信号に基づいてケーブルシステムのローカル動作条件を決定し、決定された動作条件にしたがってサンプリング間隔およびサンプリング頻度を確立することができる。コントローラ110は、サンプリングされたセンサ信号を所定の送信頻度で送信間隔内において中央サーバに対して送信するように、トランシーバ114を制御する。ネットワークサービスプロバイダ(例えば、セルラサービスプロバイダ)によって設定されるような、またはネットワーク上の通信トラフィックによって決定されるような、サービスプロバイダが収容するデータ量の関数として、好ましいまたは最適化された送信間隔に基づいてトランシーバを制御することは、有用かつ経済的であり得る。
【0024】
1実施形態において、サンプリングされたセンサ信号はコントローラ110によって使用され、これによりケーブルシステムの特定の動作条件を決定し、それにしたがって、サンプリングされたセンサ信号が送信される送信間隔および/または頻度を確立する。後述するように、連続する送信間隔はスリープ間隔(またはスリープモード)によって分離され、コントローラはアクティブ動作モード中にサンプルを送信するように起動され、その後、スリープモードに戻る。任意選択として、スリープ間隔は、中央サーバから受信した命令に応じて調整可能であってもよい。
【0025】
図2を参照する。ハブ104内に含まれる電子機器の部分のブロック図が示されている。センサ106a、・・・106nからの信号は、デジタルサンプルを生成するために決定されたサンプリングレートで動作するサンプラ207、アナログ-デジタル(A/D)コンバータおよびアンプ(図示せず)を含むフロントエンドによってサンプリングされる。これらのサンプルは所定のサンプリング間隔の間に、好ましくは、調整可能なサンプリング頻度で周期的に取得され、分析され、パケット化され、メモリ212に記憶される。
パケット化されたデジタルサンプルは、メモリから読み出され、スケジュールされ間隔を置いて配置された送信間隔で送信器214によって中央サーバ120に対してデータパケットとして送信される。送信器214は、トランシーバ114に含まれる。好ましくは、デジタルサンプルは以下に説明するように、パケット化される前にデータ縮小される。
【0026】
サンプリング間隔、サンプリング頻度、および送信頻度を決定するタイミング信号は、タイミング信号スケジューラ215によって生成される。タイミング信号スケジューラ215は、コントローラ210の制御下のクロックを有する。コントローラ210は、とりわけ、タイミング信号発生器215、サンプラ207、および送信器214を制御するCPUを有する。中央サーバ120(図1)からの命令は、トランシーバ114に含まれる受信器216によって受信される。図3Aに関連して説明されるように、送信間隔は、中央サーバとの通信、例えばハンドシェイクまたは認証を確立するための情報を含む先頭部分と、パケット化されたサンプルを含むデータ部分と、コントローラ210の進行中の動作モード、例えばタイミング信号スケジューラのサンプリング間隔、サンプリング頻度、送信間隔、および送信頻度を確立する中央サーバからの命令を含む末尾部分とを含む。末尾部分はまた、通信セッションを終了させるための「サインオフ」情報を含むことができる。
【0027】
上述したように、監視システムには2つの主な動作モードがある。ウォッチドッグまたは低速モードは、ケーブルシステムが正常に動作しているとき、すなわち、システムオペレータの経験に基づいてまたは報告された異常または欠陥を含まない以前に報告されたデータ(すなわち、送信されたデータサンプル)に基づいて、資産が正常または履歴的に予想される動作範囲内で動作しているとき、呼び出される。このウォッチドッグモードでは、中央サーバに対して収集され報告されるデータの量が最小であり、サンプル収集の間で著しく変化しないので、サンプリング頻度は遅くてもよい。ウォッチドッグモードは、ハブが最初に、例えば、始動時に動作状態に置かれたときにも呼び出され、この場合、「通常の」または予想される動作挙動を確認するための以前のデータは存在しない。1実施形態において、端末124の技術者が中程度のサンプリング頻度および送信頻度を指示して、基準動作挙動を決定可能なデータを取得することができる。初期頻度は、必要に応じて、または技術者が望むように調整することができる。
【0028】
ハブ104がウォッチドッグモードで動作する持続時間は、典型的には数週間および数ヶ月で測定される。ケーブルシステムの動作条件の変動がコントローラまたは中央サーバによって自動的に決定されたとき、または端末124の技術者によって決定されたとき、高速モードが呼び出されて、より完全な検査を必要とする条件が評価される。高速モードは、サンプラの長いスリープ期間中に見逃された可能性がある信号を取得するために開始されてもよい。例えば、過渡信号がスリープ期間中に存在する場合があるが、高速モードで観測され、サンプリングされる。過渡信号を生じる例としては、計画外の弁閉鎖のために起こり得る、流体循環システムにおける予期しない圧力過渡現象が挙げられる。他の例としては、格納容器の破損、装置の故障または火災による温度上昇などが挙げられる。高速モードでは、サンプリング頻度と伝送頻度が高くなる。高速モードでの動作の持続時間は、典型的には数週間または数ヶ月ではなく、数時間または数日で測定される。これらの動作モードは、以下でさらに説明される。
【0029】
動作において、コントローラ210は、タイミング信号スケジューラ215を制御して、CPUメモリに記憶された命令または中央サーバから受信された命令に基づいて、デジタルサンプルを取得および送信するためのサンプリング間隔、サンプリング頻度、送信間隔、および送信頻度を実行する。例えば、低速またはウォッチドッグモードは、図3Aに示される例に関連して以下に説明される。
【0030】
図3Bに示す高速モードにおいて、コントローラがタイミング信号スケジューラを制御して、より長いサンプリング間隔を実行し、より多くのサンプルを取得する。したがって、図3Aの低速モードと同じサンプリングおよび送信頻度を用いて図3Bの高速動作モードで動作する場合、送信間隔の間により多くのデータが取得され、したがって、データを送信するのに必要な時間、すなわち送信間隔がより長くなる。一般に、中央サーバ120から受け取った命令は、コントローラの動作モードを決定する。これらの指示は資産管理者または技術者が好ましいまたは特定の監視目的に基づいて提供することができる。例えば、電気ケーブルの経路に沿った地下室温度は、回路の数および個々のケーブル負荷に依存する。地下室温度は電気需要の変化により毎日変化し、需要および地球の環境温度の変化により季節的に変化することが予想される。高温はケーブルの過負荷の原因となる。それにもかかわらず、地下室内の温度変化はゆっくりと変化することが予想される。したがって、1分のサンプリング間隔、1サンプル/時のサンプリング頻度、および1日1回の送信頻度は、合理的な開始条件である。地下室内の環境汚染または大気条件は、ゆっくりと進行することが予想される。したがって、5秒のサンプリング間隔、30分毎に1回のサンプリング頻度、および1日1回の送信頻度が妥当であろう。一般的なカソード保護測定においては、30秒のサンプル間隔、1時間に1回のサンプリング頻度、および1日に1回の送信の送信頻度が妥当であろう。1時間毎にスケジュールされる特定のカソード保護試験においては、連続サンプリングモードは30分間のサンプリング間隔を有し、1時間毎に1回実行し、1時間毎に1回送信することができる。この「高速」モードにおいては、コントローラは、条件が許可されれば、4時間後に「ウォッチドッグ」モードに戻るように指示される。資産管理者は、センサからの信号に基づいて、サンプリング間隔、サンプリング頻度、送信間隔、および送信頻度のうちの1つまたは複数が自動的に変更される適応監視モードでコントローラを動作させることを選択することができる。
【0031】
図3Aは、センサ信号のサンプリングおよびサンプリングされた信号の中央サーバへの送信を説明するタイミング図である。簡略化のために、図3Aは、センサ106a(センサA)、センサ106b(センサB)、およびセンサ106c(センサC)によって生成される信号のサンプリングおよびデータ伝送を示す。センサA、B、およびCからのセンサ信号は、図3A(I)、3A(II)、および3A(III)に示されるサンプル間隔中にサンプリングされる。サンプラ107は、センサA、BおよびCによって生成された信号をサンプリングするために、それぞれ実質的に同時に動作可能な個々のサンプリング回路を含んでもよい。これに代えて、サンプラ107は単一のサンプリング回路を含むことができ、この単一のサンプリング回路は高いサンプリングレートでセンサA、B、およびCによって生成される信号をサンプリングするように動作可能である。図示されるように、第1の期間中において、センサA、B、およびCによって生成されるサンプリングされた信号は、それぞれ、サンプルセットA1、B1、およびC1と呼ばれる。第2の期間中において、センサA、B、およびCによって生成されるサンプリングされた信号は、サンプルセットA2、B2、およびC2と呼ばれる。続く期間中において、センサA、B、およびCによって生成されるサンプリングされた信号は、サンプルセットA3、B3、およびC3、サンプルセットA4、B4、およびC4などと呼ばれる。これらの期間中に生成される連続するサンプルセット間の時間隔、すなわち、サンプルセットA1とA2との間の時間隔、セットB1とB2との間の時間隔、およびセットC1とC2との間の時間隔は、スリープ間隔と呼ばれる。連続するサンプル間隔は、連続するスリープ間隔によって分離される。スリープ期間中、サンプラ107はセンサ信号をサンプリングしない。
【0032】
コントローラ110はサンプルセットA1、B1、C1;A2、B2、C2;A3、B3、C3;A4、B4、C4等(図3(A)(IV)に示す)をパケット化し、図3(A)(V)に示す送信間隔でパケットを共通データパッケージ304に組み立てるように構成されている。図示の例において、コントローラ110は1つのパケット302a、302b、302cを組み立て、各パケットは各センサ106a、106b、106cからの100個のサンプルを1時間ごとに、またはこれらのセンサすべてからの100個のサンプルの12個のパケットを4時間毎に1回、含んでいる。この例において、すべてのデータパケットが4時間ごとに1つの送信間隔の頻度で送信される。サンプルセット[A1、B1、C1]、[A2、B2、C2]、[A3、B3、C3]、[A4、B4、C4]を含む1つのパッケージは図3(A)(V)に示すように、4時間毎に送信間隔中に送信される。サンプリング頻度が1時間につき1回であり、送信頻度が12時間につき1送信間隔である場合、それぞれが100サンプル(または3600サンプル)を含む36個の個々のデータパケットがパッケージされ、12時間につき1回送信される。送信頻度が1日に1回(または24時間に1回)の送信間隔である場合、72個のデータパケットは、1日に1回送信される7200個のサンプルのパッケージに組み立てられる。
【0033】
したがって、集合A、BおよびCの各々、即ち組み立てられたパッケージの取得サンプルは、図示された各送信間隔304の間に送信され、図示された例では送信頻度は4時間毎に1回である(図3(A)(V))。送信間隔は典型的にはサンプリング間隔よりも長いが、図3Aおよび3Bでは視覚的に明瞭にするために、サンプリング間隔においてセンサ信号がサンプリングおよび蓄積され、伝送間隔も同様に示されている。
【0034】
連続する送信間隔は、データパケットが送信されないスリープインターバルによって区切られる。データの送信がより多くのバッテリ電力を必要とするほど、ハブ(特にトランシーバ)を、スリープ期間と比較して比較的短い期間起動させる動作は、バッテリ電力を節約し、バッテリ105の寿命を延ばす役割を果たす。この例において、送信頻度(トランシーバがどれくらい頻繁に起動されるか)はコントローラによって調整可能であり、制御される。送信間隔は主に、送信される情報の量によって決定される。送信される情報が多ければ多いほど、送信間隔は長くなる。その結果、スリープ期間はそれに応じて変化する。送信頻度は図3(A)(V)に示すように、コントローラのCPUに送られた、または搭載された命令にしたがって制御可能である。図3Aに示す実施形態では、送信頻度が4時間に1回である。すなわち、1回の送信間隔304中に集約されたサンプリングされたセンサ信号は、4時間に1回送信される。1実施形態において送信間隔は持続時間が調整可能であり、別の実施形態ではその中に集約されたデータ量が調整可能である。
【0035】
送信間隔は、3つの期間からのデータサンプル(図示されるように、4つの期間からのデータサンプルではなく)が1つの送信間隔に集約される場合、縮小されたものと考えることができる。同様に送信間隔は、(図示されているように、3つのセンサからのデータサンプルではなく)2つのセンサからのデータサンプルが集約された場合、縮小されたものと考えてもよい。逆に、送信間隔は、5つの期間からのデータサンプルが1つの送信間隔に集約される場合、増加されると考えてもよい。送信間隔は、4つのセンサからのデータサンプルが集約された場合、増加されたものと考えることができる。図3Aに示される数値例は例示的なものであり、より多くのまたはより少ない数のセンサ、およびより多くのまたはより少ない数の集約されるサンプル間隔が使用されてもよい。
【0036】
サンプリング間隔およびサンプリング頻度は、中央サーバからのまたはコントローラに搭載された命令にしたがって調整可能であってもよい。連続する期間のスリープ間隔および/またはサンプル間隔は、中央サーバへの送信のために、所望に応じて、より多くのまたはより少ないサンプルを取得するように調整されてもよい。
【0037】
図3Aに示す実施形態において、各サンプル間隔中に100個のサンプルが取得され、サンプル間隔は50秒程度である。サンプリング頻度は、1時間に1回、これらの100個のサンプルを取得する。したがって、このサンプリング間隔の間に、各センサについて1時間毎に100個のサンプルが取得される。図3Bに関連して説明されるように、中央サーバにおいてより多くのデータが必要とされる場合、例えば中央サーバに対して送信されたデータがケーブルシステムの異常な動作を示す場合、サンプル間隔および/またはサンプリング頻度が増加されてもよい。
【0038】
図3(A)(V)は、典型的な送信間隔307の内容の概要である。送信間隔の先頭部分303は、ハブ104と中央サーバ120との間の通信ハンドシェイクを確立するために必要なオーバーヘッドを含む。このオーバーヘッドは、地下室(すなわちケーブルシステム102に沿ったセンサの位置およびタイプ)を識別するハブのID、必要に応じて許可データ、時刻などを含むことができる。送信間隔307の末尾部分305は、ハブにダウンロードされる命令についての中央サーバへの要求を含む。末尾部分には、中央サーバとハブ間の通信セッションを終了するための情報も含まれる。データパケット304は図示されるように、送信間隔の先頭部分と末尾部分との間に配置される。
【0039】
上述したように、サンプリング間隔、サンプリング頻度、送信間隔、および送信頻度のうちの少なくとも1つは、ハブの異なる動作モードを確立するために調整可能である。図3Aに示すように、サンプル間隔と送信間隔との間に介在するスリープ間隔は、コントローラおよび送信器の非アクティブ期間であり、これらのスリープ間隔も調整することができる。ウォッチドッグモードにおいて、サンプリング間隔およびサンプリング頻度が低減されるか、またはスリープ間隔が増大されて、取得・送信されるデータ量を制限して、バッテリ寿命を維持する。図3Aは、1時間に1回のサンプリング頻度と4時間に1回の送信頻度を示す。図3Bは、ハブ104の高速動作モードのタイミング図である。この高速モードの例において、図3(B)(I)~(B)(III)に示すサンプリング間隔はほぼ1時間であり、サンプリング頻度は1時間に1回と想定される(図3(A)のように)。しかしながら、1時間のサンプリング間隔において、セットA、BおよびCのパケット312a、312bおよび312cの7200サンプルが、それぞれ、各センサ106a、106b、106cから取得される。約1分のオーダーである図3Aのサンプリング間隔と比較して、約1時間のオーダーで、サンプリング間隔が増加する。したがって、図3(B)のサンプリング間隔では、より多くのサンプル(7200×3)が取得され、より多くのデータがパッケージ化されて送信される。4時間のサンプルが送信のために集約される場合、7200×3×4 = 86,400サンプルが4時間毎に送信される。その結果、トランシーバは事実上、連続的に送信しており、サンプリング間隔の間の期間中スリープせず、それによって、より多くの量のエネルギーを消費する。したがって、バッテリ寿命を保存するために、高速モードにおけるハブ動作の持続時間を制限することが好ましい。
【0040】
1実施形態において、端末124の技術者によって提供される中央サーバからの命令は、1つまたは2つの分離されたセンサから導出されたデータのサンプリング間隔、サンプリング頻度、および送信頻度のうちの少なくとも1つをコントローラに制御させることができる。別の実施形態において、コントローラは、センサ106aによって検出されたパラメータなどの所定のパラメータを、他の検出されたパラメータよりも頻繁にサンプリングするようにプリセットすることができる。例えば、コントローラは、サンプラ107を制御して、センサ106aからの信号を、他のセンサからの信号よりも頻繁にサンプリングすることができる。したがって、高速動作は例えば、1つのパラメータのみを高速モードで監視する必要がある場合などのように、任意の特定の時間において、センサ106aのような1つのセンサのみで起動することができる。
【0041】
以下で説明するように、好ましい実施形態において、サンプルデータは、取得されたサンプル値を表すサンプル値のサブセットまで統計的に縮小される。図3(B)(VI)は、データパケット[A1、B1、C1]、[A2、B2、C2]...のサイズが以下に説明するように縮小され、これにより送信間隔314’が縮小されていることを示している。その結果、トランシーバは、送信間隔の間の期間中スリープする。
【0042】
コントローラ210のCPUは、最初に電力がハブに供給されるときに中央サーバとの初期通信を確立するためのブートモードのようなスタートアップモードでCPUを動作させるスタートアップ命令を含む、命令を記憶するためのメモリを含む。1実施形態において、ハブへの電力が失われその後復元された場合、またはハブと中央サーバとの間の通信が失われその後再確立された場合、CPUは回復モードで動作する。電力が回復されるとき、または通信が再確立されるとき、コントローラはそのメモリからプリセット回復命令を読み出し、中央サーバに対してハブの状態情報を送信する。この状態情報は、センサ信号から構築されたがまだ中央サーバに対して送信されていない可能性がある、メモリ212に記憶されたデータパケットの数を含む。通常、LP-WAN プロトコルは、データパケットの正常な送信をトラッキングする。したがって、この回復モードにおいて、ハブは中央サーバに対して送信成功しなかった格納済データパケットを送信する;中央サーバは、センサ信号をサンプリングするためのサンプリング間隔およびサンプリング頻度を更新し、データパケットが中央サーバに対して送信される送信頻度を確立するための命令を、ハブに送信する。
【0043】
好ましい実施形態において、ハブ104内の記憶装置112は、中央サーバに対して送信されるデータを記憶する。より多くのデータが送信されると、記憶装置112に記憶されたデータが更新される。しかしながら、上述したように、通信喪失が生じた場合、記憶装置112に記憶されたデータは更新される場合があるが、その通信喪失の前に中央サーバが送受信したデータを正確に反映していない可能性がある。したがって、送信間隔の開始時において、記憶装置112に記憶されたデータと、中央サーバに対して最後に送受信されたデータとの間で比較が実施される。これらの間に矛盾が生じた場合、記憶装置112に記憶されたデータの少なくとも一部は、記憶装置112に保持されたデータと適合するように中央サーバを更新するために、再送される。
【0044】
以下で説明するように、エネルギーを節約し、バッテリ消費を低減するために、データの各パケットはサイズを低減してもよく、元の100個(または7200個)のサンプル値を含まない。これに代えて、サンプルA、B、Cの各セットについて、サンプル値を表す統計的に導出された値が送信される。資産またはケーブルシステムの動作は、多くの場合、より大きなサンプルセットを表すわずか5つの統計的に導出された値によって、十分監視することができることがわかっている。取得されたデータを分析する際のより高い精度のために、あるいはこれに代えて、監視されているパラメータに応じて、より多数であるがサンプルセット内の値よりも少ない値が送信されてもよい。これは、ハブから送信されるデータ量を大幅に減少させるものであり、結果として有利な省エネルギーをもたらし、それによってバッテリの動作寿命を延ばし、データ記憶要件を低減し、伝送時間を短縮し、分析を簡素化する。
【0045】
コントローラの高速または低速(すなわちウォッチドッグ)動作モードを決定する命令は最初に、例えば端末124のシステム技術者によって確立され、中央サーバからハブ104に対して送られる。これらの指示はシステム技術者および資産管理者の知識および経験に基づいており、ケーブルシステムの感知された挙動に応じて変更される場合がある。実際には、サンプリングおよび送信頻度は、資産管理者が資産をどれだけ厳密に監視したいかに依存する。低速ウォッチドッグモードの1例において、センサ106aなどのセンサからの信号の50個のサンプルが1時間に1回取得され、毎日1回送信される。高速モードにおいて、センサからの信号が実質的に連続的に(図3Bに示すように)、例えば2日間、サンプリングされ、送信される。この高速動作モードでは、システム挙動の微妙な変化が明らかになり、任意の異常をより綿密に調べることが可能になる。運用経験の増大に伴い、資産運用者は、これらの基本的な運用モードのデフォルト条件を確立することができる。
【0046】
監視されるセンサ信号によって表される監視パラメータに応答して、中央サーバまたは中央サーバの技術者が、ケーブルシステムの予想される動作挙動からの逸脱、または障害が予想される条件などのように、より頻繁な検査を必要とする条件を検出した場合、中央サーバによって送信される命令は、サンプリングおよび/または送信頻度を増加させ、動作挙動が安定するかまたは予想される挙動に戻ったとき元のまたはデフォルトの命令に戻るように、コントローラ110を動作させる。
【0047】
コントローラ110は、中央サーバから送られた命令を実行することに加えて、何らかの所定の条件下で、中央サーバから独立してその動作モードを修正することができる。例えば、直近にサンプリングされたセンサ信号を表す図2の記憶装置212に配置した直近のサンプルデータは、コントローラ210によって記憶装置212内の以前のサンプルデータと比較される。その結果、サンプルデータが所定の期間にわたって急速にまたは大幅に変化する場合、中央サーバで決定される前にケーブルシステムの挙動の変化をハブにおいて検出できる。データはまだ中央サーバに送信されていないからである。例えば、特定のセンサ、例えばセンサ106aのサンプル値が1つのサンプルから次のサンプルへ著しく変化し、これらの値の変化率が所定の閾値を超える場合、コントローラは、そのサンプリング間隔、サンプリング頻度、送信間隔、および送信頻度のうちの少なくとも1つを増加させる。サンプルが取得される特定の頻度および/またはデータパケットの特定の送信頻度(すなわち、データパケットが送信される頻度)は、この変化率の関数として選択されてもよい。逆に、記憶装置212に記憶されたデータがあらかじめ設定された期間にわたってゆっくりと変化する場合、例えば、変化率が特定のしきい値未満である場合、コントローラは、そのサンプリング間隔、サンプリング頻度、送信間隔、および送信頻度を低減することができる。この動作モードの変化は、時間の経過とともに緩やかになる。
【0048】
上述のように、電力消費は、トランシーバがウェイクアップしアクティブであるとき、各送信間隔中に送信されるデータの量を低減することによって、低減される。異なるデータ圧縮技術が使用されてもよいが、データパケットのサイズを縮小する、すなわち、各データパケットのデータ量を減らすことが好ましい。中央サーバへの送信のためにデータが削減される方法は、図3Aおよび図3BのセットA、BおよびCにおいて得られたサンプルを表す図4に示された技法にしたがって説明される。セットA、BおよびCそれぞれは、センサ106a、106b、106cによってそれぞれ生成されたセンサ信号の100個のサンプルを含み、これらのサンプルの値は、図4Aにおいて、発生またはサンプリングの順序で示されていると仮定する。例えば、セットAでは、センサ106aからの信号の第1のサンプルは値45を有し、センサ106aからの信号の第2のサンプルは値47を有し、第3のサンプルは値37を有し、以下同様である。各値は、ミリボルトのような電圧レベル、またはセンサ106aによって検出される電流、温度、圧力、または他のパラメータの単位を表す値であってもよい。同様に、セットBでは、センサ106bからの信号の第1のサンプルは値45を有し、センサ106bからの信号の第2のサンプルは値47を有し、第3のサンプルは値22を有し、以下同様である。セットCで取得されたセンサ106cからのサンプルのサンプル値は、図4Aに示される通りである。
【0049】
この目的を達成するために様々な統計ツールが利用可能であるが、以下に説明するように、その期間について収集されたデータから導出された経験的分布関数から5つの特性値を計算することによって、よりロバストな技法が適用される。コントローラ210は、各セットA、B、Cのサンプル値を最低から最高に並べ替える。図4Bの例では、セットAの最低サンプル値は35であり、このセットの最高サンプル値は60である。同様に、セットBおよびCのそれぞれにおける最低および最高のサンプル値は、図示されている通りである。
【0050】
図4Cは、各セットにおける中央値または50パーセンタイルサンプル値を示す。中央値は、Aセットのサンプルでは44、Bセットのサンプルでは44、Cセットのサンプルでは32である。最初の4分位数におけるサンプル値は、各サンプル区間で取得した再順序付けサンプルの各セットにおける25パーセンタイルレベルに相当し、Aセットでは39、Bセットでは37、Cセットでは31である。3番目の4分位数におけるサンプル値は、各サンプル区間で取得した再順序付けサンプルにおける75パーセンタイルレベルに相当し、Aセットでは47、Bセットでは51、Cセットでは39である。これら5つのサンプル値、すなわち、最小値、最大値、中央値、第1四分位値、第3四分位値は、ケーブルシステムを適切に特性付けおよび監視し、ケーブルシステムの動作の変化を中央サーバが識別するために十分なデータを提供することが判明した。100個のサンプル値を5値のセットに削減することにより、ハブの消費電力、特にデータ伝送による消費電力が大幅に削減される。
【0051】
各サンプル間隔中に取得された5つのサンプル値、すなわち、最小サンプル値、最大サンプル値、中央サンプル値、および各セットの第1の四分位数および第3の四分位数で取得されたサンプル値は、サンプリング間隔中に取得されたすべてのサンプルを表すデジタル化されたデータのパケットとして送信される。このデータ低減技術は、高速および低速(例えば、ウォッチドッグ)動作の両方に用いることができる。
【0052】
上述したように、各セットのデータパケットはパッケージ(図3Aおよび図3B)に組み立てられ、パッケージは各送信間隔中に送信される。このデータは、他のハブからのデータパッケージと共に収集され、ケーブルシステムの特性挙動を表すために中央サーバにおいて分析される。この挙動が所定のしきい値を超えてある期間にわたって変化しない場合、中央サーバはケーブルシステムが適切に動作していると判定し、障害またはアラーム状態は検出または予期されない。その結果、これらのデータパケットを比較的低い頻度で、例えば8時間または12時間または24時間毎に1つのパッケージで、またはより低頻度で、取得および送信するだけで十分であり、その結果、電力消費が低減される。しかしながら、中央サーバ(または技術者)がセンサ信号をより頻繁に検査すべきであると判定した場合(例えばパケットによって表されるデータがある期間にわたって閾値を超えて変化するとき)、コントローラ210はサンプリング間隔、サンプリング頻度、送信間隔、および/または送信頻度を増加させることによって、時間3B(V)および時間3B(VI)に示すように、より多くのパケットを送信させるように指示される。したがって、より高速のモードで動作するとき、より多くのデータが収集され、中央サーバはより厳密に、すなわち、より頻繁に、ただしより高い電力消費を犠牲にして、ケーブルシステムの動作特性を検査することが可能になる。
【0053】
同様に、取得されたセットの5つの代表的なサンプルのデータパケットが履歴的に所定の閾値以上変化したとコントローラが判断した場合、またはそれらのデータパケットのデータが履歴的に所定の量よりも大きな変化率で変化した場合、コントローラはより多くのデータを取得し、データパケットをより頻繁に送信することができる。
【0054】
統計的に低減されたサンプルデータと履歴データとの比較を使用して、ハブ(または複数のハブ)のサンプリング頻度および送信頻度を調整することができる。この比較は、ハブ内の異なるセンサからのデータが比較のために利用可能であるハブにおいて実施でき、または、ケーブルシステムが移動するルートに沿って分散された異なるハブからのデータを収集する中央サーバにおいて実施できる。ハブ104のコントローラ110は以下で説明する自己適応モードで動作することができ、または、中央サーバからの適切な命令に応答して、センサ106aなどの1つのセンサからのサンプリングされた信号を、センサ106cなどの別のセンサからのサンプリングされた信号と比較して、サンプリングされたセンサ信号間に有意差がある場合に、これらのセンサのうちの1つから送信されるデータのサンプリング間隔、サンプリング頻度、送信間隔、および/または送信頻度を調整することができる。同様に、コントローラは、センサ106bからサンプリングされたセンサ信号が急激に変化する場合、例えばセンサ106bから送られるデータのサンプリング間隔、サンプリング頻度、送信間隔、および/または送信頻度を、変更することができる。
【0055】
図5を参照する。ハブが最初にインストールまたは試運転されるときのような、ハブ104の初期化を表すフローチャートが示されている。ハブ104がパワーアップすると、すなわち、ステップ502によって表されるように、最初に電力がコントローラ110に印加されると、動作はステップ504に進み、記憶装置112内の適切なファイルから動作命令を読み出す。照会506において、始動時に予想されるように、ファイルが空であると判定された場合、動作はステップ508に進み、センサ106からの信号をサンプリングすることによって初期データを取得する。この初期データは、ステップ510において記憶装置112に記憶され、ステップ512においてこの初期データが中央サーバ120に送信され、ハブが認証され、514で表されるようにハブ識別データが記憶される。センサ106によって生成された信号を監視するためのプロトコルは、最初の送信間隔の末尾部分305において中央サーバから取得またはアップロードされる。次に、ステップ518に示すように、中央サーバから送られた命令にしたがって、センササンプルの取得、または監視されているケーブルシステムパラメータの周期的な測定が開始される。
【0056】
ハブ104の初期動作命令は記憶装置112において記憶される。これらの命令は、送信インターバルの末尾部分305の間に送信される中央サーバからの命令によって更新されてもよい。これらの命令は上述したように、電力または通信が回復した場合にハブの動作を制御するための回復命令またはデフォルト命令と考えることができる。
【0057】
質問506が否定であった場合、すなわち、記憶装置112内の指定されたファイルが電力または通信の減少およびその後の回復に続く場合と同様に空でない場合、プロセスはステップ520に進む。ステップ520は、記憶装置112内のデータを中央サーバに送信されたデータと整合させるように動作する。中断後に電源または通信が再確立されると、ハブで取得されたデータが中央サーバに対して正常に送信されていない可能性がある。たとえば、ハブがスリープモードのときに通信の中断が発生し、あるいは中断がLP-WANネットワークに起因する場合がある。それにもかかわらず、ローカル電力が依然として存在する場合、通信が中断していても、パラメータ感知およびデータパッケージングは継続する。通信が回復すると、記憶装置112に記憶されたデータは中央サーバに記憶されたデータと整合され、以前中央サーバに対して送信されなかったデータパッケージが送信される。したがって、ステップ520は514で表されるように、最後に取得されたデータを中央サーバに対して送信する役割を果たす。その後、ハブは上述したように、センサ信号をサンプリングし続け、サンプリングされたセンサ信号を表すデータパケットを中央サーバに対して送信する。
【0058】
図6を参照する。適応サンプリングおよび伝送モードにおけるハブの動作を表すフローチャートが図示されている。適応動作モードにおいて、コントローラ110は、ハブ位置で監視されるケーブルシステムのパラメータの特定の変化に応答して、サンプリング間隔およびサンプリング頻度および送信頻度のうちの1つまたは複数を調整する。フローチャートは、ステップ600において中央サーバから受信された命令と、ステップ602によって表される通常の監視用に構成されたハブとを用いて、ウォッチドッグモードでシステムを動作させることから始まる。図3Aおよび図3Bに関連して説明したように、ハブ(より詳細には、コントローラ)はステップ604によって表されるように、そのスリープモードから周期的にウェイクアップする。サンプラ107は、コントローラの制御の下で、図3Aに関連して議論されたサンプリング頻度で、サンプル間隔の間、センサ信号をサンプリングする。このように、ステップ606において、センサ信号がサンプリングされるか、または測定される。ウォッチドッグモードではたとえば、各センサによって生成される信号はサンプル間隔の間に100回サンプリングされる。ステップ608において、コントローラは図4に関連して上述したように、データ量を100サンプルから5サンプル値に減少させる。これらのサンプル値はパケット化され、ステップ610で送信のためのパッケージとして記憶される。フローチャートに示すように、プロセスは、ウェイクアップ604、サンプリング606、データ削減608、およびスリープ612を循環する。610で組み立てられ、記憶されたデータパッケージは、ステップ614および616で表されるように、ステップ600で受信された命令にしたがって、スケジュールされた時間に、所定の送信頻度で、中央サーバに対して送信される。
【0059】
適応監視モードで動作するように中央サーバからの以前の命令によってハブが構成されている場合、照会620は肯定的に応答される;ハブは、アプリケーション要件および監視機器制限に基づいて、事前設定された範囲内で、サンプル間隔、サンプリング頻度、および送信頻度を自動的に修正するように動作する。アダプティブモードでのモニタリングは、意味のあるデータを犠牲にすることなく、バッテリ寿命を最適化する。この適応型監視モードでは、ステップ608から最後に取得されたパケットを、ステップ624で記憶された先行パケットと、ステップ622によって比較し、それらの差分が決定される。ステップ626によって表されるように、最後に取得されたパケットが比較される先行パケットは、その先行パケットが最後の1時間、1日、1週間、1ヶ月、または任意の他の所望の期間において取得されたパケットであるかどうかのあらかじめ設定された決定にしたがって、選択される。認識可能な差異がない場合、問合せ628はネガティブに答えられ、プロセスはステップ630に進み、ここで、現在のサンプリング頻度、すなわち、最も最近のセンサ信号がサンプリングされる頻度が、所望の最小サンプリング頻度(システムオペレータによって設定される)と比較される。
【0060】
現在のサンプリング頻度が最小サンプリング頻度ではない場合、問い合わせ630はネガティブで答えられ、サンプラ107(または207)が動作するサンプリング頻度はステップ634で減少される。この例では、サンプリング頻度が1/2になる。しかしながら、現在のサンプリング頻度が既に最小サンプリング頻度である場合、照会630は肯定的に答えられ、照会632は、現在のサンプリング間隔が(システムオペレータによって設定された)最小所望サンプリング間隔であるかどうかを尋ねる。照会632の答えが肯定であれば、サンプリング間隔は変更せず、ハブはステップ638において、現在のサンプリング頻度およびサンプリング間隔を使用して動作し続け、これは最も遅い所望の監視パラメータである。しかしながら、質問632が否定的に答えられた場合、サンプラ107(または207)が動作するサンプリング間隔がステップ636で減少される。この例では、サンプリング間隔は1/2だけ減少される。ステップ634またはステップ636においてサンプリング間隔またはサンプリング頻度の変更が行われる場合、送信頻度はステップ640において同様に低減される。サンプリング頻度、サンプリング間隔、送信頻度を減少させて、エネルギーを節約する。
【0061】
しかしながら、クエリ628が肯定的に答えられる場合、最も最近のデータパケット608と先行するパケット624との間にかなりの差がある場合と同様に、クエリ650は、現在のサンプリング頻度が最大サンプリング頻度であるかどうかを尋ねる。質問650の答えが否定であれば、ステップ654でサンプリング頻度を増加させる。この例ではサンプリング頻度は2倍に増加されるが、他の頻度増加が使用されてもよい。照会650の答えが肯定である場合、照会652は、現在のサンプリング間隔が最大サンプリング間隔であるかどうかを尋ねる。質問652の答えが否定であれば、サンプリング間隔はステップ656で増加される。この例では、サンプリング間隔は2倍に増加される。サンプリング間隔またはサンプリング頻度の増加がステップ654またはステップ656で実施される場合、送信頻度は同様にステップ660で増加される。照会652の答えが肯定であれば、サンプリング間隔は変更されず、ハブは、ステップ658において、現在の最大サンプリング頻度および最大サンプリング間隔を使用して動作し続ける。
【0062】
サンプリング頻度654、サンプリング間隔656、および送信頻度660の増加により、モニタリングされたパラメータをより規則的にサンプリングすることとなる。これは、センサ信号がより大きな変動性を受けやすい場合、またはケーブルシステムが異常な挙動を示す場合に望まれるものである。これにより、中央サーバに対して送信されるデータ量が増加し、バッテリ寿命を犠牲にして分析が改善される。バッテリ節約は、適応動作モードでのサンプリング間隔とサンプリング頻度に対して制約を設定することを示唆している。監視されたパラメータのその後の付加的な分析は、ハブを短期間高速連続サンプリングモードで動作させることによっても可能である。サンプリング頻度と実質的に等しいサンプリング間隔を設定するだけで、センサ信号の連続的な監視と送信が達成できる。
【0063】
任意の論理テストをクエリ628で使用して、最後に取得されたデータパケットと、メモリ112に記憶された先行パケットとの間に明らかな差異があるか否かを判定することができる。保存されている先行パケットは履歴基準である。履歴基準は、固定記憶ファイルサイズを設定し、このファイルから最も早い取得データパケットを削除して、最新の取得データパケットのためのスペースを確保することによって、継続的に更新することができる。有意差分テストは例えば、差分が10%を超えるような値の特定の変化であるか否か、または、2または10スケーラ単位などの特定の偏差値を超えるか否か、である。有意差を決定するための比較テストの選択は、例えば、感知されるパラメータ、および、資産の条件評価において許容される公差または感度に依拠する。
【0064】
ハブは、図3(A)(I)~図3(A)(V)によって表され、図3(B)(I)~図3(B)(V)によって表されるように、センサ信号のサンプルを取得し、取得されたサンプル値を周期的に送信するために、そのスリープモードから起動される(ステップ604)ことが理解されよう。サンプラ107は、サンプル間隔中にセンサ信号がサンプリングされた後、そのスリープモードに入る。トランシーバ114は、データパケットが送信された後、そのスリープモードに入る。適応監視モードにおいて、それぞれのスリープ間隔、サンプル間隔、および送信間隔の持続時間は、図6に関連して上述したように設定される。ハブの他の動作モードは、中央サーバから受信した命令によって確立される。
【0065】
本発明の遠隔監視システムは、いくつかの地下ハブで動作可能である。このようなシステムの1実施形態を図7A~7Bに示す。このシステムは、中央サーバ720(図7A)、図1の端末124と同様の管理端末とすることができる端末724、724’(図7B)、図7Aおよび図7Bに示す複数のハブ704、704’、704’’、から構成されている。より多くのまたはより少ない数のハブを設けることができ、より多くのまたはより少ない数の端末を設けることができる。ハブ704、704’、704’’はハブ104と同様である。簡単にするために、以下の説明はハブ704についてのものであるが、この説明はハブ704’および704’’にも適用可能であることを理解されたい。
【0066】
ハブ704はハブ104の場合と同様に、地下の地下室またはマンホール内に配置されるように構成されており、A/D変換器707a、707b、・・・707nで構成される。これらのA/D変換器は変換器706a、706b、・・・706nからの信号をサンプリングするように機能し、図1のサンプラ107と同様である。ハブ704は、図1のコントローラ110と同様のコントローラ710、図1の記憶装置112と同様の記憶装置712、を有する。ハブ704はさらに、図1のトランシーバ114と同様のトランシーバ714を有する。トランシーバ714は、ハブ筐体内に配置されたアンテナ715に対して結合される。ハブ704はハブ104と同様に動作し、簡潔にするために、ハブ704の動作のさらなる説明は省略する。
【0067】
ハブ704’はハブ704と同様であるが、ハブ704とは異なり、トランシーバ714’に結合されたアンテナ715’を、ハブ筐体の外かつハブ704’が配置されている地下室またはマンホール内に配置している。
【0068】
同様に、ハブ704’’はハブ704に類似しているが、ハブ704とは異なり、トランシーバ714’’に結合されたアンテナ715’’を、ハブ筐体の外側かつ地下室の外側に配置する。アンテナ715’’は地下または地上に配置することができる。
【0069】
ハブ704、704’および704’’は、ハブ104と実質的に同じ方法で構成され、ハブ104と同じ方法で動作する。データは、ハブから中央サーバ720に対して送られる。中央サーバはデータを処理し、このデータはケーブルシステムまたは資産の異なる位置でハブによって感知された状態を表し、資産の状態を監視し、それによって資産の挙動を特徴付ける。また、中央サーバは端末724および/または端末724’から受け取った操作命令を、ハブと互換性のある形式、フォーマットおよび言語(例えば、マシン言語)に解釈または変換する。1実施形態として、中央サーバはコントローラ732を有し、その機能は、図7Cのフローチャート、インターフェース734、記憶装置736、インターフェース742、アーカイブ744、グラフィカルインターフェース746、ユーザインターフェース748、ハブモデム752、およびユーザモデム754においてより詳細に示される。
【0070】
ハブモデム752はハブ704、704’、704’’によって送信されたデータを受信し、LP-WAN通信を介してインターフェース742からこれらのハブに対して命令を送信するように構成される。これらの命令は上述したように、センサ信号サンプルを取得し送信するためのサンプリング頻度、サンプリング間隔、および送信頻度のうちの1つまたは複数を確立するために、ハブによって使用される。
【0071】
コントローラ732は、資産の監視されたパラメータを表すデータを処理する。資産が期待通りに動作するとき、コントローラ732はインターフェース742およびハブモデム752を介して命令をハブに対して送り、それぞれのウォッチドッグモードで動作し続けさせる。しかしながら、資産が予想されるまたは通常の振る舞いとは異なるやり方で動作していると判定された場合、例えば、技術者によって端末で使用される「言語」での端末724または724’からの命令は、トランスレータ749によって、ハブと互換性のある機械語に変換または翻訳される。ハブのIPアドレスのような、命令が送信される特定のハブのアドレスは、端末724または724’の技術者によって提供されるハブのIDをハブアドレス(例えば、IPアドレス)に変換するインデックス751によって、命令に付加されるか、または命令の一部とされる。上述のように、これらの命令は、アドレス指定されたハブに送られて、そのハブの送信頻度、サンプリング間隔、および/またはサンプリング頻度を調整する。したがって、データは必要に応じて、分析のために、より頻繁にまたはより低頻度で中央サーバに送られる。
【0072】
ユーザモデム754は、セルラネットワークのようなネットワークを介して端末724、724’と通信するように構成されている。中央サーバからの情報は、ネットワークを介してこれらの端末に送られ、端末の技術者または資産管理者が監視されている資産の挙動を観察することを可能にする。端末724、724’には、ハブから供給されるデータに応じた情報が与えられる。コントローラ732は、ハブモデム752によって受信され、端末724、724’と互換性のある言語に変換されたこのデータを、インターフェース734を介してアーカイブ744に供給し、そこでデータは、データを送信したハブのアドレスまたはIDと共に記憶される。アーカイブされたデータはドライバ740によって対応するハブに関連付けられ、端末においてダッシュボードとして表示されるグラフィカル表現を生成するためにグラフィカルインターフェース746によって使用され、これにより、資産管理者は、資産の挙動を理解することができる。端末724、724’に対して送られた情報に基づいて、資産管理者によって修復または他のアクションを指示することができる。
【0073】
中央サーバ720は2つの別個の通信経路を有する:1つの経路は、リモートハブと通信し、監視されている資産のパラメータを表すデータを受信するためのものであり、他の経路は、資産の動作を特徴付けるのに十分な情報を資産管理者に対して提供するために管理またはシステムユーザ端末724、724’と通信するものである。図7Bに示すように、各管理端末は、中央サーバ720と通信するためのネットワークインターフェース726、726’、ユーザインターフェース728、728’、およびディスプレイ730、730’を有する。中央サーバからの情報はディスプレイ730、730’に表示され、資産管理者はインターフェース728、728’を介して、ディスプレイおよびそこに表示される情報にアクセスすることができる。表示される情報の1例はいわゆる「箱ひげ図」であり、これによって、資産管理者は、資産の挙動を観察することができる。
【0074】
各管理端末は、ワークステーション、コンピュータ端末、タブレット、スマートフォン、PDA等であってもよい。ネットワークインターフェース726、726’は、ハードワイヤを介して中央サーバ720に接続されてもよい。あるいは、ネットワークインターフェースはセルラ接続のような無線接続である。
【0075】
図7Cは、中央サーバのコントローラ732の関連する動作を表すフローチャートである。中央サーバの目的は、通信ネットワーク122を介して動作命令をローカルハブに対して送信し、通信ネットワークを介してハブから情報およびデータを受信するための、人間/マシンインターフェースを提供することである。コントローラは、ハブから送信されたデータパッケージから個々のデータパケットを抽出し、受信データパケット内の生データを有意義なエンジニアリング値に変換し、データを割り当てられた資産識別可能ファイルに保存する。技術者が端末724、724’を用いて後続のレビューを実施するために、ファイル上でデータを取得し、分析し、フラグを立てることができる。
【0076】
図7Cのフローチャートを参照すると、各ハブの物理的および電子的アドレス、例えば電気ケーブル、パイプライン等として資産を識別するための資産識別子、温度、水分、電圧、電流等の監視されるパラメータ、およびセンサによって測定された生データを有用なエンジニアリングユニットに変換するために使用される方程式およびアルゴリズムに関するハブ情報は、ステップ760によって表されるように、例えば端末724から技術者によって入力される。セキュリティと承認を保証するために、技術者からの情報は、サーバへの制御アクセスを許可された担当者に制限するパスワードまたはその他の安全な方法を使用して入力される。同様に、遠隔監視ハブの動作モード、サンプリング間隔、サンプリング頻度、および送信頻度を設定する命令は、許可された人員によって入力され、ステップ762において、命令が送信されるべき対応するハブを識別するアドレスとともに、ハブと互換性のある形式、フォーマット、および言語で機械命令に自動的に変換され、ステップ776でハブに対して送信される。
【0077】
ハブからのデータパッケージは、ステップ764で受信され、ステップ766で、パッケージが送信されたハブが識別され、データパッケージに追加されるか、またはタグ付けされる。受信されたパッケージ内のサンプルデータは、ステップ768で抽出され、マンホール内の全資産に共通の環境情報およびハブ704自身に関連する環境条件を含む構成部分、および、特定のハブによって監視されるセンサ信号を表す別の部分に分離される。抽出された環境情報、例えば、ローカル温度、バッテリ寿命、ハブからの最後の送信の時間などは、ファイルに配置され、ハブに取り付けられた全てのセンサに共通であるステップ770において保存される。タグ付けされたサンプルデータはステップ774で保存され、これは測定されるアセットおよびパラメータに固有のファイルを格納する。例えば、同じセンサからのサンプルデータは、そのセンサに関連付けられたファイルに格納される。このように分割することにより、ステップ778で表されるように、データを有意義なエンジニアリングユニットに変換した後に適用される可能性のあるスケーリングおよび較正係数とは無関係に、将来の分析のためのオリジナルデータが保持される。ステップ778からの変換されたデータはタイムスタンプされ、履歴トレンディング、分析、およびアラーム通知に使用するために、エンジニアリングデータファイルまたはデータベース780に保存される。このデータは、適切なソフトウェアを有するコンピュータ、タブレット、スマートフォン等から全てのシステムユーザによってアクセスできる。サンプルデータがセーブされた後、ステップ776においてハブへの動作指示が送信される。指示は、抽出されたサンプルデータに応じて修正することができる。ハブから切断する前に、中央サーバは、ステップ762で技術者から受け取ったスケジュールされた更新に基づいて、更新された操作指示776を送る。
【0078】
ステップ778からの変換されたデータは、ステップ781において、ステップ780で保存された以前に保存されたデータと比較され、警告、警報などが生成される。比較は、絶対値、パーセンテージ変化、毎日、毎週、または毎月の統計に基づく統計的シフト、または更新されたデータベース780から取得することができる変化率情報に基づくことができる。比較のために使用される条件は、図6に関連して説明したものであってもよく、端末724、724’のオペレーティングエンジニアまたは技術者によって割り当てられ、モデム754からアップロードされてもよい。クエリ786は、比較が例えば端末724において技術者に対してメッセージまたは通知を送信することを必要とするかどうかを尋ねる。クエリ786が肯定応答の場合、ステップ782においてモデム754を介して技術者に対してメッセージまたは通知が送られる。メッセージは、1つまたは複数のパス726を介してシステムオペレータに対して送られてもよい。
【0079】
例えば端末724における技術者は、他の場所の資産に設置された他のハブから受信したデータにアクセスすることができる。したがって、資産の特性挙動および中央サーバからのメッセージングまたはアラームの条件は、1つのハブまたは1組のセンサからのセンサ信号と、ルートに沿った他の位置にあるセンサとの比較に基づき、または、異なる位置で監視されている同じハブもしくは機器からのセンサ信号の比較に基づくことができる。資産の経路に沿って他のハブから受信したデータにアクセスすることにより、資産の特徴的な挙動、および中央サーバからのメッセージ、警告、またはアラームの条件は、異なるセンサからのデータの比較または分析に基づくことができることが理解されよう。
【0080】
1例として、パイプラインに沿った陰極防食(CP)パイプ対土壌電位およびCP電流測定値は、パイプラインの特徴的な挙動を表すセンサ信号であってもよい。CPシステムは、多くの場合、単一のセンサに関連付けられたパラメータ値ではなく、複数のセンサの位置に基づいて、測定されたパラメータ値(電位または電流)がどのように変化するかによって、より良好に特徴付けることができる。別の例は、電気ケーブルの三相各々のケーブルシールド電圧および電流を監視することを含む。電圧電流センサは、ケーブルのルートに沿ってマンホールに設置されているリンクボックス内の3つのケーブル相それぞれのケーブルシールドに接続することができる。電圧電流センサは、ハブによって、3つのすべての位相センサ間で個別かつ比較的に監視することができる。また、センサ信号は、中央サーバにおいて、他のハブ位置に同様に設置されたセンサと比較されてもよい。この監視手法は、定期的な保守作業とは対照的に、異常または異常な動作状態を識別し、レビューを保証して戦略的な保守作業を容易にするように、ケーブル(または監視される資産)の挙動を特徴付ける役割を果たす。
【0081】
さらに別の実施形態では、図6に関連して上述した適応監視と同様の監視を、図7Cのフローチャートに組み込むことができる。ここで、サンプリング間隔、サンプリング頻度、および送信頻度を増加または減少させるトリガは、異なるハブからのパラメータまたはセンサ信号の比較に基づく。したがって、ある資産の動作の異常動作を示す挙動の小さな変化は、類似の装置からのデータの比較によって決定され、より積極的なサンプリングモードを故障の前に開始することができる。
【0082】
図8を参照する。ハブ104、特にここではイベントモニタと呼ばれるハブ内のコントローラ110の動作を表すフローチャートが示されている。このモードではコントローラがセンサ信号を連続的に監視するが、あらかじめ設定された条件または条件のセットを満たすイベントがコントローラをトリガしてユーザ定義のデータ記録および送信プロトコルを実行しない限り、センサデータを送信しない。イベントモニタモードは、例えば管理端末124の技術者によって決定される、中央サーバからの命令によって起動されてもよい。これに加えてまたはオプションで、イベントモードモニタモードをハブコントローラにあらかじめプログラムしておき、特定の条件に応じて起動することもできる。以下に説明するイベントモニタモードでは、N個のセンサ信号サンプルが取得され、適切なレジスタに格納され、Nは技術者によって決定される。記憶サンプル数が所定の閾値を超えた場合、例えば、記憶サンプル数がN/2を超えた場合には、レジスタをクリアし、新たに取得したサンプルを記憶する。好ましくは、レジスタは一度に1サンプルがクリアされ、レジスタ内の最も古いサンプルは削除され、それによって、次の新たに取得されたサンプルのための空間を作る。レジスタに格納されたサンプルは、後述する「イベント」が発生するまで、中央サーバへの送信のために処理される必要はない。したがって、レジスタは「イベント」が発生するまで、最新のN個のサンプルを格納する循環サイクルを実施する。
【0083】
フローチャートを参照する。イベント監視モードはステップ800において技術者によって確立され、技術者はNの値を設定し、また「イベント」の条件を設定する。ステップ801において、カウンタはカウントn=0にリセットされる。ステップ802において、サンプルが取得される。問合せ804は、カウントnがNに達したか否かを判断する。つまり、問合せ804は、N=nであるか否かを尋ねる。この問い合わせが否定的なn≠Nで答えられた場合、ステップ806によって表されるように、取得されたサンプルは例えば、記憶装置112(または記憶装置212)に記憶される。しかしながら、問い合わせ804が肯定(n=N)で答えられた場合、ステップ808によって表されるように、レジスタに記憶された最も早いサンプルが削除され、これにより、取得された最新のサンプルのための余地が作られる。ステップ806によって表されるように、この最新のサンプルが記憶される。プロセスは、「イベント」が発生するまで、このループ802、804、806、808を循環する。
【0084】
「イベント」は、取得されたサンプルが、技術者によって確立された基準を満たすかまたは超える場合に生じる。この基準の例は以下を含むが、これらに限定されない:取得されたサンプルの値が所定の閾値を超えるかどうか、取得されたサンプルの値があらかじめ設定されたレベル未満であるかどうか、取得されたサンプルの値があらかじめ定められた限界外であるかどうか、取得されたサンプルがあらかじめ定められた量を超えて前のサンプルと異なるかどうか、取得されたサンプルの値がサンプルの履歴と異なるかどうか、取得されたサンプルが履歴サンプル値から逸脱するかどうか、取得されたサンプルがあらかじめ定められた速度より大きい速度で変化するかどうか、など。ステップ810によって表されるように、取得されたサンプルと確立された基準との間で比較812が実施される。取得されたサンプルが確立された基準を超えない場合、サンプルは格納され(ステップ806)、プロセスはループ802、804、806、808を循環し続ける。しかしながら、獲得されたサンプルが確立された基準を超える場合、クエリ814は肯定的に答えられ、「イベント」が発生したことを示す。クエリ816は、格納されたサンプルの数Nが0より大きい(N>0)か否かを問い合わせる。これが取得された最初のサンプルである場合、クエリ816が否定的に回答され、ステップ818においてカウンタのカウントnが1(n=1)に設定される。次に、プロセスはステップ802に戻り、次のサンプルが取得される。
【0085】
しかしながら、取得されたサンプルが最初のサンプルでない場合、すなわちN>0である場合、問い合わせ816は肯定で回答され、プロセスは問い合わせ820に進み、格納されたサンプルの数nがn=N/2であるかどうかを判定する。この問合せが否定的に答えられた場合、ステップ822において、格納されているサンプルのカウントnが1ずつインクリメントされる(n=n+1);プロセスはステップ802に戻り、次のサンプルを獲得する。しかしながら、クエリ820が肯定応答(n=N/2)で返されると、プロセスはステップ824に進み、ハブは、記憶装置112(または記憶装置212)に記憶されていたすべてのサンプルを中央サーバに対して送信する。したがって、中央サーバに対して送信されるファイルの半分には事前トリガレコードが含まれ、残りの半分には事後トリガレコードが含まれる。したがって、技術者はイベントを導き追跡するプレビューおよびポストビュー条件を認識することができる。事前および事後サンプルデータを送信するために、他の条件が事前設定されてもよい。
【0086】
好ましくは、記憶装置112(または記憶装置212)は、その中に格納されたサンプルが中央サーバに対して送信されるときにクリアされない。このように、n=N/2のときに記憶されたサンプルを送信することによって、記憶されたサンプルの半分は以前に取得されたサンプル、すなわち、記憶されたサンプルの「最も古い」サンプルであり、記憶されたサンプルの半分は、新たに取得される。
【0087】
記憶されたサンプル数のカウントnはステップ826でn=0へリセットされる;プロセスはステップ802に戻り、次のサンプルを取得する。したがって、記憶されたサンプルは、上述のイベントが発生した場合に送信される。
【0088】
イベントモニタの別の実施形態において、イベントが発生したとき、例えば、クエリ814が肯定的に応答されると、アラームがトリガされる。例えば、センサのうちの1つによって監視される温度が閾値を超える場合、またはセンサのうちの別の1つによって監視される地下室内の水位が所定のレベルを超える場合、またはセンサのうちの別の1つによって監視される圧力が事前設定された閾値を超える場合、アラームがトリガされる。アラームトリガイベントの他の例は、当業者には明らかであろう。
【0089】
本発明を、その好ましい実施形態を参照して特に示し、説明してきたが、本発明の趣旨および範囲から逸脱することなく、形態および詳細における様々な変更および修正できることは当業者には容易に明らかであろう。例えば、上述のように、本明細書に記載されるハブ内のトランシーバに接続されるアンテナは、ハブ自体の内部、ハブの外部であるがハブが設置されている地下室の内部、または図7Aに描かれるようなハブの外部であるが地下、に配置可能である。別の例として、図1および図2を参照して説明したサンプラは、図7Aに示すようなサンプルアンドホールド回路およびアナログ-デジタル回路を含むことができる。さらなる例として、図1および図7Aには2つの管理端末が示されているが、より多くの、またはより少ない数の管理端末が提供されてもよいことが理解されるであろう。さらに、これらの管理端末のいくつかは、上述したように、サンプリング頻度および送信頻度を確立または変更するために、ハブに対して命令を通信する能力が制限されることがある。そのような命令は、所望に応じて、選択されたハブに対して送信されてもよい。加えて、上述したサンプリング間隔、スリープ間隔、送信間隔、サンプリング頻度、および送信頻度の数値例は、本発明をこれらの数値例のみに限定することを意図したものではないことが理解されよう。
【0090】
したがって、添付の特許請求の範囲は、上記のほか、様々な他の変更および修正を含むものとして解釈されることが意図される。
図1
図2
図3A
図3B
図4A
図4B
図4C
図5
図6
図7A
図7B
図7C
図8