(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-09
(45)【発行日】2022-12-19
(54)【発明の名称】表示ユニット
(51)【国際特許分類】
G09G 3/20 20060101AFI20221212BHJP
G09G 3/3275 20160101ALI20221212BHJP
G09G 3/3266 20160101ALI20221212BHJP
G09G 3/36 20060101ALN20221212BHJP
【FI】
G09G3/20 621A
G09G3/20 650C
G09G3/20 660C
G09G3/20 622D
G09G3/20 622Q
G09G3/20 623C
G09G3/3275
G09G3/3266
G09G3/36
(21)【出願番号】P 2019514879
(86)(22)【出願日】2018-04-16
(86)【国際出願番号】 IB2018052612
(87)【国際公開番号】W WO2018197985
(87)【国際公開日】2018-11-01
【審査請求日】2021-03-29
(31)【優先権主張番号】P 2017088830
(32)【優先日】2017-04-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】黒川 義元
(72)【発明者】
【氏名】高橋 圭
(72)【発明者】
【氏名】吉住 健輔
(72)【発明者】
【氏名】山崎 舜平
【審査官】西島 篤宏
(56)【参考文献】
【文献】特開平09-204160(JP,A)
【文献】米国特許出願公開第2016/0171938(US,A1)
【文献】実開昭63-060195(JP,U)
【文献】国際公開第2008/096481(WO,A1)
【文献】米国特許出願公開第2017/0236466(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G09G 3/00 - 3/38
(57)【特許請求の範囲】
【請求項1】
画素アレイと、
ソースドライバと、
ゲートドライバと、を有する表示ユニットであって、
前記画素アレイは、m×n個(m、nは2以上の整数)の画素と、m本のソース線と、n本のゲート線と、を有し、
前記ソースドライバは、第1の論理回路部と、第1のセレクタ群と、を有し、
前記ゲートドライバは、第2の論理回路部と、第2のセレクタ群と、を有し、
前記ソースドライバは、前記m本のソース線に信号を出力する機能を有し、
前記ゲートドライバは、前記n本のゲート線に信号を出力する機能を有し、
前記第1の論理回路部は、複数の第1のスイッチを有し、
前記第2の論理回路部は、複数の第2のスイッチを有し、
前記第1のセレクタ群は、それぞれ第1の連動スイッチを有し、
前記第2のセレクタ群は、それぞれ第2の連動スイッチを有し、
前記複数の第1のスイッチは、前記第1の連動スイッチと連動し、
前記複数の第2のスイッチは、前記第2の連動スイッチと連動し、
前記表示ユニットには、i×j画素分(i、jは2以上の整数)の情報量を有する画像データが入力され、
i<mの場合、前記第1のセレクタ群は、
前記第1の連動スイッチの制御によって、前記第1の論理回路部が出力する信号の1つを、複数の前記ソース線に出力し、
j<nの場合、前記第2のセレクタ群は、
前記第2の連動スイッチの制御によって、前記第2の論理回路部が出力する信号の1つを、複数の前記ゲート線に出力し、
i<mの場合、前記第1の論理回路部は、
前記複数の第1のスイッチの制御によって、i=mの場合と比べて低い電源電圧で動作し、
j<nの場合、前記第2の論理回路部は、
前記複数の第2のスイッチの制御によって、j=nの場合と比べて低い電源電圧で動作する表示ユニット。
【請求項2】
請求項1において、
i<mの場合、前記第1の論理回路部は、
前記複数の第1のスイッチの制御によって、i=mの場合と比べて低い動作周波数で動作し、
j<nの場合、前記第2の論理回路部は、
前記複数の第2のスイッチの制御によって、j=nの場合と比べて低い動作周波数で動作する表示ユニット。
【請求項3】
請求項1または請求項2において、
前記ソースドライバは、第1のレベルシフタ部、を有し、
前記ゲートドライバは、第2のレベルシフタ部、を有し、
前記第1のレベルシフタ部は、前記第1の論理回路部と前記第1のセレクタ群との間に電気的に接続され、
前記第2のレベルシフタ部は、前記第2の論理回路部と前記第2のセレクタ群との間に電気的に接続され、
前記第1のレベルシフタ部は、第1乃至第kのレベルシフタ群(kは2以上の整数)、を有し、
前記第2のレベルシフタ部は、第k+1乃至第lのレベルシフタ群(lはk+2以上の整数)、を有し、
i<mの場合、前記第1のレベルシフタ部は、前記第1乃至第kのレベルシフタ群の中から、i=mの場合と異なる前記レベルシフタ群、または、i=mの場合と異なる組み合わせの前記レベルシフタ群、を用いて動作し、
j<nの場合、前記第2のレベルシフタ部は、前記第k+1乃至第lのレベルシフタ群の中から、
j=nの場合と異なる前記レベルシフタ群、または、j=nの場合と異なる組み合わせの前記レベルシフタ群、を用いて動作する表示ユニット。
【請求項4】
請求項1または請求項2において、
前記表示ユニットには、表示可能な画像データが入力され、
前記画像データの最大フレーム周波数をfとしたとき、
前記表示ユニットに、フレーム周波数gの画像データが入力され、
g<fの場合、前記第1の論理回路部および前記第2の論理回路部は、
前記複数の第1のスイッチの制御および前記複数の第2のスイッチの制御によって、g=fの場合と比べて低い動作周波数で動作する表示ユニット。
【請求項5】
請求項4において、
g<fの場合、前記第1の論理回路部および前記第2の論理回路部は、
前記複数の第1のスイッチの制御および前記複数の第2のスイッチの制御によって、g=fの場合と比べて低い電源電圧で動作する表示ユニット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一形態は、表示ユニットに関する。特に、解像度およびフレーム周波数が高いコンテンツを表示可能な表示ユニット、当該表示ユニットを有する表示装置、および電子機器に関する。
【0002】
なお、本発明の一形態は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一形態は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
【0003】
そのため、より具体的に本明細書等で開示する本発明の一形態の技術分野としては、表示ユニット、表示装置、電子機器、それらの駆動方法、または、それらの製造方法を一例としてあげることができる。
【背景技術】
【0004】
近年、解像度の高い、すなわち画素数の多いコンテンツを表示可能な表示装置が求められている。家庭用のテレビジョン装置(テレビ、テレビジョン受信機)においても解像度の高いコンテンツを視聴できることが望まれており、現在日本国では、ハイビジョンもしくはフルハイビジョン(フルHD、2K)と呼ばれるテレビ用の放送サービスが主流であるが、フルハイビジョンの4倍の画素を有するウルトラハイビジョン(4K解像度、4K2K、4K)と呼ばれるテレビ用の放送サービスが2015年に開始されている。さらに、ウルトラハイビジョンの4倍の画素を有するスーパーハイビジョン(8K解像度、8K4K、8K)と呼ばれるテレビ用の試験放送が2016年に開始され、2018年に実用放送が予定されている。
【0005】
ここで、代表的には、フルハイビジョンと呼ばれる表示装置は1920×1080個の画素を有し、ウルトラハイビジョンと呼ばれる表示装置は3840×2160個の画素を有し、スーパーハイビジョンと呼ばれる表示装置は7680×4320個の画素を有する。
【0006】
また、フレーム周波数の高いコンテンツを表示可能な表示装置が望まれている。フレーム周波数は、表示装置が1秒間に表示画像を書き換える回数であり、フレーム周波数を高くすることで、ちらつきを抑え滑らかな動画表示を実現する。スーパーハイビジョンにおいては、フレーム周波数が60Hzのみならず、120Hzの放送サービスも予定されている。
【0007】
非特許文献1には、スーパーハイビジョンに対応した画素数を有する有機ELディスプレイが報告されている。
【先行技術文献】
【非特許文献】
【0008】
【文献】S.Kawashima,et al.,”13.3-In.8K X 4K664-ppi OLED Display Using CAAC-OS FETs,”SID2014 DIGEST,pp.627-630.
【発明の概要】
【発明が解決しようとする課題】
【0009】
スーパーハイビジョンに対応したテレビ放送を視聴するには、スーパーハイビジョンに対応したテレビ等、表示装置が必要である。しかし、スーパーハイビジョンに対応した表示装置が一般に普及するまでの期間、従来のハイビジョン、フルハイビジョン放送やウルトラハイビジョン放送も継続されることが予想できる。コンテンツは、テレビ放送以外でも、例えば、メディアやインターネット、ケーブルテレビ等によっても届けられるが、少なくともフルハイビジョン、ウルトラハイビジョン、スーパーハイビジョンがしばらくの間混在すると予想できる。
【0010】
したがって、スーパーハイビジョンに対応した表示装置であっても、ウルトラハイビジョンやフルハイビジョンの解像度に対応できる必要があり、120Hzのみではなく60Hzや30Hzのフレーム周波数にも対応できる必要がある。
【0011】
表示装置が、表示可能な最大の解像度より解像度の低いコンテンツを表示する、もしくは、表示可能な最大のフレーム周波数よりフレーム周波数の低いコンテンツを表示するには、表示装置が有する受像装置において、足りない画像データを補間する方法(アップコンバートともいう)がある。画像データを補間する方法には、単に1画素分の画像データを4画素または16画素にコピーする方法、周囲の画像データを参照し中間色の画像データを補う方法、表示画像の中からエッジ(輪郭)を検出し足りない画像データを推測する方法、前後のフレームから足りない画像データの場所にあった画像データを補う方法、さらに、エッジを検出して同じようなテクスチャを補う方法等、様々な方法がある。フレームを補う方法についても同様である。
【0012】
しかし、表示装置は、表示するコンテンツの解像度またはフレーム周波数が低くても、表示装置の対応できる最大の解像度および最大のフレーム周波数に対応した電力を消費するため、表示するコンテンツに対して表示装置の消費電力が高いという問題があった。
【0013】
本発明の一形態は、消費電力が低い、新規な表示装置を提供することを課題の一つとする。または、本発明の一形態は、表示するコンテンツの解像度およびフレーム周波数に合わせて動作方法を最適化し、消費電力を低減することができる表示装置を提供することを課題の一つとする。
【0014】
なお、本発明の一形態は、必ずしも上記の課題の全てを解決する必要はなく、少なくとも一つの課題を解決できるものであればよい。また、上記の課題の記載は、他の課題の存在を妨げるものではない。これら以外の課題は、明細書、特許請求の範囲、図面などの記載から自ずと明らかになるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0015】
本発明の一形態は、画素アレイと、ソースドライバと、ゲートドライバと、を有する表示ユニットである。画素アレイは、m×n個(m、nは2以上の整数)の画素と、m本のソース線と、n本のゲート線とを有し、ソースドライバは、第1の論理回路部と、第1のセレクタ群とを有し、ゲートドライバは、第2の論理回路部と、第2のセレクタ群とを有する。ソースドライバは、m本のソース線に信号を出力する機能を有し、ゲートドライバは、n本のゲート線に信号を出力する機能を有する。表示ユニットには、i×j画素分(i、jは2以上の整数)の情報量を有する画像データが入力され、i<mの場合、第1のセレクタ群は、第1の論理回路部が出力する信号の1つを複数のソース線に出力し、j<nの場合、第2のセレクタ群は、第2の論理回路部が出力する信号の1つを複数のゲート線に出力する。
【0016】
また、上記形態において、i<mの場合、第1の論理回路部は、i=mの場合と比べて低い動作周波数で動作し、j<nの場合、第2の論理回路部は、j=nの場合と比べて低い動作周波数で動作する。
【0017】
また、上記形態において、i<mの場合、第1の論理回路部は、i=mの場合と比べて低い電源電圧で動作し、j<nの場合、第2の論理回路部は、j=nの場合と比べて低い電源電圧で動作する。
【0018】
また、上記形態において、ソースドライバは第1のレベルシフタ部を有し、ゲートドライバは第2のレベルシフタ部を有し、第1のレベルシフタ部は第1乃至第kのレベルシフタ群(kは2以上の整数)を有し、第2のレベルシフタ部は第k+1乃至第lのレベルシフタ群(lはk+2以上の整数)を有する。i<mの場合、第1のレベルシフタ部は、第1乃至第kのレベルシフタ群の中から、i=mの場合と異なるレベルシフタ群、またはi=mの場合と異なる組み合わせのレベルシフタ群を用いて動作し、j<nの場合、第2のレベルシフタ部は、第k+1乃至第lのレベルシフタ群の中から、j=nの場合と異なるレベルシフタ群、またはj=nの場合と異なる組み合わせのレベルシフタ群を用いて動作する。
【0019】
また、上記形態において、表示ユニットには表示可能な画像データが入力され、画像データの最大フレーム周波数をfとしたとき、表示ユニットにフレーム周波数gの画像データが入力され、g<fの場合、第1の論理回路部および第2の論理回路部は、g=fの場合と比べて低い動作周波数で動作する。
【0020】
また、上記形態において、g<fの場合、第1の論理回路部および第2の論理回路部は、g=fの場合と比べて低い電源電圧で動作する。
【0021】
また、上記形態において、画素は、チャネル形成領域に金属酸化物を含むトランジスタを有する。
【0022】
また、本発明の一形態は、表示ユニットと、受像装置と、を有する表示装置である。表示ユニットは、画素アレイと、ソースドライバと、ゲートドライバとを有し、ソースドライバは、第1の論理回路部と、第1のセレクタ群とを有し、ゲートドライバは、第2の論理回路部と、第2のセレクタ群とを有する。画素アレイは、m本(mは2以上の整数)のソース線と、n本(nは2以上の整数)のゲート線とを有し、ソースドライバは、m本のソース線に信号を出力する機能を有し、ゲートドライバは、n本のゲート線に信号を出力する機能を有する。受像装置は画像データの解像度dを検出する機能を有し、表示ユニットは最大で解像度eの画像データを表示可能としたとき、d<eの画像データが受像装置に入力された場合、第1のセレクタ群は、第1の論理回路部が出力する信号の1つを複数のソース線に出力し、第2のセレクタ群は、第2の論理回路部が出力する信号の1つを複数のゲート線に出力する。
【0023】
また、上記形態において、d<eの画像データが受像装置に入力された場合、第1の論理回路部および第2の論理回路部は、d=eの画像データが受像装置に入力された場合と比べて低い動作周波数で動作する。
【0024】
また、上記形態において、d<eの画像データが受像装置に入力された場合、第1の論理回路部および第2の論理回路部は、d=eの画像データが受像装置に入力された場合と比べて低い電源電圧で動作する。
【0025】
また、上記形態において、ソースドライバは、第1のレベルシフタ部を有し、ゲートドライバは、第2のレベルシフタ部を有し、第1のレベルシフタ部は、第1乃至第kのレベルシフタ群(kは2以上の整数)を有し、第2のレベルシフタ部は、第k+1乃至第lのレベルシフタ群(lはk+2以上の整数)を有する。d<eの場合、第1のレベルシフタ部は、第1乃至第kのレベルシフタ群の中から、d=eの場合と異なるレベルシフタ群、または、d=eの場合と異なる組み合わせのレベルシフタ群を用いて動作し、第2のレベルシフタ部は、第k+1乃至第lのレベルシフタ群の中から、d=eの場合と異なるレベルシフタ群、または、d=eの場合と異なる組み合わせのレベルシフタ群を用いて動作する。
【0026】
また、上記形態において、受像装置は画像データのフレーム周波数gを検出する機能を有し、表示ユニットは最大でフレーム周波数fの画像データを表示可能としたとき、g<fの画像データが受像装置に入力された場合、第1の論理回路部および第2の論理回路部は、g=fの画像データが受像装置に入力された場合と比べて低い動作周波数で動作する。
【0027】
また、上記形態において、g<fの画像データが受像装置に入力された場合、第1の論理回路部および第2の論理回路部は、g=fの画像データが受像装置に入力された場合と比べて低い電源電圧で動作する。
【0028】
また、上記形態において、画素アレイは、チャネル形成領域に金属酸化物を含むトランジスタを有する。
【発明の効果】
【0029】
表示装置は表示ユニット有し、表示装置が表示可能な解像度よりコンテンツの解像度が低い場合、表示ユニットが有するソースドライバおよびゲートドライバは複数のソース線およびゲート線に信号を出力し、ソースドライバおよびゲートドライバは動作周波数を下げて動作を行う。さらに、ソースドライバおよびゲートドライバが有する論理回路部の電源電圧を低くする。動作周波数を下げる、論理回路部の電源電圧を低くすることで、表示装置の消費電力を低減することができる。
【0030】
また、表示装置が表示可能なフレーム周波数よりコンテンツのフレーム周波数が低い場合、表示ユニットが有するソースドライバおよびゲートドライバは動作周波数を下げて動作を行い、ソースドライバおよびゲートドライバが有する論理回路部の電源電圧を低くする。動作周波数を下げる、論理回路部の電源電圧を低くすることで、表示装置の消費電力を低減することができる。
【0031】
本発明の一形態は、消費電力が低い、新規な表示装置を提供することができる。または、本発明の一形態は、コンテンツの解像度およびフレーム周波数に合わせて、ソースドライバおよびゲートドライバは動作周波数を下げる、また、ソースドライバおよびゲートドライバが有する論理回路部の電源電圧を低くすることで、消費電力を低減することができる表示装置を提供することができる。
【0032】
なお、本発明の一形態の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一形態は、上記列挙した効果、および他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一形態は、場合によっては、上記列挙した効果を有さない場合もある。
【図面の簡単な説明】
【0033】
【
図3】(A)セレクタの構成例を示す回路図、(B)スイッチの構成例を示す回路図、(C)スイッチの構成例を示す回路図。
【
図4】(A)論理回路部の構成例を示す回路図、(B)シフトレジスタのシンボルを示す図、(C)シフトレジスタの構成例を示す回路図。
【
図14】(A)表示ユニットの構成例を示すブロック図、(B)表示ユニットの構成例を示す回路図、(C)表示ユニットの構成例を示す回路図。
【発明を実施するための形態】
【0034】
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。また、以下に示される複数の実施の形態は、適宜組み合わせることが可能である。
【0035】
なお、実施の形態において説明する表示装置は、表示ユニットおよび受像装置を有するテレビジョン装置やモニタ装置などを例に説明しているが、本発明の一形態である表示ユニットは、スマートフォンやタブレットなどの携帯情報端末、デジタルカメラやビデオカメラ、ナビゲーションシステムなど、表示部を有する幅広い電子機器に応用可能である。
【0036】
また、図面等において、大きさ、層の厚さ、領域等は、明瞭化のため誇張されている場合がある。よって、必ずしもそのスケールに限定されない。図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
【0037】
また、図面等において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
【0038】
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
【0039】
また、本明細書等において、「上」や「下」などの配置を示す用語は、構成要素の位置関係が、「直上」または「直下」であることを限定するものではない。例えば、「ゲート絶縁層上のゲート電極」の表現であれば、ゲート絶縁層とゲート電極との間に他の構成要素を含むものを除外しない。
【0040】
また、本明細書等において、「平行」とは、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
【0041】
また、本明細書等において、「第1」、「第2」、「第3」などの序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。
【0042】
また、本明細書等において、「電気的に接続」とは、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、容量素子、その他の各種機能を有する素子などが含まれる。
【0043】
また、本明細書等において、「電圧」とは、ある電位と基準の電位(例えば、グラウンド電位)との電位差のことを示す場合が多い。よって、電圧と電位差とは言い換えることができる。
【0044】
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む、少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域、またはドレイン電極)とソース(ソース端子、ソース領域、またはソース電極)の間にチャネル領域を有しており、チャネル領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。
【0045】
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
【0046】
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも高い状態をいう。つまり、nチャネル型のトランジスタのオフ電流とは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも低いときのドレイン電流、という場合がある。
【0047】
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソース電流をいう場合がある。
【0048】
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、トランジスタがオフ状態にあるときに、ソースとドレインの間に流れる電流を指す場合がある。
【0049】
また、本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。また、OSトランジスタ、またはOS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
【0050】
(実施の形態1)
本実施の形態では、テレビジョン装置やモニタ装置など、コンテンツを受信して画像を表示する表示装置について、その構成例および動作方法例等について説明する。なお、コンテンツは、テレビ放送などの放送信号や画像データなどの信号として入力される。
【0051】
<表示装置>
図1は、表示装置の構成例を示すブロック図である。
【0052】
なお、本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
【0053】
図1に示す表示装置10は、表示ユニット20および受像装置30を有する。表示ユニット20は、受像装置30から画像データ、タイミング信号等を供給され、画像を表示する機能を有する。受像装置30は、放送信号や画像データを受信する機能、放送信号から画像データを生成する機能、画像データの解像度およびフレーム周波数を検出する機能等を有する。
【0054】
表示ユニット20は、画素アレイ21、ソースドライバ22、ゲートドライバ23、タイミングコントローラ(
図1では、「TCON」と表記)24を有する。
【0055】
画素アレイ21は、複数の画素51と、複数のソース線と、複数のゲート線とを有し(
図2、参照)、それぞれの画素51はトランジスタを用いて駆動されるアクティブ型の素子である。画素アレイ21は、表示装置10の表示部を形成し、画像を表示する機能を有する。画素51のより具体的な構成例については、実施の形態2および実施の形態3にて説明する。
【0056】
ソースドライバ22は、ソース線を駆動する機能を有し、ソース線を介して画素51に画像データのデータ信号を供給する。ゲートドライバ23は、ゲート線を駆動する機能を有し、画素51を選択する。タイミングコントローラ24は、ソースドライバ22に画像データおよびタイミング信号を供給し、ゲートドライバ23にタイミング信号を供給する。また、表示部にバックライトを有する場合、タイミングコントローラ24はバックライトを駆動するための信号等を出力する機能を有していてもよい。
【0057】
受像装置30は、画像処理回路31、デコーダ32、フロントエンド部33、入力部34、インターフェース(
図1では、「I/F」と表記)36、制御回路37、リモートコントローラ41、受信部35を有する。
【0058】
フロントエンド部33は、入力部34から入力される信号を受信し、適宜信号処理を行う機能を有する。入力部34から入力される信号としては、テレビ放送などの放送信号や、メディア、インターネット、ケーブルテレビ等を介して届けられる画像データ、またはPC(Personal Computer)の出力などの形で入力される画像データ等がある。
【0059】
例えば、フロントエンド部33に、所定の方式で符号化され、変調された放送信号が入力された場合、フロントエンド部33およびデコーダ32は、放送信号から画像データを生成する作業を行う。フロントエンド部33に放送信号が入力された場合、フロントエンド部33は、入力された放送信号の復調を行う機能を有する。また、フロントエンド部33は、アナログ-デジタル変換を行う機能、エラー訂正を行う機能等を有していてもよい。
【0060】
フロントエンド部33によって受信され、処理された信号は、デコーダ32に出力される。デコーダ32は、符号化された信号を復号化する機能を有する。また、フロントエンド部33が受信した信号が圧縮されている場合、デコーダ32によって伸長が行われる。例えば、デコーダ32は、エントロピー復号、逆量子化、逆離散コサイン変換(IDCT)や逆離散サイン変換(IDST)などの逆直交変換、フレーム内予測、フレーム間予測等を行う機能を有していてもよい。
【0061】
なお、スーパーハイビジョン放送においては、H.265/MPEG-H High Efficiency Video Coding(以下、HEVCという)と呼ばれる符号化規格が採用されている。デコーダ32に入力された信号が、HEVCに従って符号化されている場合、デコーダ32はHEVCに従った復号化を行う。
【0062】
デコーダ32による復号化処理により、画像データが生成され、画像処理回路31に出力される。画像処理回路31は、入力された画像データを処理する機能、入力された画像データの解像度およびフレーム周波数を検出する機能、また、解像度の値およびフレーム周波数の値に応じて、タイミングコントローラ24に出力する制御信号を生成する機能等を有する。
【0063】
画像処理回路31は、処理した画像データおよび生成した制御信号を、タイミングコントローラ24に出力する。もしくは、処理した画像データを、ソースドライバ22に出力する構成とすることもできる。
【0064】
画像処理回路31は、演算処理を行うことができるプロセッサとしての機能を有し、例えば、演算回路、制御回路、メモリ回路、各種インターフェース等を有する構成とすることができる。
【0065】
例えば、画像処理回路31に、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等のプロセッサを用いることができる。また、前記プロセッサを、FPGA(Field Programmable Gate Array)やFPAA(Field Programmable Analog Array)といった、PLD(Programmable Logic Device)によって実現した構成としてもよい。
【0066】
プロセッサは、種々のプログラムからの命令を解釈し実行することで、各種のデータ処理やプログラム制御を行う。プロセッサにより実行されるプログラムは、プロセッサが有するメモリ領域に格納されていてもよいし、別途設けられる記憶装置に格納されていてもよい。
【0067】
画像処理回路31が行う画像データを処理する機能には、例えば、ノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理等が挙げられる。補正処理として、例えば、ガンマ補正が挙げられる。また、ノイズ除去処理として、文字などの輪郭の周辺に生じるモスキートノイズ、高速の動画で生じるブロックノイズ、ちらつきを生じるランダムノイズなど、様々なノイズを対象とした処理が挙げられる。
【0068】
階調変換処理は、画像データの階調を、画素アレイ21の出力特性に合わせた階調へ変換する処理である。例えば、階調数を大きくする場合、小さい階調数で入力された画像データに対して、各画素に対応する階調値を補間して割り当てることで、ヒストグラムを平滑化することができる。また、幅広いダイナミックレンジを表示するための、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。
【0069】
色調補正処理は、表示画像の色調を補正する処理であり、輝度補正処理は明るさ(輝度)を補正する処理である。これらの補正処理は、画像データに対して行ってもよいし、表示部にバックライトを有する場合、バックライトに対して行ってもよい。例えば、表示装置10に、表示装置10が設けられた空間の明るさや色調を測定する機能を追加し、画素アレイ21に表示する画像の明るさや色調を補正することができる。または、表示する画像と、あらかじめ保存しておいた様々な場面の画像とを照合し、最も近い場面の画像に適した輝度や色調に補正する機能を有していてもよい。
【0070】
また、画像データの処理に、ニューラルネットワークを用いてもよい。例えば、ニューラルネットワークを用いて画像データに含まれる特徴を抽出し、画像処理回路31は、抽出された特徴に応じて最適な補正方法を選択することや、補正に用いるパラメータを選択することができる。または、ニューラルネットワーク自体に画像データの処理を行う機能を持たせてもよい。
【0071】
また、画像処理回路31は、表示ユニット20の仕様によって、RGB-RGBW変換回路など、他の処理回路を有していてもよい。RGB-RGBW変換回路とは、RGB(赤、緑、青)画像データを、RGBW(赤、緑、青、白)画像データに変換する回路である。すなわち、画素アレイ21がRGBW4色の画素を有する場合、画像データ内のW(白)成分を、W(白)画素を用いて表示することで、消費電力を低減することができる。なお、表示ユニット20がRGBYの4色の画素を有する場合、例えば、RGB-RGBY(赤、緑、青、黄)変換回路を用いることができる。
【0072】
図1では、受像装置30は受信部35を有し、リモートコントローラ41によって制御信号やデータ等が送信される例を示している。リモートコントローラ41は、携帯情報端末等であってもよい。
【0073】
インターフェース36は、表示装置10に設けられた操作ボタンを介して入力された制御信号、受信部35が受信した制御信号やデータ等に適宜信号処理を行い、制御回路37に出力する機能を有する。インターフェース36への入力には、操作ボタンの他、ポインティングデバイス、キーボード、マウス、キーパッド、タッチパネル、音声入力装置、視線入力装置等の入力装置を用いてもよい。
【0074】
制御回路37は、受像装置30が有する各回路に制御信号等を供給する機能を有する。例えば、制御回路37は、受信部35やインターフェース36から入力された信号に基づいて、デコーダ32、画像処理回路31に制御信号等を供給する機能を有する。
【0075】
<表示ユニット>
図2は、表示ユニットの構成例を示すブロック図である。
図2では、表示ユニット20が有する、画素アレイ21、ソースドライバ22、ゲートドライバ23について示している。
【0076】
画素アレイ21は複数の画素51を有し、それぞれの画素51はソース線S[1]乃至S[m]のいずれかと電気的に接続され、また、それぞれの画素51はゲート線G[1]乃至G[n]のいずれかと電気的に接続されている。mおよびnは2以上の整数であり、画素アレイ21はm×n個の画素51を有している。なお、
図2において、電源線や容量を形成するための定電位線等は省略している。
【0077】
jを1以上n以下の整数とすると、ゲートドライバ23は、ゲート線G[j]を駆動し、ゲート線G[j]と電気的に接続された画素51を選択する機能を有する。また、ソースドライバ22は、ソース線S[1]乃至S[m]に画像データのデータ信号を供給する機能を有する。ゲート線G[j]と電気的に接続され、ゲートドライバ23によって選択された画素51は、ソース線S[1]乃至S[m]に供給されたデータ信号を取り込み、データ信号に応じた明るさ、色を表現する。この動作をゲート線G[1]からG[n]まで繰り返すことで、表示ユニット20は画素アレイ21に画像を表示することができる。
【0078】
なお、画像データのデータ信号とは、ゲートドライバ23によって選択された画素51に対応する画像データであり、画素51が有する表示素子の特性に合わせて電位等を調整された信号である。また、画素51が有する表示素子には、自ら発光するもの、光が透過する割合を変化させるもの、光が反射する割合を変化させるもの等があり、画素51が有する表示素子によって明るさ、色を表現する方法が異なる。
【0079】
画素51に適用できる表示素子としては、例えば、透過型の液晶素子、反射型の液晶素子などが挙げられ、また、有機EL(Electro Luminescent)素子、QLED(Quantum-dot Light Emitting Diode)、LED(Light Emitting Diode)、半導体レーザなどの発光型の表示素子が挙げられる。その他にも、半透過型の液晶素子、シャッター方式のMEMS(Micro Electro Mechanical Systems)素子、光干渉方式のMEMS素子や、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を使用した表示素子などが挙げられる。
【0080】
ソースドライバ22は、セレクタSSL[1]乃至SSL[k]を含むセレクタ群を有する。
図2では、セレクタSSL[1]に4本のソース線が電気的に接続された図を示しているが、セレクタSSL[2]乃至SSL[k]についても、セレクタSSL[1]と同様に4本のソース線が電気的に接続されている。ここで、kは1以上m/4+1以下の整数である。
【0081】
ゲートドライバ23は、セレクタGSL[1]乃至GSL[l]を含むセレクタ群を有する。
図2では、セレクタGSL[1]に4本のゲート線が電気的に接続された図を示しているが、セレクタGSL[2]乃至GSL[l]についても、セレクタGSL[1]と同様に4本のゲート線が電気的に接続されている。ここで、lは1以上n/4+1以下の整数である。
【0082】
また、ソースドライバ22は論理回路部61と出力調整部62を有し、ゲートドライバ23は論理回路部63と出力調整部64を有する。論理回路部61は、タイミングコントローラ24もしくは画像処理回路31から入力された画像データから、ソース線S[1]乃至S[m]に供給するデータ信号の元となる信号を生成し、出力調整部62は、論理回路部61が生成した信号の電位等を調整し、ソース線S[1]乃至S[m]を駆動できる能力を供給する。
【0083】
論理回路部63は、タイミングコントローラ24から供給されたタイミング信号に従って選択する画素51を決定し、駆動するゲート線G[j]に対応した信号を生成する。出力調整部64は、論理回路部63が生成した信号の電位等を調整し、ゲート線G[1]乃至G[n]を駆動できる能力を供給する。論理回路部63には、ゲート線G[1]乃至G[n]を順に選択するための回路として、例えば、シフトレジスタが用いられる。
【0084】
なお、
図2および
図3では、セレクタSSL[1]乃至SSL[k]がソース線と電気的に接続された図を示しているが、セレクタSSL[1]乃至SSL[k]は、論理回路部61と出力調整部62との間に設けられてもよい。論理回路部61から出力された信号を、セレクタSSL[1]乃至SSL[k]を介してから出力調整部62に入力し、出力調整部62は電位等を調整しソース線S[1]乃至S[m]に出力する構成とすることができる。同様に、セレクタGSL[1]乃至GSL[l]は、論理回路部63と出力調整部64との間に設けられてもよい。
【0085】
<セレクタ>
図3(A)は、セレクタの構成例を示す回路図である。
図3(A)では、セレクタSSL[1]と、セレクタGSL[1]を図示している。
【0086】
セレクタSSL[1]は4つのスイッチSSL_SWを有し、スイッチSSL_SW、
図3(B)に示すように、3つの入力部a乃至cと1つの出力部oを有する。セレクタSSL[1]は、出力調整部62から信号S0[1]乃至S0[4]が入力され、ソース線S[1]乃至S[4]に出力する。セレクタSSL[2]乃至SSL[k]についても、入力される信号および出力するソース線が異なるが、セレクタSSL[1]と同様の構成である。
【0087】
なお、全てのスイッチSSL_SWは連動スイッチである。つまり、スイッチSSL_SWが入力部aを選択している時、全てのスイッチSSL_SWが入力部aを選択している。このとき、セレクタSSL[1]では、信号S0[1]はソース線S[1]に出力され、信号S0[2]はソース線S[2]に出力され、信号S0[3]はソース線S[3]に出力され、信号S0[4]はソース線S[4]に出力される。
【0088】
また、スイッチSSL_SWが入力部bを選択している時、セレクタSSL[1]では、信号S0[1]はソース線S[1]とソース線S[2]に出力され、信号S0[3]はソース線S[3]とソース線S[4]に出力される。スイッチSSL_SWが入力部cを選択している時、セレクタSSL[1]では、信号S0[1]はソース線S[1]乃至S[4]に出力される。
【0089】
次に、セレクタGSL[1]は4つのスイッチGSL_SWを有し、スイッチGSL_SWは、
図3(C)に示すように、3つの入力部r乃至tと1つの出力部pを有する。セレクタGSL[1]は、出力調整部64から信号G0[1]乃至G0[4]が入力され、ゲート線G[1]乃至G[4]に出力する。セレクタGSL[2]乃至GSL[l]についても、入力される信号および出力するゲート線が異なるが、セレクタGSL[1]と同様の構成である。
【0090】
全てのスイッチGSL_SWは連動スイッチである。つまり、スイッチGSL_SWが入力部rを選択している時、全てのスイッチGSL_SWが入力部rを選択している。このとき、セレクタGSL[1]では、信号G0[1]はゲート線G[1]に出力され、信号G0[2]はゲート線G[2]に出力され、信号G0[3]はゲート線G[3]に出力され、信号G0[4]はゲート線G[4]に出力される。
【0091】
スイッチGSL_SWが入力部sを選択している時、セレクタGSL[1]では、信号G0[1]はゲート線G[1]とゲート線G[2]に出力され、信号G0[3]はゲート線G[3]とゲート線G[4]に出力される。スイッチGSL_SWが入力部tを選択している時、セレクタGSL[1]では、信号G0[1]はゲート線G[1]乃至G[4]に出力される。
【0092】
以上のように、セレクタSSL[1]乃至SSL[k]は、出力調整部62から入力された信号をそのままソース線S[1]乃至S[m]に伝える機能、出力調整部62から入力された1つの信号を2本のソース線に伝える機能、および、出力調整部62から入力された1つの信号を4本のソース線に伝える機能を有する。セレクタGSL[1]乃至GSL[l]は、出力調整部64から入力された信号をそのままゲート線G[1]乃至G[n]に伝える機能、出力調整部64から入力された1つの信号を2本のゲート線に伝える機能、および、出力調整部64から入力された1つの信号を4本のゲート線に伝える機能を有する。
【0093】
<論理回路部>
なお、ゲート線G[1]乃至G[n]を順に選択するための回路として、論理回路部63にシフトレジスタを用いる場合、論理回路部63にもスイッチGSL_SWが必要である。
図4(A)は、論理回路部63の構成例を示す回路図である。
【0094】
図4(A)は、論理回路部63が有するシフトレジスタ65のうち最初の5つと、論理回路部63が有するスイッチGSL_SWのうち4つ、および、クロック信号CLKの論理を反転するインバーターを図示している。
図4(A)に示す論理回路部63は、クロック信号CLKとスタートパルスSPが入力され、信号G0[1]乃至G0[5]の元となる信号G0’[1]乃至G0’[5]を出力調整部64に出力する。なお、スイッチGSL_SWが有する入力部の一部は、論理回路部63の低電位電源VSSに電気的に接続されているが、これ以外の電源線等は省略している。
【0095】
図4(B)は、シフトレジスタ65のシンボルを示す図であり、シフトレジスタ65の入出力の様子を示している。シフトレジスタ65は、クロック信号入力部CLK_IN1、CLK_IN2、入力部D_IN、および、出力部D_OUTを有する。
【0096】
シフトレジスタ65のシンボルに対して、
図4(C)は、シフトレジスタ65の構成例を示す回路図である。シフトレジスタ65は、クロックドインバーター71乃至74、および、インバーター75、76を有する。
【0097】
なお、論理回路部63が有する全てのスイッチGSL_SWは、セレクタGSL[1]乃至GSL[l]が有するスイッチGSL_SWと連動している。
図5に、論理回路部63のタイミングチャートを示す。
【0098】
図5に示すタイミングチャートは、論理回路部63に入力されるクロック信号CLK、スタートパルスSPと、論理回路部63が出力する信号のうちG0’[1]乃至G0’[8]について、関係を示している。また、論理回路部63が出力する信号G0’[1]乃至G0’[8]については、スイッチGSL_SWが入力部rを選択している状態、スイッチGSL_SWが入力部sを選択している状態、スイッチGSL_SWが入力部tを選択している状態、の3つの状態について示している。
【0099】
スイッチGSL_SWが入力部rを選択している状態では、スタートパルスSPがHighである時のクロック信号CLKの立下りを基準に、クロック信号CLKが立下るタイミングで、信号G0’[1]乃至G0’[8]が、順にパルス状の信号を出力する。この信号G0’[1]乃至G0’[8]を、出力調整部64で電位等を調整すれば、ゲート線G[1]乃至G[8]を順に選択するための信号として用いることができる。
【0100】
スイッチGSL_SWが入力部sを選択している状態では、スタートパルスSPがHighである時のクロック信号CLKの立下りを基準に、クロック信号CLKが立下るタイミングで、信号G0’[1]乃至G0’[8]が、1つおきにパルス状の信号を出力する。つまり、信号G0’[2]、信号G0’[4]、信号G0’[6]、信号G0’[8]は、Lowのままである。
【0101】
これは、スイッチGSL_SWが入力部sを選択している状態では、信号G0’[2]、信号G0’[4]、信号G0’[6]、信号G0’[8]を出力するシフトレジスタ65の入力部D_INに、低電位電源VSSが入力されるためである(
図4(A)、参照)。シフトレジスタ65の入力部D_INに入力される低電位電源は、高電位電源であってもよいが、フローティング状態ではなく、低電位電源もしくは高電位電源のどちらかと電気的に接続されることが好ましい。なお、高電位電源がシフトレジスタ65の入力部D_INに入力される場合、信号G0’[2]、信号G0’[4]、信号G0’[6]、信号G0’[8]は、Highとなる。
【0102】
スイッチGSL_SWが入力部tを選択している状態では、スタートパルスSPがHighである時のクロック信号CLKの立下りを基準に、クロック信号CLKが立下るタイミングで、信号G0’[1]乃至G0’[8]が、3つおきにパルス状の信号を出力する。つまり、信号G0’[2]乃至G0’[4]、信号G0’[6]乃至G0’[8]は、Lowのままである。
【0103】
これは、スイッチGSL_SWが入力部tを選択している状態では、信号G0’[2]乃至G0’[4]、信号G0’[6]乃至G0’[8]を出力するシフトレジスタ65の入力部D_INに、低電位電源VSSが入力されるためである(
図4(A)、参照)。
【0104】
次に、
図6に示すタイミングチャートは、
図5に示す信号G0’[1]乃至G0’[8]が、出力調整部64と、セレクタGSL[1]およびGSL[2]を介して、ゲートドライバ23からゲート線G[1]乃至G[8]に出力される様子を示している。なお、
図5および
図6はタイミングチャートであるため、LowもしくはHighとなるタイミングを示しており、電位等は正確に示されていない。
【0105】
スイッチGSL_SWが入力部rを選択している状態では、ゲート線G[1]乃至G[8]は、信号G0’[1]乃至G0’[8]と同じタイミングチャートとなる。
【0106】
スイッチGSL_SWが入力部sを選択している状態では、ゲート線G[2]はゲート線G[1]と、ゲート線G[4]はゲート線G[3]と、ゲート線G[6]はゲート線G[5]と、ゲート線G[8]はゲート線G[7]と、同じ信号が出力される。これは、セレクタGSL[1]およびGSL[2]が、1つの信号を2本のゲート線に伝えたためである。
【0107】
スイッチGSL_SWが入力部tを選択している状態では、ゲート線G[2]乃至G[4]はゲート線G[1]と、ゲート線G[6]乃至G[8]はゲート線G[5]と、同じ信号が出力される。これは、セレクタGSL[1]およびGSL[2]が、1つの信号を4本のゲート線に伝えたためである。
【0108】
以上のようにして、ゲートドライバ23は、1本のゲート線に信号を出力する(スイッチGSL_SWが入力部rを選択している時)、同時に2本のゲート線に信号を出力する(スイッチGSL_SWが入力部sを選択している時)、または、同時に4本のゲート線に信号を出力する(スイッチGSL_SWが入力部tを選択している時)ことができる。ゲートドライバ23は、スイッチGSL_SWの選択を切り替えることで、動作方法を切り替えることができる。そして、ゲートドライバ23から出力される信号によって選択された画素51は、ソース線S[1]乃至S[m]に供給されたデータ信号を取り込み、データ信号に応じた明るさ、色を表現する。
【0109】
なお、ゲートドライバ23が同時に2本のゲート線に信号を出力する時、ゲートドライバ23が1本のゲート線に信号を出力する時と比べて、ゲート線G[1]乃至G[n]を選択するのに要する時間が1/2となる。つまり、クロック信号CLKの周波数を1/2とすることで、ゲート線G[1]乃至G[n]を選択するのに要する時間を、ゲートドライバ23が1本のゲート線に信号を出力する時と同じとすることができる。ゲートドライバ23が同時に4本のゲート線に信号を出力する時も同様である。
【0110】
図7は、ゲートドライバ23が同時に2本のゲート線に信号を出力する時にクロック信号CLKの周波数を1/2とした場合(スイッチGSL_SWが入力部sを選択)、ゲートドライバ23が同時に4本のゲート線に信号を出力する時にクロック信号CLKの周波数を1/4とした場合(スイッチGSL_SWが入力部tを選択)の、タイミングチャートを示している。
【0111】
<動作方法>
例えば、表示装置10は、スーパーハイビジョンに対応した表示装置であり、画素アレイ21は、7680×4320個の画素51を有するとする(m=7680、n=4320とする)。画像処理回路31は、入力された画像データの解像度を検出し、以下のように動作方法を切り替える。
【0112】
表示装置10に、スーパーハイビジョン規格に対応したコンテンツが入力された場合、ソースドライバ22が有するセレクタSSL[1]乃至SSL[k]において、スイッチSSL_SWは入力部aを選択する。また、ゲートドライバ23が有するセレクタGSL[1]乃至GSL[l]と論理回路部63においては、スイッチGSL_SWは入力部rを選択する。
【0113】
スーパーハイビジョン規格に対応したコンテンツは、7680×4320画素分の画像データを有するため、セレクタSSL[1]乃至SSL[k]において、信号S0[1]はソース線S[1]に、信号S0[2]はソース線S[2]に、信号S0[3]はソース線S[3]に、信号S0[4]はソース線S[4]に(以下同様である)出力される。また、セレクタGSL[1]乃至GSL[l]において、信号G0[1]はゲート線G[1]に、信号G0[2]はゲート線G[2]に、信号G0[3]はゲート線G[3]に、信号G0[4]はゲート線G[4]に(以下同様である)出力される。
【0114】
表示装置10に、ウルトラハイビジョン規格に対応したコンテンツが入力された場合、ソースドライバ22が有するセレクタSSL[1]乃至SSL[k]において、スイッチSSL_SWは入力部bを選択する。また、ゲートドライバ23が有するセレクタGSL[1]乃至GSL[l]と論理回路部63においては、スイッチGSL_SWは入力部sを選択する。
【0115】
ウルトラハイビジョン規格に対応したコンテンツは、3840×2160画素分の画像データを有するため、セレクタSSL[1]乃至SSL[k]において、信号S0[1]はソース線S[1]とソース線S[2]に、信号S0[3]はソース線S[3]とソース線S[4]に(以下同様である)出力される。また、セレクタGSL[1]乃至GSL[l]において、信号G0[1]はゲート線G[1]とゲート線G[2]に、信号G0[3]はゲート線G[3]とゲート線G[4]に(以下同様である)出力される。
【0116】
そして、ゲートドライバ23が有する論理回路部63では、スーパーハイビジョン規格に対応したコンテンツが入力された場合と比べて、クロック信号CLKの周波数を1/2とする。この時、ソースドライバ22が有する論理回路部61でも、論理回路部63に合わせて、動作周波数を1/2とする。
【0117】
また、論理回路部61が、出力調整部62に一度に出力する信号の量も1/2(7680に対して3840)となるため、論理回路部61にシリアル-パラレル変換回路、シフトレジスタ、またはデマルチプレクサ等を用いている場合、論理回路部61の動作周波数を、さらに1/2とすることができる。この場合、論理回路部61の動作周波数は、スーパーハイビジョン規格に対応したコンテンツが入力された場合と比べて1/4とすることができる。
【0118】
表示装置10に、フルハイビジョン規格に対応したコンテンツが入力された場合、ソースドライバ22が有するセレクタSSL[1]乃至SSL[k]において、スイッチSSL_SWは入力部cを選択する。また、ゲートドライバ23が有するセレクタGSL[1]乃至GSL[l]と論理回路部63においては、スイッチGSL_SWは入力部tを選択する。
【0119】
フルハイビジョン規格に対応したコンテンツは、1920×1080画素分の画像データを有するため、セレクタSSL[1]乃至SSL[k]において、信号S0[1]はソース線S[1]乃至S[4]に、信号S0[5]はソース線S[5]乃至S[8]に(以下同様である)出力される。また、セレクタGSL[1]乃至GSL[l]において、信号G0[1]はゲート線G[1]乃至G[4]に、信号G0[5]はゲート線G[5]乃至G[8]に(以下同様である)出力される。
【0120】
そして、ゲートドライバ23が有する論理回路部63では、スーパーハイビジョン規格に対応したコンテンツが入力された場合と比べて、クロック信号CLKの周波数を1/4とする。この時、ソースドライバ22が有する論理回路部61でも、論理回路部63に合わせて、動作周波数を1/4とする。
【0121】
また、論理回路部61が、出力調整部62に一度に出力する信号の量も1/4(7680に対して1920)となるため、論理回路部61にシリアル-パラレル変換回路、シフトレジスタ、またはデマルチプレクサ等を用いている場合、論理回路部61の動作周波数を、さらに1/4とすることができる。この場合、論理回路部61の動作周波数は、スーパーハイビジョン規格に対応したコンテンツが入力された場合と比べて1/16とすることができる。
【0122】
以上のように、表示装置10に、ウルトラハイビジョン規格またはフルハイビジョン規格に対応したコンテンツが入力された場合、ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63は、動作周波数を下げて動作を行うことができる。動作周波数を下げて動作を行うことで、ソースドライバ22およびゲートドライバ23は、消費電力を低減することができる。また、ソースドライバ22およびゲートドライバ23が動作周波数を下げて動作を行う場合、ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63の電源電圧を低くすることができる。
【0123】
一般に、論理回路の消費電流は、論理のLowおよびHighを切り替えるために必要な動作電流(動的電流)と、論理のLowおよびHighを切り替えない状態でも流れるリーク電流(静的電流)の和と考えられている。そして、前者の動作電流は動作周波数と電源電圧に比例し、動作電流による消費電力(動的消費電力)は、動作周波数に比例し電源電圧の2乗に比例する。
【0124】
また、論理回路において、論理回路の動作周波数が1/2になると、電源電圧は概ね1/2とすることができる。論理回路の電源電圧を1/2とすると、論理回路を構成するトランジスタが供給できる電流量は閾値が無視できる程度に小さいとして約1/4、論理のLowおよびHighを切り替えるために必要な動作電流は1/2となるため、残りの約1/2が動作周波数と見積もられるためである。実際には、閾値の影響や電源電圧に足されるマージン等があるため、この限りではない。
【0125】
よって、ソースドライバ22およびゲートドライバ23は、動作周波数を下げて動作を行うことで、消費電力を低減することができる。また、ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63の電源電圧を低くすることで、消費電力を低減することができる。
【0126】
このことは、フレーム周波数が変化した場合にも適用できる。例えば、表示装置10は、フレーム周波数が120Hzに対応した表示装置であるとする。表示装置10に、フレーム周波数が60Hzのコンテンツが入力された場合、画像処理回路31は、入力された画像データのフレーム周波数を検出し、以下のように動作方法を切り替える。
【0127】
ゲートドライバ23が有する論理回路部63では、フレーム周波数が120Hzのコンテンツが入力された場合と比べて、クロック信号CLKの周波数を1/2とする。ソースドライバ22が有する論理回路部61でも、論理回路部63に合わせて、動作周波数を1/2とする。画像データの解像度が変化していない場合、スイッチSSL_SWおよびスイッチGSL_SWを切り替える必要はない。
【0128】
ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63は、動作周波数を下げて動作を行うことができる。動作周波数を下げて動作を行うことで、ソースドライバ22およびゲートドライバ23は、消費電力を低減することができる。また、ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63の電源電圧を低くすることができる。ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63の電源電圧を低くすることで、消費電力を低減することができる。
【0129】
表示装置10に、フレーム周波数が30Hzのコンテンツが入力された場合も、ソースドライバ22が有する論理回路部61およびゲートドライバ23が有する論理回路部63は、動作周波数を1/4とすることで、前述と同様に動作を行うことができる。
【0130】
また、例えば、表示ユニット20を、フレーム周波数が240Hzに対応した表示ユニットとすることができる。受像装置30は、画像データを補間する機能を有し、フレーム周波数が30Hz、60Hz、120Hzのコンテンツを、それぞれ60Hz、120Hz、240Hzとすることで、表示装置10は、動画表示に優れた表示装置とすることができる。
【0131】
<出力調整部>
ソースドライバ22が有する出力調整部62およびゲートドライバ23が有する出力調整部64は、それぞれレベルシフタを有する。レベルシフタは、論理回路部61および論理回路部63から出力された信号を、画素51が有する表示素子の特性に合った電位へ調整する機能を有する。
【0132】
表示装置10は、入力された画像データの解像度およびフレーム周波数を検出し、論理回路部61および論理回路部63の電源電圧を低くする機能を有する。このため、論理回路部61および論理回路部63から出力される信号の電位も、画像データの解像度およびフレーム周波数によって変化する。したがって、出力調整部62および出力調整部64が有するレベルシフタには、広い電位範囲でのレベルシフトが求められている。
【0133】
出力調整部62および出力調整部64が有するレベルシフタを、単独で広い電位範囲に対応できる回路構成とすることもできるが、論理回路部61および論理回路部63から出力される信号の電位に合わせて、複数種類のレベルシフタから適切なレベルシフタを選択する構成、または、レベルシフタを直列接続し、直列接続する個数を選択する構成とすることもできる。
【0134】
レベルシフタについて、適切なレベルシフタを選択する構成、直列接続する個数を選択する構成とする場合、スイッチSSL_SWおよびスイッチGSL_SWを使用することができる。また、レベルシフタにスイッチSSL_SWを使用する場合、セレクタSSL[1]乃至SSL[k]が有するスイッチSSL_SWと連動する構成、レベルシフタにスイッチGSL_SWを使用する場合、セレクタGSL[1]乃至GSL[l]および論理回路部63が有するスイッチGSL_SWと連動する構成、とすることができる。
【0135】
適切なレベルシフタを選択する構成、レベルシフタの直列接続する個数を選択する構成とした場合、レベルシフタの特性に合わせた効率のよいレベルシフトができる。
【0136】
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0137】
(実施の形態2)
本実施の形態では、上記実施の形態で例示した表示装置に適用可能な表示ユニットの一例について説明を行う。
【0138】
<構成例>
図8(A)は、表示ユニットの一例を示す上面図である。
図8(A)に示す表示ユニット700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、
図8(A)には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。
【0139】
また、表示ユニット700は、第1の基板701上のシール材712によって囲まれている領域とは異なる領域に、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びゲートドライバ回路部706と、それぞれ電気的に接続されるFPC端子部708(FPC:Flexible Printed Circuits)が設けられる。また、FPC端子部708には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708には、信号線710が各々接続されている。FPC716により供給される各種信号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708に与えられる。
【0140】
また、表示ユニット700にゲートドライバ回路部706を複数設けてもよい。また、表示ユニット700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成してもよい、またはソースドライバ回路部704のみを第1の基板701に形成してもよい。この場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に形成する構成としてもよい。なお、別途形成した駆動回路基板の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方式、ワイヤボンディング方式などを用いることができる。
【0141】
また、表示ユニット700は、様々な素子を有することができる。該素子の一例としては、例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子、LEDなど)、発光トランジスタ素子(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子など)、圧電セラミックディスプレイなどが挙げられる。
【0142】
また、EL素子を用いた表示ユニットの一例としては、ELディスプレイなどがある。電子放出素子を用いた表示ユニットの一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface-conduction Electron-emitter Display)などがある。液晶素子を用いた表示ユニットの一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク素子又は電気泳動素子を用いた表示ユニットの一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
【0143】
なお、表示ユニット700における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示ユニットに限定されるものではなく、モノクロ表示の表示ユニットに適用することもできる。
【0144】
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光(W)を用いて表示ユニットをフルカラー表示させるために、着色層(カラーフィルタともいう)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。
【0145】
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
【0146】
図8(B)に示す表示ユニット700Aは、大型の画面を有する電子機器に好適に用いることのできる表示ユニットである。例えばテレビジョン装置、モニタ装置、デジタルサイネージなどに好適に用いることができる。
【0147】
表示ユニット700Aは、複数のソースドライバIC721と、一対のゲートドライバ回路722を有する。
【0148】
複数のソースドライバIC721は、それぞれFPC723に取り付けられている。また、複数のFPC723は、一方の端子が基板701に、他方の端子がプリント基板724にそれぞれ接続されている。FPC723を折り曲げることで、プリント基板724を画素部702の裏側に配置して、電子機器に実装することができる。
【0149】
一方、ゲートドライバ回路722は、基板701上に形成されている。これにより、狭額縁の電子機器を実現できる。
【0150】
このような構成とすることで、大型で且つ解像度の高い表示ユニットを実現できる。例えば、画面サイズが対角30インチ以上、40インチ以上、50インチ以上、または60インチ以上の表示ユニットに適用することができる。また、解像度がフルハイビジョン、ウルトラハイビジョン、またはスーパーハイビジョンなどといった極めて解像度の高い表示ユニットを実現することができる。
【0151】
<断面構成例>
以下では、表示素子として液晶素子及びEL素子を用いる構成について、
図9乃至
図11を用いて説明する。なお、
図9及び
図10は、
図8に示す一点鎖線Q-Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、
図11は、
図8に示す一点鎖線Q-Rにおける断面図であり、表示素子としてEL素子を用いた構成である。
【0152】
まず、
図9乃至
図11に示す共通部分について最初に説明し、次に異なる部分について説明する。
【0153】
<表示ユニットの共通部分に関する説明>
図9乃至
図11に示す表示ユニット700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有する。
【0154】
各画素に設けられるトランジスタには、チャネルが形成される半導体層に、金属酸化物(酸化物半導体)を適用することが好ましい。これにより、アモルファスシリコンを用いた場合に比べてトランジスタの電界効果移動度を高めることができるため、トランジスタのサイズ(占有面積)を縮小することができる。これにより、ソース線及びゲート線の寄生容量をより小さくできる。
【0155】
また特に、酸化物半導体を用いたトランジスタを適用することで、以下に示すような様々な効果を奏する。例えば、トランジスタのサイズ(占有面積)を小さくできるため、トランジスタ自体の寄生容量を小さくできる。さらには、アモルファスシリコンを用いた場合に比べて、開口率を向上できる、または開口率を犠牲にすることなく配線幅を大きくでき、配線抵抗を小さくできる。また、トランジスタのオン電流を高めることができるため、画素の書き込みに要する期間を短くできる。このような効果により、ゲート線及びソース線の充放電期間を短くでき、フレーム周波数を高めることが可能となる。
【0156】
さらに、酸化物半導体を用いたトランジスタはオフ電流を極めて小さくできるため、画素に書き込まれた電位の保持期間を長くでき、フレーム周波数を低くすることも可能となる。例えば、フレーム周波数を0.1Hz以上480Hz以下の範囲で可変とすることができる。また、テレビジョン装置等においては、フレーム周波数を30Hz以上480Hz以下、好ましくは60Hz以上240Hz以下とすることができる。
【0157】
オフ電流が極めて小さいトランジスタを用いる効果の他の1つとして、画素の保持容量を小さくできることが挙げられる。これにより、画素の開口率を高めることや、画素の書き込みに要する期間をより短くすることができる。
【0158】
また、各ソース線の電気抵抗と容量をできるだけ小さくすると、より高いフレーム周波数での駆動や、より大型の表示ユニットとすることなどが可能となる。例えば、ソース線の材料に低抵抗な材料(例えば銅、アルミニウムなど)を用いること、ソース線の厚さや幅を大きくすること、ソース線と他の配線の間の層間絶縁膜を厚くすること、ソース線と他の配線との交差部の面積を小さくすること、などが挙げられる。
【0159】
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、画像データのデータ信号等、電気信号の保持時間を長くすることができ、書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
【0160】
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを表示ユニットに用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
【0161】
また、チャネルが形成される半導体層に、シリコンを含む半導体を用いたトランジスタを用いることもできる。例えば、アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いたトランジスタを適用することができる。特に、アモルファスシリコンを用いると、大型の基板上に歩留り良く形成できるため好ましい。アモルファスシリコンを用いる場合には、水素によりダングリングボンドの終端を図った水素化アモルファスシリコン(a-Si:Hと表記する場合がある)を用いることが好ましい。
【0162】
容量素子790は、トランジスタ750が有する第1のゲート電極として機能する導電膜を加工する工程と同一の工程を経て形成される下部電極と、トランジスタ750が有する第2のゲート電極として機能する導電膜を加工する工程と同一の工程を経て形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750が有する第1のゲート絶縁膜として機能する絶縁膜を形成する工程と同一の工程を経て形成される絶縁膜、及びトランジスタ750上の保護絶縁膜として機能する絶縁膜を形成する工程と同一の工程を経て形成される絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。
【0163】
また、
図9乃至
図11において、トランジスタ750、トランジスタ752、及び容量素子790上に平坦化絶縁膜770が設けられている。
【0164】
また、
図9乃至
図11において、画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752に、同じ構造のトランジスタを用いる構成について例示したが、これに限定されない。例えば、画素部702と、ソースドライバ回路部704とは、異なるトランジスタを用いてもよい。具体的には、画素部702にトップゲート型のトランジスタを用い、ソースドライバ回路部704にボトムゲート型のトランジスタを用いる構成、あるいは画素部702にボトムゲート型のトランジスタを用い、ソースドライバ回路部704にトップゲート型のトランジスタを用いる構成などが挙げられる。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と読み替えてもよい。
【0165】
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。信号線710として、例えば、銅元素を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
【0166】
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC716を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。
【0167】
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いることができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。
【0168】
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構造体778は柱状のスペーサであり、第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設けられる。なお、構造体778として、球状のスペーサを用いてもよい。
【0169】
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する絶縁膜734が設けられる。
【0170】
<液晶素子を用いる表示ユニットの構成例>
図9に示す表示ユニット700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。
図9に示す表示ユニット700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。
【0171】
また、導電膜772は、トランジスタ750が有するソース電極またはドレイン電極として機能する導電膜と電気的に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。
【0172】
導電膜772としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。
【0173】
導電膜772に可視光において反射性のある導電膜を用いる場合、表示ユニット700は、反射型の液晶表示ユニットとなる。また、導電膜772に可視光において透光性のある導電膜を用いる場合、表示ユニット700は、透過型の液晶表示ユニットとなる。反射型の液晶表示ユニットの場合、視認側に偏光板を設ける。一方、透過型の液晶表示ユニットの場合、液晶素子を挟む一対の偏光板を設ける。
【0174】
また、導電膜772上の構成を変えることで、液晶素子の駆動方式を変えることができる。この場合の一例を
図10に示す。また、
図10に示す表示ユニット700は、液晶素子の駆動方式として横電界方式(例えば、FFSモード)を用いる構成の一例である。
図10に示す構成の場合、導電膜772上に絶縁膜773が設けられ、絶縁膜773上に導電膜774が設けられる。この場合、導電膜774は、共通電極(コモン電極ともいう)としての機能を有し、絶縁膜773を介して、導電膜772と導電膜774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
【0175】
また、
図9及び
図10において図示しないが、導電膜772または導電膜774のいずれか一方または双方に、液晶層776と接する側に、それぞれ配向膜を設ける構成としてもよい。また、
図9及び
図10において図示しないが、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
【0176】
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
【0177】
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性を持つため配向処理が不要である。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示ユニットの不良や破損を軽減することができる。また、ブルー相を示す液晶材料は、視野角依存性が小さい。
【0178】
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic)モード、IPS(In-Plane-Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro-cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
【0179】
また、ノーマリーブラック型の液晶表示ユニット、例えば垂直配向(VA)モードを採用した透過型の液晶表示ユニットとしてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi-Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASVモードなどを用いることができる。
【0180】
<発光素子を用いる表示ユニットの構成例>
図11に示す表示ユニット700は、発光素子782を有する。発光素子782は、導電膜772、EL層786、及び導電膜788を有する。
図11に示す表示ユニット700は、画素毎に設けられる発光素子782が有するEL層786が発光することによって、画像を表示することができる。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。
【0181】
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム(Cd)、セレン(Se)、亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(Pb)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)、等の元素を有する量子ドット材料を用いてもよい。
【0182】
図11に示す表示ユニット700には、平坦化絶縁膜770及び導電膜772上に絶縁膜730が設けられる。絶縁膜730は、導電膜772の一部を覆う。なお、発光素子782はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層786が発する光を透過する。なお、本実施の形態においては、トップエミッション構造について例示するが、これに限定されない。例えば、導電膜772側に光を射出するボトムエミッション構造や、導電膜772及び導電膜788の双方に光を射出するデュアルエミッション構造にも適用することができる。
【0183】
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、
図11に示す表示ユニット700においては、着色膜736を設ける構成について例示したが、これに限定されない。例えば、EL層786を画素毎に島状形成する、すなわち塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
【0184】
<表示ユニットに入出力装置を設ける構成例>
また、
図9乃至
図11に示す表示ユニット700に入出力装置を設けてもよい。当該入出力装置としては、例えば、タッチパネル等が挙げられる。
【0185】
図10に示す表示ユニット700にタッチパネル791を設ける構成を
図12に、
図11に示す表示ユニット700にタッチパネル791を設ける構成を
図13に、それぞれ示す。
【0186】
図12は
図10に示す表示ユニット700にタッチパネル791を設ける構成の断面図であり、
図13は
図11に示す表示ユニット700にタッチパネル791を設ける構成の断面図である。
【0187】
まず、
図12及び
図13に示すタッチパネル791について、以下説明を行う。
【0188】
図12及び
図13に示すタッチパネル791は、基板705と着色膜736との間に設けられる、所謂インセル型のタッチパネルである。タッチパネル791は、遮光膜738、及び着色膜736を形成する前に、基板705側に形成すればよい。
【0189】
なお、タッチパネル791は、遮光膜738と、絶縁膜792と、電極793と、電極794と、絶縁膜795と、電極796と、絶縁膜797と、を有する。例えば、指やスタイラスなどの被検知体が近づくことで生じうる、電極793と電極794との間の容量の変化を検知することができる。
【0190】
また、
図12及び
図13に示すトランジスタ750の上方においては、電極793と、電極794との交差部を明示している。電極796は、絶縁膜795に設けられた開口部を介して、電極794を挟む2つの電極793と電気的に接続されている。なお、
図12及び
図13においては、電極796が設けられる領域を画素部702に設ける構成を例示したが、これに限定されず、例えば、ソースドライバ回路部704に形成してもよい。
【0191】
電極793及び電極794は、遮光膜738と重なる領域に設けられる。また、
図13に示すように、電極793は、発光素子782と重ならないように設けられると好ましい。また、
図12に示すように、電極793は、液晶素子775と重ならないように設けられると好ましい。別言すると、電極793は、発光素子782及び液晶素子775と重なる領域に開口部を有する。すなわち、電極793はメッシュ形状を有する。このような構成とすることで、電極793は、発光素子782が射出する光を遮らない構成とすることができる。または、電極793は、液晶素子775を透過する光を遮らない構成とすることができる。したがって、タッチパネル791を配置することによる輝度の低下が極めて少ないため、視認性が高く、且つ消費電力が低減された表示ユニットを実現できる。なお、電極794も同様の構成とすればよい。
【0192】
また、電極793及び電極794が発光素子782と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。または、電極793及び電極794が液晶素子775と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。
【0193】
そのため、可視光の透過率が高い酸化物材料を用いた電極と比較して、電極793及び電極794の抵抗を低くすることが可能となり、タッチパネルのセンサ感度を向上させることができる。
【0194】
例えば、電極793、794、796には、導電性のナノワイヤを用いてもよい。当該ナノワイヤは、直径の平均値が1nm以上100nm以下、好ましくは5nm以上50nm以下、より好ましくは5nm以上25nm以下の大きさとすればよい。また、上記ナノワイヤとしては、Agナノワイヤ、Cuナノワイヤ、またはAlナノワイヤ等の金属ナノワイヤ、あるいは、カーボンナノチューブなどを用いればよい。例えば、電極793、794、796のいずれか一つあるいは全部にAgナノワイヤを用いる場合、可視光における光透過率を89%以上、シート抵抗値を40Ω/□以上100Ω/□以下とすることができる。
【0195】
また、
図12及び
図13においては、インセル型のタッチパネルの構成について例示したが、これに限定されない。例えば、表示ユニット700上に形成する、所謂オンセル型のタッチパネルや、表示ユニット700に貼り合わせて用いる、所謂アウトセル型のタッチパネルとしてもよい。
【0196】
このように、本発明の一態様の表示ユニットは、様々な形態のタッチパネルと組み合わせて用いることができる。
【0197】
なお、本実施の形態は、少なくともその一部を本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0198】
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置に適用可能な表示ユニットについて、
図14を用いて説明を行う。
【0199】
<表示ユニットの回路構成例>
図14(A)に示す表示ユニットは、表示素子の画素を有する領域(以下、画素部502という)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
【0200】
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されていることが望ましい。これにより、部品数や端子数を減らすことができる。駆動回路部504の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回路部504の一部、または全部は、COGやTAB(Tape Automated Bonding)によって、実装することができる。
【0201】
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置された複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するための回路(以下、ソースドライバ504b)などの駆動回路を有する。
【0202】
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力する。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力され、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以下、ゲート線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲートドライバ504aを複数設け、複数のゲートドライバ504aにより、ゲート線GL_1乃至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ504aは、別の信号を供給することも可能である。
【0203】
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元となる信号(画像データ)が入力される。ソースドライバ504bは、画像データを元に画素回路501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与えられる配線(以下、ソース線DL_1乃至DL_Yという)の電位を制御する機能を有する。または、ソースドライバ504bは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも可能である。
【0204】
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、画像データを時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
【0205】
複数の画素回路501のそれぞれは、走査信号が与えられる複数のゲート線GLの一つを介してパルス信号が入力され、データ信号が与えられる複数のソース線DLの一つを介してデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目の画素回路501は、ゲート線GL_m(mはX以下の自然数)を介してゲートドライバ504aからパルス信号が入力され、ゲート線GL_mの電位に応じてソース線DL_n(nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
【0206】
図14(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線であるゲート線GLに接続される。または、保護回路506は、ソースドライバ504bと画素回路501の間の配線であるソース線DLに接続される。または、保護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することができる。または、保護回路506は、ソースドライバ504bと端子部507との間の配線に接続することができる。なお、端子部507は、外部の回路から表示ユニットに電源及び制御信号、及び画像データを入力するための端子が設けられた部分をいう。
【0207】
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。
【0208】
図14(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路506を設けることにより、ESD(Electro Static Discharge:静電気放電)などにより発生する過電流に対する表示ユニットの耐性を高めることができる。ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成とすることもできる。
【0209】
また、
図14(A)においては、ゲートドライバ504aとソースドライバ504bによって駆動回路部504を形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実装する構成としてもよい。
【0210】
ここで、
図15に、
図14(A)とは異なる構成を示す。
図15では、ソース線方向に配列する複数の画素を挟むように、一対のソース線(例えばソース線DLa1とソース線DLb1)が配置されている。また、隣接する2本のゲート線(例えばゲート線GL_1とゲート線GL_2)が電気的に接続されている。
【0211】
また、ゲート線GL_1に接続される画素は、片方のソース線(ソース線DLa1、ソース線DLa2等)に接続され、ゲート線GL_2に接続される画素は、他方のソース線(ソース線DLb1、ソース線DLb2等)に接続される。
【0212】
このような構成とすることで、2本のゲート線を同時に選択することができる。これにより、一水平期間の長さを、
図14(A)に示す構成と比較して2倍にすることができる。これにより、表示ユニットの高解像度化、及び大画面化が容易となる。
【0213】
また、
図14(A)に示す複数の画素回路501は、例えば、
図14(B)に示す構成とすることができる。
【0214】
図14(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。
【0215】
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
【0216】
例えば、液晶素子570を備える表示ユニットの駆動方法としては、TNモード、STNモード、VAモード、ASM(Axially Symmetric Aligned Micro-cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、又はTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、表示ユニットの駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様々なものを用いることができる。
【0217】
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイン電極の一方は、ソース線DL_nに電気的に接続され、他方は液晶素子570の一対の電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、ゲート線GL_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
【0218】
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VLという)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続される。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
【0219】
例えば、
図14(B)の画素回路501を有する表示ユニットでは、例えば、
図14(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ550をオン状態にしてデータ信号のデータを書き込む。
【0220】
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
【0221】
また、
図14(A)に示す複数の画素回路501は、例えば、
図14(C)に示す構成とすることができる。
【0222】
また、
図14(C)に示す画素回路501は、トランジスタ552、554と、容量素子562と、発光素子572と、を有する。
【0223】
トランジスタ552のソース電極及びドレイン電極の一方は、データ信号が与えられる配線(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ552のゲート電極は、ゲート信号が与えられる配線(以下、ゲート線GL_mという)に電気的に接続される。
【0224】
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
【0225】
容量素子562の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
【0226】
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
【0227】
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
【0228】
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続される。
【0229】
発光素子572としては、例えば、有機エレクトロルミネセンス素子(有機EL素子ともいう)を用いることができる。ただし、発光素子572としては、これに限定されず、無機材料からなる無機EL素子などを用いてもよい。
【0230】
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
【0231】
図14(C)の画素回路501を有する表示ユニットでは、例えば、
図14(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552をオン状態にしてデータ信号のデータを書き込む。
【0232】
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
【0233】
なお、本実施の形態は、少なくともその一部を本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0234】
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。
【0235】
以下で例示する電子機器には、上記実施の形態で説明した、表示装置10または表示ユニット20を搭載することができる。これにより、高い解像度が実現され、また、コンテンツの解像度およびフレーム周波数に合わせて動作方法を最適化し、低い消費電力で表示を行うことができる電子機器を提供することができる。
【0236】
本発明の一態様の電子機器の表示部には、例えば、フルハイビジョン、ウルトラハイビジョン、スーパーハイビジョン、またはそれ以上の解像度を有する映像を表示させることができる。
【0237】
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
【0238】
本発明の一態様の電子機器は、家屋もしくはビルの内壁もしくは外壁等に組み込むことができる。
【0239】
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
【0240】
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、または赤外線を測定する機能を含むもの)を有していてもよい。
【0241】
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
【0242】
図16(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
【0243】
図16(A)において、テレビジョン装置7100に、本発明の一態様の表示装置10を適用することができる。
【0244】
図16(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
【0245】
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0246】
図16(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
【0247】
図16(B)において、表示部7000に、本発明の一態様の表示ユニット20を適用することができる。
【0248】
図16(C)に、デジタルサイネージ(Digital Signage:電子看板)の一例を示す。
【0249】
図16(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
【0250】
図16(C)において、デジタルサイネージ7300に、本発明の一態様の表示装置10を適用することができる。
【0251】
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
【0252】
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
【0253】
また、
図16(C)に示すように、デジタルサイネージ7300は、ユーザーが所持するスマートフォン等の携帯情報端末7311と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、携帯情報端末7311の画面に表示させることができる。また、携帯情報端末7311を操作することで、表示部7000の表示を切り替えることができる。
【0254】
また、デジタルサイネージ7300に、携帯情報端末7311の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
【0255】
なお、本実施の形態は、少なくともその一部を本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
【符号の説明】
【0256】
CLK_IN1:クロック信号入力部、CLK_IN2:クロック信号入力部、DL_Y:ソース線、DL_1:ソース線、DLa1:ソース線、DLa2:ソース線、DLb1:ソース線、DLb2:ソース線、G0:信号、GL_X:ゲート線、GL_1:ゲート線、GL_2:ゲート線、S0:信号、10:表示装置、20:表示ユニット、21:画素アレイ、22:ソースドライバ、23:ゲートドライバ、24:タイミングコントローラ、30:受像装置、31:画像処理回路、32:デコーダ、33:フロントエンド部、34:入力部、35:受信部、36:インターフェース、37:制御回路、41:リモートコントローラ、51:画素、61:論理回路部、62:出力調整部、63:論理回路部、64:出力調整部、65:シフトレジスタ、71:クロックドインバーター、74:クロックドインバーター、75:インバーター、76:インバーター、501:画素回路、502:画素部、504:駆動回路部、504a:ゲートドライバ、504b:ソースドライバ、506:保護回路、507:端子部、550:トランジスタ、552:トランジスタ、554:トランジスタ、560:容量素子、562:容量素子、570:液晶素子、572:発光素子、700:表示ユニット、700A:表示ユニット、701:基板、702:画素部、704:ソースドライバ回路部、705:基板、706:ゲートドライバ回路部、708:FPC端子部、710:信号線、711:配線部、712:シール材、716:FPC、721:ソースドライバIC、722:ゲートドライバ回路、723:FPC、724:プリント基板、730:絶縁膜、732:封止膜、734:絶縁膜、736:着色膜、738:遮光膜、750:トランジスタ、752:トランジスタ、760:接続電極、770:平坦化絶縁膜、772:導電膜、773:絶縁膜、774:導電膜、775:液晶素子、776:液晶層、778:構造体、780:異方性導電膜、782:発光素子、786:EL層、788:導電膜、790:容量素子、791:タッチパネル、792:絶縁膜、793:電極、794:電極、795:絶縁膜、796:電極、797:絶縁膜、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:携帯情報端末