(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-09
(45)【発行日】2022-12-19
(54)【発明の名称】燃焼排気からの熱を用いて燃焼反応物を予熱するための放射復熱器を利用する統合熱回収を有する炉
(51)【国際特許分類】
F23D 14/66 20060101AFI20221212BHJP
F23K 5/00 20060101ALI20221212BHJP
F23L 15/00 20060101ALI20221212BHJP
F23L 7/00 20060101ALI20221212BHJP
【FI】
F23D14/66 C
F23K5/00 303
F23L15/00 A
F23L7/00 B
(21)【出願番号】P 2019571418
(86)(22)【出願日】2018-06-22
(86)【国際出願番号】 US2018039031
(87)【国際公開番号】W WO2019005615
(87)【国際公開日】2019-01-03
【審査請求日】2021-06-14
(32)【優先日】2017-06-30
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-04-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591036572
【氏名又は名称】レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
(74)【代理人】
【識別番号】100108855
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100179062
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100199565
【氏名又は名称】飯野 茂
(74)【代理人】
【識別番号】100153051
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】テギュ・カン
(72)【発明者】
【氏名】ジェームス・ジェイ・エフ・マカンドリュー
(72)【発明者】
【氏名】レミ・ツィーアヴァ
(72)【発明者】
【氏名】ジエフ・マー
(72)【発明者】
【氏名】ライアン・アデルマン
(72)【発明者】
【氏名】ヘンリ・シェブレル
【審査官】河野 俊二
(56)【参考文献】
【文献】実開昭55-180174(JP,U)
【文献】実開昭54-101542(JP,U)
【文献】特開2013-076496(JP,A)
【文献】特表2015-535920(JP,A)
【文献】米国特許第04467959(US,A)
【文献】仏国特許出願公開第02966560(FR,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F23D 14/66
F23K 5/00
F23L 15/00
F23L 7/00
(57)【特許請求の範囲】
【請求項1】
燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換を利用する炉であって、
前記炉は、
炉壁によって囲まれる燃焼空間を含む燃焼室と、ここで、前記燃焼室内で、燃料及び酸化剤が燃焼されて、固体
ガラス及び/
若しくは溶融ガラス
、又はガラス製造材料、
又は固体
金属及び/
若しくは溶融金属を加熱し、それによって燃焼排気を生成する
ものであり、
予熱された燃料及び/又は予熱された酸化剤を内部で燃焼させるために前記燃焼室内に噴射するよう
に適合され、構成される
燃焼器であって、前記炉壁に取り付けられる1つ以上の燃焼器と、
軸に沿って延在し、前記燃焼室で生成された前記燃焼排気の少なくとも一部を受け入れる第1の端部と、前記受け入れた燃焼排気を排出する第2の対向端部とを有するダクトと、
前記ダクト
の軸に平行に、前記ダクトの外面に隣接して延在する断熱壁であって、断熱材料から構成され、非反応性ガス空間が前記ダクトの外面と前記断熱壁の内面との間に画成される
1つ以上の断熱壁と、
前記非反応性ガス空間を通って延在する金属管であって、燃焼酸化剤又は燃焼燃料を受け入れ、予熱後に
前記燃焼酸化剤又は
前記燃焼燃料を排出する
1つ以上の金属管と、を備え、
前記ダクトの1つ以上の部分は1W/(m・K)より大きい熱伝導率を有する材料から構成され
ている、
炉。
【請求項2】
前記非反応性ガス空間は周囲空気と自由に連通し、何の機械装置も前記非反応性ガス空間を通る空気の流れを生成するために用いられない、請求項1に記載の炉。
【請求項3】
更に、前記1つ以上の
金属管と流体連通する気体燃料源を備える、請求項1に記載の炉。
【請求項4】
更に、前記1つ以上の
金属管と流体連通する酸化剤源を備える、請求項1に記載の炉。
【請求項5】
前記酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である、請求項4に記載の炉。
【請求項6】
前記酸化剤源は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器である、請求項4に記載の炉。
【請求項7】
1W/(m・K)より大きい熱伝導率を有する材料から構成される前記ダクトの前記1つ以上の部分のそれぞれはセラミック又は金属材料から構成される、請求項1に記載の炉。
【請求項8】
1W/(m・K)より大きい熱伝導率を有する材料から構成される前記ダクトの前記1つ以上の部分のそれぞれは、少なくとも70%のSiC含有量を有するキャスタブル耐火物である、請求項1に記載の炉。
【請求項9】
前記ダクト
の全体は1W/(m・K)を超える熱伝導率を有する前記材料から構成される、請求項1に記載の炉。
【請求項10】
前記ダクトの一部は1W/(m・K)を超える熱伝導率を有する前記材料から構成され、前記ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される、請求項1に記載の炉。
【請求項11】
前記ダクトは、前記ダクトのそれぞれの四隅に配設される4つのピラーと、
4つのダクト部分とから構成され、前記4つのダクト部分は、前記4つのダクト部分の第1
のダクト部分が
前記4つのダクト部分の第3
のダクト部分と平行であり、
前記4つのダクト部分の第2
のダクト部分が
前記4つのダクト部分の第1
のダクト部分に垂直であって、
前記4つのダクト部分の第4
のダクト部分と平行であるように、それぞれがピラーのそれぞれの対の間に延在
しており、
前記1つ以上の断熱壁は、それぞれ第1、第2、第3、及び第4の非反応性ガス空間を画成するように、第1、第2、第3、及び第4のダクト部分とそれぞれ平行に延在する対応する第1、第2、第3、及び第4の断熱壁を備え、
前記1つ以上の金属管の第1のセットは、前記第1の非反応性ガス空間を通って延在し、
前記1つ以上の金属管の第2のセットは、前記第2の非反応性ガス空間を通って延在し、
前記1つ以上の金属管の第3のセットは、前記第3の非反応性ガス空間を通って延在し、
前記1つ以上の金属管の第3のセットは、前記第3の非反応性ガス空間を通って延在し、
前記4つのダクト部分のそれぞれは、1W/(m・K)を超える熱伝導率を持つ
前記材料から構成される、
請求項1に記載の炉。
【請求項12】
前記断熱壁のそれぞれは、1W/(m・K)以下の熱伝導率を有するセラミック材料から構成され、
前記ピラーのそれぞれは、1W/(m・K)以下の熱伝導率を有するセラミック材料から構成される、
請求項11に記載の炉。
【請求項13】
1W/(m・K)より大きい熱伝導率を有する前記材料は3W/(m・K)より大きい熱伝導率を有する、請求項1に記載の炉。
【請求項14】
前記炉はガラス炉であり、前記燃料及び前記酸化剤は燃焼されて固体
ガラス及び/
若しくは溶融ガラス
、又はガラス製造材料を加熱する、請求項1に記載の炉。
【請求項15】
前記炉は金属溶解炉であり、前記燃料及び前記酸化剤は燃焼されて固体
金属及び/又は溶融金属を加熱する、請求項1に記載の炉。
【請求項16】
炉によって生成される燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換の方法であって、
炉の炉壁に取り付けられた1つ以上の燃焼器から燃料及び酸化剤を前記炉壁によって囲まれた燃焼室内の燃焼空間に噴射し、噴射された燃料及び酸化剤を前記燃焼空間内で燃焼させ、それにより、固体
ガラス及び/
若しくは溶融ガラス
、又はガラス製造材料
、又は固体
金属及び/
若しくは溶融金属を加熱し、
燃焼排気を生成することであって、前記燃料及び酸化剤の少なくとも一方が予熱さ
れることと、
軸に沿って延在するダクトの第1の端部において前記燃焼排気を受け入れることであって、前記ダクトの1つ以上の部分は1W/(m・K)より大きい熱伝導率を有する材料から構成されることと、
前記ダクトの第2の端部から前記受け入れた燃焼排気を排出することと、
放射熱交換により前記燃焼排気と前記ダクトとの間で熱を交換することと、
非反応性ガスで充填された非反応性ガス空間を横断する放射熱交換により前記ダクトと1つ以上の金属管との間で熱を交換することであって、前記1つ以上の金属管は前記非反応性ガス空間を通って延在し、前記非反応性ガス空間は前記ダクトの外面と、前記ダクトの軸と平行に且つ前記ダクトの前記外面に隣接して延在する断熱壁の内面との間に画成されることと、
対流熱交換により前記1つ以上の金属管と前記
1つ以上の金属管を通って流れる燃料又は酸化剤のどちらか一方との間で熱を交換して、予熱された燃料又は予熱された酸化剤を提供することと、
前記予熱された燃料又は予熱された酸化剤を前記1つ以上の燃焼器に供給することと、を含む、
方法。
【請求項17】
前記非反応性ガスは空気であり、前記非反応性ガス空間は周囲空気と自由に連通し、何の機械装置も前記非反応性ガス空間を通る空気の流れを生成するために用いられない、請求項16に記載の方法。
【請求項18】
前記燃料は前記1つ以上の
金属管を通って流れ、
前記予熱された燃料は前記1つ以上の燃焼器に供給される、請求項16に記載の方法。
【請求項19】
前記酸化剤は前記1つ以上の
金属管を通って流れ、
前記予熱された酸化剤は前記1つ以上の燃焼器に供給される、請求項1
6に記載の方法。
【請求項20】
前記酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である、請求項19に記載の方法。
【請求項21】
前記酸化剤は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器によって生成される工業的純酸素である、請求項19に記載の方法。
【請求項22】
前記1つ以上の燃焼器に供給される全ての酸化剤の総計は少なくとも24体積%の酸素含有量を有する、請求項21に記載の方法。
【請求項23】
1W/(m・K)を超える熱伝導率を有する前記材料はセラミック又は金属材料である、請求項16に記載の方法。
【請求項24】
1W/(m・K)を超える熱伝導率を有する前記材料は少なくとも30%のSiC含有量を有するキャスタブル耐火物である、請求項1
6に記載の方法。
【請求項25】
前記ダクト
の全体は1W/(m・K)を超える熱伝導率を有する前記材料から構成される、請求項16に記載の方法。
【請求項26】
前記ダクトの一部は1W/(m・K)を超える熱伝導率を有する前記材料から構成され、前記ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される、請求項16に記載の方法。
【請求項27】
前記燃料は前記
1つ以上の金属管を通って流れ、予熱された燃料は前記1つ以上の燃焼器に供給される、請求項16に記載の方法。
【請求項28】
前記燃料は前記
1つ以上の金属管の幾つかを通って流れ、
前記酸化剤は前記
1つ以上の金属管のその他を通って流れ、
前記予熱された燃料及び
前記予熱された酸化剤は前記1つ以上の燃焼器に供給される、請求項16に記載の方法。
【請求項29】
前記燃焼排気の温度は1,100~1,550℃である、請求項16に記載の方法。
【請求項30】
前記炉はガラス炉であり、前記噴射された燃料及び酸化剤は前記燃焼空間内で燃焼され、それにより固体
ガラス及び/
若しくは溶融ガラス
、又はガラス製造材料を加熱する、請求項16に記載の方法。
【請求項31】
前記炉は金属溶解炉であり、前記噴射された燃料及び酸化剤は前記燃焼空間内で燃焼され、それにより固体
金属及び/又は溶融金属を加熱する、請求項16に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炉内で生成された燃焼排気からの廃熱を用いて、炉の1つ以上の燃焼器において燃焼するための一方又は両方の種類の燃焼反応物(すなわち、酸化剤及び/又は燃料)を予熱することに関する。
【背景技術】
【0002】
燃焼排気からの熱エネルギーの回収による高温炉での燃焼のために空気を予熱することは、ガラス炉での燃料節約を達成している。例えば、
図1に示すように、燃料F及び予熱された空気HAの流れは、燃焼排気FGの流れを生成する炉Fの燃焼器Bによって燃焼される。燃焼排気FGの流れは、その後、予熱空気HAの流れとなる空気Aの流れに燃焼排気FGから熱を伝達する機能を果たす金属製復熱器Rに導管Cによって運ばれる。
図2に示すように、予熱された空気燃焼炉用の1つの種類の復熱器は、燃焼排気FGの流れが金属製内管IP内に含まれ、内管IPと外管OPとの間の環状空間内に含まれる空気Aの流れと内管IPを介して熱を交換する二重管構成を有する。
図3に示すように、予熱された空気燃焼炉用の別の種類の復熱器は、空気Aの流れを含み、燃焼排気FGの流れを含む断熱耐火物IRで囲まれた円筒空間の周囲に配設されている複数の内管IPを含んでいる。我々の知る限りでは、これら後者の2つの技術(すなわち、燃焼排気と酸素又は天然ガスのどちらか一方との間に単一の金属境界を含むもの)は、安全上の理由から酸素及び天然ガスの予熱に商業的に適用されていない。これは、単一の金属製内管又は金属製内管のリングが管Pの金属に対する燃焼排気FGの高温腐食攻撃からやがて破損することが予想されるためである。燃焼排気の流れへの酸素又は天然ガスの漏出は壊滅的な安全事故につながる可能性がある。
【0003】
燃焼用空気を予熱する技術は、酸素燃焼ガラス炉(すなわち、空気ではなく、工業的な純酸素等の何らかの形の酸素富化ガスである酸化剤を燃焼する燃焼器によって加熱されるガラス炉)に対してある程度の成功と共に適用されている。しかし、酸素気流を加熱することは、特に高温での酸素の高い反応性が熱回収システムの設計及び構造に極端な制約を課すため、極めて困難である。例えば、空気を予熱するために燃焼排気及び空気が交互のサイクルで流れる再生器を用いることが一般的な方法であるが、酸素が燃焼排気内に不可避的に存在し、再生器内に堆積する汚染物質と反応する恐れがあるため、この技術を酸素と共に用いることは一般に不可能と考えられている。
【0004】
ガラス炉と同様に、燃料及び/又は酸化剤の予熱も金属溶解炉に対して提案されている。
【0005】
前記の問題を回避するために、米国特許第6,250,916号明細書は、高温の燃焼ガスが空気を予熱するために用いられ、ひいては酸素を予熱するために用いられる1つの解決策を開示している。また、Goerueney他は、空気が高温の燃焼排気との熱交換により復熱器において最初に加熱され、その後、酸素又は天然ガスが別体のシェル及びチューブ熱交換器において高温の空気により予熱されるAir Liquideによって提供されるHeatOxシステムの一実施形態を説明した(Goerueney他、「Oxy-Fuel Tableware Furnace with Novel Oxygen- and Natural Gas Preheating System」、ガラス問題に関する第77回会議)。これらのアプローチは十分満足のいくものであるが、時として2つの点である程度制限される可能性がある。第一に、熱交換器を(空気の予熱及び酸素又は天然ガスの予熱のために)別々に有する必要があるため、関連する資本コストは、投資に対する利益回収に必要な時間増加のために、ある特定の状況においてかかるプロジェクトへの投資を妨げる可能性がある。第二に、酸素又は天然ガスが予熱されてもよい温度は、予熱空気の温度によって制限される。従って、従来の技術は、高温の燃焼排気から回収され、酸素又は天然ガスに伝達される可能性のある熱エネルギーの量に限界がある。通常、予熱空気温度は650℃以下である。
【0006】
従って、壊滅的な安全性障害の低いリスクを呈する燃焼排気からの熱の回収により、炉のために燃焼反応物を予熱するニーズが存在している。また、改善された経済性を呈する燃焼排気からの熱の回収により、炉のために燃焼反応物を予熱するニーズも存在している。
【発明の概要】
【課題を解決するための手段】
【0007】
燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換を利用する炉であって、燃料及び酸化剤が燃焼されて、固体及び/又は溶融ガラス若しくはガラス製造材料若しくは固体及び/又は溶融金属を加熱し、それによって燃焼排気を生成する、炉壁によって囲まれる燃焼空間を含む燃焼室と、予熱された燃料及び/又は予熱された酸化剤を内部で燃焼させるために燃焼室内に噴射するようになされ、構成される炉壁に取り付けられる1つ以上の燃焼器と、軸に沿って延在し、燃焼室で生成された燃焼排気の少なくとも一部を受け入れる第1の端部と、受け入れた燃焼排気を排出する第2の対向端部とを有するダクトと、ダクト軸に平行に、ダクトの外面に隣接して延在する1つ以上の断熱壁であって、断熱材料から構成され、非反応性ガス空間がダクトの外面と断熱壁の内面との間に画成される断熱壁と、非反応性ガス空間を通って延在する1つ以上の金属管であって、燃焼酸化剤又は燃焼燃料を受け入れ、予熱後に燃焼酸化剤又は燃焼燃料を排出する管とを備え、ダクトの少なくとも一部分は1W/(m・K)より大きい熱伝導率を有する材料から構成される炉が開示される。
【0008】
燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換を利用する別の炉であって、燃料及び酸化剤が燃焼されて、固体及び/又は溶融ガラス若しくはガラス製造材料若しくは固体及び/又は溶融金属を加熱し、それによって燃焼排気を生成する、炉壁によって囲まれる燃焼空間を含む燃焼室と、予熱された燃料及び/又は予熱された酸化剤を内部で燃焼させるために燃焼室内に噴射するようになされ、構成される炉壁に取り付けられる1つ以上の燃焼器と、復熱器であって、ダクトの四隅に配設される4つの構造ピラーと、それぞれがピラーの対の間に延在する4つのダクト部分も備えるダクトであって、ダクト部分が1W/(m・K)より大きい熱伝導率を有する材料からできているダクトと、それぞれがダクト部分のそれぞれの1つに隣接し、それと平行に延在する4つの断熱壁のセットであって、非反応性ガス空間が、隣接し、平行して延在するダクト部分と断熱壁との各対の間に配設される、セットと、複数の金属管の1つ以上のセットであって、各セットは非反応性ガス空間のそれぞれの1つを通って延在し、金属管のそれぞれは、燃焼反応物の流れを受け入れ、予熱処理後に燃焼反応物を排出するようにされ、構成され、燃焼器はそこから予熱された燃焼反応物を受け入れるための金属管と流体連通する、セットとを備える復熱器とを備える炉が開示される。
【0009】
また、炉によって生成される燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換の方法も開示される。方法は以下のステップを含んでいる。燃料及び酸化剤が炉の炉壁に取り付けられた1つ以上の燃焼器から炉の炉壁によって囲まれた燃焼室内の燃焼空間に噴射され、噴射された燃料及び酸化剤は前記燃焼空間内で燃焼され、それにより、固体及び/又は溶融ガラス若しくは固体及び/又は溶融金属を加熱し、燃料及び酸化剤の少なくとも一方が予熱される燃焼排気を生成する。燃焼排気は軸に沿って延在するダクトの第1の端部において受け入れられ、ダクトの少なくとも一部は1W/(m・K)より大きい熱伝導率を有する材料から構成される。受け入れた燃焼排気はダクトの第2の端部から排出される。熱は、放射及び対流熱交換により燃焼排気とダクトとの間で交換される。熱は、非反応性ガスで充填された非反応性ガス空間を横断する放射熱交換により、1W/(m・K)より大きい熱伝導率を有する材料から構成されるダクトの1つ以上の部分と前記部分に対向する1つ以上の金属管との間で交換され、1つ以上の金属管は非反応性ガス空間を通って延在し、非反応性ガス空間は、ダクトの外面と、ダクト軸と平行に且つ1W/(m・K)より大きい熱伝導率を有する材料から構成される部分と対向するダクトの外面に隣接して延在する断熱壁の内面との間に画成される。熱は、予熱された燃料又は予熱された酸化剤を提供するよう、対流熱交換によって1つ以上の金属管と、管を通って流れる燃料又は酸化剤のどちらか一方との間で交換される。予熱された燃料又は予熱された酸化剤は1つ以上の燃焼器に供給される。
【0010】
炉又は方法のいずれか1つ以上は、以下の態様の1つ以上を含む。
-ダクトはセラミックダクトである。
-1W/(m・K)より大きい熱伝導率を有する材料で構成されるダクトの一部は、1つ以上の金属管の反対側に配設される。
-非反応性ガスは空気であり、非反応性ガス空間は、任意選択的に自然対流によって周囲空気と自由に連通し、何の機械装置も非反応性ガス空間を通る空気の流れを生成するために用いられない。
-気体燃料源は前記1つ以上の管と流体連通する。
-酸化剤源は前記1つ以上の管と流体連通する。
-酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である。
-酸化剤源は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器である。
-1W/(m・K)を超える熱伝導率を有する材料は、セラミック材料又は金属合金である。
-1W/(m・K)を超える熱伝導率を有する材料は、好ましくは30%以上又は70%以上のSiC含有量を有するキャスタブル耐火物である。
-ダクト全体は1W/(m・K)を超える熱伝導率を有する材料から構成される。
-ダクト全体は3W/(m・K)を超える熱伝導率を有する前記材料から構成される。
-ダクトの一部は1W/(m・K)を超える熱伝導率を有する材料から構成され、ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される。
-ダクトの壁厚は1~10cmである。
-1W/(m・K)を超える熱伝導率を有する材料は金属合金であり、10cm以下であるダクトの壁厚を有する。
-ダクトは第1、第2、第3、及び第4の側面を有する矩形断面構成を有し、1つ以上の断熱壁は対応する第1、第2、第3、及び第4の断熱壁を含み、第1の断熱壁が第1の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第1の断熱壁と第1の側面との間の第1の非反応性ガス空間を通って延在し、第2の断熱壁が第2の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第2の断熱壁と第2の側面との間の第2の非反応性ガス空間を通って延在し、第3の断熱壁が第3の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第3の断熱壁と第3の側面との間の第3の非反応性ガス空間を通って延在し、そして、第4の断熱壁が第4の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第4の断熱壁と第4の側面との間の第4の非反応性ガス空間を通って延在する。
-各断熱壁はダクトに可逆的に取り付けられ、断熱壁に対向するダクト側面のそれぞれは、1W/(m・K)を超える熱伝導率を有する材料から構成される部分を含み、ダクト側面のそれぞれはまた、1W/(m・K)以下の熱伝導率を有するセラミック材料から構成され、1W/(m・K)を超える熱伝導率を有する材料から構成される部分は、残りの部分に形成された開口に可逆的に取り付けられて、1W/(m・K)を超える熱伝導率を有する材料から構成される部分の任意の単一の1つが、炉を停止することを必要とせず、交換されることを可能にする。
-ダクトは、ダクトのそれぞれの四隅に配設される4つのピラーと、4つのダクト部分の第1が4つのダクト部分の第3と平行であり、4つのダクト部分の第2が4つのダクト部分の第1に垂直であり、4つのダクト部分の第4と平行であるように、それぞれがピラーのそれぞれの対の間に延在する4つのダクト部分とから構成され、1つ以上の断熱壁は、それぞれ第1、第2、第3、及び第4の非反応性ガス空間を画成するように、第1、第2、第3、及び第4のダクト部分とそれぞれ平行に延在する対応する第1、第2、第3、及び第4の断熱壁を備え、1つ以上の金属管の第1のセットは、第1の非反応性ガス空間を通って延在し、1つ以上の金属管の第2のセットは、第2の非反応性ガス空間を通って延在し、1つ以上の金属管の第3のセットは、第3の非反応性ガス空間を通って延在し、1つ以上の金属管の第3のセットは、第3の非反応性ガス空間を通って延在し、4つのダクト部分のそれぞれは、1W/(m・K)を超える熱伝導率を持つ材料から構成される。
-1つ以上の断熱壁は、同じく円形断面構成を有するダクトを同心円状に囲む円形断面構成を有する1つの断熱壁を備える。
-非反応性ガスは空気であり、非反応性ガス空間は周囲空気と自由に連通し、何の機械装置も非反応性ガス空間を通る空気の流れを生成するために用いられない。
-燃料は1つ以上の管を通って流れ、予熱された燃料は1つ以上の燃焼器に供給される。
-酸化剤は1つ以上の管を通って流れ、予熱された酸化剤は1つ以上の燃焼器に供給される。
-酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である。
-酸化剤は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器によって生成される工業的純酸素である。
-1つ以上の燃焼器に供給される全ての酸化剤の総計は少なくとも24体積%の酸素含有量を有する。
-1W/(m・K)を超える熱伝導率を有する材料は、好ましくはSiC、より好ましくは少なくとも70%のSiC含有量を有するキャスタブル耐火物である。
-ダクト全体は1W/(m・K)を超える熱伝導率を有するセラミック材料から構成される。
-ダクトの一部は1W/(m・K)を超える熱伝導率を有する材料から構成され、ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される。
-燃料は管を通って流れ、予熱された燃料は1つ以上の燃焼器に供給される。
-燃料は管の幾つかを通って流れ、酸化剤は管のその他を通って流れ、予熱された燃料及び予熱された酸化剤は1つ以上の燃焼器に供給される。
-燃焼排気の温度は1,100~1,550℃である。
-1W/(m・K)より大きい熱伝導率を有する材料は3W/(m・K)より大きい熱伝導率を有する。
-炉はガラス炉であり、燃料及び酸化剤は燃焼されて固体及び/又は溶融ガラス若しくはガラス製造材料を加熱する。
-炉は金属溶解炉であり、燃料及び前記酸化剤は燃焼されて固体及び/又は溶融金属を加熱する。
【0011】
本発明の性質及び目的を更に理解するために、添付の図面と併せて以下の詳細な説明を参照する必要があり、同様の構成要素には同じ又は類似の符号を付与する。
【図面の簡単な説明】
【0012】
【
図1】
図1は、従来の予熱空気燃焼炉の平面略図である。
【
図2】
図2は、従来の予熱空気燃焼炉で利用される復熱器の1つの型の平面断面略図である。
【
図3】
図3は、従来の予熱空気燃焼炉で利用される復熱器の1つの型の平面断面略図である。
【
図4】
図4は、予熱された酸素又は予熱された燃料を利用する新規の炉の実施形態の平面略図である。
【
図5】
図5は、新規の炉の復熱器の一実施形態の平面断面略図である。
【
図6】
図6は、新規の炉の復熱器の別の実施形態の平面断面略図である。
【
図7】
図7は、新規の炉の復熱器の別の実施形態の側面断面略図である。
【
図8】
図8は、新規の炉の復熱器の更に別の実施形態の平面断面略図である。
【
図9A】
図9Aは、新規の炉の復熱器の更に別の実施形態の一部の側面断面略図である。
【
図9B】
図9Bは、新規の炉の復熱器の別の実施形態の一部の側面断面略図である。
【
図9C】
図9Cは、新規の炉の復熱器の別の実施形態の一部の側面断面略図である。
【
図9D】
図9Dは、新規の炉の復熱器の別の実施形態の一部の側面断面略図である。
【
図13B】
図13Bは、新規の炉の復熱器の更に別の実施形態の平面断面略図である。
【
図13C】
図13Cは、新規の炉の復熱器の更に別の実施形態の平面断面略図である。
【発明を実施するための形態】
【0013】
一方又は両方の燃焼反応物(すなわち、酸化剤及び燃料)は、予熱された燃焼反応物及び燃焼排気の直接接触からの壊滅的な安全性障害の低減したリスクによる放射復熱器の利用を通じて燃焼反応物によって生成された燃焼排気からの熱の回収により予熱される。
【0014】
より詳細には、予熱された酸化剤及び/又は予熱された燃料を含む酸化剤及び燃料は、炉内に取り付けられた1つ以上の燃焼器によって燃焼され、それによって高温燃焼排気の流れを生成している。高温燃焼排気の流れは、炉からの高温燃焼排気の排出用のダクトによって囲まれている。
【0015】
ダクトの1つ若しくは複数の側面又は周囲において、ダクトは耐火断熱材からできている断熱壁である。ダクトを囲む断熱壁の場合、非反応性ガス空間(任意選択的に外気と流体連通する)がダクトの外面と断熱壁の内面との間に配設される。ダクトの1つ以上の側面上の断熱壁の場合、1つ以上の対応する非反応性ガス空間(任意選択的に外気と流体連通する)がダクトの外面と対応する断熱壁の内面との間に配設される。非反応性ガスの種類の非限定的なリストは、空気、二酸化炭素、水蒸気、及び/又は窒素を含む。
【0016】
いずれの場合も、複数の金属管は非反応性ガス空間を通って延在し、予熱される気体燃料又は酸素を豊富に含む酸化剤の流れを含んでいる。高温の燃焼排気からの熱は、ダクトに放射伝達される(及びより少ない程度で対流伝達される)。一次放射媒体として、ダクトからの熱は、非反応性ガス空間を横断して金属管に放射伝達される。熱は、また、熱を金属管に戻して放射することにより二次放射媒体としての機能を果たす断熱壁に非反応性ガス空間を横断して放射伝達される。伝熱を強化するために、金属管及び断熱壁と対向する、すなわち非反応性ガス空間と境界を接するダクトの1つ以上の部分は、1W/(m・K)、好ましくは3W/(m・K)を超える熱伝導率を呈する材料から構成される。1W/(m・K)を超える熱伝導率を呈する材料、好ましくは3W/(m・K)を超える熱伝導率を呈する材料を超える材料は、セラミック又は金属材料であってもよい。当業者は、かかる熱伝導率が、燃焼排気ダクトを構築又は包囲し、燃焼排気ダクト周辺の環境を過熱することを防ぐために用いられる従来の耐火断熱材のものよりも極めて高いことを認識するであろう。ダクト及び断熱壁から金属管への非反応性ガス空間を横断して放射される熱は、ひいては管内に含まれる気体燃料又は酸素を豊富に含む酸化剤の流れに対流伝達される。1つ以上の部分とは、ダクト全体が1W/(m・K)を超える熱伝導率を有する材料から構成されてもよいか、又は、ダクト全体未満が1W/(m・K)を超える熱伝導率を有する材料から構成されてもよいことを意味する。かかる材料から構成される1つ以上の部分のみ(全体ではない)を有するダクトの利点を以下に説明する。
【0017】
米国特許第6,250,916号明細書(金属製復熱器において予熱するための冷気の流れを作り、中間熱交換流体として用いるようファンを利用する)の燃焼反応物予熱技術とは対照的に、何の送風機、ファン、ブースター、コンプレッサ、又は空気を移動させるための類似装置も、加熱された空気と金属管との間に最適化された対流伝熱を達成するために、強制的に空気の流れを非反応性ガス空間内の金属管を横断させる目的のために存在していない。むしろ、空気は、発明の伝熱技術において通常静止しており、任意選択的に、ダクト及び耐火断熱材によって含まれる空間に流出入することが可能である。確かに、周囲空気が比較的低い高さから非反応性ガス空間に入り、加熱された空気が比較的高い高さから非反応性ガス空間から出ることを可能にした場合、自然通風が、非反応性ガス空間内で加熱された後に、空気の浮力の上昇によって作成されてもよい。従って、当業者は、発明の伝熱技術の空気が、対流伝熱のための熱交換媒体として通常用いられないことを認識するであろう。それでも、送風機又はファンは、非反応性ガス空間への燃焼酸化剤又は燃焼燃料の漏出が検出されるか、又はそうでなければ、存在すると考えられる場合に、非反応性ガス空間をパージする目的のために、強制的に空気の流れを非反応性ガス空間から流出入させるために任意選択的に用いられてもよい。同様に、送風機又はファンは、万一プロセス温度が乱れた場合に金属管を冷却する必要がある場合、強制的に空気の流れを非反応性ガス空間から流出入させるために任意選択的に用いられてもよい。これらの2つの場合のいずれにおいても、当業者は、かかる送風機又はファンの通常的な使用は、非反応性ガス空間内の空気を熱交換媒体として用いることによってダクトと金属管との間の対流伝熱をもたらす目的のためではない。また、
【0018】
燃焼排気は、1つ以上の燃焼器が取り付けられた炉壁によって囲まれる燃焼空間を含む炉内で生成される。燃焼器は、予熱された燃料及び/又は予熱された酸化剤を燃焼空間に噴射し、そこでそれらが燃焼されて燃焼排気を生成する。酸化剤及び/又は燃料は予熱されているため、少ない燃料が炉内で同等の熱量を生成するために燃焼させる必要がある。燃焼器は、予熱されていない燃料及び予熱された酸化剤、予熱された燃料及び予熱されていない酸化剤、又は予熱された燃料及び予熱された酸化剤の両方を噴射してもよい。溶解炉の場合、1~18個の燃焼器が通常存在する。より詳細には、18個もの燃焼器が比較的大きなガラス溶融炉内に通常存在し、2個の燃焼器がエンドポート型ガラス炉内に通常存在する。
【0019】
(本発明の復熱器の金属管において予熱される)予熱された燃料の場合、天然ガス、バイオガス、石炭ガス、合成ガス、又は低発熱ガス等のガスである。本発明の復熱器の金属管において予熱されない燃料に対して、かかる燃料は周囲温度であるか、又は異なる技術により予熱され、固体燃料(石炭、石油コークス、バイオマス、又は廃棄物等)、液体燃料(燃料油等)、及び気体燃料(天然ガス、バイオガス、石炭ガス、合成ガス、又は低発熱ガス等)を含んでいてもよい。
【0020】
本発明の復熱器の金属管において予熱された酸化剤の場合、それは、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気等の空気よりも高い酸素含有量を有している。酸素富化空気は、通常、空気を工業的純酸素と混合することにより又は工業的純酸素を工業的純窒素と混合することにより得られる。工業的純酸素は、低温空気分離ユニット、蒸気スイング吸着(VSA)ユニット、又は液体酸素タンクから液体酸素を供給される気化器から得られる酸素である。特定種類の酸素源の選択は、手近な炉のための燃焼器によって必要とされる流量に依存する。通常、炉の燃焼器によって噴射される全ての酸化剤の全体の酸素含有量の総計は、少なくとも24%であり、より詳細には少なくとも29%である。本発明の復熱器の金属管において予熱されない酸化剤(燃焼器又は炉の1つ以上の燃焼器によって燃焼される)に対して、かかる酸化剤は周囲温度であるか、又は異なる技術によって予熱され、上で説明したような空気、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気を含んでいてもよい。
【0021】
燃焼排気は、燃焼空間からセラミック又は合金ダクトに向かって排出され、ここでその熱エネルギーは、上で説明したように燃料又は酸化剤を予熱するために用いられる。燃焼排気は燃焼空間からダクトに直接受け入れられてもよいか、又は、燃焼排気は燃焼空間とダクトの内部との間を流体連通する中間導管を横断してもよい。燃焼排気は通常、温度600℃~1,550℃である。それは主にCO2、水分、及びN2から構成されるが、ガラス炉によって生成されるアルカリ蒸気又は金属溶解炉によって生成される腐食性物質等の腐食性材料を含んでいてもよく、かかる蒸気が炉の表面に凝縮すると、炉の腐食が生じる可能性がある。当業者は、かかるアルカリ蒸気が通常NaOH及びKOHを含むことを理解するであろう。小林によって要約されたように、アルカリの反応により、炉クラウンにおいてケイ石れんが(特に、ケイ灰石バインダ)が気化する。小林他「TCF Technology for Oxy-Fuel Glassmelting」(第1部)、米国セラミック学会(American Ceramic Society)会誌、Vol.84、No.2(2005年2月)。燃焼排気は、また、ある量の未燃焼燃料を含んでもよい。
【0022】
燃焼空間で生成された燃焼排気は、ダクトの一端において受け入れられ、ダクトの反対側端部において排出される。ダクトの断面は、円形、楕円形、矩形、及び正方形を含むがこれらに限定されない任意の規則的な寸法形状として構成されてもよい。
【0023】
上記のように、金属管及び断熱壁に対向するダクトの1つ以上の部分は、1W/(m・K)を超え、好ましくは3W/(m・K)を超える熱伝導率を有する材料から構成される。適切な材料はセラミック及び金属合金を含む。現在の文脈において、用語「セラミック」は広義で用いられ、固体状態のままであり、炉内で生じる温度で加熱されても軟化又は融解しない非金属無機固体を指す。本明細書中で用いられるような用語「セラミック材料」は、従って、狭義ではセラミック、すなわち、製造中に焼成とも称される高温(例えば、1100℃を超える等)にさらされ、一度製造されると、固体状態のままであり、炉内で生じる温度で加熱されても軟化又は融解しない非金属無機固体も含む。当業者は、耐火物が主として、アルミナ、ケイ酸塩、炭化ケイ素、ジルコニア、等のようなセラミックからできていることを考えると、かかる材料が耐火物を含むことを認識するであろう。特に適切なセラミックは、比較的高いSiC含有量(少なくとも30%若しくは少なくとも70%等)又は窒化物結合SiC等の焼結セラミックを有するキャスタブル耐火物及び電鋳耐火物を含む。他の適切なセラミック材料は、電鋳アルミナ、電鋳アルミナ-ジルコニア-ケイ酸塩を含むが、これらに限定されない。適切な金属合金は、カンタル並びに310ss、インコロイ800/825、インコネル600/625等の高Ni-Cr含有量を含むが、これらに限定されない。
【0024】
比較的高い熱伝導率は、部分と金属管との間及び部分と断熱壁との間の放射伝熱を介して、並びに、金属管と金属管を通って流れる燃焼反応物との間の対流伝熱により、熱が十分に伝達されることを可能にする。上記のように、ダクト全体は、指定された最小熱伝導率を有するセラミック又は金属材料からできている必要はない。むしろ、ダクトの一部は1W/(m・K)を超える熱伝導率を有する材料から構成されてもよい一方で、ダクトの残りの部分、特に金属管に面していないか、又は金属管に隣接していない部分の熱伝導率が、1W/(m・K)以下の熱伝導率を有する材料からできていてもよい。1W/(m・K)以下の熱伝導率を有する材料から構成されたダクトの一部は、かかる高温において増加する熱放射が比較的低い伝導率を相殺することに役立つことができるため、ダクトの極めて高温(すなわち、1250℃以上)の領域に配設されてもよい。これは、1W/(m・K)以下の熱伝導率を有する材料から構成されるダクトの残りの部分が、熱伝導率の高い材料(すなわち、1W/(m・K)を超える)よりも安価である場合、有利であるか又は熱伝導率の高い材料と比較して他の利点を有してもよい。具体的な一実施例として、比較的短い長さの金属管のみが、酸化剤又は燃料を十分に予熱するためにダクトとの放射伝熱関係にある必要がある場合、比較的短い長さに面するダクトのそれらの部分のみが、必要とされる熱伝導率を有する材料から作成される必要がある。このように、金属管と放射伝熱関係にないダクトの残りの部分は、必要とされる熱伝導率を有する材料から作成される必要はない。加えて、金属管に対向していないダクトの部分が1W/(m・K)未満の熱伝導率を有する材料から作成されている場合、かかる材料はダクトの周囲の過熱を回避することに役立つ。従って、かかる構成は比較的安全である。
【0025】
必要とされる熱伝導率を有するダクトの部分の材料はセラミックに限定されないが、金属合金と比較して、セラミックは次の利点を有している。復熱式熱交換の当業者は、セラミック材料によって示される腐食に対する耐性が、多種多様な金属よりも極めて優れている可能性があることを認識するであろう。これは、ダクトの1W/(m・K)を超える熱伝導率を有する部分が代わりに金属材料から構成されている場合、一般にはるかに高い割合で多孔質になる可能性が高いため、重要である。これは、エアギャップの内部への燃焼排気の流れの早すぎる発達と、燃焼反応物を運ぶ金属管への腐食攻撃を不可避的にもたらすだろう。管が腐食性で高温の燃焼排気との接触によりそれらを非気密性にする点まで同様に腐食した場合、壊滅的な安全性障害のリスクが高まる。壊滅的な安全性障害は、高温の(予熱による)燃料がダクトと金属管との間又はダクト内部で制御されない方法で燃焼排気内に存在する残留酸素と燃焼する場合に、発生する可能性がある。壊滅的な安全性障害は、また、高温の(予熱による)酸化剤がダクトと金属管との間又はダクト内部で制御されない方法で燃焼排気内に存在する未燃焼又は不完全燃焼燃料と燃焼する場合に、発生する可能性がある。繰り返すが、1W/(m・K)を超える熱伝導率を有する部分がセラミック材料ではなく金属材料から構成されている一方で、かかる金属部分が前述のかかる安全性障害を回避するために頻繁に交換する可能性がある場合、これはプロセスの中断を表し、比較的コストがかかる。更に、ハステロイ等の一部の金属はある程度の耐腐食性を呈する一方で、かかる金属は通常、復熱式熱交換器で通常用いられる他の金属よりもかなり高価である。金属材料でできた1W/(m・K)を超える熱伝導率を有する部分とは対照的に、多くのセラミック材料によって示される比較的大きな耐腐食性は、ダクトが1W/(m・K)を超える熱伝導率を有する部分の交換前に比較的長い時間用いられることを可能にする。実際、大多数の金属材料とは対照的に、大多数のセラミック材料によって示される高温腐食環境に対する十分に確立された耐性に基づいて、我々は、1W/(m・K)を超える熱伝導率を有するセラミック部分の有効寿命は、金属材料で仮定的に作成されたものの有効寿命の何倍にもなると考えている。
【0026】
一方、金属合金は、セラミックによって通常見られない幾つかの利点を呈する。金属合金は、多くのセラミック材料よりも安価である。金属合金は、簡単に成形又は屈曲できるため、製造が容易である。金属合金製のダクトは、金属である他の構成部品と結合するのが容易である。セラミックと比較して、金属合金は取り扱い中の破損の低いリスクを呈し、従って、ダクトの構築中の容易な取り扱いを助長する。
【0027】
1W/(m・K)を超える熱伝導率を有する部分の外径(OD)、内径(ID)、及び壁厚は、燃焼排気の流量及び温度、燃焼反応物の流量、並びに燃焼反応物をそこまで予熱することが望まれる温度に依存する。ダクトの十分な機械的完全性を維持するために、壁厚は通常約1~10cmである。
【0028】
複数の金属管は、1W/(m・K)を超える熱伝導率を有する部分と管との両方の間、管のそれぞれの間、及び管と対応する断熱壁との間に隙間を有して、ダクトの周囲に配置される。金属管は、燃焼排気との伝熱により予熱されるシステムの復熱式熱交換部を介して燃焼反応物を搬送する。管は、非限定的な例として304ステンレス鋼、310ステンレス鋼、ニッケル合金、及びインコネル系列(600又は625等)を含む金属材料でできている。管は気密である。これにより、管は、管の外側からの非反応性ガスが管の内部に漏出して燃焼反応物と混合することを可能にしないか、又は燃焼反応物が管から漏出して管の外側の非反応ガスと混合することを可能にしないことを意味する。全ての管からの予熱された酸化剤(又は燃料)の流れは、混合されて単一の予熱された酸化剤(又は燃料)の流れを提供してもよい。代替として、予熱された酸化剤(又は燃料)の個々の流れは、別々に混合されないように保たれてもよい。更に別の代替において、2つ以上の管からの(しかし全ての管よりも少ない管からの)予熱された酸化剤(又は燃料)の流れが混合されてもよい。管のOD、内径ID、及び壁厚は、燃焼排気の所定の流量及び温度のために用いられる管の数、燃焼反応物をそこまで予熱することが望まれる温度、並びに1W/(m・K)を超える熱伝導率を有する部分のOD、ID、及び壁厚に依存する。
【0029】
上で検討したように、金属管及びセラミック又は1W/(m・K)を超える熱伝導率を有する金属部分は、二次放射媒体として機能する断熱壁によって囲まれてもよい。この場合、断熱壁の断面は通常、1W/(m・K)を超える熱伝導率を有する部分の断面と同じ規則的な寸法形状であるが、そうである必要はない。この同じ場合、通常、断熱壁及び1W/(m・K)を超える熱伝導率を有する部分の両方の断面は、正方形、矩形、又は円形として構成される。
【0030】
また、上で検討したように、関連する非反応性ガス空間(複数の管のうちの1つ以上が延在する)が断熱壁と1W/(m・K)を超える熱伝導率を有する部分を備えるそれぞれのダクト側面の所定の対の間に配設されて、それぞれがダクトのそれぞれの側面に配設される2つ以上の断熱壁が存在していてもよい。この実施形態は、全ての金属管よりも少ないか又は金属管のうちの僅か1つが交換又は修理される必要がある場合に、容易な保守及び連続的な炉運転の利点を提供する。炉の運転を停止し、全ての金属管の周囲の断熱壁を取り外して、1つの又は全て未満の管を取り外すか又は交換するだけの代わりに、修理又は交換が必要な特定の金属管に隣接する断熱壁のみを取り外す必要がある。このようにして、他の断熱壁は所定の位置に残ってもよく、炉の運転を停止する必要がない。当業者は、前述の実施形態の多くの置換が存在してもよいことを認識するであろう。例えば、ダクトは4つの側面を有する正方形断面構成を有していてもよく、ここで1つの断熱壁が側面の1つと間隔を空けた関係で配設され、1つ以上の金属管が関連する断熱壁/ダクト側面間のそれぞれの非反応性ガス空間を通って延在する。別の例として、ダクトは4つの側面を有する正方形断面構成を有してもよく、ここで、
-第1の断熱壁が第1の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第1の断熱壁と第1の側面との間の第1の非反応性ガス空間を通って延在し、
-第2の断熱壁が第2の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第2の断熱壁と第2の側面との間の第2の非反応性ガス空間を通って延在し、
-第3の断熱壁が第3の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第3の断熱壁と第3の側面との間の第3の非反応性ガス空間を通って延在し、
-第4の断熱壁が第4の側面に隣接して配設され、それから間隔を空けて配置され、1つ以上の金属管が第4の断熱壁と第4の側面との間の第4の非反応性ガス空間を通って延在する。
当業者は、更に、ダクト側面のうちの2つのみ又は3つのみが、間隔を空けた関係でそれらに隣接して配設される関連する断熱壁を有してもよいことを認識するであろう。
【0031】
安全上の理由から、外壁は断熱材から構成されており、その結果、熱エネルギーが失われず、外壁外側の機器、プロセス、及び人が高温環境にさらされない。外壁のOD、ID、厚さ、及び構成材料は、ダクトを通る燃焼排気の温度及び流量、並びに燃焼反応物に伝達される熱量に依存する。通常、ダクトの外面と断熱材の内面との間の距離は10cm以下である。
【0032】
伝熱プロセスは次のように作用する。熱は、主に放射伝熱によって燃焼排気からダクトに伝達される。放射熱媒体として機能し、ダクトの1W/(m・K)を超える熱伝導率を有する部分は、次いで、主にダクトと管との間の非反応性ガス空間を横断する放射伝熱により、金属管に熱を伝達する。熱は、また、ダクトと断熱壁との間の非反応性ガス空間を横断する放射伝熱により、ダクトから断熱壁に伝達される。放射熱媒体としても機能し、断熱壁は、次いで、金属管に熱を戻して放射する。最後に、熱は主に対流伝熱によって管から燃焼反応物(酸素を豊富に含む酸化剤又は気体燃料)に伝達される。
【0033】
前述の伝熱技術は、米国特許第9,618,203号明細書のもの等の発明の分野における従来の伝熱方法とは区別されてもよい。
【0034】
従来の伝熱方法において、
図15Aに最良に示すように、熱は、放射(Q
r)によって燃焼排気FGから金属製のチューブTに伝達される。熱は、次いで、伝導(Q
cond)によってチューブTの幅全体に伝達される。熱は、次いで、対流(Q
conv)によって予熱するために空気HAに伝達される。熱漏れは断熱材Iの配置により減少する。
【0035】
本発明において、
図15Bに最良に示すように、熱は、放射(Q
r)によって燃焼排気FGからダクトD(少なくともその一部が1W/(m・K)を超える熱伝導率を有する)に伝達される。熱は、次いで、伝導(Q
cond)によってダクトDの幅全体に伝達される。熱は、次いで、放射(Q
r)によってダクトDから非反応性ガス空間NRGを横断して金属管MPに伝達される。熱は、次いで、伝導(Q
cond)によって金属管MPの壁を横断し、その後、対流(Q
conv)によって金属管MPを流れる燃焼反応物CRに伝達される。金属管MPはダクトDから断熱壁IWへの経路を完全には遮断しないため、熱も放射(Q
r)によってダクトDから断熱壁へ伝達される。熱は、従って、放射(Q
r)によって断熱壁から非反応性ガス空間NRGを横断して金属管MPの他の壁にも伝達される。熱は、続いて、伝導(Q
cond)によって金属管MPの壁の幅を横断し、その後、対流(Q
conv)によって燃焼反応物CRに伝達される。
【0036】
米国特許第9,618,203号明細書の技術により示す場合、当業者は、燃焼排気FGとチューブTとの間にダクトを含むことが不利であると考えていたであろう。これは、ダクトを含めることが、燃焼排気FGから予熱用の空気HAへの伝熱効率を極めて低下させるからである。本発明において、燃焼反応物CRへの最終的な伝達に利用可能な燃焼排気FGには豊富な熱エネルギーがあり、安全性に対して増大する懸念があるため、最終的に燃焼排気FGから燃焼反応物CRへの伝熱効率における大幅な低下は許容可能とみなされる。
【0037】
ここで、新規の炉及び復熱器の幾つかの構造的実施形態について検討する。
【0038】
図4に最良に示すように、酸素を豊富に含む酸化剤(又は気体燃料)等の第1の燃焼反応物105及びガス燃料(又は酸素を豊富に含む酸化剤)等の第2の予熱された燃焼反応物103の流れは、複数の伏流に分けられ、炉100の壁に取り付けられた複数の燃焼器101によって受け入れられる。燃焼反応物は、炉100内部の燃焼空間内の燃焼器101によって燃焼されて、燃焼排気FGの流れを生成する。燃焼排気の流れは、復熱器107に向かって運ばれ(任意選択的に導管109を介して)、ここで熱が予熱されていない第2の燃焼反応物109の比較的低温(周囲等)の流れにより比較的高温の燃焼排気FGから伝達され、従って、第2の予熱された燃焼反応物103の流れを生成する。当業者は、第1の燃焼反応物105が酸素を豊富に含む酸化剤である場合、第2の燃焼反応物109が気体燃料であることを認識するであろう。かかる者はまた、第1の燃焼反応物105が燃料である場合、第2の燃焼反応物109が酸素富化酸化剤であることを認識するであろう。かかる者は、更に、第1の燃焼反応物105の流れも、第2の燃焼反応物109の流れと同じ方法で燃焼器101に導入される前に、復熱器107で予熱されてもよいことを認識するであろう。これは、同じ復熱器107又は第2の別の復熱器(図示せず)において実行されてもよい。最後に、第1の燃焼反応物105が燃料(復熱器107で予熱されていない)の場合、それは予熱された燃料を用いる燃焼の分野で公知の任意の技術を用いて任意選択的に予熱されてもよい。
【0039】
図5に最良に示すように、復熱器107は、上記の説明に従う断熱壁3によって囲まれた上記の説明に従う材料で少なくとも部分的に作成されたダクト1を含んでいる。ダクト1は燃焼排気が流れる空間FGを囲んでいる。非反応性ガス空間5は、断熱壁3の内面とダクト1との間の環状空間から構成される。複数の金属管7(予熱される燃焼反応物を搬送する)は非反応性ガス空間5を通って延在している。断熱壁3は、部分1と同心であり、両方とも円形断面構成を有している。当業者は、断熱壁3及びダクト1の両方が楕円形断面構成を有していてもよいことを認識するであろう。非反応性ガス空間5は、復熱器107の上部及び底部において囲まれる必要はなく、その場合、空気は周囲雰囲気と非反応性ガス空間5との間を自由に連通する。代替として、復熱器107の上部及び底部においてダクト1から金属管7へのより効率的な伝熱を提供するために、断熱壁3は非反応性ガス空間5の上下に延在し、それにより、その中に含まれる非反応性ガスが静止する(すなわち、通常、非反応性ガス空間5から出ることができない)ように、非反応性ガス空間5を効果的に密閉してもよい。それにもかかわらず、1つ以上の開口部(上部及び下部等)が断熱壁3に形成されて、周囲空気が非反応性ガス空間5に自由に流出入することを可能にしてもよい。当業者は、開口が、金属管7がそれを通って延在することを可能にするために、断熱壁3の上部及び底部に形成されてもよいことを認識するであろう。
【0040】
図6に最良に示すように、復熱器107は、上記の説明に従う断熱壁13によって囲まれた上記の説明に従う材料で少なくとも部分的に作成されたダクト11を含んでいる。ダクト11は燃焼排気が流れる空間FGを囲んでいる。非反応性ガス空間15は、断熱壁13の内面とダクト11との間の空間から構成される。複数の金属管17(予熱される燃焼反応物を搬送する)は非反応性ガス空間15を通って延在している。ダクト11及び断熱壁13のそれぞれは4つの側面を有しているため、金属管17は、ダクト11を流れる高温の燃焼排気から管17を流れる燃焼反応物に熱をより均一に伝達するために、4つのサブグループにグループ分けされる。断熱壁13は、その断面構成が共通の中心を共有している点でダクト11と同心であるが、
図4の実施形態とは対照的に、両方とも正方形断面構成を有している。このようにして、断熱壁13の4つの側面のそれぞれ1つは、隣接するダクト11のそれぞれの側面と平行である。当業者は、断熱壁13及びダクト11の両方が矩形断面構成を有していてもよいことを認識するであろう。
図5の実施形態と同様に、非反応性ガス空間15は、復熱器107の上部及び底部において囲まれる必要はなく、その場合、空気は周囲雰囲気と非反応性ガス空間15との間を自由に連通する。代替として、復熱器107の上部及び底部においてダクト11から金属管17へのより効率的な伝熱を提供するために、断熱壁13は非反応性ガス空間15の上下に延在し、それにより、その中に含まれる非反応性ガスが静止する(すなわち、通常、非反応性ガス空間15から出ることができない)ように、非反応性ガス空間15を効果的に密閉してもよい。それにもかかわらず、1つ以上の開口部(上部及び下部等)が断熱壁13に形成されて、周囲空気が非反応性ガス空間15に自由に流出入することを可能にしてもよい。当業者は、開口が、金属管17がそれを通って延在することを可能にするために、断熱壁13の上部及び底部に形成されてもよいことを認識するであろう。
【0041】
図7に最良に示すように、復熱器107は、上記の説明に従う材料で少なくとも部分的に作成されたダクト21及び断熱壁23を含んでいる。金属管27(複数の金属管27のうちの)は、ダクト21と断熱壁23との間の非反応性ガス空間25を通って延在している。燃焼排気はダクト21の内部FGを通って流れる一方で、燃焼反応物29の流れは金属管27を通って流れる。
図5及び
図6の実施形態について説明した変形例と同様に、1つ以上の開口部Oは、周囲空気からの空気Aが非反応性ガス空間25を自由に流出入することを可能にするために、復熱器107の底部(及び上部)に形成されてもよい。開口29もダクト21に形成されて、空気が非反応性ガス空間25からダクト21の内部22に流れることを可能にしている。わずかな真空は、空気Aが開口部29を通って非反応性ガス空間25から内部FGへ流れるように、燃焼排気の流れと非反応性ガス空間25内の空気Aとの間の流体連通により形成される。より詳細には、送風機又はファン等の機械装置も、強制的に非反応性ガス空間を通る空気Aを流さないよう連続的に運転されない(上記の例外を念頭に置いて)。
【0042】
図8に最良に示すように、復熱器107は、正方形断面構成を有する四方ダクト31を含んでいる。それはまた、4つの断熱壁33を含み、そのそれぞれは、間隔を空けた関係でダクト31の4つの側面の1つに隣接して配設される。ダクト31の側面とそれぞれの断熱壁3との各対の間には、関連する非反応性ガス空間35がある。断熱壁33の側面(ダクト31の四隅に隣接する)は
図8において囲まれているように描かれているが、当業者は、それらが非反応性ガス空間35を完全に囲む必要はないことを認識するであろう。4つの断熱壁33のそれぞれ1つは、それが隣接するダクト11の4つの側面のそれぞれ1つに平行である。
【0043】
図8の構成において、当業者は、更に、個々の断熱壁33と特定のグループの金属管37との各対が、断熱壁33の内面及び管に面するダクト31の一部によって画成されるそれ自体のチャンバ(関連する非反応性ガス空間35を含む)を備えていることを認識するであろう。かかる構成は、金属管37の異なるグループにおいて異なるガスをより安全に予熱するために用いられてもよい。例えば、金属管37の第1のグループは酸化剤を予熱するために用いられてもよい一方で、金属管37の第2のグループは燃料を予熱するために用いられてもよい。金属管37の第1のグループに関連する非反応性ガス空間35は、断熱壁33と管37のそのグループに面するダクト31の一部との組み合わせによって完全に囲まれているため、それは、(それ自体の関連する断熱壁33と管37のそのグループに面するダクト31の関連部分との組み合わせによって同様に完全に囲まれる)金属管37の第2のグループに関連する非反応性ガス空間から隔離される。従って、異なるグループの金属管において予熱される異なるガス(酸化剤及び燃料等)間の相互汚染のリスクは、金属管37の1つが故障した場合、減少する。各非反応性ガス空間35は、非反応性ガス空間35の上方及び/又は下方に完全に囲まれる必要はないことに留意されたい。むしろ、各非反応性ガス空間35は、周囲空気と自由に連通してもよい。このようにして、相互汚染のリスクが減少する一方で、非反応性ガス空間35内部の酸化剤又は燃料の局所的な蓄積のリスクは、非反応性ガス空間35が上で説明したような非反応性ガス空間35の加熱によって生成される自然通風によって受動的にパージされてもよいため、減少する。
【0044】
図9Aに最良に示すように、復熱器107は、断熱壁43と、断熱壁43とダクト(
図9Aにおいて図示せず)との間の非反応性ガス空間45を通って延在する金属管47とを含む。他の図面に示す復熱器107とは対照的に、冷却パネル44が断熱壁43の内面に沿って設けられている。冷却パネル44は、冷却媒体が流れる複数の冷却管46を含む。金属管47に面する冷却パネル44の内向き面には、高放射率コーティングが設けられてもよい。前述の方法において、万一金属管において加熱された燃焼反応物の温度が所望の限度を超えた場合、冷却媒体は、そうでなければ断熱壁43に伝達される熱の一部を除去するために、冷却管46を通って流れ、従って、予熱された燃焼反応物の温度を下げる。
【0045】
図9Bに最良に示すように、復熱器107は、断熱壁43と、断熱壁43とダクト(
図9Bにおいて図示せず)との間の非反応性ガス空間45を通って延在する金属管47とを含む。他の図面に示す復熱器107とは対照的に、一連の冷却管46が金属管47と断熱壁43との間に設けられ、それを通って冷却媒体が流れる。万一金属管において加熱された燃焼反応物の温度が所望の限度を超えた場合、冷却管46を通って流れる冷却媒体は、ダクトと断熱壁43との間の非反応性ガス空間内の空気を冷却し、これは次に、金属管47を冷却し、従って予熱された燃焼反応物の温度を下げる。熱除去効果は、一連の冷却管46に金属板48を設けることによって任意選択的に向上させてもよく、それにより、冷却効果が生じる表面積を増大させてもよい。
【0046】
図9Cに最良に示すように、復熱器107は、断熱壁43と、断熱壁43とダクト(
図9Bにおいて図示せず)との間の非反応性ガス空間45を通って延在する金属管47とを含む。他の図面に示す復熱器107とは対照的に、空気冷却管46が各金属管47内に設けられている。冷却媒体は、万一金属管において加熱された燃焼反応物の温度が所望の限度を超えた場合、冷却媒体は金属管47を通って流れる予熱された燃焼反応物の温度を下げるように、空気冷却管46を通って流れる。
【0047】
図9Dに最良に示すように、復熱器107は、断熱壁43と、断熱壁43とダクト(
図9Aにおいて図示せず)との間の非反応性ガス空間45を通って延在する金属管47とを含む。他の図面に示す復熱器107とは対照的に、伝熱パネル144が金属管47に沿って設けられている。伝熱パネル144は、ダクト及び断熱壁43によって放射される相当量の熱を吸収し、その後、燃焼反応物の加熱を向上させるように伝導によってその熱を金属管47に伝達するように比較的大きな表面積を有して設計されている。
【0048】
図10~
図12に最良に示すように、復熱器107は、炉100の内部と、任意選択的に導管109を介して、及び予熱された燃焼反応物103の流れを運ぶ導管と流体連通するように、その上部及び底部において開口するセラミック又は金属ダクト51を含む。以下で詳細に説明するように、ダクト51は、1W/(m・K)を超える熱伝導率を示す部分と、1W/(m・K)未満の熱伝導率を示す他の部分とを含む。1、2、3、又は4つの断熱壁53が、簡略化及び明確化のために、かかる部分を備えるダクト51の1、2、3、又は4つの側面に隣接して設けられてもよいことは言うまでもないが、ダクト51の1つの側面のみが、
図10~
図12において断熱壁53に関連付けられているように描かれている。断熱壁53とダクト51との間の非反応性ガス空間(図示せず)を通って延在しているのは複数の金属管57である。金属管57は、入口マニホルド56によって供給され、次に、比較的低温(周囲温度等)の燃焼反応物を運ぶ入口導管54によって供給される。予熱された燃焼反応物は、出口マニホルド56’によって金属管57から回収され、出口導管54’によって出口マニホルド56’から回収される。上で説明したように、
図10~
図12の実施形態は、金属管57の全て未満を修理又は交換するために炉を停止させる必要がないという利点を有する。むしろ、オペレータは、復熱器107が通常通りに機能し続けている間、修理又は交換が望まれる金属管57に隣接する特定の断熱壁53を取り外すことだけを必要とする。
【0049】
図11は、断熱壁53が取り外されて1W/(m・K)を超える熱伝導率を有する材料から構成されるダクト51の一部58を明らかにしている点で
図10とは異なる一方で、
図12は、金属管57の中間の範囲が図示されていない点で更に異なる。1W/(m・K)を超える熱伝導率を有するこれらの部分58のそれぞれは、ダクト51の関連する開口部58’に取り外し可能に挿入されてもよい。部分58と残りの部分(明確にするために番号を付けていない)の両方を含むダクト51の全体はそれぞれ、1W/(m・K)を超える熱伝導率を有する材料から構成されてもよい一方で、
図10~
図12の実施形態は、部分58のみがかかる材料から構成され、残りの部分が1W/(m・K)未満の熱伝導率を有する材料から構成される場合に特に有利である。これは、セラミックダクト51の大部分の比較的低い導電率材料が、部分58の材料とは対照的に、多孔質にされることなくセラミックダクト51の内部を通って流れる比較的高温の燃焼排気との長時間の接触に耐える大きな能力を示し、従って、高温の燃焼排気の流れが断熱壁53とセラミックダクト51との間の非反応ガス空間に入ることを長時間にわたって防止する大きな能力を示すことが予想されるため、セラミックダクトの特別な利点である(金属ダクトと比較して)。一方、1W/(m・K)より大きい熱伝導率を示すセラミック材料の利用可能な選択は、万一かかる材料が多孔質になることなく、高温の燃焼排気との長時間の接触に耐える能力の低下を示す(セラミックダクト51の残りの部分とは対照的に)場合、比較的制限される可能性があるため、部分58は、非反応性ガス空間への高温燃焼排気の漏出が生じないことをより確実にするために、定期的に取り外され、交換されてもよい。これは、また、1W/(m・K)より大きい熱伝導率を示す材料が、より低い熱伝導率を示す材料よりも比較的高価である場合にも有利である可能性がある。
【0050】
ダクト51の部分58(1W/(m・K)を超える熱伝導率を有する材料から構成される)がそれらの耐用年数の終わりに達すると、部分58はそれらを関連する開口部58’から慎重に取り外し、それらを高温の燃焼排気に曝露されていない新しい部分58と交換することによって容易に交換できる。交換の容易さは、各部分58の重量を50kg以下に維持することによって向上されてもよい。これは、各部分58を、関連する開口部58’内で互いの上に積み重ねられる複数の部品に分割することにより、更に容易に達成されてもよい。最後に、各部分58(又は個々の部品)は、部分58(又は個々の部品)が関連する開口部58’の所定位置に又はそこから容易且つ安全に持ち上げることを可能にする1つ以上の持ち上げラグを備えていてもよい。
【0051】
本発明の復熱器の3つの実施形態を、それぞれ
図13A、
図13B、及び
図13Cに示す。これらの3つの実施形態のそれぞれに共通するある特定の特徴(一部は任意)も
図14A~
図14Dに示す。3つの実施形態のそれぞれは4つの構造ピラー62のセットを含む。隣接するピラーの各対の間には、必要な熱伝導率を有する材料でできたダクト部分61が延在している。ピラー62及びダクト部分61の内部に面する表面は、燃焼排気が流れる空間FGを囲んでいる。
【0052】
ピラー62は、ダクト部分61を固定するための機械的支持を提供する。より詳細には、ダクト部分61の各端部における段付き表面72は、隣接するピラー62のそれぞれの角に配設される対応する段付き表面74に当接する。ダクト部61の段付き面72がピラー62の段付き面に当接するため、ダクト部61は燃焼排気が流れる空間FGに落下することが防止される。ダクト部分61は、また、所定のダクト部分61の各端面89が隣接するピラー62の対応する側面88に当接するため、左右に移動することも防止される。
【0053】
本発明の復熱器の実施形態の各々は、また、4つの断熱壁63のセットも含んでいる。各断熱壁63は、ダクト部61のそれぞれ1つに平行に延在する。平行に延在するダクト部分61と断熱壁63との各対の間には、非反応性ガス空間65がある。非反応性ガス空間65を通って延在するのは、燃焼反応物(酸化剤又は燃料のどちらか一方)が流れ、その内部で予熱される複数の金属管67である。非反応性ガス空間65は、非反応性ガス(空気、二酸化炭素、水蒸気、及び/又は窒素等)で充填されている。
【0054】
各断熱壁63は、隣接するダクト部61の外面、断熱壁63の内面、及び隣接するピラー63の側面88の間で非反応性ガス空間65を囲むように、隣接する非反応性ガス空間65のものよりも長い長さを有する。各断熱壁63は、隣接するピラー62の外面の一部78に当接するその内面の周辺端部76を含む。各断熱壁63は、燃焼又は伝熱の分野において公知の任意の技術によって所定位置に固定されてもよい一方で、任意選択的に、それらはブラケット68により隣接するピラー62に固定されてもよい。各ブラケット68は、隣接するピラー62の外面の一部82に当接し、ボルト等の締結装置でそのピラー62に固定される外側脚部80を含む。各ブラケット68は、また、隣接する断熱壁63の外面の一部86に当接し、部分78に対して断熱壁63を摩擦により保持する内側脚84も含む。前述の方法において、各断熱壁63は、非反応性ガス空間65に向かって又はそこから落下することが防止される。
【0055】
ダクト部分61のそれぞれは、燃焼又は伝熱の分野で公知の任意の方法で隣接する非反応性ガス空間65に向かって落下することを防ぐように固定されてもよい一方で、任意選択的に、シム90が隣接するピラー62の側面88に形成されるスロットに部分的に挿入されてもよい。スロットに挿入されないシム90の一部は、そのダクト部分61が隣接する非反応性ガス空間65に向かって落下することを防止するように、問題のダクト部分61の外面の周辺部分にわたって延在する。
【0056】
図13A~
図13Cの復熱器の実施形態は、4つのダクト部分61の単一のセットに限定されない。むしろ、
図14Cに最良に示すように、複数のダクト部分61が、隣接する一対のピラー62の間に延在する複合ダクト部分を形成するように互いに積み重ねられてもよい。ダクト部分61は、
図14Dに最良に示すように、燃焼又は伝熱の分野で公知の任意の方法で積み重ねられてもよい一方で、第1のダクト部分61の底部の突出部94は、第1のダクト部分の下にある第2のダクト部分61の対応するキャビティ96内に嵌合する。このパターンは、隣接する一対のピラー62の間に延在する複合ダクト部分の他のダクト部分61について繰り返される。
【0057】
任意選択的に、
図13Bの実施形態に最良に示すように、複数の冷却チューブ70Aは、金属管67に加えて非反応性ガス空間65を通って延在している。水又は空気又は窒素等の冷却流体が、金属管67内の酸化剤又は燃料の加熱を緩和することを助けるように、冷却チューブ70Aを通って流れる。代替として、
図13Cの実施形態に最良に示すように、複数の冷却チューブ70Aの代わりに、冷却パネル70Bが非反応性ガス空間65を通って延在している。冷却パネル70Bは、放射熱を受けるための表面積を増加させるように波形になっている。
図13Bの実施形態の冷却チューブ70Aと同様に、水又は空気等の冷却流体は、金属管67内の酸化剤又は燃料の加熱を緩和することを助けるように、冷却パネル70Bを通って流れる。
【0058】
図13A~
図13Cの実施形態に関して、運転中、燃料及び酸化剤は、炉の炉壁に取り付けられた1つ以上の燃焼器から、炉の炉壁によって囲まれた燃焼室内の燃焼空間に噴射される。噴射された燃料及び酸化剤は燃焼空間で燃焼されて、固体及び/又は溶融ガラス若しくはガラス製造材料若しくは固体及び/又は溶融金属を加熱し、燃焼排気を生成するために用いられる熱エネルギーを生成する。燃料及び酸化剤の少なくとも一方は予熱される。
【0059】
燃焼排気は、復熱器の第1の端部において燃焼室から受け入れられ、復熱器の反対側の第2の端部から排出される。燃焼排気は、ピラー62の内面及びダクト部61によって画成される空間FGを通って流れる。熱は、燃焼排気とダクト部分61との間で放射的に交換される。熱は、非反応性ガス空間65を横断する放射熱交換により、ダクト部分61と1つ以上の金属管67との間で交換される。熱は、それぞれ予熱された燃料又は予熱された酸化剤を提供するように、対流熱交換によって1つ以上の金属管67と、管67を通って流れる燃料又は酸化剤との間で交換される。予熱された燃料又は予熱された酸化剤は、それによって噴射するために1つ以上の燃焼器に供給される。全ての金属管67が酸化剤のみ又は燃料のみの流れを含む必要はないことに留意されたい。むしろ、関連する非反応性ガス空間65の金属管67の1つのセットは酸化剤の流れを含んでいてもよい一方で、異なる関連する非反応性ガス空間65の金属管67の別のセットは燃料の流れを含んでいてもよい。また、所定の非反応性ガス空間65内の所定の金属管67のセット内部で、1つ以上の管67は酸化剤の流れを含んでいてもよい一方で、そのセットの残りの管67は燃料の流れを含んでいてもよい。
【0060】
本発明をその特定の実施形態に関連して説明してきたが、多くの代替、修正、及び変形が前述の説明に照らして当業者に明らかであることは明白である。従って、添付の特許請求の範囲の精神及び広い適用範囲内にあるようなかかる全ての代替、修正、及び変形を包含することを意図している。本発明は、開示した構成要素を適切に備え、構成し、又は本質的に構成してもよく、開示されていない構成要素がなくても実施されてもよい。更に、第1及び第2等の順序に言及する言語がある場合、限定的な意味ではなく、例示的な意味で理解されるべきである。例えば、ある特定のステップを単一のステップに組み合わせることができることを当業者は認識することができる。
【0061】
単数形「a」、「an」、及び「the」は、文脈で明確に規定しない限り、複数の指示対象を含む。
【0062】
特許請求の範囲内の「備える」は、その後に特定される特許請求の範囲の構成要素が非排他的なリストであることを意味するオープンな移行語であり、すなわち、他のものは全て「備える」の適用範囲内に追加して含め、残ることができる。「備える」は、本明細書中において、「本質的に~からなる」及び「からなる」といったより限定された移行語を必然的に包含するものとして定義され、「備える」は、従って、「本質的に~からなる」又は「からなる」に置き換えられ、「備える」の明確に定義された適用範囲内に留まることができる。
【0063】
特許請求の範囲内の「提供する」とは、何かを供給、支給、利用可能にする、又は用意することを意味する。ステップは、それとは反対の特許請求の範囲内の明白な言葉が存在しない場合、任意の行為主体によって実行されてもよい。
【0064】
任意選択的な又は任意選択的にとは、その後に説明する事象又は状況が発生する可能性又は発生しない可能性を意味する。説明は、事象又は状況が発生する例及び発生しない例を含んでいる。
【0065】
範囲は、約1つの特定の値から、及び/又はおよそ別の特定の値までとして本明細書中で表現され得る。かかる範囲が表現される場合、別の実施形態は、前記範囲内の全ての組み合わせと共に、1つの特定の値から及び/又は他の特定の値までであることは言うまでもない。
【0066】
本明細書中で特定される全ての参考文献は、それぞれが引用される特定の情報と同様に、その全体を引用して本願に組み込まれる。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[1] 燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換を利用する炉であって、
燃料及び酸化剤が燃焼されて、固体及び/又は溶融ガラス若しくはガラス製造材料若しくは固体及び/又は溶融金属を加熱し、それによって燃焼排気を生成する、炉壁によって囲まれる燃焼空間を含む燃焼室と、
予熱された燃料及び/又は予熱された酸化剤を内部で燃焼させるために前記燃焼室内に噴射するようなされ、構成される前記炉壁に取り付けられる1つ以上の燃焼器と、
軸に沿って延在し、前記燃焼室で生成された前記燃焼排気の少なくとも一部を受け入れる第1の端部と、前記受け入れた燃焼排気を排出する第2の対向端部とを有するダクトと、
前記ダクト軸に平行に、前記ダクトの外面に隣接して延在する1つ以上の断熱壁であって、断熱材料から構成され、非反応性ガス空間が前記ダクトの外面と前記断熱壁の内面との間に画成される断熱壁と、
前記非反応性ガス空間を通って延在する1つ以上の金属管であって、前記燃焼酸化剤又は前記燃焼燃料を受け入れ、予熱後に前記燃焼酸化剤又は前記燃焼燃料を排出する管とを備え、前記ダクトの1つ以上の部分は1W/(m・K)より大きい熱伝導率を有する材料から構成される、
炉。
[2] 前記非反応性ガス空間は周囲空気と自由に連通し、何の機械装置も前記非反応性ガス空間を通る空気の流れを生成するために用いられない、[1]に記載の炉。
[3] 更に、前記1つ以上の管と流体連通する気体燃料源を備える、[1]に記載の炉。
[4] 更に、前記1つ以上の管と流体連通する酸化剤源を備える、[1]に記載の炉。
[5] 前記酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である、[4]に記載の炉。
[6] 前記酸化剤源は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器である、[4]に記載の炉。
[7] 1W/(m・K)より大きい熱伝導率を有する材料から構成される前記ダクトの前記1つ以上の部分のそれぞれはセラミック又は金属材料から構成される、[1]に記載の炉。
[8] 1W/(m・K)より大きい熱伝導率を有する材料から構成される前記ダクトの前記1つ以上の部分のそれぞれは、少なくとも70%のSiC含有量を有するキャスタブル耐火物である、[1]に記載の炉。
[9] 前記ダクト全体は1W/(m・K)を超える熱伝導率を有する前記材料から構成される、[1]に記載の炉。
[10] 前記ダクトの一部は1W/(m・K)を超える熱伝導率を有する前記材料から構成され、前記ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される、[1]に記載の炉。
[11] 前記ダクトは、前記ダクトのそれぞれの四隅に配設される4つのピラーと、4つのダクト部分の第1が4つのダクト部分の第3と平行であり、4つのダクト部分の第2が4つのダクト部分の第1に垂直であり、4つのダクト部分の第4と平行であるように、それぞれがピラーのそれぞれの対の間に延在する4つのダクト部分とから構成され、
前記1つ以上の断熱壁は、それぞれ第1、第2、第3、及び第4の非反応性ガス空間を画成するように、第1、第2、第3、及び第4のダクト部分とそれぞれ平行に延在する対応する第1、第2、第3、及び第4の断熱壁を備え、
1つ以上の前記金属管の第1のセットは、前記第1の非反応性ガス空間を通って延在し、
1つ以上の前記金属管の第2のセットは、前記第2の非反応性ガス空間を通って延在し、
1つ以上の前記金属管の第3のセットは、前記第3の非反応性ガス空間を通って延在し、
1つ以上の前記金属管の第3のセットは、前記第3の非反応性ガス空間を通って延在し、
前記4つのダクト部分のそれぞれは、1W/(m・K)を超える熱伝導率を持つ材料から構成される、
[1]に記載の炉。
[12]前記断熱壁のそれぞれは、1W/(m・K)以下の熱伝導率を有するセラミック材料から構成され、
前記ピラーのそれぞれは、1W/(m・K)以下の熱伝導率を有するセラミック材料から構成される、
[11]に記載の炉。
[13] 1W/(m・K)より大きい熱伝導率を有する前記材料は3W/(m・K)より大きい熱伝導率を有する、[1]に記載の炉。
[14] 前記炉はガラス炉であり、前記燃料及び前記酸化剤は燃焼されて固体及び/又は溶融ガラス若しくはガラス製造材料を加熱する、[1]に記載の炉。
[15] 前記炉は金属溶解炉であり、前記燃料及び前記酸化剤は燃焼されて固体及び/又は溶融金属を加熱する、[1]に記載の炉。
[16] 炉によって生成される燃焼排気からの廃熱エネルギーにより燃焼反応物を予熱するための復熱式熱交換の方法であって、
炉の炉壁に取り付けられた1つ以上の燃焼器から燃料及び酸化剤を前記炉壁によって囲まれた燃焼室内の燃焼空間に噴射し、前記噴射された燃料及び酸化剤を前記燃焼空間内で燃焼させ、それにより、固体及び/又は溶融ガラス若しくはガラス製造材料若しくは固体及び/又は溶融金属を加熱し、前記燃料及び酸化剤の少なくとも一方が予熱される燃焼排気を生成することと、
軸に沿って延在するダクトの第1の端部において前記燃焼排気を受け入れることであって、前記ダクトの1つ以上の部分は1W/(m・K)より大きい熱伝導率を有する材料から構成されることと、
前記ダクトの第2の端部から前記受け入れた燃焼排気を排出することと、
放射熱交換により前記燃焼排気と前記ダクトとの間で熱を交換することと、
非反応性ガスで充填された非反応性ガス空間を横断する放射熱交換により前記ダクトと1つ以上の金属管との間で熱を交換することであって、前記1つ以上の金属管は前記非反応性ガス空間を通って延在し、前記非反応性ガス空間は前記ダクトの外面と、前記ダクト軸と平行に且つ前記ダクトの前記外面に隣接して延在する断熱壁の内面との間に画成されることと、
対流熱交換により前記1つ以上の金属管と前記管を通って流れる燃料又は酸化剤のどちらか一方との間で熱を交換して、予熱された燃料又は予熱された酸化剤を提供することと、
前記予熱された燃料又は予熱された酸化剤を前記1つ以上の燃焼器に供給することと、を含む、
方法。
[17] 前記非反応性ガスは空気であり、前記非反応性ガス空間は周囲空気と自由に連通し、何の機械装置も前記非反応性ガス空間を通る空気の流れを生成するために用いられない、[16]に記載の方法。
[18] 燃料は前記1つ以上の管を通って流れ、予熱された燃料は前記1つ以上の燃焼器に供給される、[16]に記載の方法。
[19] 酸化剤は前記1つ以上の管を通って流れ、予熱された酸化剤は前記1つ以上の燃焼器に供給される、[15]に記載の方法。
[20] 前記酸化剤は、酸素富化空気、工業的純酸素、工業的純酸素及び再循環燃焼排気の混合気、又は工業的純酸素及び二酸化炭素の混合気である、[19]に記載の方法。
[21] 前記酸化剤は、低温空気分離ユニット、蒸気スイング吸着ユニット、又は液体酸素タンクから液体酸素を供給される気化器によって生成される工業的純酸素である、[19]に記載の方法。
[22] 前記1つ以上の燃焼器に供給される全ての酸化剤の総計は少なくとも24体積%の酸素含有量を有する、[21]に記載の方法。
[23] 1W/(m・K)を超える熱伝導率を有する前記材料はセラミック又は金属材料である、[16]に記載の方法。
[24] 1W/(m・K)を超える熱伝導率を有する前記材料は少なくとも30%のSiC含有量を有するキャスタブル耐火物である、[15]に記載の方法。
[25] 前記ダクト全体は1W/(m・K)を超える熱伝導率を有する前記材料から構成される、[16]に記載の方法。
[26] 前記ダクトの一部は1W/(m・K)を超える熱伝導率を有する前記材料から構成され、前記ダクトの残りの部分は1W/(m・K)以下の熱伝導率を有する材料から構成される、[16]に記載の方法。
[27] 燃料は前記管を通って流れ、予熱された燃料は前記1つ以上の燃焼器に供給される、[16]に記載の方法。
[28] 燃料は前記管の幾つかを通って流れ、酸化剤は前記管のその他を通って流れ、予熱された燃料及び予熱された酸化剤は前記1つ以上の燃焼器に供給される、[16]に記載の方法。
[29] 前記燃焼排気の温度は1,100~1,550℃である、[16]に記載の方法。
[30] 前記炉はガラス炉であり、前記噴射された燃料及び酸化剤は前記燃焼空間内で燃焼され、それにより固体及び/又は溶融ガラス若しくはガラス製造材料を加熱する、[16]に記載の方法。
[31] 前記炉は金属溶解炉であり、前記噴射された燃料及び酸化剤は前記燃焼空間内で燃焼され、それにより固体及び/又は溶融金属を加熱する、[16]に記載の方法。