IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

特許7191642ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法
<>
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図1
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図2
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図3
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図4
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図5
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図6
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図7
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図8
  • 特許-ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-09
(45)【発行日】2022-12-19
(54)【発明の名称】ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法
(51)【国際特許分類】
   F23J 3/04 20060101AFI20221212BHJP
   F23J 15/00 20060101ALI20221212BHJP
【FI】
F23J3/04
F23J15/00 Z
【請求項の数】 9
(21)【出願番号】P 2018199166
(22)【出願日】2018-10-23
(65)【公開番号】P2020067205
(43)【公開日】2020-04-30
【審査請求日】2021-09-10
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【弁理士】
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【弁理士】
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【弁理士】
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【弁理士】
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】芦川 典士
(72)【発明者】
【氏名】橋口 伸彦
(72)【発明者】
【氏名】岩谷 幸太郎
【審査官】古川 峻弘
(56)【参考文献】
【文献】特開2017-145972(JP,A)
【文献】特開2009-299476(JP,A)
【文献】実開昭50-075476(JP,U)
【文献】特開2008-116194(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F23J 3/04,15/00
(57)【特許請求の範囲】
【請求項1】
燃料を燃焼させる火炉と、
前記火炉で生成された燃焼ガスが導かれる煙道と、
前記煙道の下流側に設けられたバグフィルタと、
燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する赤熱未燃分抑制構造と、
を備え
前記煙道は、該煙道の下流側に位置し、鉛直下方から鉛直上方へと燃焼ガスが流れる下流側煙道部を備え、
前記赤熱未燃分抑制構造は、前記下流側煙道部を流れる燃焼ガスの流速が赤熱未燃分の終末速度以下でかつフライアッシュの終末速度以上となる流路断面積を有する前記下流側煙道部とされているボイラ。
【請求項2】
前記赤熱未燃分抑制構造は、前記下流側煙道部に設けられたバッフルプレートを備えている請求項に記載のボイラ。
【請求項3】
前記煙道に設けられて燃焼ガスに随伴して搬送する灰分を貯留するホッパと、
前記ホッパに貯留された前記灰分を搬送用空気とともに順次排出して、フライアッシュタンク用バグフィルタで前記灰分を捕獲した後に貯留するフライアッシュタンクと、
ライアッシュタンク用バグフィルタのバグフィルタが設置されたバグフィルタ容器と、
前記フライアッシュタンク用バグフィルタのバグフィルタよりも鉛直下方の位置で前記バグフィルタ容器に接続されるとともに前記搬送用空気を搬送する灰搬送集合管と、
を備え、
前記赤熱未燃分抑制構造として、前記フライアッシュタンク用バグフィルタのバグフィルタの下端と前記灰搬送集合管との間の高さ方向の距離は、0.6m以上1.3m以下とされている請求項1又は2に記載のボイラ。
【請求項4】
前記バグフィルタ及び/又は前記フライアッシュタンク用バグフィルタのバグフィルタは、少なくとも一部が金属材質とされている請求項1から3のいずれかに記載のボイラ。
【請求項5】
燃料を燃焼させる火炉と、
前記火炉で生成された燃焼ガスが導かれる煙道と、
前記煙道の下流側に設けられたバグフィルタと、
燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する赤熱未燃分抑制構造と、
を備え、
前記煙道は、該煙道の下流側に位置し、鉛直下方から鉛直上方へと燃焼ガスが流れる下流側煙道部を備え、
前記赤熱未燃分抑制構造は、前記下流側煙道部を流れる燃焼ガスの流速が赤熱未燃分の終末速度以下でかつフライアッシュの終末速度以上となる流路断面積を有する前記下流側煙道部とされているボイラに用いられる灰処理装置であって、
前記煙道に設けられて燃焼ガスに随伴する灰分を貯留するホッパと、
前記ホッパに貯留された灰分を該ホッパ外に排出する排出部と、
前記排出部を制御する制御部と、
を備え、
前記制御部は、前記排出部から前記灰分を排出するタイミングを決定する機械学習部を備えている灰処理装置。
【請求項6】
前記機械学習部は、前記火炉内へ投入する空気供給量、前記火炉内へ投入する燃料供給量及び燃焼ガスのCO濃度又は酸素濃度のうちの少なくとも1つの計測データを取得するとともに、該計測データに対応した前記排出部から前記灰分を排出したタイミングとを用いて、前記排出部から前記灰分を排出するタイミングを推論する推論規則部を備えている請求項に記載の灰処理装置。
【請求項7】
請求項5又は6に記載の灰処理装置を備えているボイラ。
【請求項8】
燃料を燃焼させる火炉と、
前記火炉で生成された燃焼ガスが導かれる煙道と、
前記煙道の下流側に設けられたバグフィルタと、
燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する赤熱未燃分抑制構造と、
を備えたボイラの運転方法であって、
前記煙道は、該煙道の下流側に位置し、鉛直下方から鉛直上方へと燃焼ガスが流れる下流側煙道部を備え、
前記赤熱未燃分抑制構造は、前記下流側煙道部を流れる燃焼ガスの流速が赤熱未燃分の終末速度以下でかつフライアッシュの終末速度以上となる流路断面積を有する前記下流側煙道部とされ、
燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制するボイラの運転方法。
【請求項9】
燃料を燃焼させる火炉と、
前記火炉で生成された燃焼ガスが導かれる煙道と、
前記煙道の下流側に設けられたバグフィルタと、
燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する赤熱未燃分抑制構造と、
を備え、
前記煙道は、該煙道の下流側に位置し、鉛直下方から鉛直上方へと燃焼ガスが流れる下流側煙道部を備え、
前記赤熱未燃分抑制構造は、前記下流側煙道部を流れる燃焼ガスの流速が赤熱未燃分の終末速度以下でかつフライアッシュの終末速度以上となる流路断面積を有する前記下流側煙道部とされているボイラに用いられ、
燃料を燃焼させる火炉で生成された燃焼ガスが導かれる煙道に設けられて燃焼ガスに随伴する灰分を貯留するホッパと、
前記ホッパに貯留された灰分を該ホッパ外に排出する排出部と、
前記排出部を制御する制御部と、
を備えた灰処理装置の運転方法であって、
前記制御部は、前記排出部から前記灰分を排出するタイミングを決定するように機械学習部を行う灰処理装置の運転方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法に関するものである。
【背景技術】
【0002】
石炭やバイオマスを燃料とするボイラは、中空形状をなして鉛直方向に設置される火炉を有し、この火炉壁に複数の燃焼バーナが周方向に沿って配設されている。また、ボイラは、火炉の鉛直方向上方に煙道が連結されており、この煙道に蒸気を生成し過熱するための熱交換器が配置されている。そして、燃焼バーナが火炉内に燃料と空気との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道に流れる。燃焼ガスが流れる領域に熱交換器が設置され、熱交換器を構成する伝熱管内を流れる水や蒸気を加熱して過熱蒸気が生成される。
【0003】
下記特許文献1には、燃焼ガスに随伴するポップコーンフライアッシュを捕集する技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第5762255号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
燃料に石炭および/またはバイオマスを含む場合などでは、燃焼ガス中に赤熱未燃分が発生し易くなる場合がある。赤熱未燃分は、未燃炭素分の一部が酸化反応を継続して高温化して赤熱しているものである。この赤熱未燃分が煙道の下流に接続されたバグフィルタまで導かれて蓄積されると、布製など耐久温度が低い通常のバグフィルタが焼損するおそれがある。
【0006】
また、煙道には燃焼ガスに随伴して搬送された灰分の一部が落下する灰分を貯留するホッパが設けられている。ホッパに貯留された灰分中に赤熱未燃分が滞留すると、灰分(例えばフライアッシュ)が局所的に1000℃程度の高温となり焼結灰や溶融灰が発生する。焼結灰等が発生するとホッパ内から灰分を排出する排出性が低下してボイラの運転に支障を来すおそれがある。
【0007】
本開示は、このような事情に鑑みてなされたものであって、赤熱未燃分による不具合を抑制することができるボイラ及び灰処理装置並びにボイラの運転方法及び灰処理装置の運転方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本開示の一態様に係るボイラは、燃料を燃焼させる火炉と、前記火炉で生成された燃焼ガスが導かれる煙道と、前記煙道の下流側に設けられたバグフィルタと、燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する赤熱未燃分抑制構造と、を備えている。
【0009】
火炉にて燃料が燃焼させられた燃焼ガスには、未燃分が含まれている場合がある。この未燃分のうち、未燃炭素分の一部が酸化反応を継続して高温化して赤熱している赤熱未燃分が存在する場合がある。この赤熱未燃分が煙道を通過してバグフィルタまで到達して蓄積されるとバグフィルタの耐熱限界を超えると焼損するおそれがある。
そこで、赤熱未燃分抑制構造を設けることとした。赤熱未燃分抑制構造は、煙道を通過して赤熱未燃分がバグフィルタへ流れることを抑制する。これにより、バグフィルタの焼損を抑制することができる。
【0010】
さらに、本開示の一態様に係るボイラでは、前記煙道は、該煙道の下流側に位置し、鉛直下方から鉛直上方へと燃焼ガスが流れる下流側煙道部を備え、前記赤熱未燃分抑制構造は、前記下流側煙道部を流れる燃焼ガスの流速が赤熱未燃分の終末速度以下でかつフライアッシュの終末速度以上となる流路断面積を有する前記下流側煙道部とされている。
【0011】
赤熱未燃分は燃焼ガスに随伴して流れるが、赤熱未燃分の終末速度以下となるように燃焼ガスの流速を決定すれば、赤熱未燃分は下流側へ搬送されることが抑制される。そこで、鉛直下方から鉛直上方へと流れる燃焼ガスの流速が赤熱未燃分の終末速度以下となるように、下流側煙道部の流路断面積が定められている。例えば、ボイラの定格時の燃料投入量と空気投入量とから得られる燃焼ガスの発生量を用いて下流側煙道部の流路断面積が決定される。
【0012】
さらに、本開示の一態様に係るボイラでは、前記赤熱未燃分抑制構造は、前記下流側煙道部に設けられたバッフルプレートを備えている。
【0013】
下流側煙道部に邪魔板としてバッフルプレートを設けることで、燃焼ガスそのもののガス流れは維持しながら、赤熱未燃分がバッフルプレートに衝突して流速を失うことで、赤熱未燃分を堰き止めて鉛直下方へと導き、赤熱未燃分が下流側へ流れるのを抑制することができる。
【0014】
さらに、本開示の一態様に係るボイラでは、前記煙道に設けられて燃焼ガスに随伴して搬送する灰分を貯留するホッパと、前記ホッパに貯留された前記灰分を搬送用空気とともに順次排出して、フライアッシュタンク用バグフィルタで前記灰分を捕獲した後に貯留するフライアッシュタンクと、フライアッシュタンク用バグフィルタのバグフィルタが設置されたバグフィルタ容器と、前記フライアッシュタンク用バグフィルタのバグフィルタよりも鉛直下方の位置で前記バグフィルタ容器に接続されるとともに前記搬送用空気を搬送する灰搬送集合管と、を備え、前記赤熱未燃分抑制構造として、前記フライアッシュタンク用バグフィルタのバグフィルタの下端と前記灰搬送集合管との間の高さ方向の距離は、0.6m以上1.3m以下とされている。
【0015】
燃焼ガスが燃焼ガス搬送管からバグフィルタの下端まで到達する搬送時間を長くとることによって、赤熱未燃分が途中で落下することと赤熱未燃分の冷却が進むことで、バグフィルタに到達することを抑制し、バグフィルタで蓄積してバグフィルタの耐熱限界を超えて焼損することを抑制できる。また搬送時間を長くして赤熱未燃分の冷却が進むことで、バグフィルタで蓄積してバグフィルタの耐熱限界を超えて焼損することを抑制できる。バグフィルタ容器内の平均流速から検討すると、バグフィルタ下端から燃料ガス搬送管までの高さ方向の距離は0.6m以上1.3m以下が好ましい。
【0016】
さらに、本開示の一態様に係るボイラでは、前記バグフィルタ及び/又は前記フライアッシュタンク用バグフィルタのバグフィルタは、少なくとも一部が金属材質とされている。
【0017】
バグフィルタ及び/又は前記フライアッシュタンク用バグフィルタのバグフィルタを金属製とすることで、バグフィルタの耐熱温度を上昇して、仮に赤熱未燃分がバグフィルタに到達しても焼損による劣化を抑えることができる。
【0018】
また、本開示の一態様に係る灰処理装置は、燃料を燃焼させる火炉で生成された燃焼ガスが導かれる煙道に設けられて燃焼ガスに随伴する灰分を貯留するホッパと、前記ホッパに貯留された灰分をホッパ外に排出する排出部と、前記排出部を制御する制御部と、を備え、前記制御部は、前記排出部から灰分を排出するタイミングを決定する機械学習部を備えている。
【0019】
火炉にて燃料が燃焼させられた燃焼ガスには、未燃分が含まれている場合がある。この未燃分のうち、未燃炭素分の一部が酸化反応を継続して高温化して赤熱している赤熱未燃分が存在する場合がある。この赤熱未燃分がホッパに滞留すると、灰分(例えばフライアッシュ)が局所的に1000℃程度の高温となり焼結灰や溶融灰が発生する。焼結灰等が発生するとホッパから灰分の排出性が低下する。このため灰分を排出する処理時間に影響して排出するタイミングが変化する。本発明者等はこの現象に着目し、赤熱未燃分の発生状況を、灰分を排出するタイミングで得られることを見出した。そこで、機械学習部によって灰分を排出するタイミングを決定することで、赤熱未燃分の発生状況に合わせて効果的に灰分を排出することができる。
【0020】
さらに、本開示の一態様に係る灰処理装置では、前記機械学習部は、前記火炉内へ投入する空気供給量、前記火炉内へ投入する燃料供給量及び燃焼ガスのCO濃度又は酸素濃度のうちの少なくとも1つの計測データを取得するとともに、該計測データに対応した前記排出部から灰分を排出したタイミングとを用いて、前記排出部から灰分を排出するタイミングを推論する推論規則部を備えている。
【0021】
燃焼ガスのCO濃度が大きいとき、或いは酸素濃度が低いときは不完全燃焼が進んで赤熱未燃分が多く発生していると推論できる。赤熱未燃分の発生量は、空気や燃料の投入量から推論できる。これらの計測値と、灰分を排出したタイミングとを用いることで、赤熱未燃分の発生状況に対応した排出タイミングの推論規則を作成することができる。推論規則部で得られたモデルに基づいて、排出部から灰分を排出するタイミングを適切に決定することができる。灰処理のインターバルを短く、または長くするように、系統切換弁の開閉タイミングを制御して、赤熱未燃分を含む灰分を排出するタイミングを決定することができる。これにより、ホッパ内に焼結灰等が生成してフライアッシュの排出性が損なわれることを抑制することができる。
推論規則部は、例えば、ニューラルネットワーク等が用いられる。
【0022】
また、本開示の一態様に係るボイラは、上記のいずれかに記載の灰処理装置を備えている。
【0023】
また、本開示の一態様に係るボイラの運転方法は、燃料を燃焼させる火炉と、前記火炉で生成された燃焼ガスが導かれる煙道と、前記煙道の下流側に設けられたバグフィルタと、を備えたボイラの運転方法であって、燃焼ガスに灰分とともに随伴して搬送される赤熱未燃分が前記煙道を通過して前記バグフィルタへ導かれることを抑制する。
【0024】
また、本開示の一態様に係る灰処理装置の運転方法は、燃料を燃焼させる火炉で生成された燃焼ガスが導かれる煙道に設けられて燃焼ガスに随伴する灰分を貯留するホッパと、前記ホッパに貯留された灰分をホッパ外に排出する排出部と、前記排出部を制御する制御部と、を備えた灰処理装置の運転方法であって、前記制御部は、前記排出部から灰分を排出するタイミングを決定するように機械学習部を行う。
【発明の効果】
【0025】
赤熱未燃分が発生したとしてもバグフィルタの焼損を抑制することで、赤熱未燃分による不具合を抑制することができる。
また、赤熱未燃分が発生したとしても灰処理のタイミングを適正に決定することで、赤熱未燃分による不具合を抑制することができる。
【図面の簡単な説明】
【0026】
図1】第1実施形態に係るボイラの概略構成図である。
図2図1のバグフィルタ装置の概略を示した縦断面図である。
図3図1の変形例を示した概略構成図である。
図4】バッフルプレートを示した側断面図である。
図5図1の変形例を示した概略構成図である。
図6】第2実施形態に係るバグフィルタ装置の概略を示した縦断面図である。
図7】第3実施形態に係るボイラの概略構成図である。
図8】第2実施形態及び第3実施形態に係る灰処理装置を示した概略構成図である。
図9】灰処理のタイミングを示したグラフである。
【発明を実施するための形態】
【0027】
以下に、本開示にかかる実施形態について、図面を参照して説明する。なお、実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
【0028】
[第1実施形態]
以下、本開示の第1実施形態について説明する。
<ボイラ10の構成>
図1には、本実施形態に係るボイラ10の概略構成が示されている。
ボイラ10は、燃料として、例えば石炭(炭素含有固体燃料)を粉砕した微粉炭や木質燃料等のバイオマスの微粉燃料を用いてもよい。燃料を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収して給水や蒸気と熱交換して過熱蒸気を生成することが可能なボイラ10である。以降の説明で、上や上方とは鉛直方向上側を示し、下や下方とは鉛直方向下側を示すものである。
【0029】
本実施形態において、図1に示すように、ボイラ10は、火炉11と燃焼装置12と煙道13を有している。火炉11は、例えば四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11を構成する火炉壁は、複数の蒸発管とこれらを接続するフィンとで構成され、給水や蒸気と熱交換することにより火炉壁の温度上昇を抑制している。
【0030】
燃焼装置12は、火炉11を構成する火炉壁の下部側に設けられている。燃焼装置12は、火炉壁に装着された複数の燃焼バーナを有している。例えば、各燃焼バーナは、火炉壁の周方向に沿って均等間隔で配設されたものが1セットとして、鉛直方向に沿って複数段配置されていても良い。但し、火炉11の形状や一つの段における燃焼バーナの数、段数は、限定されるものではない。
【0031】
燃焼装置12の各燃焼バーナは、図示しない粉砕機(ミル)に連結されている。この粉砕機は、例えばハウジング内に回転テーブルが駆動回転可能に支持され、この回転テーブルの上方に複数のローラが回転テーブルの回転に連動して回転可能に支持されて構成されている。石炭やバイオマスなどの固体燃料が複数のローラと回転テーブルとの間に投入されると、ここで所定の大きさに粉砕され、搬送用ガス(一次空気)により分級された微粉燃料が燃焼装置12の燃焼バーナに供給される。
【0032】
煙道13は、火炉11の鉛直方向上部に連結されている。煙道13は、上方から下方へ延在する上流側煙道部13aと、この上流側煙道部13aに接続されて下方から上方へと延在する下流側煙道部13bとを備えている。上流側煙道部13aの下端と下流側煙道部13bの下端とは、略水平に延在する接続煙道部13cによって接続されている。下流側煙道部13bの上端には、略水平に延在する出口側煙道部13dが接続されている。
【0033】
上流側煙道部13aには、燃焼ガスの熱を回収するための熱交換器として、本実施形態では、例えば燃焼ガス流れの上流側から順に(図1において上から下に向かって順に)、過熱器(スーパーヒータ)15と、第1節炭器16とが設けられている。
【0034】
下流側煙道部13bには、燃焼ガスの熱を回収するための熱交換器として、本実施形態では、例えば燃焼ガス流れの上流側から順に(図1において下から上に向かって順に)、第2節炭器17と、空気予熱器18とが設けられている。
【0035】
上流側煙道部13aの下端には、下方へと延在するように第1ホッパ20が設けられている。第1ホッパ20は、下方へ向かって断面積が漸次縮小する形状となっている。第1ホッパ20には、燃焼ガスとともに随伴して搬送するフライアッシュ(灰分)や赤熱未燃分、砂などの一部が落下して堆積するようになっている。第1ホッパ20の下端から、灰分等(以下、主たる成分は灰分なので「灰分等」という。)が外部へと排出される。灰分等の排出は、所定の間隔をおいたタイミングでバッチ的に処理される。なお、図1では、第1ホッパ20が1つのみ示されているが、複数のホッパを並列に設けても良い。
【0036】
ここで、「赤熱未燃分」とは、未燃炭素分の一部が酸化反応を継続して高温化して赤熱しているものである。石炭にバイオマス燃料を混ぜて混焼させたときやバイオマス燃料専焼の場合などに比較的多く発生する場合があるものである。したがって、石炭専焼の場合には、それほど多くの赤熱未燃分は発生しないことがある。
【0037】
下流側煙道部13bの下端には、下方へと延在するように第2ホッパ22が設けられている。第2ホッパ22は、下方へ向かって断面積が漸次縮小する形状となっている。第2ホッパ22には、燃焼ガスとともに随伴して搬送する灰分等の一部が落下して堆積するようになっている。第1ホッパ20の下端から、灰分等が外部へと排出される。灰分等の排出は、所定の間隔をおいたタイミングでバッチ的に処理される。なお、図1では、第2ホッパ22が1つのみ示されているが、複数のホッパを並列に設けても良い。
【0038】
出口側煙道部13dの下流側には、複数のバグフィルタ装置25が設けられている。各バグフィルタ装置25は、出口側煙道部13dに対して並列に設けられている。バグフィルタ装置25の下流側は、図1に示すように、煙突30に接続されている。
【0039】
バグフィルタ装置25は、バグフィルタ容器26内に、バグフィルタ27を備えている。バグフィルタ27は、布製とされており、下方に開口する筒形状とされている。バグフィルタ27は、軸線方向を鉛直方向に向けた状態で並列に複数設けられている。バグフィルタ27の内部から外部へと燃焼ガスが通過する際に、燃焼ガスと共に随伴する灰分等を捕集するようになっている。
【0040】
バグフィルタ27の下方には、燃焼ガス搬送管28が設けられている。燃焼ガス搬送管28は、バグフィルタ容器26の側方から差し込まれた状態で接続されている。
【0041】
バグフィルタ27の上方には、燃焼ガス出口管29が設けられている。燃焼ガス出口管29は、バグフィルタ容器26の側方に対して差し込まれた状態で接続されている。燃焼ガス出口管29の下流側は、図1に示すように、煙突30に接続されている。
【0042】
図2に示すように、バグフィルタ容器26の下方には、バグフィルタ下部ホッパ31が設けられている。バグフィルタ下部ホッパ31は、下方へ向かって断面積が漸次縮小する形状となっている。バグフィルタ下部ホッパ31には、バグフィルタ27で捕集した灰分等が落下して堆積するようになっている。バグフィルタ下部ホッパ31の下端から、灰分等が外部へと排出される。灰分等の排出は、所定の間隔をおいたタイミングでバッチ的に処理される。
【0043】
図1では、バグフィルタ装置25が4つ示されているが、本発明はこれに限定されるものではない。したがって、バグフィルタ装置25は、1つであっても、また2以上であっても良い。
【0044】
<ボイラの運転方法>
上記のボイラ10は、以下のように運転される。
微粉燃料が搬送用空気と共に燃焼装置12の燃焼バーナに供給される。また、空気予熱器18で加熱された燃焼用空気が燃焼バーナに供給される。燃焼バーナは、微粉燃料と搬送用空気(一次空気)とが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、火炉11内で火炎を形成する。火炉11内で形成された火炎によって燃焼ガスが生成され、この燃焼ガスが火炉11内を上昇し、煙道13に導かれる。
【0045】
燃焼ガスは、煙道13に設けられた過熱器15、第1節炭器16、第2節炭器17及び空気予熱器18を通過し、ボイラ水や燃焼用空気と熱交換を行う。煙道13を通過した燃焼ガスは、バグフィルタ装置25で灰分等が除去された後に、煙突30へと導かれた後に大気中に排出される。
【0046】
<下流側煙道部13bの構成>
燃焼ガスに随伴して搬送される灰分等の一部は、搬送力より重力による沈降力が勝るものは下方へと落下して下方の第1ホッパ20及び第2ホッパ22に堆積する。しかし、例えばバイオマスを含む微粉燃料の場合には、赤熱未燃分が発生する場合があり、燃焼ガスと共に落下せずに搬送されてバグフィルタ装置25へと導かれるおそれがある。空気予熱器18を通過し、バグフィルタ装置25に入る燃焼ガスは温度が低下しているため、バグフィルタ装置25に設置されたバグフィルタ27は、布製とされている。このため赤熱未燃分がバグフィルタ装置25に搬送されると布製のバグフィルタが焼損するおそれがある。そこで、本実施形態では、下流側煙道部13bに対して赤熱未燃分抑制構造を採用している。すなわち、下流側煙道部13bを流れる燃焼ガスの流速が赤熱未燃分の終末速度以下となるように、下流側煙道部13bの流路断面積を決定して、赤熱未燃分の燃焼ガスによる気流搬送を抑制している。例えば、ボイラ10の定格時の燃料投入量と空気投入量とから得られる燃焼ガスの発生流量を用いて下流側煙道部13bの流路断面積が決定される。
【0047】
より具体的には以下の通りである。
燃焼ガスとともに随伴して搬送する灰分等として、砂、フライアッシュ、未燃分がある。本実施形態の一例として、このうち砂やフライアッシュの密度は、例えば概ね2[g/cm3]以上に対し、未燃分の密度は概ね0.1[g/cm3]程度であることが分かっている。また、砂やフライアッシュの粒径は例えば概ね0.3[μm]~1[mm]に対して、未燃分の粒径は概ね2[mm]以上であることが分かっている。
ここで、例えば代表的な未燃分を粒子径2[mm]、未燃分の密度を0.1[g/cm3]、ガス温度を100[℃]、ガス密度を0.947[kg/m3]としたとき、未燃分の終末速度は1.85[m/s]となる。未燃分の粒径が2[mm]より大きい場合の終末速度はこれよりも小さくなるため、下流側煙道部13bを流れる燃焼ガスのダクトでの流速が、代表的な未燃分の終末速度である1.85[m/s]以下となる場合は、2[mm]以上の未燃分を第2ホッパ22にて捕集できる。
さらに、例えばフライアッシュの粒径は30[μm]程度が中心であり、このときの終末速度は0.21[m/s]程度であることを考慮すれば、当該ガス温度では、下流側煙道部13bを流れる燃焼ガスのダクトでの流速を1[m/s]で設計すれば、フライアッシュをバグフィルタ装置25に飛散させ、未燃分や粒径の大きい砂を第2ホッパ22にて捕集することで、分離可能となる。
なお、ガス温度が異なる場合も同様に、未燃分の終末速度と、フライアッシュの終末速度の差異から、分離できるよう下流側煙道部13bを流れる燃焼ガスのダクトでの流速を決定し、流路設計することができる。
【0048】
本実施形態によれば、以下の作用効果を奏する。
火炉11にて石炭及び/又はバイオマスを含む微粉燃料が燃焼させられた燃焼ガスには、未燃分が含まれている場合がある。この未燃分のうち、未燃炭素分の一部が酸化反応を継続して高温化して赤熱している赤熱未燃分が存在する場合がある。この赤熱未燃分が煙道13を通過してバグフィルタ装置25まで到達するとバグフィルタ装置25のバグフィルタ27が焼損するおそれがある。
そこで、赤熱未燃分抑制構造を設けることとした。赤熱未燃分抑制構造は、煙道13を通過して赤熱未燃分がバグフィルタ装置25のバグフィルタ27へ流れることを抑制する。これにより、バグフィルタ装置25のバグフィルタ27の焼損を抑制することができる。
【0049】
赤熱未燃分は燃焼ガスに随伴して搬送されて流れるが、下流側煙道部13bを流れる燃焼ガスの流速が赤熱未燃分の終末速度以下となるように決定すれば、赤熱未燃分は下流側への搬送を抑制できる。そこで、燃焼ガスの流速が赤熱未燃分の終末速度以下となるように、下流側煙道部13bの流路断面積が定められている。
【0050】
[変形例1]
図3に示すように、空気予熱器18の下流側に邪魔板としてバッフルプレート33を設けることとしても良い。具体的には、図4に示すように、燃焼ガスの流れ方向に対して斜めに傾斜させたバッフルプレート33を設ける。バッフルプレート33は、例えばブラインド状に並列に設けられる。各バッフルプレート33の傾斜角度と配列間隔は、複数のバッフルプレート33を上方から下方を見込んだ場合に、下方が視認できない程度に設けることで、燃焼ガスの流れを妨げることなく、燃焼ガスの多くがバッフルプレート33に接触することが好ましい。
本変形例によれば、バッフルプレート33を設けることで、赤熱未燃分を堰き止めて搬送力を低下させて、鉛直下方へと重力落下するように導き、赤熱未燃分が煙道13の下流側、つまりバグフィルタ装置25のバグフィルタ27へ搬送されるのを抑制することができる。
【0051】
なお、図5に示すように、バッフルプレート33’を第2節炭器17の下方でかつ屈曲して流れる燃焼ガス流れの外周側に設けても良い。これにより、接続煙道部13cから下流側煙道部13bへと屈曲して流れる燃焼ガスのうち、質量が大きなために遠心力の影響をより受けることによって外周側に寄せられた灰分等を効果的に補足することができる。また、バッフルプレート33’は、第2節炭器17と空気予熱器18との間に設けても良い。さらに、図3に示したバッフルプレート33と共に用いることとしても良い。
【0052】
また、上述した各実施形態では、バグフィルタ装置25のバグフィルタ27として通常に使用される布製を用いることとしたが、金属製(例えばSUS316)としても良い。これにより、仮に赤熱未燃分がバグフィルタ装置25のバグフィルタ27に到達しても焼損による劣化を抑えることができる。
【0053】
[第2実施形態]
次に、本開示の第2実施形態について、図6及び図8を用いて説明する。
本実施形態は、第1実施形態で用いた赤熱未燃分抑制構造が異なる点で相違する。また、本実施形態は、灰処理装置に特徴を有する点で第1実施形態と相違する。その他の構成については同様である。したがって、以下の説明では、第1実施形態に対する相違点のみについて説明する。ただし、本実施形態は、第1実施形態と組み合わせて用いることも可能である。
【0054】
各ホッパ20,22,31に貯留されたフライアッシュは、真空吸引ブロワ54(図8参照)による真空吸引により順次連続して灰搬送枝管51(図8参照)および灰搬送集合管52を介してフライアッシュタンク用バグフィルタ53に搬送される。搬送された灰分に含まれる赤熱未燃分が舞い上がりフライアッシュタンク用バグフィルタ53のバグフィルタ27に捕獲されて収集されると、バグフィルタ27が焼損するおそれがある。
【0055】
フライアッシュタンク用バグフィルタ53は、バグフィルタ容器26内に、バグフィルタ27を備えている。バグフィルタ27は、通常では布製とされており、下方に開口する筒形状とされている。バグフィルタ27は、軸線方向を鉛直方向に向けた状態で並列に複数設けられている。バグフィルタ27の内部から外部へと搬送用空気が通過する際に、搬送用空気と共に随伴する灰分等を捕集するようになっている。
【0056】
フライアッシュタンク用バグフィルタ53の下方には、フライアッシュタンク60(図8参照)が設けられている。フライアッシュタンク用バグフィルタ53で捕獲されたフライアッシュ(灰分)は逆洗などを定期的に実施することで、捕獲されたフライアッシュがフライアッシュタンク60に落下して貯留される。フライアッシュタンク60の下方には灰排出弁62(図8参照)が設けられている。フライアッシュタンク60は、フライアッシュタンク用バグフィルタ53で分離されたフライアッシュが貯留される。
【0057】
バグフィルタ27の上方の空間は、真空吸引ブロワ54(図8参照)に通じている。具体的には、フライアッシュタンク用バグフィルタ53のバグフィルタ容器26の側方に対して排気配管56が差し込まれた状態で真空吸引ブロワ54に接続されている。
【0058】
図6に示すように、バグフィルタ容器26の下方には、バグフィルタ下部ホッパ31が設けられている。バグフィルタ下部ホッパ31は、下方へ向かって断面積が漸次縮小する形状となっている。バグフィルタ下部ホッパ31には、バグフィルタ27で捕集した灰分等が落下して堆積するようになっている。バグフィルタ下部ホッパ31の下端から、灰分等がフライアッシュタンク60(図8参照)へと排出される。
【0059】
本実施形態の赤熱未燃分抑制構造は、灰搬送集合管52とバグフィルタ27との距離を所定範囲に設定した点に特徴を有する。
具体的には、バグフィルタ27の下端と燃焼ガス搬送管28との間の距離である高さH1が、0.6m以上1.3m以下とされている。これにより、各ホッパ20,22,31から灰搬送枝管51経由でフライアッシュを随伴して搬送する搬送用空気が灰搬送集合管52からバグフィルタ27の下端まで到達する時間を長くとることによって、赤熱未燃分が途中で落下し易くなり、また赤熱未燃分の冷却が進むことで、赤熱未燃分がバグフィルタ27に到達することを抑制できる。したがって、バグフィルタ27で捕獲されて収集されてバグフィルタの耐熱限界を超えて焼損することを抑制することができる。
【0060】
本実施形態での具体的な高さH1の数値範囲の設定方法の一例は、以下の通りである。
燃焼用空気を火炉11に送り込むブロワ定格流量 :12[m3/min]=0.2[m3/sec]
バグフィルタ27の内径 :1.3m
バグフィルタ27内の平均流速 :0.2[m3/sec]/(1.32×π/4[m2])≒0.15[m / sec]
石炭専焼の場合の燃焼ガス搬送管28からバグフィルタ27の下端までの距離 :0.3[m]
石炭専焼の場合では2 [sec]程度で到達していたと想定されるものに対して、赤熱未燃分の舞い上がりを抑制するには2倍から4倍の4[sec]から8[sec]程度の距離を取ることが必要となる。
0.15[m/sec]×4[sec]=0.6[m]
0.15[m/sec]×8[sec]=1.2[m]
上限は余裕を見て1.3mが好ましい。
以上から、高さH1は、0.6m以上1.3m以下となる。
【0061】
また、上述した各実施形態では、フライアッシュタンク用バグフィルタ53のバグフィルタ27として布製を用いることとしたが、金属製(例えばSUS316)としても良い。これにより、仮に赤熱未燃分がフライアッシュタンク用バグフィルタ53のバグフィルタ27に到達しても焼損による劣化を抑えることができる。
【0062】
[第3実施形態]
次に、本開示の第3実施形態について説明する。
本実施形態のボイラ10の構成は、第1実施形態及び第2実施形態の赤熱未燃分抑制構造を備えていない点で相違する。また、本実施形態は、灰処理装置に特徴を有する点で第1実施形態及び第2実施形態と異なる。以下では、相違点について説明し、共通する部分については説明を省略する。ただし、本実施形態は、第1実施形態及び第2実施形態と組み合わせることもできる。
【0063】
図7に示すように、本実施形態のボイラ10は、火炉11内に投入する燃料供給量を検出する燃料用センサ40と、火炉11内に投入する空気供給量を検出する空気用センサ41とを備えている。また、煙道13には、燃焼ガス中のCO濃度を検出するCOセンサ42が設けられている。各センサ40,41,42の出力は、制御部45(図8参照)に送信される。
【0064】
制御部45は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
【0065】
図8には、灰処理装置50の概略が示されている。灰処理装置50は、第1ホッパ20、第2ホッパ22、バグフィルタ下部ホッパ31のそれぞれに接続された灰搬送枝管51と、各灰搬送枝管51が集合して接続される灰搬送集合管52と、灰搬送集合管52に接続されフライアッシュタンク用バグフィルタ53と、フライアッシュタンク用バグフィルタ53に排気配管56を介して接続された真空吸引ブロワ54とを備えている。
【0066】
各灰搬送枝管51の上流端には、大気を吸い込む吸込口55が設けられている。吸込口55の下流側には、アッシュインテーク弁(排出部)57を介して各ホッパ20,22,31が接続されている。アッシュインテーク弁57の下流側には、系統切換弁58が設けられている。アッシュインテーク弁57及び系統切換弁58は、開閉弁とされており、制御部45によって開閉が制御されるようになっている。
【0067】
フライアッシュタンク用バグフィルタ53の下方には、フライアッシュタンク60が設けられている。フライアッシュタンク用バグフィルタ53で捕獲されたフライアッシュ(灰分)は逆洗などを定期的に実施することで、捕獲されたフライアッシュがフライアッシュタンク60に落下して貯留される。フライアッシュタンク60の下方には灰排出弁62が設けられている。フライアッシュタンク用バグフィルタ53で分離されたフライアッシュ(灰分)の貯留が進むと、フライアッシュタンク60の下方に設けられている灰排出弁62を開とすることによって、フライアッシュタンク60内のフライアッシュを搬送トラック63に払い出すようになっている。
【0068】
灰処理装置50は以下のように運転される。
各ホッパ20,22,31に貯留されたフライアッシュは、各灰搬送枝管51を切替えて、真空吸引ブロワ54による真空吸引により順次連続してフライアッシュタンク用バグフィルタ53で捕獲してフライアッシュタンク60へ収集して貯留する。
具体的には、制御部45の指令によって系統切換弁58を操作して1つの灰搬送枝管51を選択する。そして、灰搬送枝管51に接続されているホッパ20,22,31のうちから1つを選択し、選択されたホッパ20,22,31の下部のアッシュインテーク弁57を開く。これにより、ホッパ20,22,31内のフライアッシュがブロワ吸引されて、ホッパ20,22,31内のフライアッシュをフライアッシュタンク60へと搬送する。ホッパ20,22,31内のフライアッシュが空になるとアッシュインテーク弁57を閉じ、選択された灰搬送枝管51内の別のホッパ20,22,31を選択し、選択された別のホッパ20,22,31の下部のアッシュインテーク弁57を開き、同様にホッパ20,22,31内のフライアッシュを搬送する。選択された灰搬送枝管51に対応する全ホッパ20,22,31でフライアッシュの搬送処理が完了すると系統切換弁58を閉じ、別の灰搬送枝管51を選択する。別の灰搬送枝管51に対応するホッパ20,22,31についても同様のフライアッシュの搬送処理を行っていく。
【0069】
1つの灰搬送枝管51に対応する全ホッパ20,22,31の搬送処理が完了するまでを1サイクルとすると、従来は、1つのサイクルを完了すると、次回のサイクルを開始するまでに例えば数時間(例えば4時間程度)のインターバルを設けることにしている。これは、真空吸引ブロワ54等の補機動力を抑制するためになるべく多くのインターバルを設定することが好ましいからである。このため、ホッパ20,22,31に徐々に堆積したフライアッシュは、長いものでは数時間にわたり設定したインターバル時間にわたって貯留されている。
【0070】
しかし、本発明者等が鋭意検討したところ、ホッパ20,22,31に貯留された灰分中に赤熱未燃分が滞留すると、灰分(例えばフライアッシュ)が局所的に1000℃程度の高温となり焼結灰や溶融灰が発生する場合がある。焼結灰等が発生するとホッパ内から灰分を排出する排出性が低下してボイラ10の運転に支障を来すおそれがあることが判明した。すなわち、ホッパ20,22,31に貯留された灰分中に赤熱未燃分が滞留する場合には、インターバル時間の設定を調整して、貯留されている時間を短くなるように変更することが有効となることを発見した。
【0071】
図9には、本実施形態の一例として、アッシュインテーク弁57の開閉のタイミングが示されている。アッシュインテーク弁57は、真空度が相対的に低い(圧力値が相対的に低い)弁開設定値P1と、真空度が相対的に高い弁閉設定値P2とに応じて開閉が決定されるようになっている。各設定値P1,P2は、固定値として制御部45に記憶されていても良いし、運転状況をもとにオペレータにより設定されても良い。真空度は、灰搬送集合管52に設けた圧力センサ43によって計測される。圧力センサ43の出力は制御部45へと送信される。
【0072】
圧力センサ43によって計測した真空度が上がると、灰搬送枝管51内にフライアッシュが入って圧力損失が増加した状態を意味する。これとは逆に、圧力センサ43によって計測した真空道が下がると、灰搬送枝管51内のフライアッシュが少なくなり吸込口55から大気をそのまま吸い込む状態を意味する。したがって、アッシュインテーク弁57が開けばフライアッシュがホッパ20,22,31から導かれて真空度が上がり、アッシュインテーク弁57が閉じればフライアッシュがフライアッシュタンク60側に導かれているので真空度が下がることになる。
【0073】
図9の左側に示した線図では、処理時間T1の間に2回のアッシュインテーク弁57の開閉によってホッパ20,22,31の処理が終了する。
図9の右側に示した線図では、処理時間T2の間に10回ものアッシュインテーク弁57の開閉が行われた後にホッパ20,22,31の処理が終了する。なお、アッシュインテーク弁57が開状態で真空度が所定値以下に低下して所定時間を経過するとフライアッシュの排出が終了したと判断する。
本実施形態での処理時間T1とT2の違いは、赤熱未燃分によってホッパ20,22,31内に焼結灰や溶融灰が一部に発生した場合にはホッパ20,22,31からアッシュインテーク弁57の開閉を行い、真空度が所定値に低下して所定時間を経過しフライアッシュの排出終了を確認するまでの処理時間が長くなり(T2)、一方では焼結灰等が発生しない場合は処理時間が短くなると考えられる。そして、赤熱未燃分の発生は、微粉燃料の不完全燃焼に由来するので、ボイラ10の火炉11内に投入する燃料供給量、空気供給量及び煙道13のCO濃度から赤熱未燃分の発生タイミングと発生量が推測されて判断できる。
【0074】
そこで、制御部45は、機械学習部46を備えることで、赤熱未燃分の発生を予測して適切な灰処理のインターバル時間を得るようにした。具体的には、機械学習部46は、ホッパ20,22,31からフライアッシュを排出するタイミングを推論する推論規則部47を備えている。推論規則部47は、火炉11へ投入する空気供給量、火炉11内へ投入する燃料供給量および燃焼ガスのCO濃度の計測データと取得する。そして、これら計測データに対応したホッパ20,22,31からフライアッシュを排出したタイミングすなわち灰処理のインターバルを取得する。推論規則部47は、取得した計測データと灰処理のインターバルとから、例えば、ニューラルネットワーク等を用いて、現在時刻における空気供給量、燃料供給量及びCO濃度に対応した最適な灰処理のインターバルを得る。すなわち、推論規則部47は、赤熱未燃分が多く発生すると予測できる場合には、ホッパ20,22,31内に灰分等を長時間滞留させないように灰処理のインターバルを短くするように、系統切換弁58の開閉タイミングを制御する。赤熱未燃分の発生が少ない或いは無いと予測できる場合には、灰処理のインターバルを長めにして真空吸引ブロワ54等の補機類の消費電力を抑える。
【0075】
本実施形態によれば、以下の作用効果を奏する。
燃焼ガスに随伴する未燃分がホッパに滞留すると、フライアッシュが局所的に1000℃程度の高温となり焼結灰や溶融灰が発生する場合がある。焼結灰等が発生するとホッパ20,22,31からフライアッシュを排出終了するまでの時間を要してタイミングが変化する。本発明者等はこの現象に着目し、赤熱未燃分の発生状況を、灰分を排出するタイミングで得られることを見出した。そこで、推論規則部47によって灰処理のインターバルを短く、または長くするように、系統切換弁58の開閉タイミングを制御して、赤熱未燃分を含む灰分を排出するタイミングを決定することで、赤熱未燃分の発生状況に合わせて効果的に灰分を排出することができる。
【0076】
燃焼ガスのCO濃度が大きいときは不完全燃焼が進んで赤熱未燃分が多く発生していると推論できる。赤熱未燃分の発生量は、空気や燃料の投入量から推論できる。これらの計測値と、フライアッシュをホッパ20,22,31から排出したタイミングとを用いることで、赤熱未燃分の発生状況に対応した排出タイミングの推論規則を作成することができる。推論規則部47で得られたモデルに基づいて、排出部からフライアッシュを排出するタイミングを適切に決定することができる。これにより、ホッパ20,22,31内に焼結灰等が生成してフライアッシュの排出性が低下することを抑制することができる。
【0077】
なお、本実施形態では、燃料供給量、空気供給量及びCO濃度の全てを用いることとしたが、本発明はこれに限定されるものではなく、少なくとも1つの計測データを用いることとしても良い。この場合には、用いない計測データに代えて、過去の実績から得た固定値を設定しても良い。
また、本実施形態では、CO濃度を用いることとしたが、酸素濃度を用いることとしても良い。
【符号の説明】
【0078】
10 ボイラ
11 火炉
12 燃焼装置
13 煙道
13a 上流側煙道部
13b 下流側煙道部
13c 接続煙道部
13d 出口側煙道部
15 過熱器
16 第1節炭器
17 第2節炭器
18 空気予熱器
20 第1ホッパ
22 第2ホッパ
25 バグフィルタ装置
26 バグフィルタ容器
27 バグフィルタ
28 燃焼ガス搬送管
29 燃焼ガス出口管
30 煙突
31 バグフィルタ下部ホッパ
33 バッフルプレート
33’ バッフルプレート
40 燃料用センサ
41 空気用センサ
42 COセンサ
45 制御部
46 機械学習部
47 推論規則部
50 灰処理装置
51 灰搬送枝管
52 灰搬送集合管
53 フライアッシュタンク用バグフィルタ
54 真空吸引ブロワ
55 吸込口
56 排気配管
57 アッシュインテーク弁(排出部)
58 系統切換弁
60 フライアッシュタンク
62 灰排出弁
63 搬送トラック
P1 弁開設定値
P2 弁閉設定値
T1,T2 処理時間
図1
図2
図3
図4
図5
図6
図7
図8
図9