IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

<>
  • 特許-画像形成装置 図1
  • 特許-画像形成装置 図2
  • 特許-画像形成装置 図3
  • 特許-画像形成装置 図4
  • 特許-画像形成装置 図5
  • 特許-画像形成装置 図6
  • 特許-画像形成装置 図7
  • 特許-画像形成装置 図8
  • 特許-画像形成装置 図9
  • 特許-画像形成装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-09
(45)【発行日】2022-12-19
(54)【発明の名称】画像形成装置
(51)【国際特許分類】
   B41J 2/47 20060101AFI20221212BHJP
   G03G 15/04 20060101ALI20221212BHJP
   G02B 26/12 20060101ALI20221212BHJP
   H04N 1/113 20060101ALI20221212BHJP
【FI】
B41J2/47 101M
G03G15/04 111
G02B26/12
H04N1/113
【請求項の数】 11
(21)【出願番号】P 2019028890
(22)【出願日】2019-02-20
(65)【公開番号】P2020131575
(43)【公開日】2020-08-31
【審査請求日】2022-02-14
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100123559
【弁理士】
【氏名又は名称】梶 俊和
(74)【代理人】
【識別番号】100177437
【弁理士】
【氏名又は名称】中村 英子
(72)【発明者】
【氏名】武田 庄司
【審査官】牧島 元
(56)【参考文献】
【文献】特開2017-177378(JP,A)
【文献】特開2017-056673(JP,A)
【文献】特開2017-056630(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B41J 2/47
G03G 15/04
G02B 26/12
H04N 1/113
(57)【特許請求の範囲】
【請求項1】
感光体と、
光源から出射されたレーザ光が前記感光体の主走査方向の複数の区間を一定でない走査速度で走査することで、前記感光体上に潜像を形成する走査手段と、
前記主走査方向の前記複数の区間の画素位置に応じて、前記感光体上に形成される前記潜像の画素サイズを演算する演算手段と、
前記主走査方向の前記画素位置に応じて、前記レーザ光の光量値を光量レベルに量子化する量子化手段と、
入力される画像データを前記光源を駆動する駆動信号に変換する変換データを記憶する記憶手段と、
前記主走査方向の前記複数の区間の画素位置に応じた前記画素サイズ及び前記光量レベルに対応する前記変換データを前記記憶手段より取得し、取得した前記変換データに基づいて前記画像データを前記光源を駆動する駆動信号に変換する変換手段と、
を備えることを特徴とする画像形成装置。
【請求項2】
前記レーザ光の光路において前記走査手段と前記感光体との間に設けられ、前記レーザ光が通過する光学系を有し、
前記光学系は、前記レーザ光のスポットが前記感光体の表面上を移動する前記走査速度が等速でないことを特徴とする請求項1に記載の画像形成装置。
【請求項3】
前記レーザ光の光路において、前記走査手段と前記感光体との間に前記レーザ光が通過する光学系を有しないことを特徴とする請求項1に記載の画像形成装置。
【請求項4】
前記レーザ光の前記走査速度は、前記感光体の画像形成領域の中央部から端部に向かうにつれ、速くなることを特徴とする請求項2又は請求項3に記載の画像形成装置。
【請求項5】
前記記憶手段は、前記主走査方向の前記複数の区間の画素位置に応じた前記潜像の前記画素サイズを算出するための特性曲線のパラメータを記憶し、
前記演算手段は、前記特性曲線及び前記記憶手段から取得した前記パラメータに基づいて、前記画素位置の前記潜像の前記画素サイズを演算することを特徴とする請求項4に記載の画像形成装置。
【請求項6】
前記演算手段により求められた前記画素サイズは、前記感光体の画像形成領域の中央部から端部に向かうにつれ、大きくなることを特徴とする請求項5に記載の画像形成装置。
【請求項7】
前記記憶手段は、前記主走査方向の前記画素位置に応じた前記レーザ光の光量値を算出するための特性曲線のパラメータ、及び前記レーザ光の前記光量値と前記光量レベルとを対応付けた対応情報を記憶し、
前記量子化手段は、前記特性曲線及び前記記憶手段から取得した前記パラメータに基づいて、前記画素位置の前記レーザ光の前記光量値を算出し、前記記憶手段から取得した前記対応情報に基づいて、前記算出した前記光量値を前記光量レベルに量子化することを特徴とする請求項6に記載の画像形成装置。
【請求項8】
前記特性曲線での前記レーザ光の前記光量値が最大となる画素位置は、前記感光体の中央の画素位置よりも前記主走査方向の下流側であることを特徴とする請求項7に記載の画像形成装置。
【請求項9】
前記特性曲線は、2次関数で示される曲線であり、
前記パラメータは、前記2次関数の係数であることを特徴とする請求項5から請求項8のいずれか1項に記載の画像形成装置。
【請求項10】
パッチ画像の大きさ及び濃度を検知する検知手段を備え、
前記検知手段は、検知した前記パッチ画像の前記大きさ及び前記濃度に基づいて、前記特性曲線の前記パラメータを補正することを特徴とする請求項9に記載の画像形成装置。
【請求項11】
前記変換手段は、前記主走査方向の前記画素位置に応じた前記画素サイズ及び前記光量レベルに対応する前記変換データに基づいて、前記画像データを前記画素サイズに応じた信号長と前記光量レベルに応じたオンデューティとを有する駆動信号に変換することを特徴とする請求項1から請求項10のいずれか1項に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複写機やプリンタなどの電子写真方式の画像形成装置に関し、特に走査光学系の画像濃度補正に関する。
【背景技術】
【0002】
電子写真方式の画像形成装置は、感光体を露光して、感光体の表面に静電潜像を形成するための光走査装置を備えている。光走査装置は、画像データに基づいてレーザ光を出射し、出射されたレーザ光は回転多面鏡で反射され、反射されたレーザ光はfθ特性を有する走査レンズを通過させることで、感光体に照射され感光体の表面の画像形成面が露光される。fθ特性とは、回転多面鏡が一定の角速度で回転しているときに、回転多面鏡により反射されたレーザ光のスポットが感光体の表面上を一定の速度で移動するように、レーザ光を感光体の表面に結像させる光学的特性である。このようなfθ特性を有する走査レンズを用いることにより、主走査方向における画素あたりの露光長が一定の長さに維持される。ところが、fθ特性を有する走査レンズはサイズが比較的大きく、コストも高い。そのため、画像形成装置の小型化やコストダウンを図るには、走査レンズを使用しないか、又はfθ特性を有していない小型の走査レンズを使用することが考えられる。例えば、特許文献1では、走査速度が等速とならない光学系において、画素幅が一定となるように露光時間を補正し、更にレーザ輝度を補正することで画像濃度を補正する提案がされている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-150580号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した特許文献1では、感光体の主走査方向においてレーザ光の走査速度が速い位置では単位時間あたりの露光量が大きくなるように、一方、走査速度が遅い位置では単位時間あたりの露光量が小さくなるようにレーザ光の輝度を補正している。すなわち、特許文献1では、レーザ光の輝度(光量)を感光体の主走査方向の画素位置に応じて、補正している。そのため、感光体の主走査方向の画素位置の画素サイズとレーザ光量との特性が異なっている場合には、適切な補正ができなくなる。その結果、上述した特許文献1では、レーザ光量を補正する輝度補正回路が必要不可欠となり、コストダウンの妨げとなってしまうという課題が生じる。
【0005】
本発明は、このような状況のもとでなされたもので、fθ特性を有する走査レンズを使用しない光走査装置を用いて、安価に感光体上に形成される画素サイズ及び画像濃度の補正を行うことを目的とする。
【課題を解決するための手段】
【0006】
前述の課題を解決するために、本発明は、以下の構成を備える。
【0007】
(1)感光体と、光源から出射されたレーザ光が前記感光体の主走査方向の複数の区間を一定でない走査速度で走査することで、前記感光体上に潜像を形成する走査手段と、前記主走査方向の前記複数の区間の画素位置に応じて、前記感光体上に形成される前記潜像の画素サイズを演算する演算手段と、前記主走査方向の前記画素位置に応じて、前記レーザ光の光量値を光量レベルに量子化する量子化手段と、入力される画像データを前記光源を駆動する駆動信号に変換する変換データを記憶する記憶手段と、前記主走査方向の前記複数の区間の画素位置に応じた前記画素サイズ及び前記光量レベルに対応する前記変換データを前記記憶手段より取得し、取得した前記変換データに基づいて前記画像データを前記光源を駆動する駆動信号に変換する変換手段と、を備えることを特徴とする画像形成装置。
【発明の効果】
【0008】
本発明によれば、fθ特性を有する走査レンズを使用しない光走査装置を用いて、安価に感光体上に形成される画素サイズ及び画像濃度の補正を行うことができる。
【図面の簡単な説明】
【0009】
図1】実施例1、2の画像形成装置の構成を示す概略断面図
図2】実施例1、2の光走査装置の構成を説明する図
図3】実施例1、2の光走査装置の制御部の制御ブロック図
図4】実施例1、2の画像処理の制御シーケンスを示すフローチャート
図5】実施例1、2の画素倍率プロファイルを説明する図
図6】実施例1、2の画素サイズ及び光量レベルを示す表
図7】実施例1、2の光量プロファイルを説明する図
図8】実施例1のPWMテーブルを示す図
図9】実施例1、2の画素倍率比、光量比の測定値を示すグラフ
図10】実施例2のPWMテーブルを示す図
【発明を実施するための形態】
【0010】
以下に、図面を参照して本発明の実施の形態について詳細に説明する。
【実施例1】
【0011】
[画像形成装置の構成と動作]
図1は、画像形成装置の一例である、複数色のトナーを用いて画像形成するカラープリンタ100(以下、プリンタ100という)の構成を示す概略断面図である。プリンタ100は、イエロー、マゼンタ、シアン、ブラックのトナーを用いて画像形成を行う、4つの画像形成部101Y、101M、101C、101Kを有している。ここで、符号末尾の添字Y、M、C、Kは、それぞれトナーの色であるイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)を表している。以下では、特定の色に対する部材を示す場合を除き、符号末尾の添字Y、M、C、Kの記載を省略する。各画像形成部101は、使用するトナーの色を除き、構成は同一である。画像形成部101は、静電潜像が形成される感光体である感光ドラム102を有している。感光ドラム102の周りには、感光ドラム102の表面を一定の電位に帯電する帯電装置103、レーザ光を照射して感光ドラム102上に静電潜像を形成する光走査装置104、静電潜像にトナーを付着させて現像する現像装置105が設けられている。また、感光ドラム102の下方には、無端ベルト状の中間転写ベルト107が配置されている。中間転写ベルト107は、駆動ローラ108と従動ローラ109、110とに張架され、画像形成時には図中の矢印B方向(時計回り方向)に回転する。また、中間転写ベルト107を介して、各感光ドラム102に対向する位置には、感光ドラム102上(感光体上)のトナー像を中間転写ベルト107に転写するための一次転写装置111が設けられている。更に、プリンタ100は、中間転写ベルト107上のトナー像が転写された記録媒体であるシートS上のトナー像をシートSに定着させるための定着装置113を備えている。検知手段であるパッチセンサ117は、画素サイズや画像濃度を調整するために、中間転写ベルト107上に形成されたパッチパターン(パッチ画像)を検知し、パッチ間距離、濃度、色の測定を行う。
【0012】
次に、プリンタ100の画像形成動作について説明する。まず、各画像形成部101では、帯電装置103により、回転駆動される感光ドラム102は一様な電位に帯電される。帯電された感光ドラム102(像担持体上)は、光走査装置104から出射されるレーザ光によって露光され、感光ドラム102上には静電潜像が形成される。その後、感光ドラム102上に形成された静電潜像は、現像装置105によって、トナーが付着することにより現像され、トナー像が形成される。続いて、各画像形成部101の感光ドラム102に対向して設けられた各一次転写装置111に転写バイアスが印加される。これにより、各感光ドラム102上に形成されたイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)のトナー像は、それぞれ中間転写ベルト107上に転写される。その結果、中間転写ベルト107上には、各色のトナー像が重畳して転写され、カラーのトナー像が形成される。中間転写ベルト107上に形成されたカラーのトナー像は、二次転写装置112にて、手差し給送カセット114、又は給紙カセット115から給紙され、二次転写装置112に搬送されたシートSに転写される。そして、シートSに転写されたトナー像は、定着装置113で加熱・加圧されることによりシートSに定着され、その後、トナー像が定着されたシートSは排紙部116に排出される。
【0013】
[光走査装置の構成]
図2は、光走査装置104の構成と、光走査装置104を制御する制御部208と感光ドラム102との関係を説明する図である。なお、各色の感光ドラム102と光走査装置104の構成は同一であり、以下の説明では、トナーの色を示す添え字Y、M、C、Kを省略する。制御部208は、メモリ209を有し、入力される画像データに基づいて、光走査装置104のレーザ駆動部210に駆動信号を出力する。
【0014】
光走査装置104は、レーザ光源201と、コリメータレンズ202と、シリンドリカルレンズ203と、回転多面鏡204と、駆動部211とを備えている。なお、本実施例の光走査装置104は、回転多面鏡204で偏向されたレーザ光が感光ドラム102へと進む光路上にfθ特性を有する結像レンズ、又は結像レンズ自体を備えていない。fθ特性とは、回転多面鏡204が一定の角速度で回転しているときに、回転多面鏡204により反射されたレーザ光のスポットが感光ドラム102の表面上を一定の速度で移動するように、レーザ光を感光ドラム102の表面に結像させる光学的特性である。そのため、レーザ光が感光ドラム102の端部を走査するときの速度は、感光ドラム102の中央部を走査するときの速度よりも速くなる。すなわち、本実施例では、レーザ光が感光ドラム102を走査する速度は、レーザ光が感光ドラムの中心部から端部方向に離れるにしたがって速くなる。そのため、レーザ光が感光ドラム102の端部の単位長さの区間を走査する時間は、感光ドラム102の中央部の単位長さの区間を走査する時間よりも短い。その結果、感光ドラム102の画像形成領域の端部では、露光量が相対的に不足し、画像形成領域の中央部では露光量が相対的に過剰となる。
【0015】
本実施例のレーザ光源201は、複数のレーザ光(光ビーム)を発生する光源であるが、単一の光源を用いた場合も同様に動作させるものとする。コリメータレンズ202は、入力されたレーザ光を平行光に整形する。シリンドリカルレンズ203は、コリメータレンズ202を通過したレーザ光を副走査方向(感光ドラム102の回転方向に対応する方向)へ集光させ、回転多面鏡204に向かって出力する。回転多面鏡204は、レーザ光を反射させ、偏向する複数のミラー面(反射面)を有し、駆動部211により駆動される。回転多面鏡204は、本実施例では5面のミラーであるが、他の面数でもよい。更に、光走査装置104は、回転多面鏡204によって偏向されたレーザ光を検知するビームディテクタ207(Beam Detector、以下、BD207という)を備えている。BD207は、レーザ光の走査軌跡上に配置されており、レーザ光を検知すると、水平同期信号(以下、BD信号という)を制御部208に出力する。以下で説明するPWM信号は、水平同期信号を起点に制御部208が出力する。回転多面鏡204により偏向され、光走査装置104から出射されたレーザ光は、感光ドラム102上の画像形成領域を走査し、静電潜像を形成する。光走査装置104からのレーザ光が感光ドラム102を走査する方向(主走査方向という)は、感光ドラム102の回転軸に対して平行になるように、光走査装置104と感光ドラム102の位置決めがなされている。感光ドラム102は、図中、画像形成領域の左端から右端方向に向かって、光走査装置104から出射されたレーザ光で走査される。なお、本実施例のレーザ光源201は、マルチビーム光源であるため、回転多面鏡204のミラー面(反射面)が感光ドラム102上を1回走査する度に、マルチビームレーザのレーザ素子数分の走査ラインが同時に形成されることになる。
【0016】
[画像処理]
図3は、制御部208で画像処理を行う制御ブロックの構成を示すブロック図である。制御部208は、画素倍率計算を行う画素倍率計算部301、光量補正率を計算する光量補正率計算部303、画素サイズを演算する画素サイズ演算部304、補正値レベルを変換する補正率レベル変換部305の各制御ブロックを有している。更に、制御部208は、画素サイズ及び光量レベルに応じてPWMテーブルを選択するPWMテーブル切替部307、画像データをPWM信号に変換するPWM変換部306の制御ブロックを有している。各制御ブロックは、制御部208が制御プログラムを実行することにより実現される制御機能であるが、以下では、各制御ブロックが該当の制御処理を行うこととして説明を行う。なお、記憶部302は、図2のメモリ209に相当し、画素倍率計算部301、光量補正率計算部303の処理で必要なデータや演算結果を保存し、PWMテーブル切替部307により選択されるPWMテーブルデータが記憶されている。制御部208は一つの集積回路(IC)であっても良いし、制御ブロックの機能を複数のICに分担させて、複数のICによって以下で説明する機能を提供するようにしても良い。
【0017】
[画像処理の制御シーケンス]
図4は、本実施例の画像処理の制御シーケンスを示すフローチャートである。図4の処理は、プリンタ100で画像形成が行われる際に起動され、制御部208の上述した各制御ブロックにて実行される。図4において、ステップ(以下、Sとする)401では、制御部208は、BD207がレーザ光を検知したときに出力するBD信号の入力を検知したかどうか判断する。制御部208は、BD信号を検知した場合には処理をS402に進め、BD信号を検知していない場合には、処理をS401に戻す。
【0018】
(部分倍率計算)
S402では、制御部208は、上述した制御ブロックである画素倍率計算部301により部分倍率の計算を行う。制御部208は不図示の内部カウンタと水晶発振器を内蔵している。また、制御部208にはBD207が生成するBD信号が入力されている。制御部208は、BD信号が入力されたことに応じて内部カウンタをリセットし、水晶発振器が出力するクロック信号に応じてカウントアップする。クロック信号の周波数はBD信号の周波数よりも非常に大きい。クロック信号をカウントすることによって制御部208は、レーザ光の走査方向におけるレーザ光の照射位置を高分解能に特定することができる。そして、制御部208は、特定したレーザ光の照射位置に応じて下記で説明する画像データの補正処理を行った画素データを出力してPWM信号を生成する。
【0019】
画素倍率計算部301は、光走査装置104から出射されるレーザ光の走査速度のプロファイルパラメータを記憶部302から読み出す。ここで、プロファイルパラメータは1回の走査領域を3領域に分割して各領域の画素位置における画素倍率を計算する計算式のパラメータとして格納されている。図5は、感光ドラム102上の主走査方向の画素位置に対する画素倍率を説明する図である。図5において、下側の図は、感光ドラム102を示し、上側の図に示す曲線501は画素倍率を示すプロファイル曲線である。図5の上側の図に対応する縦軸は画素倍率を示し、図中の1.3、1.2、1は画素倍率1.3倍、1.2倍、1倍を示している。一方、図5の横軸は、レーザ光で走査される感光ドラム102の主走査方向の画素位置を示している。本実施例の光走査装置104は、fθ特性を有しない結像レンズが実装されていない。そのため、光走査装置104から出射されたレーザ光が感光ドラム102の中央部の単位区間を走査するときの速度を1とすると、感光ドラム102の端部の単位区間を走査するときの速度は、中央部を走査するときの速度の約1.3倍となる。したがって、レーザ光を単位時間、感光ドラム102に照射した場合には、感光ドラム102の端部では、感光ドラム102の中央部に比べて、画素サイズが約1.3倍の画像が形成されることになる。
【0020】
図5に示すように、主走査方向の画像領域は、3つの領域に分割されており、領域0、及び領域2は、それぞれ感光ドラム102の画像形成領域の主走査方向の左端、右端を含む領域である。一方、領域1は、感光ドラム102の画像形成領域の中央部を含む領域である。画素倍率を示す曲線501は、感光ドラム102の主走査方向の中点を中心に左右対称のプロファイルを有している。特性曲線である曲線501により示される倍率曲線は、曲線501の形状により、領域0、2では、上に凸の2次関数に近似させることができ、領域2では、下に凸の2次関数に近似させることができる。
【0021】
画素倍率計算部301では、感光ドラム102上の主走査方向の画素位置xでの画素倍率を次のようにして算出する。画素倍率計算部301は画素位置xが属する領域番号n(0、1、2)と、画素位置xが属する領域での相対位置(各領域で画素位置は0から始まる)とにより、各画素位置における画素倍率を計算式f(x)=a・x+b・x+cにより計算する。また、記憶部302には、計算式である2次関数のパラメータとして、領域毎の係数であるa、a、a、b、b、b、c、c、cが格納されている。画素倍率計算部301は、感光ドラム102上の主走査方向の画素位置xが属する領域番号に応じた計算式である2次関数のパラメータを記憶部302より取得する。
【0022】
ここで、画素倍率計算部301の領域0での画素倍率の計算動作について説明する。画素倍率計算部301は、記憶部302から領域0の計算式の係数であるa、b、cを取得し、計算式f(x)=a・x+b・x+cを用いて、各画素の倍率を計算する。本実施例では、計算を簡単にするため、差分法を用いて計算するものとする。差分法を用いると、計算式f(x)は、次のように表すことができる。
【0023】
(x)=c (x=0)
(x)=f(x-1)+f(x-1)’ (x≠0)
x≠0の場合の上記式の右辺第二項の微分値は、
(x)’=2・a・x+b
であり、これも差分法で計算する。ただしx=0のときは中央差分値を使って誤差を小さくする。すなわち、
(0)’=b(x=0)、f(1)’=2・a+b(x=1)より中央値を取ると、上述した式は、次のように表すことができる。
【0024】
(x)’=(1/2)・{(b)+(2・a+b)}=a+b (x=0)
(x)’=f(x-1)’+f(x-1)’’ (x≠0)
となる。x≠0の場合の上記式の右辺第二項の微分値は、次のようになる。
【0025】
(x)’’=2・a
以上説明した計算式をまとめると、以下に示す式となる。
【0026】
(0)=c、f(0)’=a+b ・・・(式1)
(x)=f(x-1)+f(x-1)’ (x≠0) ・・・(式2)
(x)’=f(x-1)’+f(x-1)’’ (x≠0) ・・・(式3)
となる。
【0027】
ここで、記憶部302から取得した領域0の2次関数の係数a、b、cの実際の値をそれぞれ、a=-5.7720×10-8、b=-5.9163×10-5、c=1.3000とする。
1画素目(x=0)の画素倍率f(0)は、
(0)=c=1.3となる。ここで、(式1)より、f(0)’を求めると、
(0)’=a+b=-5.7720×10-8+(-5.9163×10-5
=-5.9221×10-5
2画素目(x=1)の画素倍率f(1)は(式2)と1画素目のf(0)’の計算値より、
(1)=f(0)+f(0)’=c+(a+b)=1.2999となる。
同時に(式3)より、f(1)’を求めると、
(1)’=f(0)’+f(0)’’=(a+b)+(2・a)=3・a+b
=-5.9336×10-5
3画素目(x=2)の画素倍率f(2)は(式2)と2画素目のf(1)’の計算値より、
(2)=f(1)+f(1)’=(c+a+b)+(3・a+b
=4・a+2・b+c=1.2999、
同時に(式3)より、f(2)’を求めると、
(2)’=f(1)’+f(1)’’=(3・a+b)+(2・a
=5・a+b=-5.9452×10-5
同様に、4画素目以降は、主走査方向の解像度が600DPIの場合には画素数7016画素、解像度が1200DPIの場合には14032画素まで、各画素での倍率を計算する。
【0028】
図6は、後述する画素サイズ及び光量レベルを示す表であり、図6(a)は、主走査方向の解像度が600DPIで計算した各主走査方向の画素位置における画素倍率結果を示している。xは主走査方向の画素位置を示し、x=0~9までは上述した領域0の画素倍率の計算結果を示している。また、x=2075~2084、4931~4940は、感光ドラム102の主走査方向の画素位置がそれぞれ2075、4931から連続する10画素分の画素倍率結果を示している。主走査方向の画素位置xがx=2075~2084、4931~4940の画像形成領域は、領域1に属する。領域1に属する画素位置の画素倍率計算では、二次関数の近似式の係数として、a=2.9405×10-8、b=-1.5337×10-4、c=1.2000が記憶部302より取得され、使用されている。同様に、x=7006~7015は、感光ドラム102の主走査方向の画素位置が7006から連続する10画素分の画素倍率結果を示している。主走査方向の画素位置xがx=7007~7016である画像形成領域は、領域2に属し、画像形成領域の端部に位置する。領域2に属する画素位置の画素倍率計算では、二次関数の近似式の係数として、a=-5.7720×10-8、b=1.6306×10-4、c=1.2000が記憶部302より取得され、使用されている。このようにして、画素倍率計算部301は感光ドラム102の主走査方向の画素毎に画素倍率計算を行う。
【0029】
(画素サイズ計算)
S403では、制御部208は、上述した制御ブロックである画素サイズ演算部304により1画素の光走査装置104からのレーザ光の走査時間を決定する。図2で説明したレーザ駆動部210では、感光ドラム102の主走査方向の1画素区間の画素サイズに応じたPWM信号を出力する。そのため、各PWM信号の周期が該当する1画素の画素サイズとなるように設定する必要がある。例えば、プリンタ100は、1分間に50枚のシートSの印刷が可能であり、レーザ光源は、上述したマルチビーム光源ではなく、単一の光源とした場合には、BD207が出力するBD信号の周期は約231μs(マイクロ秒)となる。BD信号の周期のうち、感光ドラム102上の画像形成領域(図2)をレーザ光が走査する時間を70%とし、PWM信号を生成するレーザ駆動部210の分解能であるクロック周波数を3.84GHzとすると、理想の1画素周期は、次の式のように算出される。
【数1】
そして、レーザ駆動部210の分解能であるクロック周波数3.84GHzで除すると、理想の1画素周期に対応するクロック数を求めることができる。
【数2】
【0030】
その結果、周波数3.84GHzで動作するカウンタにおけるカウント値85.25が理想のPWM信号の1画素周期となる。ここで、求めたカウント値85.25を画素倍率の1倍として予め設定し、記憶部302に格納しておく。画素サイズ演算部304は、上述したS402で算出した主走査方向の画素位置に対する画素倍率に85.25を乗じることにより、主走査方向の画素位置における画素サイズを求める。なお、画素サイズ値は、後述するレーザ駆動部210でのカウンタのカウント値(整数)となるため、小数点以下は表現できない。そのため、求めたカウント値を四捨五入して整数として出力する。また、四捨五入により切り捨てられた誤差(端数)は、主走査方向の隣接する次の画素の画素周期の初期値として組み込まれる。
【0031】
例えば1画素目(x=0)の画素サイズは、カウント値85.25×画素倍率f(0)=85.25×1.3=110.8250となる。そして、求められたカウント値を四捨五入して、画素サイズ=111、誤差=-0.1750(=111-110.8250)となる。
同様に、2画素目(x=1)の画素サイズは、カウント値85.25×画素倍率f(1)+(-0.1750)(=1画素目の誤差)=110.6296となる。求めたカウント値を四捨五入すると、画素サイズ=111、誤差=-0.3704(=111-110.6296)となる。
同様に、3画素目(x=2)の画素サイズは、カウント値85.25×画素倍率f(2)+(-0.3704)(=2画素目の誤差)=110.4135となる。求めたカウント値を四捨五入すると、画素サイズ=110、誤差=0.4135(=110.4135-110)となる。
【0032】
図6(b)は、上述した方法により、4画素目(x=3)以降の画素サイズを計算した結果を示している。図6(b)において、サイズ計算値は、画素サイズと誤差に分ける前の小数点以下の値を含んでおり、サイズ計算値=画素サイズ+計算誤差となる。図6(b)において、x=3~9は、上述した計算結果の続きの値を示している。また、x=2075~2084、4931~4940は、感光ドラム102の主走査方向の画素位置がそれぞれ2075、4931から連続する10画素分の画素サイズの計算結果を示しており、画素サイズは、90又は91となっている。また、図6には不図示であるが、感光ドラム102の主走査方向の中点付近では、画素倍率が1倍であり、画素サイズは最小となる。その結果、画素サイズは、1画素目の画素サイズ111を1画素目の画素倍率1.3で除した値である85(≒111÷1.3)となる。同様に、x=7006~7015は、感光ドラム102の主走査方向の画素位置が7006から連続する10画素分の画素サイズの計算結果を示している。x=7006~7015は、感光ドラム102の主走査方向の中点を挟んでx=0~9と対称な位置であり、画素サイズの計算結果もx=0~9の場合と同様に、110又は111となっている。このようにして、画素サイズ演算部304は、感光ドラム102の主走査方向の画素毎に画素サイズ計算を行う。
【0033】
(部分光量計算)
S404では、制御部208は、上述した制御ブロックである光量補正率計算部303で光量補正値を計算する。光量補正率計算部303は、記憶部302に記憶されている光量プロファイルのパラメータに基づいて、光量補正率を計算する。図7は、感光ドラム102上の主走査方向の画素位置に対する光量補正率を説明する図である。図7において、下側の図は、感光ドラム102を示し、上側の図のプロファイル曲線701は光量補正率を示すプロファイル曲線である。図7の上側の図に対応する縦軸は正規化された光量補正率を示している。図中の0.7は、感光ドラム102の画像形成領域のうち、主走査方向の左端部での光量補正率であり、図中の1は、プロファイル曲線701の値が最大の場合の光量補正率である。光量補正率が1の場合の主走査方向の画素位置は、感光ドラム102の中点よりも主走査方向下流側(図2の感光ドラム102の画像形成領域の右端部寄り)に位置し、感光ドラム102の主走査方向の中点とは一致していない。また、図7の横軸は、レーザ光で走査される感光ドラム102の主走査方向の画素位置を示している。前述したように、感光ドラム102を走査するレーザ光の走査速度は、感光ドラム102の中央部を1とすると、感光ドラム102の端部では約1.3倍となる。そのため、同じ光量のレーザ光を感光ドラム102に照射した場合に、感光ドラム102の中央部での光量を1とすると、感光ドラム102の端部では約0.7倍となり、光量レベルが低下してしまうことになる。
【0034】
図7に示す特性曲線であるプロファイル曲線701は、上に凸の2次関数g(x)=α・x+β・x+γで表される曲線に近似している。ただし、最大値である極点の位置は、感光ドラム102の主走査方向の中点とは一致していない。また、係数α、β、γは、光量プロファイルのパラメータとして、予め記憶部302に格納されている。具体的には、係数α、β、γは、それぞれ、α=-1.5416×10-8、β=1.3666×10-4、γ=0.7000として記憶部302に格納されている。光量補正率計算部303は、記憶部302から係数α、β、γを取得して、計算式g(x)=α・x+β・x+γを用いて、主走査方向の各画素位置について、光量補正率を計算する。なお、光量補正率計算部303においても、上述した画素倍率計算部301と同様に、差分法を用いて光量補正率を計算することとする。なお、光量補正率は、図7に示すプロファイル曲線701の最大値のときの光量を1として、正規化した比率を示す。
【0035】
1画素目(x=0)の光量補正率g(0)は、g(0)=γ=0.7となる。また、x=0のときは、画素倍率計算の場合と同様に、中央差分値を使って誤差を小さくする。すなわち、g(0)’=β(x=0)、g(1)’=2・α+β(x=1)より中央値を取ると、上述した式は、次のように表すことができる。
【0036】
(0)’=(1/2)・{β+(2・α+β)}=α+β=1.3665×10-4
したがって、光量補正率g(0)は、次のように表すことができる。
【0037】
(0)=γ、g(0)’=α+β ・・・(式4)
(x)=g(x-1)+g(x-1)’ (x≠0) ・・・(式5)
(x)’=g(x-1)’+g(x-1)’’ (x≠0) ・・・(式6)
となる。
【0038】
2画素目(x=1)の光量補正率は、(式5)と1画素目のg(0)’の計算値より、
(1)=g(0)+g(0)’=γ+α+β=7.0014×10-1となる。
同時に(式6)より、g(1)’を求めると、
(1)’=g(0)’+g(0)’’=(α+β)+(2・α)=3・α+β
=1.3662×10-4となる。
3画素目(x=2)の光量補正率は、(式5)と2画素目のg(1)’の計算値より、
(2)=g(1)+g(1)’=(γ+α+β)+(3・α+β)=4・α+2・β+γ
=7.0027×10-1となる。
同時に(式6)より、g(2)’を求めると、
(2)’=g(1)’+g(1)’’=(3・α+β)+(2・α)=5・α+β
=1.3659×10-4となる。
【0039】
図6(c)は、上述した方法により光量補正率g(x)、g(x)’を計算した結果を示している。図6(c)において、x=4~9は、上述した計算結果の続きの値を示している。x=0~9は、感光ドラム102の画像形成領域(図2)の主走査方向の先端部に位置し、光走査装置104から出射されるレーザ光の走査速度が速いため、レーザ光の光量が落ちて、光量補正率は0.7倍位になっている。また、x=2075~2084、4931~4940の画素位置での光量補正率は、それぞれ0.917、0.999となり、光量補正率は1に向かって大きくなっている。一方、感光ドラム102の画像形成領域の主走査方向の後端部に位置する、x=7006~7015では、先端部同様に、レーザ光の走査速度が速くなるため、光量補正率が0.9倍に落ちている。このようにして、光量補正率計算部303では、感光ドラム102の主走査方向の画素毎に光量補正率を計算している。
【0040】
(光量値量子化)
S405では、制御部208は、上述した制御ブロックである補正率レベル変換部305により、S404で算出した光量補正値をレベル分けして、光量の量子化を行う。表1は、光量補正値を8段階にレベル分けするための対応情報を表形式にまとめたものである。表1は、0~7の8段階にレベル分けされた光量レベルと、S404で算出した光量補正値の各光量レベルに対応する(対応付けられた)光量補正率範囲から構成されている。光量補正率範囲は、最小値を示すmin値と、最大値を示すmax値から構成され、各光量補正率は、min値よりも大きく、max値以下に該当する光量レベルに変換される。
【0041】
【表1】
【0042】
図6(d)は、上述した方法により光量補正率g(x)を表1に示す光量レベルに変換した結果を示している。図6(d)において、感光ドラム102の主走査方向の画素位置xが0~9の場合には、光量レベルが0に変換されている。同様に、画素位置x=2075~2084の場合には、光量レベルは5に変換され、画素位置x=4931~4940の場合は、光量レベルは7に変換され、画素位置x=7006~7015の場合には、光量レベルは5に変換されている。このようにして、補正率レベル変換部305では、感光ドラム102の主走査方向の画素毎に光量補正率を光量レベルに変換している。
【0043】
(PWMテーブル切替)
S406では、制御部208は、PWMテーブル切替部307により、S403で算出した画素サイズ値とS405で光量補正率に基づいて変換した光量レベルとに基づいて、後述するPWM変換部306で使用するPWMテーブルを選択する。なお、PWMテーブル切替部307で選択されるPWMテーブルデータは、予め記憶部302に設定されている。
【0044】
図8は、PWMテーブルの例を示す図である。図8において、PWMテーブルは、縦軸方向には画素サイズの大きさ(画素サイズ111~85)の順に並べられ、横軸方向には光量レベルの大きさ(光量レベル0~7)の順に並べられている。なお、図8では縦軸の画素サイズの値は、連続しておらず歯抜けの値になっているが、記憶部302には、画素サイズ85~111まで、1サイズ毎に変換データであるPWMテーブルデータが格納されている。例えば、画像の光量補正を行わずに光量レベル0のままで、画像の倍率補正(画素サイズの補正)のみを行う場合には、図中、枠で囲まれた(a)の範囲の画素サイズ85~111までのPWMテーブルを、画素サイズに応じて1画素毎に切り替えればよい。また、画像の倍率補正は行わずに画素サイズ85のままで、光量補正のみを行う場合には、例えば図中、枠で囲まれた(b)の範囲で光量レベル0~7までのPWMテーブルを光量レベルに応じて1画素毎にPWMテーブルを切り替えればよい。なお、図8において、光量レベル1~7の各画素サイズのPWMテーブルは、光量レベル0との比較のために、光量レベル0のPWMテーブルを背景として薄く表示している。図8に示すPWMテーブルは画素サイズが大きいほど、テーブルの横軸方向の長さが大きくなっており、光量レベルが0から7に向かって大きくなるにつれて、PWMテーブル中の黒い部分の横軸方向の幅が狭くなっている。なお、PWMテーブルの見方については後述する。
【0045】
PWMテーブル切替部307は、上述した画素サイズ演算部304から出力された画素サイズ値と、補正率レベル変換部305から出力された光量レベル値とに基づいて、図8に示すPWMテーブルの1つを選択し、記憶部302から取得する。例えば、図6に示す計算結果より、1画素目(x=0)は、画素サイズ111、光量レベル0なので、図8に示すPWMテーブル901が選択される。同様に、2画素目(x=1)は画素サイズ111、光量レベル0なので、PWMテーブル901が選択され、3画素目(x=2)は画素サイズ110、光量レベル0なので、PWMテーブル902が選択される。
【0046】
また、図6には示されていないが、360画素目(x=359)は、画素サイズ108、光量レベル1となり、PWMテーブル903が選択され、626画素目(x=625)では画素サイズ106、光量レベル2となり、PWMテーブル904が選択される。同様に、879画素目(x=878)は画素サイズ102、光量レベル3となり、PWMテーブル905が選択され、1270画素目(x=1269)は画素サイズ98、光量レベル3となり、テーブル906が選択される。更に、1620画素目(x=1619)は画素サイズ94、光量レベル4となり、PWMテーブル907が選択され、2076画素目(x=2075)は、図6より画素サイズ91で、光量レベル5なので、PWMテーブル908が選択される。
【0047】
更に、図6には示されていないが、2264画素目(x=2263)は画素サイズ90、光量レベル5となり、PWMテーブル909が選択され、2982画素目(X=2981)は画素サイズ86、光量レベル6となり、PWMテーブル910が選択される。同様に、3095画素目(X=3094)は画素サイズ85、光量レベル6となり、PWMテーブル911が選択され、3129画素目(x=3128)は画素サイズ85、光量レベル7となり、PWMテーブル912が選択される。また、4299画素目(x=4298)は画素サイズ86、光量レベル7となり、PWMテーブル913が選択され、4865画素目(x=4864)は画素サイズ90、光量レベル7となり、PWMテーブル914が選択される。そして、4933画素目(x=4932)では、図6より画素サイズ91で、光量レベル7なので、PWMテーブル915が選択される。
【0048】
そして、図6には示されていないが、5338画素目(x=5337)は画素サイズ94、光量レベル6となり、PWMテーブル916が選択され、5827画素目(x=5826)は画素サイズ98、光量レベル6となり、PWMテーブル917が選択される。更に、6143画素目(x=6142)は画素サイズ102、光量レベル6となり、PWMテーブル918が選択され、6468画素目(x=6467)は画素サイズ106、光量レベル5となり、PWMテーブル919が選択される。同様に、6561画素目(x=6560)は画素サイズ108、光量レベル5となり、PWMテーブル920が選択され、6850画素目(x=6850)は画素サイズ110、光量レベル5となり、PWMテーブル921が選択される。最後に、感光ドラム102の画像形成領域の主走査方向の後端部の7016画素目(x=7015)では画素サイズ111、光量レベル5なので、PWMテーブル922が選択される。このように、PWMテーブルを画素サイズと光量レベルに応じて適宜切り替えることで、画像の倍率補正と光量補正を同時に独立して行うことが可能となる。
【0049】
以上説明したPWMテーブルの選択は一例であり、実際には温度、湿度条件や、プリント用紙の種類、ユーザによる倍率設定や濃度設定に応じて選択されるPWMテーブルは変更される。例えば、プリンタ100の画像濃度を調整する調整モードにおいて、中間転写ベルト107上にパッチパターンを形成し、パッチセンサ117でパッチ間距離、濃度、色の測定を行う。そして、測定結果に基づいて、画素倍率曲線のパラメータa、b、cと、光量補正率曲線のパラメータα、β、γが再計算され、画素倍率プロファイルや光量補正プロファイルにフィードバックされる。そのため、PWMテーブル切替部307により選択される図8に示すPWMテーブルが変わるため、記憶部302には、全ての画素サイズ及び光量レベルに対応したPWMテーブルのデータが設定されており、必要に応じて最適なPWMテーブルが選択される。
【0050】
(PWM変換)
S407では、制御部208は、PWM変換部306により、入力される画像データをPWMテーブル切替部307で選択されたPWMテーブルを使用して、PWM信号に変換して、光走査装置104のレーザ駆動部210に出力する。入力される画像データは、例えば4ビット構成で、0~15の16段階で画像濃度を表現する。そして、出力されるPWM信号は、画素サイズに応じた信号長で、画像濃度に応じたオンデューティの時間を有する信号である。図8で説明したPWMテーブル912において、縦軸が入力される画像データに対応し、値は示していないが、上から下に向かって入力データの0~15に対応する。一方、横軸はPWM信号のオンデューティを示し、図中黒い部分がオンデューティの時間を示しており、画像濃度が大きい、すなわち光量レベルが小さいほど、オンデューティの時間が長くなっている。PWM信号は、レーザ駆動部210に出力され、レーザ駆動部210がレーザ光源201を駆動する際のレーザ駆動信号となる。
【0051】
S408では、制御部208は、感光ドラム102の主走査方向の1ライン分の画素処理が終了したかどうか判断する。制御部208は、1ライン分の画素の処理が終了した場合には処理を終了し、1ライン分の画素の処理が終了していない場合には、処理をS402に戻し、次の画素の処理を行う。以上説明した処理を各走査ラインについて実行することで、画素倍率補正と光量補正を独立して行う画像形成装置を実現することができる。
【0052】
[パラメータ測定方法]
ここで、記憶部302に保存される、上述した画素倍率曲線及び光量補正率曲線の係数であるパラメータデータの作り方の一例を説明する。図9は、主走査方向の1画素毎に測定された画素倍率と光量補正率をプロットして作成されたグラフである。なお、図9で示すグラフのデータは、複数回測定した測定データを平均したものである。図9において、縦軸は画素倍率、光量補正率の倍率を示し、横軸は主走査方向の画素位置を示している。
【0053】
図9において、画素倍率曲線1001は、感光ドラム102の画像形成領域(図2)の中点を中心に左右対称なプロファイルとなっている。そして、画素倍率曲線1001により示される画素倍率は、感光ドラム102の中央部(中点)を1倍として正規化されており、感光ドラム102の画像形成領域の端部(主走査方向の両端部)では1.3倍となっている。前述したように、画素倍率曲線1001は、感光ドラム102の端部に近い主走査位置(前述した領域0、2)では、少し上に凸の曲線となっている。そのため、画素倍率のプロファイルを示すパラメータは、主走査位置が感光ドラム102の左端部の領域0と、感光ドラム102の中央部を含む領域1と、感光ドラム102の右端部の領域2に分けて、それぞれ準備する。本実施例では、領域毎に2次関数f(x)=a・x+b・x+cで示される曲線に近似して、2次関数の係数a、b、cを求める。それぞれの領域に属する測定値3点を2次関数の式に代入することで係数a、b、cを計算で求めることができる。例えば、図9では、領域0では測定データ1003(倍率1.3である0画素目)、1004(倍率1.2になっている900画素目)、1005(倍率1.25になっている550画素目)が測定されており、この3点から係数a、b、cを計算する。3つの測定データを2次関数の式f(x)=a・x+b・x+cに代入すると、次のようになる。すなわち、
(0)=c=1.3
(550)=a・550+b・550+1.3=1.25
(900)=a・900+b・900+1.3=1.2
この3つの式より、係数a、b、cを求めると、a=-5.7720×10-8、b=-5.9163×10-5、c=1.3000となる。
【0054】
同様に、領域1では測定データ1005(倍率1.2になっている900画素目)、1006(倍率1.0になっている3508画素目)、1007(倍率1.2になっている6116画素目)が測定されている。なお、測定データ1005、1007は、それぞれ領域0と領域1の境界である主走査位置の測定データ、領域1と領域2の境界である主走査位置の測定データである。3つの測定データ1005、1006、1007を2次関数の式f(x)=a・x+b・x+cに代入すると、次のようになる。ここでは、計算を簡単にするため、領域1の開始画素を0として計算する。
【0055】
(900-900)=c=1.2
(3508-900)=a・2608+b・2608+1.2=1.0
(6116-900)=a・5216+b・5216+1.2=1.2
この3つの式より、係数a、b、cを求めると、a=2.9405×10-8、b=-1.5337×10-4、c1=1.2000となる。
同様に領域2の係数a、b、cについても計算すると、a=-5.7720×10-8、b=1.6306×10-4、c=1.2000となる。なお、計算は上述した方法と同じため省略する。
【0056】
図9において、光量補正率曲線1002は、上に凸の2次関数の曲線で、感光ドラム102の画像形成領域の中点から主走査方向下流側の画素位置で最大値となり、最大値となった画素位置を中心にして左右対称の曲線となっている。そして、光量補正率曲線1002により示される光量補正率は、最大値の画素位置が光量補正率が1倍として正規化されており、最小値は、感光ドラム102の画像形成領域の左端部では0.7倍となっている。本実施例では、2次関数g(x)=α・x+β・x+γで示される曲線に近似して、2次関数の係数α、β、γを求める。測定値3点を2次関数に代入することで係数α、β、γを計算で求めることができる。例えば、図9では、測定データ1008(光量補正率0.7倍の0画素目)、1009(光量補正率1.0倍の4000画素目)、1010(光量補正率0.9倍の7016画素目)が測定されており、この3点から係数a、b、cを計算する。3つの測定データを2次関数の式g(x)=α・x+β・x+γに代入して、画素倍率曲線の場合と同様の方法で、係数α、β、γを求めると、α=-1.5416×10-8、β=1.3666×10-4、γ=0.7000となる。以上説明した方法で算出した画素倍率曲線のパラメータa、b、cと、光量補正率曲線のパラメータα、β、γを記憶部302に設定する。記憶部302に設定されたパラメータは、図4で説明した処理において、画素倍率プロファイル及び光量補正プロファイルとして読み出され、画素倍率及び光量補正の処理に使用される。
【0057】
以上説明したように、本実施例によれば、fθ特性を有する走査レンズを使用しない光走査装置を用いて、安価に感光体上に形成される画素サイズ及び画像濃度の補正を行うことができる。
【実施例2】
【0058】
実施例2では、実施例1で説明したPWMテーブルの数を削減した例について説明する。なお、本実施例のプリンタ100や光走査装置104の構成は実施例1と同様であり、ここでの説明は省略する。
【0059】
本実施例では、実施例1と比べて、PWMテーブル切替部307で選択可能なPWMテーブルの数を大幅に減らした点が異なる。例えば、低価格のプリンタ製品では、装置内の温度・湿度を測定する温湿度センサや、画像倍率や画像濃度を検知するために出力したパッチを読み取るパッチセンサ117等を備えていないことが多い。このような場合には、PWMテーブルを切り替える要因である画像倍率や画像濃度の変動の検知ができないため、予め決められたPWMテーブルを使用して、画素倍率補正及び光量補正を行うことになる。実際には、製造過程で測定した画素倍率と光量補正率を基準に算出したパラメータ値を記憶部302に設定される。
【0060】
図10は、本実施例で使用するPWMテーブルの一例を示した図であり、実施例1で使用した図8のPWMテーブルの一部を切り出したものである。製造過程で測定した画素倍率と光量補正率から代表値プロファイルとそのパラメータを生成する。そして、代表値のパラメータを用いて主走査位置に応じて計算、又は測定した結果に基づいて、選択されるPWMテーブルを予め求めておき、該当するPWMテーブルを記憶部302に設定する。実施例1で説明した主走査位置の画素サイズ及び光量レベルは標準的なデータであり、これらのデータに応じて選択されるPWMテーブルも選択される頻度の高い標準的なPWMデータである。したがって、代表値パラメータを用いて選択されるPWMテーブルは、実施例1で説明したPWMテーブル901~922となる。そのため、図10に示すPWMテーブル1101~1122(それぞれ図8のPWMテーブル901~922に対応)の22個のPWMテーブルは、実施例1の図8に示す88個のPWMテーブルの1/4に削減されている。なお、実施例1の図8では、画素サイズが11しか示されていないが、実際には画素サイズ85~111まで1サイズずつのPWMテーブルが記憶部302に格納されている。
【0061】
このように、パッチセンサ117を有しない画像形成装置では、記憶部302に記憶するPWMテーブルの数を削減できるため、コストダウンを図ることができる。
【0062】
以上説明したように、本実施例によれば、fθ特性を有する走査レンズを使用しない光走査装置を用いて、安価に感光体上に形成される画素サイズ及び画像濃度の補正を行うことができる。
【符号の説明】
【0063】
102 感光ドラム
104 光走査装置
201 レーザ光源
302 記憶部
304 画素サイズ演算部
305 補正率レベル変換部
306 PWM変換部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10