(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-09
(45)【発行日】2022-12-19
(54)【発明の名称】変圧器の加速劣化試験装置および試験方法
(51)【国際特許分類】
H01F 41/00 20060101AFI20221212BHJP
H01F 27/00 20060101ALI20221212BHJP
G01N 17/00 20060101ALI20221212BHJP
G01R 31/00 20060101ALI20221212BHJP
【FI】
H01F41/00 D
H01F27/00 H
G01N17/00
G01R31/00
(21)【出願番号】P 2018041375
(22)【出願日】2018-03-08
【審査請求日】2021-01-19
(73)【特許権者】
【識別番号】000221616
【氏名又は名称】東日本旅客鉄道株式会社
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】青山 光
(72)【発明者】
【氏名】内山 陽介
(72)【発明者】
【氏名】小貫 素彦
(72)【発明者】
【氏名】松本 晃
【審査官】井上 健一
(56)【参考文献】
【文献】特開2011-233557(JP,A)
【文献】特開2017-201681(JP,A)
【文献】特開2015-186273(JP,A)
【文献】特開昭63-209425(JP,A)
【文献】特開2010-232325(JP,A)
【文献】特開平07-326521(JP,A)
【文献】特開2010-230479(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01F 41/00
H01F 27/00
G01N 17/00
G01R 31/00
(57)【特許請求の範囲】
【請求項1】
変電所もしくは配電設備から供給される交流電圧を試験対象の変圧器の一次側へ供給するための電力供給経路と、該電力供給経路の途中に設けられた可変電圧変換手段と
、
前記可変電圧変換手段と前記試験対象の変圧器の一次側端子との間に設けられた第1断路器と、
前記試験対象の変圧器の二次側巻線の端子間を短絡可能な第2断路器と、
前記可変電圧変換手段と前記試験対象の変圧器の二次側端子との間に設けられた第3断路器と、を備え
、
前記第3断路器がオフされた状態で、前記第1断路器および第2断路器がオン状態にされることにより、通常使用状態よりも大きな電流が流されることで前記試験対象の変圧器を加速劣化させることが可能に構成されていることを特徴とする変圧器の加速劣化試験装置。
【請求項2】
前記電力供給経路の途中には前記可変電圧変換手段と直列に第1遮断器が設けられ、
前記可変電圧変換手段と前記試験対象の変圧器の二次側端子との間には、前記第3断路器と直列をなすように第2遮断器が設けられ、該第2遮断器の遮断電流値は前記第1遮断器の遮断電流値よりも低い値に設定されていることを特徴とする請求項1に記載の変圧器の加速劣化試験装置。
【請求項3】
前記可変電圧変換手段は、変換電圧を連続的に調整可能な電圧調整器と、変換電圧を段階的に調整可能な調整用変圧器とから構成されていることを特徴とする請求項1または2に記載の変圧器の加速劣化試験装置。
【請求項4】
前記試験対象の変圧器の内部の油の温度を検出し表示する温度計測器と、
前記温度計測器の計測温度を読み取って温度値をデジタル信号に変換する計測温度読み取り手段と、
前記計測温度読み取り手段からの信号に応じて前記可変電圧変換手段を制御する制御手段と、を備えることを特徴とする請求項1~3のいずれかに記載の変圧器の加速劣化試験装置。
【請求項5】
請求項1~3のいずれかに記載の変圧器の加速劣化試験装置を用いた変圧器の加速劣化試験方法であって、
前記第3断路器を非導通状態にしかつ前記第1断路器および前記第2断路器を導通状態にして、前記試験対象の変圧器の二次側を短絡状態にすることで通常使用状態よりも大きな電流を連続して流し続けるとともに、
所定期間を経過するごとに、前記第1断路器および前記第2断路器を非導通状態にしかつ前記第3断路器を導通状態にして、前記試験対象の変圧器に逆電圧を印加させることで当該変圧器の一次側に高電圧を誘起させて耐圧試験を実施することを特徴とする変圧器の加速劣化試験方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変圧器の加速劣化試験装置および試験方法に関し、特に変電所に設置される特別高圧用変圧器の加速劣化試験に利用して好適な技術に関するものである。
【背景技術】
【0002】
従来、変電所の設備機器のメンテナンスは、変圧器や整流器等の機器種別ごとに定めた一律周期による保全(TBM:時間基準保全)、具体的には所定時間の稼働や所定期間の経過(例えば1年毎)で行うのが一般的であった。また、機器の交換も、例えば耐用年数である30年経過すると実施するようなことが行われていた。
しかし、実際には使用環境や機器の個体差などにより劣化状態は機器ごとに異なる。そのため、劣化の有無に拘わらず検査・取替を行う上記一律周期の保全方式にあっては、無駄な検査が行われることでメンテナンスコストの増大を招く課題がある。従って、設備毎に機器個々の状態を把握しそれに基づいた検査・取替を行う保全(CBM:状態基準保全)が望ましい。
【0003】
ところで、特別高圧用変圧器は、変電所の設備機器の中でも更新コストが大きいため、CBMにより適切な更新計画を行うことが望まれる。そのため、運用中の変圧器の劣化傾向を精度よく把握することが求められる。変圧器の劣化傾向の把握には、計測データから統計分析の手法で推定することが考えられる。ただし、この手法による劣化傾向の把握の精度を検証するために、実際に使用されている変圧器を使用したとすると、劣化までに数10年を要してしまい、計測データの収集が困難である。そこで、本発明者らは、変圧器を加速劣化させて試験することを検討した。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来、電力用変圧器の余寿命を診断するための技術として、例えば特許文献1に記載されているように、加熱によって変圧器内部の絶縁材の温度を上昇させることで加速劣化させる方法が提案されている。しかし、特許文献1に記載されている発明は、変圧器の温度を上昇させる大型の加熱装置が必要であるとともに、変圧器に対して直接、電圧や電流を印加するものではないため、計測したデータの正確性に欠けるという課題がある。
また、加速劣化試験のため変圧器(一次側)に高電圧(例えば22kV等)を印加させるには、試験装置を設置する部署に、特別高圧(66kV等)の受電設備を用意する必要があり、試験設備容量が大きくなる(コストアップを招く)という課題があることが明らかになった。
【0006】
本発明は、上記課題を解決するためになされたもので、変圧器の温度を上昇させる大型の加熱装置を設けることなく加速劣化させたり、特別高圧の受電設備を用意することなく変圧器に高電圧を印加して耐圧試験を実施したりすることができる変圧器の加速劣化試験装置を提供することにある。
本発明の他の目的は、変圧器に対して直接、電圧や電流を印加することで、計測したデータの正確性を高めることができる変圧器の加速劣化試験方法を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明は、
変電所もしくは配電設備から供給される交流電圧を試験対象の変圧器の一次側へ供給するための電力供給経路と、該電力供給経路の途中に設けられた可変電圧変換手段と、
前記可変電圧変換手段と前記試験対象の変圧器の一次側端子との間に設けられた第1断路器と、
前記試験対象の変圧器の二次側巻線の端子間を短絡可能な第2断路器と、
前記可変電圧変換手段と前記試験対象の変圧器の二次側端子との間に設けられた第3断路器と、を備え、
前記第3断路器がオフされた状態で、前記第1断路器および第2断路器がオン状態にされることにより、通常使用状態よりも大きな電流が流されることで前記試験対象の変圧器を加速劣化させることが可能に構成したものである。
【0008】
上記構成を有する加速劣化試験装置によれば、試験対象の変圧器の二次側に設けた第2断路器を導通させることで、変圧器内部の巻線に大電流を流して変圧器内の絶縁油を加熱して温度を上昇させて加速劣化させることができるため、変圧器の温度を上昇させる大型の加熱装置を設けることなく加速劣化試験を実施することができる。
また、第1断路器および第2断路器を非導通状態にしかつ第3断路器を導通状態にして、試験対象の変圧器に逆電圧を印加させることで当該変圧器の一次側に高電圧を誘起させることができるため、特別高圧の受電設備を用意することなく変圧器に高電圧を印加して耐圧試験を実施することができる。さらに、変圧器に対して直接、電圧や電流を印加する構成であるため、計測したデータの正確性を高めることができる。
【0009】
ここで、望ましくは、前記電力供給経路の途中には前記可変電圧変換手段と直列に第1遮断器が設けられ、
前記可変電圧変換手段と前記試験対象の変圧器の二次側端子との間には、前記第3断路器と直列をなすように第2遮断器が設けられ、該第2遮断器の遮断電流値は前記第1遮断器の遮断電流値よりも低い値に設定されているように構成する。
かかる構成によれば、変圧器の二次側に設けた第2断路器を導通させて大電流通電試験を実施可能にするために第1遮断器の遮断電流の値を高い値に設定したまま高電圧印加試験を実施している際に、過電流が発生したとしても第2遮断器によって過電流を遮断することが可能となる。また、電力供給経路の途中には可変電圧変換手段と直列に第1遮断器を設けているため、試験対象の変圧器や部品を過大電流から保護することができる。
【0010】
また、望ましくは、前記可変電圧変換手段は、変換電圧を連続的に調整可能な電圧調整器と、変換電圧を段階的に調整可能な調整用変圧器とから構成する。
かかる構成によれば、連続的に調整可能な電圧調整器と段階的に調整可能な調整用変圧器(銅損供給変圧器)とを備えるため、変圧器に供給する電圧値を任意かつ容易に設定することができる。
【0011】
また、望ましくは、前記試験対象の変圧器の内部の油の温度を検出し表示する温度計測器と、
前記温度計測器の計測温度を読み取って温度値をデジタル信号に変換する計測温度読み取り手段と、
前記計測温度読み取り手段からの信号に応じて前記可変電圧変換手段を制御する制御手段と、を備えるようにする。
かかる構成によれば、変圧器がもともと備えている温度計測器(温度メータ)による計測結果を使用して、変圧器内の絶縁油が所定の温度となるように変圧器に流す電流を自動的あるいは手動で制御することが可能となる。
【0012】
さらに、本出願の他の発明は、上記のように構成された変圧器の加速劣化試験装置を用いた変圧器の加速劣化試験方法において、
前記第3断路器を非導通状態にしかつ前記第1断路器および前記第2断路器を導通状態にして、前記試験対象の変圧器の二次側を短絡状態にすることで通常使用状態よりも大きな電流を連続して流し続けるとともに、
所定期間を経過するごとに、前記第1断路器および前記第2断路器を非導通状態にしかつ前記第3断路器を導通状態にして、前記試験対象の変圧器に逆電圧を印加させることで当該変圧器の一次側に高電圧を誘起させて耐圧試験を実施するようにする。
【0013】
かかる方法によれば、大電流通電試験と高電圧印加試験の両方を実施できるように複数の断路器を設けた加速劣化試験装置を使用し、各断路器を適宜切り替えて加速劣化試験を実施するため、変圧器の温度を上昇させる大型の加熱装置を設けたり特別高圧の受電設備を用意することなく大電流通電試験と高電圧印加試験を実施することができる上、2つの試験の切替えを簡単に行うことができる。
【0015】
上記した方法によれば、試験対象の変圧器の二次側を短絡させることで、変圧器内部の巻線に大電流を流して変圧器内の絶縁油を加熱して温度を上昇させて加速劣化させることができるため、変圧器の温度を上昇させる大型の加熱装置を設けることなく加速劣化試験を実施することができる。また、試験対象の変圧器に逆電圧を印加させることで当該変圧器の一次側に高電圧を誘起させるため、特別高圧の受電設備を用意することなく変圧器に高電圧を印加して耐圧試験を実施することができる。さらに、変圧器に対して直接、電圧や電流を印加するため、計測したデータの正確性を高めることができる。
【発明の効果】
【0016】
本発明の加速劣化試験装置によれば、変圧器の温度を上昇させる大型の加熱装置を設けることなく加速劣化させたり、特別高圧の受電設備を用意することなく変圧器に高電圧を印加して耐圧試験を実施したりすることができる。また、本発明の変圧器の加速劣化試験方法によれば、変圧器に対して直接、電圧や電流を印加することで、計測したデータの正確性を高めることができるという効果を有する。
【図面の簡単な説明】
【0017】
【
図1】本発明に係る変圧器の加速劣化試験装置の一実施例を示す回路構成図である。
【
図2】本実施形態の加速劣化試験装置の試験時の等価回路を示すもので、(A)は大電流通電試験時の等価回路、(B)は高電圧印加試験時の等価回路である。
【
図3】本発明に係る変圧器の加速劣化試験の処理の手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0018】
以下、本発明に係る変圧器の加速劣化試験装置および試験方法の実施形態について、図面を参照しながら説明する。
図1は、本実施形態における変圧器(特別高圧用変圧器)の加速劣化試験装置の概略構成を示した図である。
図1に示すように、本実施形態の加速劣化試験装置10は、変電所から供給される66kVのような特別高圧の交流電圧を6.6kVのような高圧の交流電圧に変換する特別高圧用変圧器21や、落雷や短絡などの事故発生時に回路を切り離して安全を保つために電流を遮断する大容量の遮断器22および負荷側における短絡等に起因する過電流を個別に遮断する遮断器23A,23B……を備えた配電設備20からの電力を、遮断器23Aおよび給電用ケーブル24を介して受けるように構成されている。
【0019】
なお、本発明者らが適用を検討したシステムでは、遮断器23Bは台車試験など他の試験を行う試験設備等へ電力を供給する経路に設けられている。また、図示しないが、配電設備20には、直流変流器などにより検出された電流値に基づいて遮断器23A,23B……を制御する制御機が設けられている。
加速劣化試験装置10は、給電用ケーブル24の途中に設けられた断路器11A、該断路器11Aと加速劣化試験の対象となる供試体変圧器12の一次側との間に設けられた遮断器13A、可変電圧変換手段14および断路器11Bと、供試体変圧器12の二次側に設けられた短絡用の断路器11Cを有する。
【0020】
また、上記可変電圧変換手段14と上記供試体変圧器12の二次側端子との間には、断路器11Bおよび供試体変圧器12と並列にバイパス路を構成する断路器11Dおよび遮断器13Bが設けられている。遮断器13Bは、省略することも可能であるが、遮断器13Bを設けて遮断器13Aよりも作動する電流値のレベルを低く設定しておくことで、断路器11Dをオン状態にして行う高電圧印加試験で短絡等が発生した際に、確実に電流を遮断することができる。
特に限定されるものでないが、本実施形態では、可変電圧変換手段14は、連続的に変換電圧を変化させることができる電圧調整器14Aとタップの選択で段階的に変換電圧を切り替えることができる銅損供給変圧器14Bとによって構成されている。また、断路器11Aと遮断器13Aとの間には、断路器11Eを介して力率補償用のコンデンサ15が接続されている。
【0021】
さらに、供試体変圧器12には内部の絶縁油の温度を計測する温度検出器16が、また加速劣化試験装置10の近傍には周囲温度(気温)を計測する外気温センサ17が設けられている。さらに、試験対象の変圧器12の二次側には、例えばロゴスキーコイルやクランプメーターなどからなる電流計測器18が設けられている。変成器を設けて電流を計測しても良い。上記温度検出器16、外気温センサ17および電流計測器18の測定信号は、分析装置31に供給されて記録される。この際、分析装置31は測定された電流値から電力値を算出して電力値として記録しても良い。
また、上記温度検出器16の測定信号は制御装置32へ供給され、制御装置32は内部の絶縁油の温度が例えば100℃を維持するように可変電圧変換手段14を制御する。この際に、変圧器がもともと備えている温度計測器(温度メータ)による計測結果を使用して、変圧器内の絶縁油が所定の温度となるように変圧器に流す電流を自動的あるいは手動で制御するように構成することができる。手動による場合は、
図1の制御装置32は不要となる。
【0022】
なお、変圧器には内部の絶縁油の温度を検出してアナログ表示する温度メータ(温度計測器)を備えているので、そのような変圧器を供試体変圧器12として使用とする場合には、温度メータを撮影するカメラと該カメラの撮影画像からメータの針の位置を検出して測定値を解読しデジタルコードに変換する読取装置を設け、該読取装置で取得した温度データを分析装置31へ供給して記録するようにしても良い。また、読取装置に表示装置を設けて温度測定値をデジタル表示する装置が提供されているので、そのような装置を使用して、監視者が離れた場所で読取装置の表示装置に表示された温度測定値を見ながら可変電圧変換手段14を遠隔制御するようにシステムを構成しても良い。
【0023】
分析装置31は、収集したデータや分析用のソフトウェア(分析ツール)等を記憶する半導体メモリあるいは磁気ディスク装置などからなるデータ記憶装置、マイクロコンピュータのようなデータ処理装置からなりデータを分析するための演算等を行なう演算制御装置、キーボードやマウスなどの入力装置、液晶モニタのような表示装置など有する一般的なPC(パーソナルコンピュータ)によって構成することができる。
【0024】
重回帰分析等の統計的解析手法により、変圧器に設けられた計測器により取得された絶縁油の温度、気温および電力値のデータを統計処理して得られた残差などの特徴量を指標として変圧器の劣化の状態や余寿命を判別する解析モデルを構築したような場合に、上記分析装置31を使用すれば、実際に稼働している変圧器から長期間にわたってデータを収集することなく、本実施形態の加速劣化試験装置10から収集された絶縁油の温度、気温および電力値のデータに基づいて、構築した解析モデルの有効性を短期間に評価することができる。
また、加速劣化試験装置10は変圧器の巻線に大電流を流して油の温度を上昇させて絶縁紙を加速劣化させるため、変圧器全体を加熱して絶縁紙を加速劣化させる特許文献1に記載されている発明に比べて、計測データの正確性を高めることができるとともに、変圧器全体を加熱する大型の加熱装置も不要となる。
【0025】
次に、加速劣化試験装置10による具体的な加速劣化試験の仕方(手順)について、
図2および
図3を用いて説明する。
本実施形態の加速劣化試験においては、以下に説明するように、巻線に定格以上の大電流を流して供試体変圧器12内の絶縁油を加熱する大電流通電試験と、供試体変圧器12に高電圧を印加する高電圧印加試験とを実施する。
【0026】
加速劣化試験では、断路器11Dをオフ、断路器11A,11B,11Eをオンにし、遮断器13Aをオン、遮断器13Bをオフにした状態で、断路器11Cをオンにする。すると、加速劣化試験装置10は、
図2(A)に示すような等価回路の状態で動作し、供試体変圧器12の二次側が短絡状態になって大電流が流れる(ステップS1)。これにより、供試体変圧器12内の絶縁油が加熱されて温度が上昇する。ステップS1の大電流通電試験では、絶縁油の温度が例えば100℃を維持するように、可変電圧変換手段14を制御しつつ24時間連続して電流を流し続ける。この際に、変圧器がもともと備えている温度計測器(温度メータ)による計測結果を使用して、変圧器内の絶縁油が所定の温度となるように変圧器に流す電流を自動的あるいは手動で制御するように構成しても良い。
【0027】
通常の実使用状態の絶縁油の平均温度は約60℃であり、一般に油温が6度上昇すると余寿命が半減することが知られている。従って、加速劣化試験中の油温を100℃にすることで、大幅な加速劣化をもたらすことができる。なお、温度を100℃としたのは、油温と絶縁紙の劣化の度合いは比例関係にあり、温度が高いほど劣化を促進させることができるものの、油温が100℃を超えると比例関係が崩れて劣化の度合いが急に高くなり統計的手法が適用できなくなるためである。
本発明者らが試作した加速劣化試験装置10では、供試体変圧器12として定格容量が6780kVAで、一次側と二次側の変圧比が22kV/1.2kVの変圧器を使用した。このような仕様の変圧器は、通常状態で二次側に流れる電流は数100Aであるが、冬季における加速劣化試験装置10の大電流通電試験では、二次側におよそ3800Aの電流を流すことで油温を100℃に維持することができた。
【0028】
なお、稼働中の変圧器で二次側が短絡して過電流状態になると、上流側にある遮断器(
図1の13Aに相当する遮断器)が働いて電流が遮断されるが、本実施形態の加速劣化試験装置10においては、それが作動する電流値を通常よりも高い値に設定された遮断器13Aを使用することで、二次側を短絡しても電流が遮断されないようにしている。
遮断器13Aとしては、作動する電流値(動作電流値)を切り替えることができる遮断器を使用してもよく、その場合には、大電流通電試験を開始する前に、動作電流値を高い値に切り替えておく。
【0029】
上記ステップS1の24時間連続大電流通電試験を連日継続している途中で、例えば2カ月のような所定期間が経過した(ステップS2:Yes)と判定すると、断路器11B、11Cをオフにして大電流通電試験を中断する(ステップS3)。そして、断路器11Dをオンにして高電圧印加試験を実施する(ステップS4)。従来の一般的な試験では、変圧器の一次側に数10kVを印加することで高電圧印加試験を行なっているが、本実施形態の加速劣化試験装置10では、断路器11B、11Cと断路器11Dを設けているため、断路器11A,11Eおよび遮断器13A,13Bをオンにした状態で、断路器11B、11Cをオフにして断路器11Dをオンにすると、
図2(B)に示すような等価回路の状態で動作する。
【0030】
これにより、変圧器12は、二次側に変電所からの電圧が印加されて動作する通常とは逆のバイアス状態となる。そのため、例えば二次側に1.2kVの電圧が印加されると一次側に22kVの高電圧が誘起され高電圧印加試験が可能となる。その結果、加速劣化試験の際に変圧器へ高電圧(例えば22kV等)を印加させるために、試験装置を設置する部署に、特別高圧の受電設備を用意する必要をなくすことができ、コストアップを招くのを回避することができる。
なお、高電圧印加試験(ステップS4)を実施する上記所定期間は2カ月に限定されず、1週間あるいは数日でも良い。また、所定期間を加速試験の加速度合い(絶縁油の温度)に反比例するように決定しても良い。
【0031】
次に、ステップS5で、上記高電圧印加試験の結果が正常か否かすなわち絶縁不良が発生していないか判定する。ここで、正常(Yes)すなわち絶縁不良が発生していないと判定すると、ステップS1へ戻って再度大電流通電試験を実施する。一方、ステップS5で正常でない(No)すなわち絶縁不良が発生していると判定すると、ステップS6へ進み、絶縁不良が軽微なものであるか否か判定する。そして、軽微なものである(Yes)と判定すると、ステップS7へ進み、高電圧印加試験の結果をメモリに記憶してからステップS1へ戻って再度大電流通電試験を実施する。
【0032】
また、ステップS6で絶縁不良が軽微なものでない(No)と判定すると、これ以上劣化加速試験を継続しても分析に有効なデータが得られる可能性が低いので、ステップS8へ進んで試験結果をメモリに記憶して劣化加速試験を終了する。
上記のような手順によれば、試験対象の供試体変圧器の二次側を短絡させることで、変圧器内部の巻線に大電流を流して変圧器内の絶縁油を加熱して温度を上昇させて加速劣化させることができるため、変圧器の温度を上昇させる大型の加熱装置を設けることなく加速劣化試験を行うことができる。そして、試験によって得られたデータを用いて、例えば解析モデルの有効性を短期間に評価することができる。
【0033】
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではない。例えば上記実施例では、可変電圧変換手段14を、連続的に変換電圧を変化させることができる電圧調整器14Aとタップの選択で段階的に変換電圧を切り替えることができる銅損供給変圧器14Bとによって構成したものについて説明したが、いずれか一方のみを使用するようにしても良い。また、上記実施例では、可変電圧変換手段14と供試体変圧器12の二次側とを接続するバイパス路に、断路器11Dと直列をなす遮断器13Bを設けているが、この遮断器13Bを省略しても良い。
【0034】
また、上記実施例では、一例として変電所の特別高圧用変圧器の劣化加速試験を例にとって説明したが、本発明は特別高圧用変圧器の劣化加速試験に限定されず、柱上変圧器など低圧用の変圧器の劣化加速試験にも適用することができる。
さらに、上記実施例では、逆バイアスによる高電圧印加試験方法を変圧器の劣化加速試験装置に適用した場合について説明したが、本発明における逆バイアス高電圧印加試験方法は通常の変圧器耐圧試験装置にも利用することができる。
【符号の説明】
【0035】
10 加速劣化試験装置
11 断路器
12 供試体変圧器
13 遮断器
14 可変電圧変換手段
15 力率補償用コンデンサ
16 温度検出器
17 外気温センサ
18 電流計測器
20 配電設備
21 特別高圧用変圧器
22、23 遮断器
31 分析装置
32 制御装置