(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-08
(45)【発行日】2022-12-16
(54)【発明の名称】チューニング可能なバイアス低減用パイプライン
(51)【国際特許分類】
G06F 40/216 20200101AFI20221209BHJP
G06F 40/30 20200101ALI20221209BHJP
G06N 20/00 20190101ALI20221209BHJP
【FI】
G06F40/216
G06F40/30
G06N20/00
【外国語出願】
(21)【出願番号】P 2020030481
(22)【出願日】2020-02-26
【審査請求日】2020-02-26
(32)【優先日】2019-02-28
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-05-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516172237
【氏名又は名称】アクセンチュア グローバル ソリューションズ リミテッド
(74)【代理人】
【識別番号】100102406
【氏名又は名称】黒田 健二
(74)【代理人】
【識別番号】100100240
【氏名又は名称】松本 孝
(72)【発明者】
【氏名】マクゴヴァーン,アオングス
(72)【発明者】
【氏名】カンナ,アビシェーク
(72)【発明者】
【氏名】マーフィー,リベカ
(72)【発明者】
【氏名】クーパー,スティーブ
(72)【発明者】
【氏名】ズオ,シン
【審査官】成瀬 博之
(56)【参考文献】
【文献】Tolga Bolukbasi他4名,Quantifying and Reducing Stereotypes in Word Embeddings[online],2016年06月20日,41-45頁,https://arxiv.org/pdf/1606.06121,[検索日2021年 4月21日],インターネット
【文献】Yahav Bechavod他1名,Penalizing Unfairness In Binary Classification,2018年03月08日,https://arxiv.org/pdf/1707.00044,[検索日2021年 4月21日],インターネット
(58)【調査した分野】(Int.Cl.,DB名)
G06F 40/20-40/58
G06N 20/00
(57)【特許請求の範囲】
【請求項1】
人工知能モデルにおけるバイアスを低減するためのシステムであって、
プロセッサおよびコンピュータ可読媒体
を備え、前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、単語のコーパスに基づいて生成される単語埋め込みモデルを受け取ることであって、前記単語埋め込みモデルは、前記単語のコーパスを表す単語ベクトルを含む、受け取ることと、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間においてバイアス定義ベクトルを決定することであって、前記バイアス定義ベクトルは、前記単語埋め込みモデルの埋め込み空間においてバイアスタイプを表すバイアス軸に沿って定義され、
前記バイアス軸は、前記プロセッサによって、バイアスカテゴリベクトルを識別することによって導出され、且つ前記バイアスタイプは、性別、人種、民族、年代、または前記埋め込み空間における他の一般化のいずれかを含む、決定することと、
前記プロセッサによって、バイアス分類基準を受け取ることであって、前記バイアス分類基準は、前記バイアス定義ベクトルからの距離測定値に基づいて前記単語ベクトルをグループ化するためのロジックを含む、受け取ることと、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間において、前記バイアス分類基準に含まれる前記単語ベクトルをグループ化するためのロジックを使用して、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別することであって、前記第1の単語ベクトルのグループは、前記バイアスタイプの第1のバイアスカテゴリを表し、前記第2の単語ベクトルのグループは、前記バイアスタイプの第2のバイアスカテゴリを表す、識別することと、
前記プロセッサによって、前記第1のバイアスカテゴリ内の単語の数量と、前記第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、
前記プロセッサによって、デバイアス済み人工知能モデルを生成することであって、前記デバイアス済み人工知能モデルは、単語を表すメトリックを含み、前記第1の単語ベクトルのグループに関連付けられた単語のメトリックおよび前記第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられ、前記非ゼロのペナルティ係数は、前記単語ベクトルと前記バイアス定義ベクトルとの間の距離を減少または増加させるべく割り当てられ
、前記プロセッサは、前記目標単語比率を達成するように前記非ゼロのペナルティ係数を調節させる、生成することと、
を行う命令を含む、システム。
【請求項2】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、
前記プロセッサによって、前記実行時単語比率および前記目標単語比率が、デバイアス基準を満たしていると判定することであって、前記デバイアス基準は、前記目標単語比率を前記実行時単語比率と比較するロジックを含む、判定することと、
を行う命令をさらに含み、
前記デバイアス済み人工知能モデルは、前記デバイアス基準が満たされていることに応答して生成される、
請求項1に記載のシステム。
【請求項3】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記目標単語比率を受け取るように構成されるコントロールと、前記実行時単語比率を表示するためのコントロールとを含むユーザインターフェースを生成すること、
を行う命令をさらに含む、請求項2に記載のシステム。
【請求項4】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記デバイアス済み人工知能モデルに基づいてコンピュータ生成の推論を作成するように推薦エンジンに前記デバイアス済み人工知能モデルを配備することであって、
スキル資格を役割記述と関連付ける前記コンピュータ生成の推論は、注釈付き訓練データを含むベースラインモデルデータに基づいて訓練された前記単語埋め込みモデルをデバイアスすることによって作成されるものである、配備することと、
前記プロセッサによって、スキル資格を示すテキストと、役割記述を示すテキストとを受け取ることと、
前記プロセッサによって、前記デバイアス済み人工知能モデルに基づいた前記コンピュータ生成の推論を使用して、前記スキル資格のうちの少なくとも1つを、前記役割記述のうちの前記少なくとも1つにマッピングすることと、
前記プロセッサによって、前記スキル資格のうちの前記少なくとも1つと、前記役割記述のうちの前記少なくとも1つとの間の前記マッピングを示すレポートを表示することと、
を行う命令をさらに含む、請求項1に記載のシステム。
【請求項5】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、スキル資格を示すテキストと、役割記述を示すテキストとを受け取ることと、
前記プロセッサによって、前記スキル資格を示すテキストと、役割記述を示すテキストとから、前記単語のコーパスを抽出することと、
前記プロセッサによって、前記単語のコーパスに基づいて前記単語埋め込みモデルを生成することと、
を行う命令をさらに含む、請求項1に記載のシステム。
【請求項6】
前記スキル資格を示すテキストは、履歴書からのテキストを含み、前記役割記述を示すテキストは、職務記述書からのテキストを含む、請求項5に記載のシステム。
【請求項7】
前記バイアス定義ベクトルを決定するための前記命令は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間において、前記バイアスタイプの前記第1の前記バイアスカテゴリを表す第1の単語ベクトルを識別することと、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間において、前記バイアスタイプの前記第2のバイアスカテゴリを表す第2の単語ベクトルを識別することと、
前記プロセッサによって、前記第1の単語ベクトルおよび前記第2の単語ベクトルの間のベクトル減算に基づいて、前記バイアス定義ベクトルを計算することと、
を行う命令をさらに含む、請求項1に記載のシステム。
【請求項8】
前記第1のバイアスカテゴリは、男性性別バイアスを示し、前記第2のバイアスカテゴリは、女性性別バイアスを示す、請求項1に記載のシステム。
【請求項9】
前記デバイアス済み人工知能モデルは、新たな単語埋め込みモデル、用語頻度-逆文書頻度(TF-IDF)モデル、またはこれらの任意の組み合わせを含む、請求項1に記載のシステム。
【請求項10】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、
前記プロセッサによって、前記実行時単語比率および前記目標単語比率が、前記目標単語比率を前記実行時単語比率と比較するロジックを含むデバイアス基準を満たしていないと判定することと、
を行う命令をさらに含み、
前記デバイアス基準が満たされていないことに応答して、前記命令は、前記プロセッサによって実行可能であって、
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの前記数量を増加または減少させ、前記第2の単語ベクトルのグループ内の単語ベクトルの前記数量を減少または増加させるように、前記バイアス分類基準を調節すること、
をさらに行うものである、請求項1に記載のシステム。
【請求項11】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、
前記プロセッサによって、前記実行時単語比率および前記目標単語比率が、デバイアス基準を満たしていないと判定することであって、前記デバイアス基準は、前記目標単語比率を前記実行時単語比率と比較するロジックを含む、デバイアス基準を満たしていないと判定することと、
前記デバイアス基準が満たされていないことに応答して、
前記プロセッサによって、前記目標比率を閾値だけインクリメントすることと、
前記比率をインクリメントしたことに応答して、前記プロセッサによって、第1のバイアス閾値および第2のバイアス閾値に関連する前記バイアス分類基準を調整することであって、前記バイアス分類基準を調整することは、前記第1の単語ベクトルのグループ内の単語ベクトルの前記数量を減少させるように前記第1のバイアス閾値を調整し、前記第2の単語ベクトルのグループ内の単語ベクトルの前記数量を増加させるように前記第2のバイアス閾値を調整することを含む、前記バイアス分類基準を調整することと、
前記プロセッサによって、前記第1のグループからの前記単語ベクトルと、前記第2のグループからの前記単語ベクトルとが、前記ペナルティ係数に基づいて重み付けられる単語埋め込みモデルを生成することと、
前記プロセッサによって、前記調整された第1のバイアス閾値と、前記調整された第2のバイアス閾値とに基づいて、前記第1の単語ベクトルのグループおよび前記第2の単語ベクトルのグループに含まれるそれぞれの単語ベクトルを調整することと、
前記プロセッサによって、前記第1の単語ベクトルのグループと、前記第2の単語ベクトルのグループとに基づいて、新たな実行時単語比率を調整することと、
前記プロセッサによって、前記新たな実行時単語比率および前記目標単語比率が前記デバイアス基準を満たしていると判定することと、
を行う命令をさらに含み、
前記デバイアス済み人工知能モデルは、前記デバイアス基準を満たすことに応答して生成される、
請求項1に記載のシステム。
【請求項12】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記単語埋め込みモデルが生成される前に、前記ペナルティ係数を減少させること、
を行う命令をさらに含む、請求項11に記載のシステム。
【請求項13】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、ユーザによって定義される前記非ゼロのペナルティ係数を受け取るように構成されるコントロールを含むユーザインターフェースを生成すること、
を行う命令をさらに含む、請求項1に記載のシステム。
【請求項14】
前記バイアス分類基準は、前記バイアス定義ベクトルに対する各単語ベクトルの意味的類似度スコアを比較することによって、前記単語ベクトルをグループ化するように構成される、請求項1に記載のシステム。
【請求項15】
前記コンピュータ可読媒体は、前記プロセッサによって実行可能な命令であって、
前記プロセッサによって、前記バイアス分類基準または前記ペナルティ係数について、ユーザ定義の閾値パラメータを受け取り、前記ユーザ定義の閾値パラメータ
と、前記バイアス定義ベクトルに対する各単語ベクトルの意味的類似度スコア
とを比較すること、
を行う命令をさらに含む、請求項1に記載のシステム。
【請求項16】
人工知能モデルにおけるバイアスを低減するための、プロセッサおよびメモリを含むコンピュータの作動方法であって、
前記プロセッサによって、単語のコーパスに基づいて生成される単語埋め込みモデルを受け取ることであって、前記単語埋め込みモデルは、前記単語のコーパスを表す単語ベクトルを含む、受け取ることと、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間においてバイアス定義ベクトルを決定することであって、前記バイアス定義ベクトルは、前記単語埋め込みモデルの埋め込み空間においてバイアスタイプを表すバイアス軸に沿って定義され、
前記バイアス軸は、前記プロセッサによって、バイアスカテゴリベクトルを識別することによって導出され、且つ前記バイアスタイプは、性別、人種、民族、年代、または前記埋め込み空間における他の一般化のいずれかを含む、決定することと、
前記プロセッサによって、バイアス分類基準を受け取ることであって、前記バイアス分類基準は、前記バイアス定義ベクトルからの距離測定値に基づいて前記単語ベクトルを第1の単語ベクトルのグループおよび第2の単語ベクトルのグループにグループ化するためのロジックを含み、前記第1の単語ベクトルのグループは、前記バイアスタイプの第1のバイアスカテゴリを表し、前記第2の単語ベクトルのグループは、前記バイアスタイプの第2のバイアスカテゴリを表す、受け取ることと、
前記プロセッサによって、前記単語埋め込みモデルの埋め込み空間において、前記バイアス分類基準に含まれる前記単語ベクトルをグループ化するためのロジックを使用して、前記第1の単語ベクトルのグループおよび前記第2の単語ベクトルのグループを識別することと、
前記プロセッサによって、前記第1のバイアスカテゴリ内の単語の数量と、前記第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、
前記プロセッサによって、デバイアス済み人工知能モデルを生成することであって、前記デバイアス済み人工知能モデルは、単語を表すメトリックを含み、前記第1の単語ベクトルのグループに関連付けられた単語の前記メトリックおよび前記第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられ、前記非ゼロのペナルティ係数は、前記単語ベクトルと前記バイアス定義ベクトルとの間の距離を減少または増加させるべく割り当てられ
、前記プロセッサは、前記目標単語比率を達成するように前記非ゼロのペナルティ係数を調節させる、生成することと、
を含む、方法。
【請求項17】
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、
前記プロセッサによって、前記実行時単語比率および前記目標単語比率が、前記実行時単語比率と前記目標比率とを比較するように構成されるデバイアス基準を満たしていないと判定することであって、前記デバイアス基準は、前記目標単語比率を前記実行時単語比率と比較するロジックを含む、判定することと、
前記デバイアス基準が満たされていないことに応答して、
前記プロセッサによって、前記第1の単語ベクトルのグループ内の単語ベクトルの前記数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの前記数量とを調整するように、前記非ゼロのペナルティ係数、または前記非ゼロのペナルティ係数と前記バイアス分類基準との組み合わせを調節することと、
前記プロセッサによって、前記実行時比率を再度求めることと、
前記プロセッサによって、前記実行時単語比率および前記目標単語比率が前記デバイアス基準を満たしていると判定することであって、前記デバイアス済み人工知能モデルは、前記デバイアス基準が満たされていることに応答して、前記調整された非ゼロのペナルティ係数に基づいて生成される、判定することと、
をさらに含む、請求項16に記載の方法。
【請求項18】
人工知能モデルにおけるバイアスを低減するためのシステムであって、
メモリと、
前記メモリに結合されるプロセッサとを備え、前記プロセッサは、
単語のコーパスに基づいて生成される単語埋め込みモデルを受け取ることであって、前記単語埋め込みモデルは、前記単語のコーパスを表す単語ベクトルを含む、受け取ることと、
前記単語埋め込みモデルの埋め込み空間においてバイアス定義ベクトルを決定することであって、前記バイアス定義ベクトルは、前記単語埋め込みモデルの埋め込み空間においてバイアスタイプを表すバイアス軸に沿って定義され、
前記バイアス軸は、前記プロセッサによって、バイアスカテゴリベクトルを識別することによって導出され、且つ前記バイアスタイプは、性別、人種、民族、年代、または前記埋め込み空間における他の一般化のいずれかを含む、決定することと、
バイアス分類基準を受け取ることであって、前記バイアス分類基準は、前記バイアス定義ベクトルからの距離測定値に基づいて前記単語ベクトルをグループ化するためのロジックを含む、受け取ることと、
前記単語埋め込みモデルの埋め込み空間において、前記バイアス分類基準に含まれる前記単語ベクトルをグループ化するためのロジックを使用して、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別することであって、前記第1の単語ベクトルのグループは、前記バイアスタイプの第1のバイアスカテゴリを表し、前記第2の単語ベクトルのグループは、前記バイアスタイプの第2のバイアスカテゴリを表す、識別することと、
前記第1のバイアスカテゴリ内の単語の数量と、前記第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、
デバイアス済み人工知能モデルを生成することであって、前記デバイアス済み人工知能モデルは、単語を表すメトリックを含み、前記第1の単語ベクトルのグループに関連付けられた単語の前記メトリックおよび前記第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられ、前記非ゼロのペナルティ係数は、前記単語ベクトルと前記バイアス定義ベクトルとの間の距離を減少または増加させるべく割り当てられ
、前記プロセッサは、前記目標単語比率を達成するように前記非ゼロのペナルティ係数を調節させる、生成することと、
を行うように構成される、システム。
【請求項19】
前記プロセッサは、
前記第1の単語ベクトルのグループ内の単語ベクトルの数量と、前記第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、
前記実行時単語比率および前記目標単語比率が、前記目標単語比率を前記実行時単語比率と比較するロジックを含むデバイアス基準を満たしていないと判定することと、
前記デバイアス基準が満たされていないことに応答して、
前記第1の単語ベクトルのグループ内の単語ベクトルの前記数量を増加または減少させ、前記第2の単語ベクトルのグループ内の単語ベクトルの前記数量を減少または増加させるように、前記バイアス分類基準を調節すること
を行うようにさらに構成される、請求項18に記載のシステム。
【請求項20】
前記プロセッサは、
前記デバイアス済み人工知能モデルに基づいてコンピュータ生成の推論を作成するように構成されるサーバに前記デバイアス済み人工知能モデルを配備することであって、前記デバイアス済み人工知能モデルは、新たな単語埋め込みモデル、用語頻度-逆文書頻度(TF-IDF)モデル、またはこれらの任意の組み合わせを含む、配備すること、
を行うようにさらに構成される、請求項18に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は機械学習に関し、より詳細には、機械学習におけるバイアス低減に関する。
【0002】
関連出願の相互参照
本出願は2019年2月28日に出願された米国仮出願第62/812,005号の利益を主張し、その全体が引用により本明細書に組み込まれている。
【背景技術】
【0003】
人事部などの組織体は、人材採用などの組織活動におけるバイアスを低減することに関心があり得る。組織は組織活動を支援するために人工知能モデルに依存し得る。人工知能モデルを訓練すると、モデルに固有のバイアスが導入され得る。たとえば、教師あり学習の間に、注釈付きデータを生成して、学習されたマッピングおよび関連付けを確立し得る。注釈付きデータは、注釈付けを推進する人間からのバイアスを含み得、または基礎となるデータは、人間の社会規範および文化規範に由来する固有のバイアスを有し得る。一部の状況では、注釈付けはコンピュータにより自動化され得るが、コンピュータによる自動化は、固有のバイアスを有する他の訓練されたモデルおよび/またはコンピュータアルゴリズムに由来し得る。このように、人工知能モデルは、系統的バイアス(systematic bias)を含み得る。
【発明の概要】
【課題を解決するための手段】
【0004】
一部の実装形態では、人工知能モデルにおけるバイアスを低減するためのシステムは、プロセッサおよびコンピュータ可読媒体を含み得、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、単語のコーパスに基づいて生成される単語埋め込み(word embedding)モデルを受け取ることであって、単語埋め込みモデルは、単語のコーパスを表す単語ベクトルを含む、受け取ることと、単語埋め込みモデルに基づいてバイアス定義ベクトルを決定することであって、バイアス定義ベクトルは、単語埋め込みモデルにおいてバイアスタイプを表すバイアス軸に沿って定義される、決定することと、バイアス分類基準を受け取ることであって、バイアス分類基準は、バイアス定義ベクトルからの距離測定値に基づいて単語ベクトルをグループ化するためのロジックを含む、受け取ることと、単語埋め込みモデルにおいて、バイアス分類基準およびバイアス定義ベクトルに基づいて、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別することであって、第1の単語ベクトルのグループは、バイアスタイプの第1のバイアスカテゴリを表し、第2の単語ベクトルのグループは、バイアスタイプの第2のバイアスカテゴリを表す、識別することと、デバイアス済み(debiased)人工知能モデルを生成することであって、デバイアス済み人工知能モデルは、単語を表すメトリックを含み、第1の単語ベクトルのグループに関連付けられた単語のメトリックおよび第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられる、生成することと、を行う命令を含み得る。
【0005】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、目標単語比率を受け取ることであって、目標単語比率は、第1のバイアスカテゴリ内の単語と、第2のバイアスカテゴリ内の単語とに基づく、受け取ることと、第1の単語ベクトルのグループ内のベクトルの、第2の単語ベクトルのグループ内の単語ベクトルに対する実行時単語比率を求めることと、デバイアス基準に基づいて目標単語比率を実行時単語比率と比較することと、を行う命令をさらに含み得、デバイアス済み人工知能モデルは、デバイアス基準が満たされていることに応答して生成される。
【0006】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、目標単語比率を受け取るように構成されるコントロールと、実行時単語比率を表示するためのコントロールとを含むユーザインターフェースを生成すること、を行う命令をさらに含み得る。
【0007】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、スキル資格を示すテキストと、役割記述を示すテキストとを受け取ることと、デバイアス済み人工知能モデルに基づいて、スキル資格のうちの少なくとも1つを、役割記述のうちの少なくとも1つにマッピングすることと、スキル資格のうちの少なくとも1つと、役割記述のうちの少なくとも1つとの間のマッピングを示すレポートを表示することと、を行う命令をさらに含み得る。
【0008】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、スキル資格を示すテキストと、役割記述を示すテキストとを受け取ることと、スキル資格を示すテキストと、役割記述を示すテキストとから、単語のコーパスを抽出することと、単語のコーパスに基づいて単語埋め込みモデルを生成することと、を行う命令をさらに含み得る。
【0009】
一部の実装形態では、スキル資格を示すテキストは、履歴書からのテキストを含み得、役割記述を示すテキストは、職務記述書からのテキストを含み得る。
【0010】
一部の実装形態では、バイアス定義ベクトルを決定するための命令は、プロセッサによって実行可能な命令であって、単語埋め込みモデルにおいて、第1の単語を表す第1の単語ベクトルを識別することであって、第1の単語は、第1のバイアスカテゴリを記述する、識別することと、単語埋め込みモデルにおいて、第2の単語を表す第2の単語ベクトルを識別することであって、第2の単語は、第2のバイアスカテゴリを記述する、識別することと、第1の単語ベクトルおよび第2の単語ベクトルの間のベクトル減算に基づいて、バイアス定義ベクトルを計算することと、を行う命令をさらに含み得る。
【0011】
一部の実装形態では、第1のバイアスカテゴリは、男性性別バイアスを示し得、第2のバイアスカテゴリは、女性性別バイアスを示し得る。
【0012】
一部の実装形態では、デバイアス済み人工知能モデルは、新たな単語埋め込みモデル、用語頻度-逆文書頻度(TF-IDF:term frequency-inverse document frequency)モデル、またはこれらの任意の組み合わせを含み得る。
【0013】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、第1のバイアスカテゴリ内の単語の数量と、第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、第1の単語ベクトルのグループ内の単語ベクトルの数量と、第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、実行時単語比率および目標単語比率が、実行時単語比率と目標単語比率とを比較するように構成されるデバイアス基準を満たしていないと判定することと、を行う命令をさらに含み得、デバイアス基準が満たされていないことに応答して、命令は、プロセッサによって実行可能であって、第1の単語ベクトルのグループ内の単語ベクトルの数量と、第2の単語ベクトルのグループ内の単語ベクトルの数量とを調整するように、第1のバイアス基準および第2のバイアス基準を調節すること、をさらに行うものである。
【0014】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、第1のバイアスカテゴリ内の単語の数量と、第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、第1の単語ベクトルのグループ内の単語ベクトルの数量と、第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、実行時単語比率および目標単語比率が、実行時単語比率と目標単語比率とを比較するように構成されるデバイアス基準を満たしていないと判定することと、デバイアス基準が満たされていないことに応答して、目標比率を閾値だけインクリメントすることと、比率をインクリメントしたことに応答して、第1の単語ベクトルのグループ内の単語ベクトルの数量を減少させるように第1のバイアス閾値を調整し、第2の単語ベクトルのグループ内の単語ベクトルの数量を増加させるように第2のバイアス閾値を調整することと、第1のグループからの単語ベクトルと、第2のグループからの単語ベクトルとが、ペナルティ係数に基づいて重み付けられる単語埋め込みモデルを生成することと、調整された第1のバイアス閾値と、調整された第2のバイアス閾値とに基づいて、更新された単語埋め込みモデルにおいて新たな第1の単語ベクトルのグループと、新たな第2の単語ベクトルのグループとを識別することと、新たな第1の単語ベクトルのグループと、新たな第2の単語ベクトルのグループとに基づいて、新たな実行時単語比率を生成することと、実行時単語比率および目標単語比率がデバイアス基準を満たしていると判定することと、を行う命令をさらに含み得、デバイアス済み人工知能モデルは、更新された人工知能モデルを含む。
【0015】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、更新された単語埋め込みモデルが生成される前に、ペナルティ係数を減少させること、を行う命令をさらに含み得る。
【0016】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、ユーザによって定義される非ゼロのペナルティ係数を受け取るように構成されるコントロールを含むユーザインターフェースを生成すること、を行う命令をさらに含み得る。
【0017】
一部の実装形態では、バイアス分類基準は、バイアス定義ベクトルに対する各単語ベクトルの意味的類似度スコアを比較することによって、単語ベクトルをグループ化するように構成され得る。
【0018】
一部の実装形態では、コンピュータ可読媒体は、プロセッサによって実行可能な命令であって、ユーザ定義の閾値パラメータを受け取り、ユーザ定義の閾値パラメータに対する各単語ベクトルの意味的類似度スコアを比較すること、を行う命令をさらに含み得る。
【0019】
一部の実装形態では、方法は、単語のコーパスに基づいて生成される単語埋め込みモデルを受け取ることであって、単語埋め込みモデルは、単語のコーパスを表す単語ベクトルを含む、受け取ることと、バイアス定義ベクトルを決定することであって、バイアス定義ベクトルは、単語埋め込みモデルにおいてバイアスタイプを表すバイアス軸に沿って定義される、決定することと、バイアス分類基準を受け取ることであって、バイアス分類基準は、バイアス定義ベクトルからの距離測定値に基づいて単語ベクトルを第1の単語ベクトルのグループおよび第2の単語ベクトルのグループにグループ化するためのロジックを含み、第1の単語ベクトルのグループは、バイアスタイプの第1のバイアスカテゴリを表し、第2の単語ベクトルのグループは、バイアスタイプの第2のバイアスカテゴリを表す、受け取ることと、単語埋め込みモデルにおいて、バイアス分類基準およびバイアス定義ベクトルに基づいて、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別することと、デバイアス済み人工知能モデルを生成することであって、デバイアス済み人工知能モデルは、単語を表すメトリックを含み、第1の単語ベクトルのグループに関連付けられた単語のメトリックおよび第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられる、生成することと、を含み得る。
【0020】
一部の実装形態では、方法は、第1のバイアスカテゴリ内の単語の数量と、第2のバイアスカテゴリ内の単語の数量とに基づく目標単語比率を受け取ることと、第1の単語ベクトルのグループ内の単語ベクトルの数量と、第2の単語ベクトルのグループ内の単語ベクトルの数量とに基づいて、実行時単語比率を求めることと、実行時単語比率および目標単語比率が、実行時単語比率と目標比率とを比較するように構成されるデバイアス基準を満たしていないと判定することと、デバイアス基準が満たされていないことに応答して、第1の単語ベクトルのグループ内の単語ベクトルの数量と、第2の単語ベクトルのグループ内の単語ベクトルの数量とを調整するように、ペナルティ係数、第1のバイアス基準、第2のバイアス基準、またはこれらの任意の組み合わせを調節することと、実行時比率を再度求めることと、実行時単語比率および目標単語比率がバイアス基準を満たしていると判定することであって、デバイアス済み人工知能モデルは、デバイアス基準が満たされていることに応答して生成される、判定することと、をさらに含み得る。
【0021】
一部の実装形態では、システムはプロセッサを含み得、プロセッサは、単語のコーパスに基づいて生成される単語埋め込みモデルを受け取ることであって、単語埋め込みモデルは、単語のコーパスを表す単語ベクトルを含む、受け取ることと、単語埋め込みモデルに基づいてバイアス定義ベクトルを決定することであって、バイアス定義ベクトルは、単語埋め込みモデルにおいてバイアスタイプを表すバイアス軸に沿って定義される、決定することと、バイアス分類基準を受け取ることであって、バイアス分類基準は、バイアス定義ベクトルからの距離測定値に基づいて単語ベクトルをグループ化するためのロジックを含む、受け取ることと、単語埋め込みモデルにおいて、バイアス分類基準およびバイアス定義ベクトルに基づいて、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別することであって、第1の単語ベクトルのグループは、バイアスタイプの第1のバイアスカテゴリを表し、第2の単語ベクトルのグループは、バイアスタイプの第2のバイアスカテゴリを表す、識別することと、デバイアス済み人工知能モデルを生成することであって、デバイアス済み人工知能モデルは、単語を表すメトリックを含み、第1の単語ベクトルのグループに関連付けられた単語のメトリックおよび第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられる、生成することと、を行うように構成され得る。
【0022】
一部の実装形態では、デバイアス基準が満たされていないことに応答して、プロセッサは、バイアス閾値距離値を調整することによってバイアス分類を調節することであって、バイアス分類基準は、バイアス閾値距離値に基づいて第1の単語ベクトルのグループまたは第2の単語ベクトルのグループを識別するためのロジックを含み、バイアス閾値距離値は、バイアス定義ベクトルからの距離の尺度を含む、調節すること、を行うようにさらに構成され得る。
【0023】
一部の実装形態では、プロセッサは、デバイアス済み人工知能モデルに基づいてコンピュータ生成の推論を作成するように構成されるサーバにデバイアス済み人工知能モデルを配備することであって、デバイアス済み人工知能モデルは、新たな単語埋め込みモデル、用語頻度-逆文書頻度(TF-IDF)モデル、またはこれらの任意の組み合わせを含む、配備すること、を行うようにさらに構成され得る。
【0024】
以下の図面および説明を参照することにより、実施形態がよりよく理解され得る。図中のコンポーネントは必ずしも縮尺通りではない。また、図において、同様の参照番号は異なる図にわたって対応する部分を示す。
【図面の簡単な説明】
【0025】
【
図2A】単語埋め込みモデル空間の視覚的表現の例を示す図である。
【
図2B】単語埋め込みモデル空間の視覚的表現の例を示す図である。
【
図3】システムの例示的なロジックの流れ図である。
【
図4】システムの例示的なロジックの流れ図である。
【
図5】システムの例示的なロジックの流れ図である。
【発明を実施するための形態】
【0026】
人事部などの組織体は、人材採用などの組織活動におけるバイアスを低減することに関心があり得る。組織は組織活動を支援するために人工知能モデルに依存し得る。人工知能モデルを訓練すると、訓練に固有のバイアスが導入され得る。たとえば、教師あり学習の間に、注釈付きデータを生成して、学習されたマッピングおよび関連付けを確立し得る。注釈付きデータは、注釈付けを推進する人間に基づくバイアスを含み得、または基礎となるデータは、人間の社会規範および文化規範に由来する固有のバイアスを有し得る。一部の状況では、注釈付けはコンピュータにより自動化され得るが、コンピュータによる自動化は、固有のバイアスを有する他の訓練されたモデルおよび/またはコンピュータ手続に由来し得る。このように、人工知能モデルは、系統的バイアスを含み得る。
【0027】
アルゴリズムによるバイアスを識別し、低減するための現在の手法では、チューニング可能なクラス別のバイアス閾値およびペナルティの確立をほとんどまたは全く制御できない場合がある。また、モデルのバイアスを低減することは、モデル性能および推論精度に悪影響を及ぼし得る。引用によりその全体が本明細書に組み込まれる、Tolga Bolukbasiら、「Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings」、2016年7月21日、1-25頁、コーネル大学によりオンライン公開、URL:https://arxiv.org/pdf/1607.06520.pdf、イサカ、ニューヨークに記載のように、ペナルティが科された単語ベクトルをゼロにしてバイアス単語を無効にすると、特に一定量のバイアスが許容可能な設定では、モデル性能が抑制され得る。
【0028】
したがって、人工知能モデルにおけるチューニング可能なバイアス低減のためのデジタルシステムおよび方法を開示する。導入例として、システムは、単語のコーパスに基づいて生成される単語埋め込みモデルを受け取り得る。単語埋め込みモデルは、単語のコーパスを表す単語ベクトルを含み得る。システムは、単語埋め込みモデルの埋め込み空間においてバイアス定義ベクトルを決定し得る。バイアス定義ベクトルは、単語埋め込みモデルの埋め込み空間においてバイアス軸に沿って定義され得る。バイアス軸は、バイアスタイプを表し得る。システムは、バイアス分類基準を受け取り得る。バイアス分類基準は、バイアス定義ベクトルからの距離測定値に基づいて単語ベクトルをグループ化するためのロジックを含み得る。システムは、単語埋め込みモデルにおいて、バイアス分類基準およびバイアス定義ベクトルに基づいて、第1の単語ベクトルのグループおよび第2の単語ベクトルのグループを識別し得る。第1の単語ベクトルのグループは、バイアスタイプの第1のバイアスカテゴリを表し得、第2の単語ベクトルのグループは、バイアスタイプの第2のバイアスカテゴリを表し得る。システムは、デバイアス済み人工知能モデルを生成し得、デバイアス済み人工知能モデルは、単語を表すメトリックを含み得る。第1の単語ベクトルのグループに関連付けられた単語のメトリックおよび第2の単語ベクトルのグループに関連付けられた単語のメトリックは、非ゼロのペナルティ係数に基づいて重み付けられ得る。
【0029】
本明細書に記載のシステムおよび方法によって提供される技術的進歩の一例は、システムが、構造化されていないテキストを活用するアプリケーションにおけるバイアスを低減し得ることであり得る。バイアス低減は、理解しやすい構造で許容可能なバイアスを定義するユーザ固有のパラメータに従って構成され得る。たとえば、ユーザは、目標単語比率などのデバイアス基準を提供し得る。目標単語比率は、バイアスカテゴリ内のバイアス単語の比率を示し得る。目標単語比率は、生成されたデバイアス済みモデルにおける許容可能なバイアスのレベルの尺度であり得る。システムは、モデルがデバイアス基準を満たすようにモデルをデバイアスし得る。たとえば、目標単語比率に比例して各カテゴリにペナルティが科されるように、モデル内の単語表現にペナルティが科され得る。
【0030】
本明細書に記載のシステムおよび方法の他の技術的進歩は、モデル性能が抑制されないように、システムが目標バイアス基準を調節し得ることである。たとえば、目標単語比率は、システムに提供される訓練データに基づいて合理的に達成できない場合がある。システムは、次善の単語比率を達成するように目標バイアス基準を調節し得る。システムは調節された単語比率をエンドユーザに表示し得、エンドユーザは結果を承認または却下し得る。
【0031】
本明細書に記載のシステムおよび方法の他の技術的進歩は、システムが、バイアス語彙への非ゼロのペナルティに基づいてバイアスが減少された人工知能モデルを生成および/または配備し得ることである。たとえば、ユーザによって提供された目標単語比率を達成するのに必要な程度で、単語埋め込みモデル内のベクトルにペナルティが科され得る。このように、デバイアスのゴールを達成するために、更新されたモデルの精度、完全性、および性能への悪影響が最小化される。一部の例では、パイプラインは、単語埋め込みモデル、用語頻度-逆文書頻度(TF-IDF)モデル、またはこれらの任意の組み合わせを含む多様な異なるモデルにペナルティ重みを適用し得る。
【0032】
本明細書に記載のシステムおよび方法の他の技術的進歩は、本明細書に記載のシステムおよび方法によって改善された人工知能モデルが、実際の環境に配備され得ることである。たとえば、デバイアス済み人工知能モデルは、性別または他のタイプのバイアスを低減するように履歴書と職務記述書とをマッチングさせるために配備され得る。代替的または追加的には、デバイアス済みモデルは、人口統計的なまたは他のタイプのバイアスを低減するように、教師ありタスク、たとえば、回帰(たとえば、個人の信用スコアの予測)および分類(たとえば、個人が政府助成を受ける資格があるか否かの自動判定)を容易にするために配備され得る。
【0033】
本明細書に記載のシステムおよび方法は、既存の市場のソリューションに対する改善を提供する。既存の市場のソリューションに対するさらなる利益、効率性、および改善は、以下に説明するシステムおよび方法において明らかにする。
【0034】
図1にシステム100の第1の例を示す。システムは、デバイアスパイプライン102を含み得る。デバイアスパイプライン102は、ベースラインモデルデータを受け取り得る。ベースラインモデルデータは、人工知能モデルか、または人工知能モデルを訓練もしくは生成するために使用される情報を含み得る。たとえば、ベースラインモデルデータは、単語埋め込みモデルを受け取り得る。一部の例では、単語埋め込みモデルは、分類、回帰、または他の推論決定を実行するように事前に訓練済みであり得る。代替的または追加的には、ベースラインモデルデータは、自然言語モデルを生成するための訓練情報を含み得る。たとえば、訓練情報は、単語のコーパス、注釈付き自然言語テキスト、および/または他の適切な訓練情報を含み得る。
【0035】
デバイアスパイプライン102は、自然言語処理(NLP:natural language processing)フレームワーク104を含み得る。NLPフレームワーク104は、自然言語テキストに基づいて単語埋め込みモデルを生成し得る。たとえば、NLPフレームワーク104は、たとえば、WORD2VEC、GLOVE、または他の任意の単語埋め込みフレームワークを含み得る。
【0036】
単語埋め込みモデルは、単語の多次元埋め込み空間への数学的写像を含み得る。単語埋め込みモデルは、単語を実数のベクトルとして表現し得る。例として、単語埋め込みモデルは、マトリクスを含み得、マトリクスの各行(または列)が、単語を表す特定のベクトルであり得る。統計的測定値およびコンピュータ生成の推論を介して、ベクトル間の関連付けが確立され得るように、特定のベクトルの次元値は、多次元空間内において、そのベクトルを他のベクトルに対して方向付けし得る。単語埋め込みモデルは、単語埋め込みモデルのベクトル(または複数のベクトル)に重み付けして、そのベクトルと他のベクトルとの関連付けが強められるかまたは弱められるようにすることによって、訓練または再訓練され得る。
【0037】
単語埋め込みモデルのベクトルは、特定のバイアスタイプに基づいてバイアスされ得る。バイアスタイプは、共通の特徴を有するバイアスのカテゴリを表す。バイアスカテゴリは、バイアスの分類を含み得る。たとえば、男性バイアスまたは女性バイアスは共に、性別バイアスタイプのバイアスカテゴリである。
【0038】
デバイアスパイプライン102は、バイアス識別コントローラ106を含み得る。バイアス識別コントローラ106は、単語埋め込みモデル内のバイアス定義ベクトルを識別し得る。バイアス定義ベクトルは、バイアスタイプのバイアスカテゴリを表すベクトルを含み得る。バイアスカテゴリベクトルが識別されると、バイアス軸が導出され得る。バイアス軸は、バイアスのタイプ(すなわち、性別、人種、民族、年代、または埋め込み空間における他の何らかの一般化)を表し得る。バイアス定義ベクトルを定義するベクトルは次のように表され得、
Vb=Vc1-Vc2
ここで、Vbはバイアス定義ベクトル、Vc1は第1のバイアスカテゴリを表すベクトルであり、Vc2は第2のバイアスカテゴリを表すベクトルである。バイアスのタイプのバイアス軸は、Vbおよび-Vbに沿って定義され得る。
【0039】
例として、性別のバイアス軸は、バイアス定義ベクトル(Vb)に沿って定義され得る。バイアス定義ベクトルは、「女性」を表すベクトル(Vc2)から「男性」を表すベクトル(Vc1)を減算することにより導出され得る。そのように計算された場合、Vbに近い単語ベクトルは、「男性」バイアスカテゴリへのバイアスを示し得、-Vbに近いベクトルは、女性バイアスカテゴリへのバイアスを示し得る。
【0040】
図1の以下の議論は、
図2Aおよび
図2Bへの様々な参照を含む。
図2Aおよび
図2Bに、単語埋め込みモデル空間の視覚的表現の例を示す。説明を簡単にするために、
図2Aおよび
図2Bに示す単語埋め込みモデル空間は、2つの次元を含む。実際には、単語埋め込みモデル空間は、N個の次元を含み得る。
図1の残りの議論全体にわたって、
図2Aおよび
図2Bへの参照がなされる。
【0041】
バイアス識別コントローラ106は、ベクトル間の距離を求め得る。
図2Aを参照すると、バイアス定義ベクトルV
bおよび単語ベクトルV
w1は、ある距離だけ離れ得る。距離は、たとえば、角類似度または角距離に基づいて測定され得る。距離は、コサイン類似度の計算またはコサイン距離の計算に従って測定され得る。コサイン類似度メトリックが1に近づくにつれて、バイアス定義ベクトルV
bと単語ベクトルV
w1との間の角距離が減少する。コサインメトリックが-1に近づくにつれて、バイアス定義ベクトルV
bと単語ベクトルとの間の角距離が増加する。第1のバイアスカテゴリが女性であり、第2のバイアスカテゴリが男性である、前述の性別の例を続けると、コサイン類似度が.9の単語ベクトルは、男性カテゴリにバイアスのかかった単語を表し得る。コサイン類似度が-.9のベクトルは、女性カテゴリにバイアスのかかった単語を表し得る。
【0042】
バイアス識別コントローラ106は、バイアス分類基準に基づいて1つまたは複数のバイアスベクトルグループを識別し得る。バイアス分類基準は、1つまたは複数のバイアスベクトルグループを識別するロジックを含み得る。バイアスベクトルグループは、バイアス定義ベクトルから特定の距離内(または外)に位置するベクトルのグループを含み得る。
図2Aに示すように、バイアス分類基準は、単語埋め込みモデル空間において第1の領域202および/または第2の領域204を定義し得る。第1の領域202は、第1のバイアスベクトルグループを含み得る。第2の領域204は、第2のバイアスベクトルグループを含み得る。
【0043】
バイアス分類基準は、1つまたは複数のバイアス閾値を含み得る。バイアス閾値は、閾値距離測定値、閾値類似度測定値、またはバイアスベクトルグループに含まれるベクトルの数を統制する他の何らかの閾値を含み得る。表1にバイアス分類基準の一例を提供する。
【0044】
【0045】
表1に示す例では、AngularSim()は、コサイン類似度、または他の何らかのベクトル距離の測定値を表し得る。他の距離の尺度も適用され得、たとえば、コサイン距離(たとえば、1-cos類似度)が含まれる。他の例では、他の距離計算の方法も利用され得、たとえば、ユークリッド距離が含まれる。このように、表1に示す例は、例示を目的としており、別々のベクトルグループへのセパレータベクトル用の他のバイアス分類基準が適用され得る。
【0046】
バイアス識別コントローラ106は、バイアス分類基準を調節し得る。たとえば、バイアス識別コントローラ106は、目標デバイアス基準を受け取り得る。目標デバイアス基準は、たとえば、目標単語比率を含み得る。
【0047】
目標単語比率は、第1のバイアスカテゴリおよび第2のバイアスカテゴリに含まれる単語の目標比率を含み得る。バイアス識別コントローラ106は、目標単語比率に基づいてバイアス分類基準を修正し得る。バイアス分類基準を修正すると、特定のバイアスベクトルグループに分類されるベクトルの数量が修正され得る。たとえば、バイアス識別基準は、各バイアスベクトルグループに含まれるベクトルの数を調節するように更新されたバイアス閾値(複数可)を生成し得る。表1の例を参照すると、第1のバイアス閾値αを増加させることにより、第1のバイアスベクトルグループに含まれるベクトルの数量が増加する。第1のバイアス閾値αを減少させることにより、第1のバイアスベクトルグループに含まれるベクトルの数量が減少する。
図2Aを参照すると、第1のバイアス閾値αを増加させることにより、第1の領域202の面積が増加し得、第1のバイアス閾値αを減少させることにより、第1の領域202の面積が減少し得る。このように、第1のバイアス閾値αは、領域202の大きさ、および/または第1の単語ベクトルV
w1(または他のベクトル)が第1のバイアスグループに含まれるか否かを統制し得る。同様に、第2のバイアス閾値βは、第2の領域204の大きさ、および/または第2の単語ベクトルV
w2(または他のベクトル)が第2のバイアスベクトルグループに含まれるか否かを統制し得る。βを減少させると、第2のバイアスグループ内のベクトルの数が増加し得、βを増加させると、第2のバイアスグループ内のベクトルの数が減少し得る。
【0048】
デバイアスパイプライン102は、ペナルティコントローラ108を含み得る。ペナルティコントローラ108は、バイアス分類基準を満たす1つまたは複数のベクトルにペナルティ係数を割り当て得る。ペナルティコントローラ108は、単語ベクトルがバイアス分類基準を満たしたことに応答して、単語ベクトルを選択し得る。たとえば、
図2Aを参照すると、ペナルティコントローラ108は、第1の単語ベクトルV
w1および第2の単語ベクトルV
w1を、これらのベクトルがバイアス分類基準を満たしていること(すなわち、バイアス軸(V
b,-V
b)から特定の距離内にあること)に応答して選択し得る。
【0049】
一部の例では、ペナルティコントローラ108は、ペナルティ係数を調節し得る。たとえば、ペナルティコントローラ108は、更新されたペナルティ係数を受け取り得る。ペナルティ係数を更新すると、特定のベクトルにペナルティが科される量が変化し得る。たとえば、ペナルティ係数を低下させると、特定のベクトルとバイアス定義ベクトルVbとの間の距離が減少し得る。ペナルティ係数を増加させると、特定の単語ベクトルとバイアス定義ベクトルVbとの間の距離が増加し得る。
【0050】
デバイアスパイプライン102は、モデル生成器110を含み得る。一部の例では、モデル生成器110は、更新された単語埋め込みモデルを生成し得る。たとえば、モデル生成器110は、1つまたは複数のバイアスベクトルグループ内のベクトルにペナルティ係数を適用し得る。たとえば、モデル生成器110は、ベクトルまたはベクトルのグループの識別子を受け取り得る。モデル生成器110は、ペナルティ係数に基づいてベクトルまたはベクトルのグループにペナルティを科し得る。
図2Aの例を参照すると、第1の単語ベクトルV
w1および第2の単語ベクトルV
w2はそれぞれ、バイアス分類基準を満たし得る。ベクトルV
w1およびV
w2は、ペナルティを科すために選択され得る。モデル生成器110は、ペナルティ係数に基づいて、第1の単語ベクトルV
w1および/または第2の単語ベクトルV
w2にペナルティを科し得る。
図2Bを参照すると、更新された埋め込み空間は、ペナルティが科された第1の単語ベクトルV
w1’と、ペナルティが科された第2の単語ベクトルV
w2’とを含み得る。ペナルティが科された第1の単語ベクトルV
w1’は、元の第2の単語ベクトルV
w1よりもバイアス定義ベクトルV
bから遠くにあり得る。ペナルティが科された第2の単語ベクトルV
w2’は、元の第2の単語ベクトルV
w2よりもバイアス定義ベクトルV
bの近く(すなわち、-V
bから遠く)にあり得る。
【0051】
更新された単語埋め込みモデルを生成するために、モデル生成器110は、以下の式に基づいてベクトルにペナルティを科し得る。
【0052】
【0053】
ここで、Vnewはペナルティが科されたベクトルであり、Voldは元のベクトルであり、Φはペナルティ係数である。他の例では、モデル生成器110は、ペナルティ係数Φおよび元のベクトルVoldの追加的または代替的な組み合わせに基づいて、ベクトルVnewにペナルティを科し得る。
【0054】
一部の例では、モデル生成器110は、TF-IDFモデルを生成し得る。TF-IDFモデルは、単語に割り当てられる様々な重みを含み得る。モデル生成器110は、TF-IDFモデルに関連付けられた単語が、ペナルティを科すために選択された1つまたは複数のベクトルにも関連付けられていると判定し得る。たとえば、モデル生成器110は、TF-IDFモデル内の単語のグループが、バイアスベクトルグループに含まれるベクトル表現を有し得ると判定し得る。モデル生成器110は、ペナルティ係数を重みに適用して、TF-IDFモデル内の単語にペナルティを科し得る。たとえば、モデル生成器110は、単語に割り当てられた重みをペナルティ係数に乗算し得る。
【0055】
バイアス分類基準および/またはペナルティ係数を調節すると、第1のおよび/または第2のバイアスカテゴリに含まれる単語が変化し得る。これらの単語とのバイアスの関連付けを弱めることにより、あるタイプのバイアスが低減された人工知能モデルがもたらされ得る。しかしながら、ペナルティ係数および/またはバイアス分類基準の人間による修正では、非効率または不正確なモデルが作成され得る。また、ペナルティ係数およびバイアス分類基準は、人間のオペレータが理解および調整することが困難であり、および/または直感的でない場合がある。
【0056】
デバイアスパイプライン102は、調節コントローラ112を含み得る。調節コントローラ112は、デバイアス基準を生成し得る。デバイアス基準は、1つまたは複数のバイアス語彙において許可されるバイアス単語の数を確立するルールを含み得る。たとえば、デバイアス基準は、前述のように、目標単語比率を含み得る。調節コントローラ112は、自然言語プロセッサ104、バイアス識別コントローラ106、ペナルティコントローラ108、および/またはモデル生成器110と通信して、単語埋め込みモデルにデバイアス基準を満たさせるペナルティ係数および/またはバイアス分類基準を求め得る。調節コントローラ112は、目標単語比率を達成するようにペナルティ係数および/またはバイアス分類基準を調節させ得る。一部の例では、モデル性能を低下させることなく、目標単語比率を達成することが可能であり得る。調節コントローラ112はまた、目標単語比率を調節して、デバイアス結果を実現する次善の比率を求め得る。
図5および関連する議論では、目標単語比率、バイアス分類基準、およびペナルティ係数の調節について説明する。
【0057】
一部の例では、デバイアスパイプライン102は、グラフィカルユーザインターフェースコントローラ114を含み得る。グラフィカルユーザインターフェースコントローラ114は、1つまたは複数のインタラクティブビューを生成し得る。インタラクティブビューは、目標デバイアス基準を受け取るためのコントロールを含み得る。たとえば、コントロールは、目標単語比率を受け取り得る。代替的または追加的には、グラフィカルユーザインターフェースコントローラ114は、ベースラインモデルデータを受け取るための1つまたは複数のコントロールを生成し得る。たとえば、コントロールは、訓練データおよび/または単語埋め込みモデルを含むファイルへのパスを受け取り得る。代替的または追加的には、インタラクティブビューは、他のユーザ定義のパラメータ(複数可)、たとえば、バイアス分類基準および/またはペナルティ係数などを受け取るための1つまたは複数のコントロールを含み得る。一部の例では、インタラクティブビューは、デバイアスを開始する入力を受け取るためのコントロールを含み得る。たとえば、コントロールは、ボタンを含み得る。グラフィカルユーザインターフェースコントローラ114は、コントロールとのインタラクションに応答して、デバイアスパイプライン102にデバイアスを実行するように指示し得る。一部の例では、グラフィカルユーザインターフェースは、モデルまたは訓練データがデバイアスされた後に、調節されたデバイアス基準を表示し得る。本明細書に記載のように、デバイアスパイプライン102は、デバイアス結果を実現するように目標単語比率を調整し得る。ユーザインターフェースは、ユーザが元の目標比率と、実際に達成された調節された目標比率との差を見ることができるように、調整された目標単語比率を表示し得る。
【0058】
一部の例では、デバイアスパイプライン102は、バイアス語彙リポジトリ116を含み得る。バイアス語彙リポジトリ116は、バイアスカテゴリおよび/またはバイアスベクトルグループに関連付けられた単語および/またはベクトル識別子を記憶し得る。たとえば、バイアス語彙リポジトリ116は、第1のバイアスベクトルグループおよび第2のバイアスベクトルグループ内のベクトルの実行時比率を求めるために問い合わせされ得る。代替的または追加的には、バイアス語彙リポジトリ116は、バイアスカテゴリに関連付けられた単語のテキストを識別するために問い合わせされ得る。たとえば、バイアス語彙リポジトリは、特定のバイアスカテゴリに関連付けられた単語および/またはベクトルを決定するために問い合わせされ得る。NLPフレームワーク104は、ベースラインモデルデータから解析された単語のテキストをバイアス語彙リポジトリ116に記憶し得る。バイアス識別コントローラ106は、単語を特定のベクトルに関連付け、関連付けをバイアス語彙リポジトリ116に記憶し得る。代替的または追加的には、バイアス識別コントローラ106は、単語またはベクトルと、特定のバイアスカテゴリとの間のマッピングをバイアス語彙リポジトリ116に記憶し得る。バイアス調節基準、ペナルティ係数、および目標単語比率が調節されると、マッピングは更新され得る。
【0059】
図3にシステムの例示的なロジックの流れ
図100を示す。デバイアスパイプライン102は、単語埋め込みモデルを受け取り得る(302)。単語埋め込みモデルは、単語のコーパスに基づいて生成され得る。たとえば、単語のコーパスは、たとえば、スキル資格と役割記述とのマッチングなどの特定の用途における推論を提供するように単語埋め込みモデルを訓練するために、事前に作成済みであり得る。
【0060】
デバイアスパイプライン102は、バイアス定義ベクトルを決定し得る(304)。たとえば、デバイアスパイプライン102は、単語埋め込みモデルにおいて、第1のバイアスカテゴリを表す第1のベクトルと、第2のバイアスカテゴリを表す第2のベクトルとを識別し得る。デバイアスパイプライン102は、第2のベクトルから第1のベクトルを減算して、バイアス定義ベクトルを求め得る。代替的には、デバイアスパイプライン102は、第1のベクトルから第2のベクトルを減算して、バイアス定義ベクトルを求め得る。
図1および
図2を参照して前述したように、デバイアス定義ベクトルは、単語埋め込みモデル空間内でバイアス軸に沿って定義され得る。バイアス軸は、バイアスタイプを表し得る。
【0061】
デバイアスパイプライン102は、バイアス分類基準を取得し得る(306)。バイアス分類基準は、バイアス定義ベクトルからの距離測定値などの意味的類似度スコアに基づいて、ベクトルを第1のグループおよび第2のグループにグループ化するためのロジックを含み得る。
図1および
図2を参照して前述したように、距離測定値は、角類似度および/または角距離に基づく測定値を含み得る。バイアス分類基準は、距離測定値をバイアス閾値と比較し得る。バイアス閾値は、最初はデフォルト値、たとえば、コサイン類似度0.3に設定され得る。代替的または追加的には、バイアス閾値は、第1のバイアスベクトルグループおよび/または第2のバイアスベクトルグループに含まれるベクトルの数を調整するように調節され得る。
【0062】
デバイアスパイプライン102は、バイアス分類基準に基づいて第1のベクトルのグループおよび第2のベクトルのグループを識別し得る(308)。第1のベクトルのグループは、第1のバイアスカテゴリ内の単語を表し得る。第2のベクトルのグループは、第2のバイアスカテゴリ内の単語を表し得る。
【0063】
デバイアスパイプライン102は、デバイアス済み知能モデルを生成し得る(310)。デバイアス済み知能モデルは、単語とメトリックとの間の関連付けを含み得る。たとえば、人工知能モデルは、第1のバイアスカテゴリ内の単語のメトリックと、第2のバイアスカテゴリ内の単語のメトリックとを含み得、またはこれらに関して訓練され得る。第1および第2のバイアスカテゴリ内の単語のメトリックは、ペナルティ係数に基づいてペナルティが科され得る。ペナルティ係数は、デバイアス済み人工知能モデルにおけるバイアスにペナルティを科しながら、モデル精度を維持するように調節された非ゼロ値を含み得る。一部の例では、デバイアス済み人工知能モデルは、更新された単語埋め込みモデルを含み得る。たとえば、デバイアスパイプライン104に最初に提供された単語埋め込みモデルは、デバイアス基準が満たされるまで、反復的に更新され得る。代替的または追加的には、デバイアス済み人工知能モデルは、TF-IDFモデルを含み得る。
【0064】
図4にシステムの例示的なロジックの流れ
図100を示す。デバイアスパイプライン102は、目標単語比率を受け取り得る(402)。目標単語比率は、第1のバイアス語彙内の単語と、第2のバイアス語彙内の単語との数に基づく比率を含み得る。一部の例では、目標単語比率は、グラフィカルユーザインターフェースを介して受け取られ得る。たとえば、デバイアスパイプライン102は、目標単語比率を受け取るように構成されるコントロールを有するインタラクティブビューを生成し得る。目標単語比率は、グラフィカルユーザインターフェースとのインタラクションに応答して、デバイアスパイプライン102に送信され得る。
【0065】
デバイアスパイプライン102は、自然言語テキストを受け取り得る(404)。一部の例では、自然言語テキストは、デバイアスパイプライン102にアップロードされ得る。代替的または追加的には、ベースラインモデルデータ(たとえば、訓練データ、注釈、ベースラインモデル)は、デバイアスパイプライン102に送られ得る。一部の例では、デバイアスパイプライン102は、ファイルのアップロードを可能にするインタラクティブビューを生成し得る。ファイルは、自然言語テキストおよび/またはベースラインモデルデータを含み得る。代替的または追加的には、ファイルは、デバイアスパイプライン102に、他の何らかのリモートサーバおよび/またはソースから送られ得る。たとえば、組織は、就職推薦状、履歴書、または他の自然言語テキストをデバイアスパイプライン102に送り得る。
【0066】
デバイアスパイプライン102は、単語埋め込みモデルを生成し得る(406)。デバイアスパイプライン102は、NLPフレームワーク104にアクセスして、自然言語テキストに基づいて単語埋め込みモデルを生成し得る。たとえば、デバイアスパイプライン102は、自然言語テキストから単語のコーパスを抽出し得る。デバイアスパイプライン102は、単語のコーパスに基づいて単語埋め込みモデルを生成し得る。
【0067】
デバイアスパイプライン102は、バイアス定義ベクトルを決定し得る408。デバイアスパイプライン102は、第1のバイアスベクトルのグループおよび第2のバイアスベクトルのグループを識別し得る(410)。デバイアスパイプライン102は、第1のバイアスベクトルのグループおよび第2のバイアスベクトルのグループ内のベクトルにペナルティを科し得る(412)。たとえば、デバイアスパイプライン102は、
図1および
図2を参照して前述したように、また、
図3を参照して説明した動作304のように、バイアス定義ベクトルを決定し、ベクトルのグループを決定し/ペナルティを科し得る。
【0068】
デバイアスパイプライン102は、実行時単語比率を求め得る(414)。実行時単語比率を求めるために、デバイアスパイプライン102は、ペナルティ付与が行われた後に、新たな第1のバイアスベクトルのグループと、新たな第2のバイアスベクトルのグループとを決定し得る。たとえば、デバイアスパイプライン102は、バイアス分類基準を更新された単語埋め込みモデルに適用することによって、新たな第1のベクトルのグループと、新たな第2のベクトルのグループとを識別し得る。実行時単語比率は、新たな第1のグループ内のベクトルの数と、新たな第2のグループ内のベクトルの数との間の関係に基づいて求められ得る。たとえば、実行時単語比率は、第1の新たなグループ内のベクトルの数を、第2の新たなグループ内のベクトルの数で除算した値を含み得る。
【0069】
デバイアスパイプライン102は、デバイアス基準が満たされているか否かを判定し得る(416)。たとえば、デバイアス基準は、目標単語比率を実行時単語比率と比較するロジックを含み得る。基準は、実行時単語比率が満たされているか否かを判定するための許容範囲を適用し得る。たとえば、デバイアス基準は、以下の式が満たされているか否かを判定し得る。
Rruntime=Rtarget±(Rtarget)(X)
ここで、Rruntimeは実行時単語比率であり、Rtargetは目標単語比率であり、Xは許容範囲値である許容範囲値は、たとえば10%の許容範囲の場合、0.10を含み得る。
【0070】
デバイアス基準が満たされていないことに応答して(416、no)、デバイアスパイプライン102は、バイアス分類基準、目標比率、および/またはペナルティ係数を調節し得る(418)。たとえば、デバイアスパイプライン102は、バイアス分類基準、目標比率、および/またはペナルティ係数の変更に基づいて、埋め込みモデルを反復的に更新し得る。たとえば、デバイアスパイプライン102は、最初にバイアス分類基準を調節することを試み得る。バイアス分類基準を調節した後、デバイアスパイプライン102は、単語埋め込みモデルを更新し、次いで実行時比率を再度求め得る。実行時比率がデバイアス基準を満たしていないことに応答して、デバイアスパイプライン102は、目標単語比率を調節し得る。換言すれば、目標比率が得られない場合、デバイアスパイプライン102は、次善の選択肢を決定し得る。調節された目標比率に基づいて、デバイアスパイプライン102は、デバイアス基準が満たされるまで、バイアス分類基準および/またはペナルティ係数を段階的に調節し得る。デバイアス基準が満たされていない場合、デバイアスパイプライン102は、デバイアス基準が満たされるまで、目標比率および/またはペナルティ係数を調節し続け得る。目標比率、バイアス分類、およびペナルティ係数のさらなる議論については、
図5および関連する説明を参照されたい。
【0071】
デバイアス基準が満たされていることに応答して(416、yes)、デバイアスパイプライン102は、デバイアス済み人工知能モデルを生成し得る(420)。デバイアス済み人工知能モデルの生成については、
図1を参照して、また、
図3の動作310において説明している。
【0072】
図5にシステムの例示的なロジックの流れ
図100を示す。デバイアスパイプライン102は、目標デバイアス基準および単語埋め込みモデルを取得し得る(502)。たとえば、目標デバイアス基準は、目標単語比率を含み得る。目標動作比率は、グラフィカルユーザインターフェースのインタラクティブビューのフィールドに提供され得る。
【0073】
デバイアスパイプライン102は、バイアス分類基準を調節し得る(504)。バイアス分類基準を調節するために、バイアスパイプライン102は、実行時目標比率を目標単語比率と比較し得る。実行時単語比率が目標単語比率より大きい場合、デバイアスパイプライン102は、第1のバイアスグループ内のベクトルの数を減少させ、第2のバイアスグループ内のベクトルの数を増加させ得る。実行時単語比率が目標単語比率未満である場合、デバイアスパイプライン102は、第1のバイアスグループ内のベクトルの数を増加させ、第2のバイアスグループ内のベクトルの数を減少させ得る。
【0074】
図1を参照して前述したように、第1のバイアス閾値αは、第1のバイアスベクトルグループに含まれるベクトルの数を統制し得、第2のバイアス閾値βは、第2のバイアスベクトルグループに含まれるベクトルの数を統制し得る。このように、デバイアスパイプライン102は、第1のグループおよび第2のグループ内のベクトルの比率が目標単語比率に近くなる(たとえば、10%または他の何らかの所定の許容範囲値内になる)かまたは等しくなるまで、αおよびβを変化させ得る。一部の例では、デバイアスパイプライン102は、各グループ内のベクトルの比率が目標比率から許容範囲内、たとえば、目標比率から±10%以内になるまで、第1および第2のバイアス閾値を段階的に変更し得る。
【0075】
デバイアスパイプライン102は、第1および第2のバイアスベクトルグループに含まれるベクトルにペナルティを科し、実行時比率を再度求め得る(506)。たとえば、デバイアスパイプライン102は、デフォルトのペナルティ係数0.3に基づいて、第1のバイアスベクトルグループおよび第2のバイアスベクトルグループ内のベクトルにペナルティを科し得る。デバイアスパイプライン102は、単語埋め込みモデルを更新し得る。デバイアスパイプライン102は、更新された単語埋め込みモデル内の第1のバイアスベクトルグループおよび第2のバイアスベクトルグループに基づいて、実行時比率を再度求め得る。
【0076】
デバイアスパイプライン102は、デバイアス基準が満たされたか否かを判定し得る(508)。たとえば、デバイアスパイプライン102は、実行時比率を目標比率と比較して、実行時比率が目標比率から受容許容範囲(たとえば、±10%または他の何らかの所定の許容範囲値)内にあるか否かを確認し得る。
【0077】
デバイアス基準が満たされていないことに応答して(508、no)、デバイアスパイプライン102は、デフォルトの分類基準およびデフォルトのペナルティ係数を取得し得る(510)。デフォルト値は、目標比率が調節され得るように、取得される。後述のように、分類基準およびペナルティ係数は、目標比率の段階的な変更に基づいて調節され得る。
【0078】
デバイアスパイプライン102は、目標比率を調節し得る(512)。たとえば、モデル性能を維持し、元の目標比率を得ることが可能でない場合がある。これらの状況では、目標比率が、前に求められた実行時比率より高い場合、デバイアスパイプライン102は、(第1のバイアスカテゴリを表す)比率の第1の側を減少させ、(第2のバイアスカテゴリを表す)比率の第2の側を増加させ得る。代替的には、目標比率が実行時比率未満である場合、デバイアスパイプライン102は、比率の第1の側を増加させ、比率の第2の側を減少させ得る。一部の例では、目標比率を調節することは、デフォルトのインクリメント値だけ、たとえば、0.2だけ、一方の側をインクリメントし、他方の側をデクリメントすることを含み得る。
【0079】
デバイアスパイプライン102は、バイアス分類基準を調節し得る(514)。たとえば、目標比率が調整された後、デバイアスパイプライン102は、調整された目標比率に基づいてバイアス分類基準を調節し得る(バイアス分類基準を調節する方法の一例として上記の動作504を参照されたい)。
【0080】
デバイアスパイプライン102は、ベクトルにペナルティを科し、実行時比率を再度求め得る(516)。たとえば、目標比率およびバイアス分類基準が調節された後、デバイアスパイプライン102は、調節されたバイアス分類基準に基づいて第1のバイアスベクトルグループおよび第2のバイアスベクトルグループを再決定し得る。デバイアスパイプライン102は、デフォルトのペナルティ値に基づいて第1のバイアスベクトルグループおよび第2のバイアスベクトルグループ内のベクトルにペナルティを科し得る。ペナルティを科した後、デバイアスパイプライン102は、更新された埋め込みモデルを生成し得る。デバイアスパイプライン102は、更新されたモデルに対して、第1のバイアスベクトルグループおよび第2のバイアスベクトルグループに含まれるベクトルを再決定し得る。デバイアスパイプライン102は、更新されたモデルに基づいて実行時比率を再度求め得る。
【0081】
デバイアスパイプライン102は、デバイアス基準が満たされているか否かを判定し得る(518)。デバイアス基準が満たされていないことに応答して(518、no)、デバイアスパイプライン102は、ペナルティ係数を減少させ得る(520)。デバイアスパイプライン102は、ベクトルにペナルティを科し、次いで実行時比率を再度求め得る(522)。たとえば、デバイアスパイプライン102は、第1のバイアスベクトルグループおよび第2のバイアスベクトルグループにペナルティを科し得る。デバイアスパイプライン102は、低減されたペナルティ係数を適用した後、実行時比率を求める。
【0082】
デバイアスパイプライン102は、デバイアス基準が満たされているか否かを判定し得る(520)。デバイアス基準が満たされていないことに応答して、デバイアスパイプライン102は、動作512~522を介して反復的に目標比率を再調節し、バイアス分類基準を再調節し514、ペナルティ係数を再調節し得る。
【0083】
図3~
図5に示すロジックの動作は、様々な順序で実施され得る。加えて、ロジックは、図示に対して追加のまたはより少ない動作を含み得る。
【0084】
図6にシステム100の第3の例を示す。システムは、推薦エンジン602を含み得る。推薦エンジン602は、モデルリポジトリ604から1つまたは複数の人工知能モデルにアクセスし得る。推薦エンジン602は、1つまたは複数の人工知能モデルに基づいて推論を行い得る。デバイアスパイプライン102は、デバイアス済み人工知能モデルを推薦エンジン602に配備し得る。推薦エンジンは、デバイアス済み人工知能モデルをモデルリポジトリ604に記憶し、デバイアス済み人工知能モデルに基づいてコンピュータ生成の推論を作成し得る。
【0085】
管理者デバイス606は、ベースラインモデルデータを送り得る。代替的または追加的には、管理者デバイス606は、目標単語比率などの目標デバイアス基準を送り得、これをデバイアスパイプライン102が受け取って、本明細書に記載のようにデバイアスを実行する。デバイアスパイプライン102は、管理者デバイス606に表示されるグラフィカルユーザインターフェース用の1つまたは複数のインタラクティブビューを生成し得る。ビューは、目標単語比率、ベースラインモデルデータ、および/または役割記述データを受け取るためのコントロールを含み得る。代替的または追加的には、ビューは、デバイアスパイプライン102によって生成されたパラメータ、たとえば、調整された目標単語比率および/または実行時単語比率を表示し得る。したがって、ユーザは、目標デバイアス基準を実行時デバイアス結果と比較して、デバイアス済みモデルが十分にデバイアスされているか否かを判定することが可能であり得る。
【0086】
デバイアスパイプライン102は、目標デバイアス基準および/またはベースラインモデルデータに基づいて単語埋め込みモデルを生成し得る。デバイアスパイプライン102は、
図1~
図5を参照して前述したように単語埋め込みモデルをデバイアスし得る。デバイアスパイプライン102は、デバイアス済みモデル、たとえば、更新された単語埋め込みモデルまたはTF-IDFモデルを生成し得る。
【0087】
一部の例では、ベースラインモデルデータは、スキル資格テキストおよび/または役割資格テキストを含み得る。ベースラインモデルデータは、スキル記述を役割資格に関連付ける推論を生成するように人工知能モデルを訓練するための注釈付き訓練データを含み得る。
【0088】
推薦エンジン602は、デバイアス済みモデルを受け取り、デバイアス済みモデルをモデルリポジトリ604に記憶し得る。デバイアス済みモデルがモデルリポジトリ604に記憶された後、推薦エンジン602は、デバイアス済みモデルに基づいて推論を生成するために使用される入力データを受け取り得る。たとえば、スキル資格が、応募者デバイス608によって提出され得、役割記述テキストが、組織デバイス610によって提出され得る。応募者デバイス608は、たとえば、スキル資格(たとえば、履歴書)を提出するユーザのデバイスを含み得る。組織デバイス610は、役割記述(たとえば、職務記述書)を提出する組織のデバイスを含み得る。
【0089】
推薦エンジン604は、デバイアス済み人工知能モデルに基づいて、1つまたは複数のスキル資格を1つまたは複数の役割記述に関連付けるための推論を生成し得る。推薦エンジンは、役割と職務記述書との間のマッピングを表示するグラフィカルユーザインターフェース用のレポートまたはインタラクティブビューを生成し得る。
【0090】
スキル資格テキストは、1人または複数人の人物のスキルを表すテキストを含み得る。スキル資格テキストは、ファイル、セクション、または区切り文字によって編成されるテキストのグループを含み得る。たとえば、スキル資格テキストは、個人の識別子に関連付けられた履歴書テキストを含み得る。代替的または追加的には、スキル資格テキストは、組織の人事記録を含み得る。他の例では、スキル資格は、ソーシャルメディアウェブサイトのウェブページ情報を含み得る。一般に、スキル資格テキストは、個人または個人のグループのスキル、資格、または能力を記述した自然言語テキストを含み得る。
【0091】
役割記述テキストは、1つまたは複数の役割を記述した自然言語テキストなどのテキストを含み得る。役割記述テキストは、特定の責務または役職に望ましいおよび/または必要な人材の特質について記述し得る。たとえば、役割資格テキストは、職務記述書を含み得る。
【0092】
例として、システム100は、履歴書と職務記述書とをマッチングさせる人工知能モデルの性別バイアスを低減させるためのシステムに実装され得る。デバイアスパイプライン102は、履歴書マッチングのコンテキストにおいてユーザ定義されたバイアスの定義を受け取り得る。たとえば、ユーザ定義されたバイアスの定義は、ある役割に応募した応募者の絶対的な性別比率と、その役割に対して提案される候補者の性別比率との間の±5%より大きい差を含み得る。たとえば、ある役割への応募者の60%が女性であった場合、55%以上65%以下の女性が人工知能モデルによって提案される必要がある。
【0093】
デバイアスパイプライン102は、履歴書および職務記述書のコーパスに基づいて単語埋め込みモデルを生成し得る。デバイアスパイプライン102は、女性カテゴリを表す埋め込み済みベクトルから男性カテゴリを表す埋め込み済みベクトルを減算することにより、バイアス定義ベクトルを計算し得る。その結果得られるバイアス定義は、埋め込み空間においてバイアス軸に沿って定義され得る。パイプラインは、性別軸に対する単語のコサイン距離(たとえば、男性の場合の1から、女性の場合の-1まで)を計算し得る。パイプラインは、バイアス閾値を適用して、ペナルティを科すベクトルを決定し得る。たとえば、バイアス閾値が0.1である場合、0.1より大きいコサイン類似度および-0.1未満のコサイン類似度を有する単語にはペナルティが科される。デバイアスを実行するために、デバイアスパイプライン102は、表2に示す疑似ロジックを実行し得る。
【0094】
【0095】
一部の例では、バイアス閾値および/またはペナルティ係数の調節は、許容範囲基準によって制限され得る。許容範囲基準は、バイアス分類基準、ペナルティ係数、および/または目標単語比率が調節され得る範囲または境界を確立する基準を含み得る。許容範囲基準は、バイアス閾値許容範囲基準を含み得る。バイアス閾値許容範囲基準は、バイアス閾値が0.05~0.15などの範囲内でのみ調節されることを許可し得る。代替的または追加的には、許容範囲基準は、ペナルティ許容範囲基準を含み得る。ペナルティ許容範囲基準は、ペナルティ係数が0.2~0.6などの範囲内でのみ調節されることを許可し得る。許容範囲基準が満たされなくなった場合、デバイアスパイプライン102は、デバイアスを中止し得る。
【0096】
システム100は、図示に対して、追加の、異なる、またはより少ないコンポーネントによって実装され得る。各コンポーネントは、追加の、異なる、またはより少ないコンポーネントを含み得る。一部の例では、システムは、デバイアスパイプライン102を含み得る。代替的または追加的には、システムは、推薦エンジン602を有するデバイアスパイプライン102を含み得る。
【0097】
図7にシステム100の第4の例を示す。システム100は、通信インターフェース712、入力インターフェース728および/またはシステム回路714を含み得る。システム回路714は、プロセッサ716または複数のプロセッサを含み得る。代替的または追加的には、システム回路714は、メモリ720を含み得る。
【0098】
プロセッサ716は、メモリ720と通信し得る。一部の例では、プロセッサ716は、追加の要素、たとえば、通信インターフェース712、入力インターフェース728、および/またはユーザインターフェース718とも通信し得る。プロセッサ716の例は、汎用プロセッサ、中央処理装置、論理CPU/アレイ、マイクロコントローラ、サーバ、特定用途向け集積回路(ASIC:application specific integrated circuit)、デジタルシグナルプロセッサ、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)、および/またはデジタル回路、アナログ回路、あるいはこれらの何らかの組み合わせを含み得る。
【0099】
プロセッサ716は、ロジックを実行するように動作可能な1つまたは複数のデバイスであり得る。ロジックは、プロセッサ716によって実行された場合に、デバイアスパイプライン102、NLPフレームワーク104、バイアス識別コントローラ106、ペナルティコントローラ108、モデル生成器110、調節コントローラ112、グラフィカルユーザインターフェースコントローラ114、推薦エンジン602、および/またはシステム100の動作をプロセッサ716に実行させる、メモリ720または他のメモリに記憶されたコンピュータ実行可能命令またはコンピュータコードを含み得る。コンピュータコードは、プロセッサ716によって実行可能な命令を含み得る。
【0100】
メモリ720は、データを記憶および取り出しするための任意のデバイス、またはこれらの任意の組み合わせであり得る。メモリ720は、不揮発性および/または揮発性メモリ、たとえば、ランダムアクセスメモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read-only memory)、消去可能プログラマブル読み取り専用メモリ(EPROM:erasable programmable read-only memory)、またはフラッシュメモリを含み得る。代替的または追加的に、メモリ720は、光学ドライブ、磁気ドライブ(ハードドライブ)、ソリッドステートドライブ、または他の任意の形式のデータ記憶デバイスを含み得る。メモリ720は、デバイアスパイプライン102、NLPフレームワーク104、バイアス識別コントローラ106、ペナルティコントローラ108、モデル生成器110、調節コントローラ112、グラフィカルユーザインターフェースコントローラ114、推薦エンジン602、および/またはシステム100のうちの少なくとも1つを含み得る。代替的または追加的には、メモリは、本明細書に記載のシステム100の他の任意のコンポーネントまたはサブコンポーネントを含み得る。
【0101】
ユーザインターフェース718は、グラフィカルな情報を表示するための任意のデバイスまたはインターフェースを含み得る。システム回路714および/または通信インターフェース(複数可)712は、ユーザインターフェースにグラフィカルな情報を表示させる信号またはコマンドをユーザインターフェース718に送り得る。代替的または追加的に、ユーザインターフェース718はシステム100に対してリモートであり得、システム回路714および/または通信インターフェース(複数可)は、ユーザインターフェースに情報コンテンツを表示、まとめ、および/またはレンダリングさせるための、たとえばHTML、Javascript、CSSなどの様々な形式の命令をユーザインターフェースに送り得る。一部の例では、ユーザインターフェース718によって表示されるコンテンツは、ユーザ入力に対してインタラクティブまたはレスポンシブであり得る。たとえば、ユーザインターフェース718は、信号、メッセージ、および/または情報を通信インターフェース712またはシステム回路714に返し得る。
【0102】
システム100は、多くの異なる方法で実装され得る。一部の例では、システム100は、1つまたは複数の論理コンポーネントによって実装され得る。たとえば、システム100の論理コンポーネントは、ハードウェア、またはハードウェアおよびソフトウェアの組み合わせであり得る。論理コンポーネントは、デバイアスパイプライン102、NLPフレームワーク104、バイアス識別コントローラ106、ペナルティコントローラ108、モデル生成器110、調節コントローラ112、グラフィカルユーザインターフェースコントローラ114、推薦エンジン602、および/またはシステム100を含み得る。一部の例では、各ロジックコンポーネントは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル論理回路、アナログ回路、ディスクリート回路の組み合わせ、ゲート、もしくは他の任意のタイプのハードウェア、またはこれらの組み合わせを含み得る。代替的または追加的に、各コンポーネントは、たとえば、論理コンポーネントの特徴のうちの1つまたは複数を実装するための、プロセッサ716または他のプロセッサによって実行可能な命令を含むメモリハードウェア、たとえば、メモリ720の一部などを含み得る。論理コンポーネントのいずれか1つが、プロセッサ716によって実行可能な命令を含むメモリの一部を含む場合、そのコンポーネントはプロセッサ716を含んでも含まなくてもよい。一部の例では、各論理コンポーネントは単に、対応するコンポーネントが他のいかなるハードウェアも含むことなく、そのコンポーネントの特徴を実装するための、プロセッサ716または他のプロセッサ(複数可)によって実行可能な命令を含むメモリ720または他の物理メモリの一部であり得る。各コンポーネントは、含んでいるハードウェアがソフトウェアを含む場合であっても、少なくとも何らかのハードウェアを含むので、各論理コンポーネントは、同じ意味でハードウェアコンポーネントと呼ばれ得る。
【0103】
一部の特徴は、非一時的コンピュータ可読記憶媒体に記憶されるように(たとえば、コンピュータ実行可能命令として実装されたロジックとして、またはメモリ内のデータ構造として)図示している。システムならびにそのロジックおよびデータ構造の全部または一部は、1つまたは複数のタイプの非一時的コンピュータ可読記憶媒体に記憶され、分散され、またはそこから読み出され得る。非一時的コンピュータ可読記憶媒体の例は、ハードディスク、フロッピーディスク、CD-ROM、フラッシュドライブ、キャッシュ、揮発性メモリ、不揮発性メモリ、RAM、フラッシュメモリ、または他の任意のタイプの1つまたは複数のコンピュータ可読記憶媒体を含み得る。
【0104】
システムの処理能力は、複数の分散処理システムを任意に含む、複数のプロセッサおよびメモリ間など複数のエンティティ間で分散され得る。パラメータ、データベース、および他のデータ構造は、別々に記憶および管理され得、単一のメモリまたはデータベースに組み込まれ得、多くの異なる方法で論理的および物理的に編成され得、異なるタイプのデータ構造、たとえば、リンク付きリスト、ハッシュテーブル、または暗黙的記憶メカニズムによって実装され得る。ロジック、たとえば、プログラムまたは回路は、複数のプログラム間で組み合わせまたは分割され、いくつかのメモリおよびプロセッサに分散され得、ライブラリ、たとえば、共有ライブラリ(たとえば、ダイナミックリンクライブラリ(DLL:dynamic link library)で実装され得る。
【0105】
説明は全て、記載した特定の実装形態にかかわらず、本質的に例示的なものであって、限定的なものではない。たとえば、実装形態の選択した態様、特徴、またはコンポーネントは、メモリ(複数可)に記憶されるものとして示しているが、1つまたは複数のシステムの全部または一部は、他のコンピュータ可読記憶媒体、たとえば、二次記憶デバイス、たとえば、ハードディスク、フラッシュメモリドライブ、または情報を一時的もしくは恒久的に保持するハードウェアに記憶され、分散され、またはこれらから読み出され得る。また、様々な論理ユニット、回路および画面表示機能はそのような機能の一例にすぎず、同様の機能を含む他の任意の構成も可能である。
【0106】
上記の処理、方法、および/または技法を実装するためのそれぞれのロジック、ソフトウェア、または命令は、コンピュータ可読記憶媒体上に提供され得る。図示した、または本明細書で説明した機能、行為、またはタスクは、コンピュータ可読媒体の中または上に記憶されたロジックまたは命令の1つまたは複数のセットに応答して実行され得る。機能、行為、またはタスクは、特定のタイプの命令セット、記憶媒体、プロセッサ、または処理戦略とは独立しており、単独でまたは組み合わせて動作するソフトウェア、ハードウェア、集積回路、ファームウェア、マイクロコードなどによって実行され得る。同様に、処理戦略は、マルチプロセッシング、マルチタスク、並列処理などを含み得る。一例では、命令はリムーバブルメディアデバイスに記憶されて、ローカルまたはリモートシステムにより読み取られる。他の例では、ロジックまたは命令は遠隔地に記憶されて、コンピュータネットワークまたはインフラストラクチャ通信回線を介して転送される。さらに他の例では、ロジックまたは命令は、所与のコンピュータおよび/または中央処理装置(「CPU:central processing unit」)に記憶される。
【0107】
さらに、特定のコンポーネントを上記で説明しているが、本明細書に記載の方法、システム、および製造品は、追加の、より少ない、または異なるコンポーネントを含み得る。たとえば、プロセッサは、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、ディスクリートロジック、または他のタイプの回路もしくはロジックの組み合わせとして実装され得る。同様に、メモリは、DRAM、SRAM、フラッシュ、または他の任意のタイプのメモリであり得る。フラグ、データ、データベース、テーブル、エンティティ、および他のデータ構造は、別々に記憶および管理され得、単一のメモリもしくはデータベースに組み込まれ得、分散され得、または多くの異なる方法で論理的および物理的に編成され得る。コンポーネントは、独立して動作し得、または同一のプログラムもしくは異なるプログラムを実行する同一の装置の一部であり得る。コンポーネントは、別個のハードウェア、たとえば、別個の取り外し可能な回路基板上に存在し得、または共通のハードウェア、たとえば、同一のメモリ、およびそのメモリからの命令を実行するためのプロセッサを共有し得る。プログラムは、単一のプログラム、別個のプログラムの一部であり得、いくつかのメモリおよびプロセッサに分散され得る。
【0108】
第2のアクションが第1のアクションから直接的に生じるか間接的に生じるかにかかわらず、第2のアクションは第1のアクションに「応答する」と記述し得る。第2のアクションは第1のアクションよりかなり後に生じ得、依然として、第1のアクションに応答し得る。同様に、介在するアクションが第1のアクションと第2のアクションとの間に生じても、また、介在するアクションのうちの1つまたは複数により第2のアクションが直接実行されても、第2のアクションは第1のアクションに応答すると記述し得る。たとえば、第1のアクションがフラグを設定し、フラグが設定されると、第3のアクションが後で第2のアクションを開始する場合に、第2のアクションは第1のアクションに応答し得る。
【0109】
用法を明確にして一般に注意を促すために、「<A>、<B>、...および<N>のうちの少なくとも1つ」、もしくは「<A>、<B>、...<N>のうちの少なくとも1つ、またはこれらの組み合わせ」、または「<A>、<B>、...および/または<N>」という語句は、出願人により最も広い意味で定義されており、出願人によりそうでないと明確に断言されていない限り、以前または以後の他の任意の暗黙的な定義に優先し、A、B、...およびNから構成されるグループから選択される1つまたは複数の要素を意味する。換言すれば、これらの語句は、任意の1つの要素を単独で含むか、またはその要素を、列挙していない追加の要素も組み合わせて含み得る他の要素のうちの1つまたは複数と組み合わせて含む、要素A、B、...またはNのうちの1つまたは複数の任意の組み合わせを意味する。
【0110】
様々な実施形態を説明したが、さらに多くの実施形態および実装形態が可能であることは当業者には明らかであろう。したがって、本明細書に記載の実施形態は例であり、唯一の可能な実施形態および実装形態ではない。