(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 25/07 20060101AFI20221213BHJP
H01L 25/18 20060101ALI20221213BHJP
H01L 23/13 20060101ALI20221213BHJP
H01L 23/48 20060101ALI20221213BHJP
【FI】
H01L25/04 C
H01L23/12 C
H01L23/48 G
(21)【出願番号】P 2018076188
(22)【出願日】2018-04-11
【審査請求日】2021-01-20
(31)【優先権主張番号】P 2018019594
(32)【優先日】2018-02-06
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000110
【氏名又は名称】弁理士法人 快友国際特許事務所
(72)【発明者】
【氏名】川島 崇功
【審査官】井上 和俊
(56)【参考文献】
【文献】実開平05-048355(JP,U)
【文献】特開2015-153839(JP,A)
【文献】国際公開第2013/005474(WO,A1)
【文献】特開2015-185834(JP,A)
【文献】特開2016-213346(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 25/07
H01L 23/13
H01L 23/48
(57)【特許請求の範囲】
【請求項1】
第1導体板と、
前記第1導体板上に配置された複数の半導体素子と、
前記第1導体板に接続されている第1外部接続端子と、
前記第1導体板に対向しているとともに、前記複数の半導体素子の各々に接続された第2導体板と、
前記第2導体板に接続されている少なくとも一つの第2外部接続端子と、
を備え、
前記複数の半導体素子は、第1半導体素子、第2半導体素子及び第3半導体素子を含み、
前記第2半導体素子は、前記第1半導体素子と前記第3半導体素子との間に配置されており、
前記第1導体板において前記第1外部接続端子が接続されている範囲は、前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子のなかで、前記第2半導体素子に最も近接しており、
前記第1導体板には、前記第1外部接続端子が接続されている範囲と、前記第2半導体素子が接続されている範囲との間に、孔が設けられており、
前記第1導体板及び前記第2導体板に垂直な方向から平面視したときに、前記第2導体板の面積は、前記第1導体板の面積よりも小さい、
半導体装置。
【請求項2】
前記第1導体板及び前記第2導体板に対して垂直な方向から平面視したときに、前記第1導体板は、前記第1外部接続端子が接続されている範囲から、前記複数の半導体素子が接続されている範囲に向けて、その幅が拡大する拡大部分を有する、請求項1に記載の半導体装置。
【請求項3】
前記拡大部分は一対の側縁を有し、前記一対の側縁の各々は、前記複数の半導体素子側に位置する基端から、前記第1外部接続端子側に位置する先端まで延びており、
前記拡大部分の前記側縁の前記基端は、第2外部接続端子の前記第1外部接続端子側に位置する側縁よりも、前記第1外部接続端子から見て遠い側に位置する、
請求項2に記載の半導体装置。
【請求項4】
第1導体板と、
前記第1導体板上に配置された複数の半導体素子と、
前記第1導体板に接続されている第1外部接続端子と、
前記第1導体板に対向しているとともに、前記複数の半導体素子の各々に接続された第2導体板と、
前記第2導体板に接続されている少なくとも一つの第2外部接続端子と、
を備え、
前記複数の半導体素子は、第1半導体素子、第2半導体素子及び第3半導体素子を含み、
前記第2半導体素子は、前記第1半導体素子と前記第3半導体素子との間に配置されており、
前記第1導体板において前記第1外部接続端子が接続されている範囲は、前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子のなかで、前記第2半導体素子に最も近接しており、
前記第1導体板には、前記第1外部接続端子が接続されている範囲と、前記第2半導体素子が接続されている範囲との間に、孔が設けられており、
前記第1導体板及び前記第2導体板に対して垂直な方向から平面視したときに、前記第1導体板は、前記第1外部接続端子が接続されている範囲から、前記複数の半導体素子が接続されている範囲に向けて、その幅が拡大する拡大部分を有し、
前記拡大部分は一対の側縁を有し、前記一対の側縁の各々は、前記複数の半導体素子側に位置する基端から、前記第1外部接続端子側に位置する先端まで延びており、
前記拡大部分の前記側縁の前記基端は、第2外部接続端子の前記第1外部接続端子側に位置する側縁よりも、前記第1外部接続端子から見て遠い側に位置する、
半導体装置。
【請求項5】
前記拡大部分の少なくとも一部は、前記第2外部接続端子に対向している、請求項2から4のいずれか一項に記載の半導体装置。
【請求項6】
第1導体板と、
前記第1導体板上に配置された複数の半導体素子と、
前記第1導体板に接続されている第1外部接続端子と、
前記第1導体板に対向しているとともに、前記複数の半導体素子の各々に接続された第2導体板と、
前記第2導体板に接続されている少なくとも一つの第2外部接続端子と、
を備え、
前記複数の半導体素子は、第1半導体素子、第2半導体素子及び第3半導体素子を含み、
前記第2半導体素子は、前記第1半導体素子と前記第3半導体素子との間に配置されており、
前記第1導体板において前記第1外部接続端子が接続されている範囲は、前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子のなかで、前記第2半導体素子に最も近接しており、
前記第1導体板には、前記第1外部接続端子が接続されている範囲と、前記第2半導体素子が接続されている範囲との間に、孔が設けられており、
前記第1導体板及び前記第2導体板に対して垂直な方向から平面視したときに、前記第1導体板は、前記第1外部接続端子が接続されている範囲から、前記複数の半導体素子が接続されている範囲に向けて、その幅が拡大する拡大部分を有し、
前記拡大部分の少なくとも一部は、前記第2外部接続端子に対向している、
半導体装置。
【請求項7】
前記第1導体板の前記拡大部分における厚み寸法は、前記第1導体板の前記複数の半導体素子が接続されている範囲における厚み寸法よりも小さく、前記拡大部分が封止体によって覆われている、請求項2から6のいずれか一項に記載の半導体装置。
【請求項8】
前記孔の少なくとも一部は、前記拡大部分に位置している、請求項2から7のいずれか一項に記載の半導体装置。
【請求項9】
前記孔は、前記第1外部接続端子と前記第2半導体素子との間を流れる電流の少なくとも一部が、前記孔を迂回するように形成されている、請求項1から8のいずれか一項に記載の半導体装置。
【請求項10】
前記孔は、前記第1外部接続端子と前記第2半導体素子との間を流れる電流の全てが、前記孔を迂回するように形成されている、請求項1から9のいずれか一項に記載の半導体装置。
【請求項11】
前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子は、前記第1導体板に垂直な平面を対称面として実質的に左右対称に配列されている、請求項1から10のいずれか一項に記載の半導体装置。
【請求項12】
前記第1外部接続端子は、前記対称面と交差する範囲において、前記第1導体板に接続されている、請求項11に記載の半導体装置。
【請求項13】
前記孔は、前記対称面に関して左右対称の開口形状を有する、請求項11又は12に記載の半導体装置。
【請求項14】
前記孔は、長穴形状を有し、前記長穴形状の長手軸は前記対称面に垂直である、請求項11から13のいずれか一項に記載の半導体装置。
【請求項15】
前記対称面に垂直な方向に関して、前記孔の寸法は、前記第2半導体素子の寸法よりも大きい、請求項11から14のいずれか一項に記載の半導体装置。
【請求項16】
前記対称面に垂直な方向に関して、前記孔の寸法は、前記第1半導体素子と前記第3半導体素子との間の中心間距離よりも小さい、請求項11から15のいずれか一項に記載の半導体装置。
【請求項17】
前記第1導体板において前記第1外部接続端子が接続されている前記範囲は、前記対称面に対して左右対称である、請求項11から16のいずれか一項に記載の半導体装置。
【請求項18】
前記対称面に垂直な方向に関して、前記孔の寸法は、前記第1導体板において前記第1外部接続端子が接続されている前記範囲の寸法よりも大きい、請求項11から17のいずれか一項に記載の半導体装置。
【請求項19】
前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子は、前記対称面に垂直な方向に沿って直線的に配列されている、請求項11から
18のいずれか一項に記載の半導体装置。
【請求項20】
前記第1導体板は、内側導体層と、外側導体層と、前記内側導体層及び前記外側導体層の間に位置する絶縁層とを有する絶縁基板であり、
前記第1外部接続端子は、前記内側導体層を介して、前記複数の半導体素子へ電気的に接続されており、
前記孔は、前記内側導体層に設けられている、請求項1から19のいずれか一項に記載の半導体装置。
【請求項21】
前記孔は、前記内側導体層のみに設けられており、前記絶縁層によって画定された底面を有する、請求項20に記載の半導体装置。
【請求項22】
前記内側導体層及び前記外側導体層のそれぞれは金属層であり、
前記絶縁層はセラミック基板である、請求項20又は21に記載の半導体装置。
【請求項23】
前記絶縁基板は、DBC(Direct Bonded Copper)基板である、請求項20から22のいずれか一項に記載の半導体装置。
【請求項24】
前記少なくとも一つの第2外部接続端子は、二つの第2外部接続端子を含む、請求項1から23のいずれか一項に記載の半導体装置。
【請求項25】
前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子は、前記第1導体板に垂直な平面を対称面として実質的に左右対称に配列されており、
前記二つの第2外部接続端子の一方は、前記対称面の一方側において、前記第2導体板に接続されており、
前記二つの第2外部接続端子の他方は、前記対称面の他方側において、前記第2導体板に接続されている、請求項24に記載の半導体装置。
【請求項26】
前記二つの第2外部接続端子は、前記対称面に対して実質的に左右対称に設けられている、請求項25に記載の半導体装置。
【請求項27】
前記第1半導体素子、前記第2半導体素子及び前記第3半導体素子の各々は、エミッタ及びコレクタを有するIGBTを含んでおり、
前記エミッタは、前記第1導体板へ電気的に接続されており、前記コレクタは、前記第2導体板へ電気的に接続されている、請求項1から26のいずれか一項に記載の半導体装置。
【請求項28】
前記第2導体板は、内側導体層と、外側導体層と、前記内側導体層及び前記外側導体層の間に位置する絶縁層とを有する絶縁基板であり、
前記第2外部接続端子は、前記第2導体板の前記内側導体層を介して、前記複数の半導体素子へ電気的に接続されている、請求項1から27のいずれか一項に記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書が開示する技術は、半導体装置に関する。
【背景技術】
【0002】
特許文献1に、半導体装置が開示されている。この半導体装置は、導体板と、導体板上に配置された複数の半導体素子と、導体板に接続されている外部接続端子とを備える。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
複数の半導体素子が並列に接続された半導体装置では、各々の半導体素子へ電流が均等に流れることが望ましい。しかしながら、共通の導体板上に三以上の半導体素子が配置されていると、導体板に接続された外部接続端子と、各々の半導体素子との間の距離は、完全に一致しない。例えば、共通の導体板上において、三つの半導体素子が直線に沿って配置されているとする。この場合、外部接続端子を導体板のどの位置に接続しても、外部接続端子と各々の半導体素子との間の距離を、互いに等しくすることはできない。このような距離の相違が存在すれば、外部接続端子と各々の半導体素子との間の電気抵抗にも、無視できない差が生じる。その結果、各々の半導体素子には、電流が不均等に流れてしまう。本明細書は、このような問題を解決又は改善し得る技術を提供する。
【課題を解決するための手段】
【0005】
本明細書が開示する半導体装置は、第1導体板と、第1導体板上に配置された複数の半導体素子と、第1導体板に接続されている第1外部接続端子とを備える。複数の半導体素子は、第1半導体素子、第2半導体素子及び第3半導体素子を含み、第2半導体素子は、第1半導体素子と第3半導体素子との間に配置されている。第1導体板において第1外部接続端子が接続されている範囲は、第1半導体素子、第2半導体素子及び第3半導体素子のなかで、第2半導体素子に最も近接している。そして、第1導体板には、第1外部接続端子が接続されている範囲と、第2半導体素子が接続されている範囲との間に、孔が設けられている。
【0006】
上記した半導体装置では、第1外部接続端子から第1半導体素子までの距離や、第1外部接続端子から第3半導体素子までの距離よりも、第1外部接続端子から第2半導体素子までの距離の方が短くなる。そこで、第1導体板には、第1外部接続端子が接続されている範囲と、第2半導体素子が接続されている範囲との間に、孔が設けられている。これにより、第1外部接続端子と第2半導体素子との間を流れる電流の少なくとも一部は、孔を迂回して流れる必要があり、実際に電流が流れる経路長が長くなることによって、電気抵抗は増大する。その結果、第2半導体素子を流れる電流が抑制されることによって、各々の半導体素子に流れる電流の不均等が解消又は低減される。なお、ここでいう孔は、貫通孔に限られない。
【図面の簡単な説明】
【0007】
【
図2】半導体装置10の断面構造を示す図。なお、この断面構造は、
図5に示す対称面PSに垂直な断面のものである。
【
図3】一部の構成要素を図示省略して、半導体装置10の内部構造を示す平面図。
【
図4】一部の構成要素を図示省略して、半導体装置10の内部構造を示す分解図。
【
図5】複数の半導体素子22、24、26、第1導体板12において第1外部接続端子32が接続された範囲33及び第1導体板12に設けられた孔40の位置関係を示す図。
【
図6】第1外部接続端子32と各々の半導体素子22、24、26との間を流れる電流C22、C24、C26を模式的に示す図。
【
図7】孔40の近傍における電流C24の流れを模式的に示す図。
【
図8】複数の信号パッド22c、24c、26cと複数の第3外部接続端子36との間の接続関係を示す図。
【
図9】半導体装置10の製造方法の一工程を説明する図であって、リードフレーム19上に複数の半導体素子22、24、26及び複数の導体スペーサ18がはんだ付けされた半製品を示す。
【
図10】半導体装置10の製造方法の一工程を説明する図であって、複数の導体スペーサ18上に第1導体板12がはんだ付けされた半製品を示す。
【
図11】半導体装置10の製造方法の一工程を説明する図であって、封止体16が形成された半製品を示す。
【
図12】半導体装置10の製造方法の一工程を説明する図であって、完成した半導体装置10を示す。
【
図13】第1導体板12の拡大部分13を拡張した変形例を示す図。
【
図14】単一の第2外部接続端子34を有する半導体装置10aを示す図。
【
図15】単一の第2外部接続端子34を有する他の半導体装置10bを示す図。
【
図16】二つの半導体装置10(10a、10b)を直列に接続したときの回路構造を示す図。
【
図17】
図14に示す半導体装置10aと、
図15に示す半導体装置10bとを直列に接続した一形態を示す図。
【
図18】
図14に示す半導体装置10aと、
図15に示す半導体装置10bとを直列に接続した他の一形態を示す図。
【
図19】
図14に示す半導体装置10aの二つを直列に接続した一形態を示す図。
【
図20】
図14に示す半導体装置10aの二つを直列に接続した他の一形態を示す図。
【
図21】第2実施例の半導体装置110を示す平面図。
【
図23】
図21中のXXIII-XXIII線における断面図。
【
図25】第1導体板112(絶縁基板)の内側導体層112aを図示する平面図。
【発明を実施するための形態】
【0008】
本技術の一実施形態では、前記した孔は、第1外部接続端子と第2半導体素子との間を流れる電流の全てが、孔を迂回するように形成されていてもよい。このような構成によると、第1外部接続端子と第2半導体素子との間の電気抵抗を、十分に増大させることができる。
【0009】
本技術の一実施形態では、第1半導体素子、第2半導体素子及び第3半導体素子は、第1導体板に垂直であるとともに前記第2半導体素子を通過する平面を対称面として、実質的に左右対称(即ち、面対称)に配列されていてもよい。このような構成によると、第1半導体素子と第3半導体素子との間で、各々の半導体素子に流れる電流の不均等を十分に低減することができる。なお、ここでいう実質的に左右対称とは、正確に左右対称な配列と比較して一定の誤差(例えば半導体素子のサイズ(いわゆるチップサイズ)の半分以内の誤差)が許容されることを意味する。
【0010】
本技術の一実施形態では、第1外部接続端子が、対称面と交差する範囲において第1導体板に接続されていてもよい。このような構成によると、第1外部接続端子から第1半導体素子までの距離と、第1外部接続端子から第3半導体素子までの距離とを、互いに等しくすることができる。これにより、第1半導体素子と第3半導体素子との間で、各々の半導体素子に流れる電流を実質的に等しくすることができる。
【0011】
本技術の一実施形態では、前記した孔が、前記した対称面に関して左右対称の開口形状を有してもよい。このような構成によると、第1半導体素子と第3半導体素子との間の対称性が、孔の存在によって失われることを避けることができる。
【0012】
本技術の一実施形態では、前記した孔が、長穴形状を有してもよい。この場合、長穴形状の長手軸は、前記した対称面に垂直であるとよい。このような構成によると、適切な孔の設計や製造を容易に行うことができる。但し、孔の開口形状は、単純な長穴形状に限定されず、より複雑な形状を有してもよい。
【0013】
本技術の一実施形態では、前記した対称面に垂直な方向に関して、孔の寸法が、第2半導体素子の寸法よりも大きくてもよい。このような構成によると、第1外部接続端子の寸法にもよるが、第1外部接続端子と第2半導体素子との間を流れる電流の多く又は全部を、孔によって迂回させることができる。
【0014】
本技術の一実施形態では、前記した対称面に垂直な方向に関して、孔の寸法が、第1半導体素子と第3半導体素子との間の中心間距離よりも小さくてもよい。このような構成によると、第1外部接続端子と第2半導体素子との間を流れる電流が、孔によって過剰に迂回することを避けることができる。
【0015】
本技術の一実施形態では、第1導体板において第1外部接続端子が接続されている範囲が、前記した対称面に対して左右対称であってもよい。このような構成によると、第1半導体素子と第3半導体素子との間の対称性をより高めることができる。
【0016】
本技術の一実施形態では、前記した対称面に垂直な方向に関して、孔の寸法が、1導体板において第1外部接続端子が接続されている範囲の寸法よりも大きくてもよい。このような構成によると、第2半導体素子の寸法にもよるが、第1外部接続端子と第2半導体素子との間を流れる電流の多く又は全部を、孔によって迂回させることができる。
【0017】
本技術の一実施形態では、第1導体板が、第1外部接続端子が接続されている範囲から、複数の半導体素子が接続されている範囲に向けて、前記した対称面に垂直な方向の寸法が拡大する拡大部分を有してもよい。この場合、孔の少なくとも一部は、その拡大部分に位置しているとよい。このような構成によると、比較的に大きなサイズの孔を設けることができる。また、このような拡大部分を設けることで、第1外部接続端子と第1半導体素子との間の電流経路や、第1外部接続端子と第3半導体素子との間の電流経路を短くすることができ、半導体装置における電力損失を低減することができる。
【0018】
本技術の一実施形態では、第1半導体素子、第2半導体素子及び第3半導体素子が、前記した対称面に垂直な直線に沿って配列されていてもよい。このような構成によると、複数の半導体素子の配列が単純であることから、例えば孔についても単純な構成とすることができる。
【0019】
本技術の一実施形態では、半導体装置が、第1導体板に対向しているとともに、複数の半導体素子の各々に接続された第2導体板をさらに備えてもよい。この場合、特に限定されないが、半導体装置は、第2導体板に接続されている少なくとも一つの第2外部接続端子をさらに備えてもよい。本明細書で開示される技術は、例えば導体板や外部接続端子の数によらず、様々な構造の半導体装置に適用することができる。
【0020】
上記した実施形態では、少なくとも一つの第2外部接続端子が、二つの第2外部接続端子を含んでもよい。この場合、二つの第2外部接続端子の一方は、前記した対称面の一方側において、第2導体板に接続されているとよい。そして、二つの第2外部接続端子の他方は、前記した対称面の他方側において、第2導体板に接続されているとよい。この場合、特に限定されないが、二つの第2外部接続端子は、対称面に対して実質的に左右対称に設けられていてもよい。このような構成によると、第2導体板においても、各々の半導体素子に流れる電流の不均等を低減することができる。
【0021】
本技術の一実施形態では、第1導体板及び第2導体板に垂直な方向から平面視したときに、第2導体板の面積が第1導体板の面積よりも小さくてもよい。このような構成によると、半導体装置の製造時、第2導体板に対して第1導体板を組み付ける際に、第2導体板の周囲に立設した冶具によって第1導体板を支持して、第1導体板と第2導体板との間の位置決めを行うことができる。また、第2導体板に接続される半導体素子の電極(例えばエミッタ)の面積よりも、第2導体板に接続される半導体素子の電極(例えばコレクタ)の面積の方が大きいときは、第1導体板の面積が第2導体板の面積よりも大きいことによって、半導体素子からの放熱性を高めることができる。
【0022】
本技術の一実施形態では、第1導体板及び第2導体板に対して垂直な方向から平面視したときに、第1導体板は、第1外部接続端子が接続されている範囲から、複数の半導体素子が接続されている範囲に向けて、その幅が拡大する拡大部分を有してもよい。このような構成によると、第1外部接続端子と第1半導体素子との間の電流経路や、第1外部接続端子と第3半導体素子との間の電流経路を短くすることができ、半導体装置における電力損失を低減することができる。
【0023】
上記した実施形態において、第1導体板の拡大部分における厚み寸法は、第1導体板の複数の半導体素子が接続されている範囲における厚み寸法よりも小さくてもよい。この場合、第1導体板の拡大部分は、封止体によって覆われていてもよい。第1導体板の拡大部分が封止体によって覆われていることで、第1導体板の拡大部分と、第2導体板に接続された第2外部接続端子との間で、封止体の表面に沿った沿面距離が長くなり、絶縁性を高めることができる。
【0024】
上記した実施形態において、拡大部分の少なくとも一部は、第2外部接続端子に対向していてもよい。第1外部接続端子に接続された拡大部分では、第2外部接続端子とは逆向きに電流が流れる。従って、拡大部分の少なくとも一部が、第2外部接続端子に対向していると、通電に伴って生じる磁場が相殺されることによって、電流経路のインダクタンスを低減することができる。
【0025】
上記した実施形態では、第1半導体素子、第2半導体素子及び第3半導体素子の各々が、エミッタ及びコレクタを有するIGBT(Insulated Gate Bipolar Transistor)を含んでいてもよい。この場合、エミッタは第1導体板へ電気的に接続されており、コレクタは第2導体板へ電気的に接続されていてもよい。但し、他の実施形態では、第1半導体素子、第2半導体素子及び第3半導体素子の各々が、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)又はタイオードといった、他の半導体素子であってよい。
【0026】
本技術の一実施形態では、第1導体板が、内側導体層と、外側導体層と、内側導体層及び外側導体層の間に位置する絶縁層とを有する絶縁基板であってもよい。この場合、第1外部接続端子は、内側導体層を介して複数の半導体素子へ電気的に接続されてもよい。そして、前記した孔が内側導体層に設けられていてもよい。第1導体板が絶縁基板であると、内側導体層を自由なプロファイルで形成することができる。例えば、第1導体板が第2導体板に対向している場合は、内側導体層が第2導体板に対向する面積を大きくすることによって、半導体装置のインピーダンスを低減することができる。
【0027】
上記した実施形態において、孔は、内側導体層のみに設けられており、絶縁層によって画定された底面を有するとよい。このような構成によると、第1導体板の剛性が孔の存在によって低下することを避けることができる。また、内側金属層と外側金属層とが意図せず導通することも回避することができる。
【0028】
本技術の一実施形態では、第2導体板が、内側導体層と、外側導体層と、内側導体層及び外側導体層の間に位置する絶縁層とを有する絶縁基板であってもよい。この場合、第2外部接続端子は、第2導体板の内側導体層を介して複数の半導体素子へ電気的に接続されてもよい。このような構成によると、第1導体板の内側金属層と第2導体板の内側金属層とを広い面積で対向させて、半導体装置のインピーダンスをさらに低減することができる。
【0029】
上記した第1導体板及び/又は第2導体体の絶縁基板において、内側導体層及び外側導体層のそれぞれは金属層であってもよく、絶縁層はセラミック基板であってもよい。この場合、絶縁基板はDBC(Direct Bonded Copper)基板であってもよい。
【実施例】
【0030】
図面を参照して、実施例の半導体装置10について説明する。半導体装置10は、例えば電気自動車において、コンバータやインバータといった電力変換回路に採用することができる。ここでいう電気自動車は、車輪を駆動するモータを有する自動車を広く意味し、例えば、外部の電力によって充電される電気自動車、モータに加えてエンジンを有するハイブリッド車、及び燃料電池を電源とする燃料電池車等を含む。
【0031】
図1-
図4に示すように、半導体装置10は、第1導体板12と、第2導体板14と、複数の半導体素子22、24、26と、封止体16とを備える。第1導体板12と第2導体板14とは、互いに平行であって、互いに対向している。一例ではあるが、複数の半導体素子22、24、26には、第1半導体素子22、第2半導体素子24及び第3半導体素子26が含まれる。第1半導体素子22、第2半導体素子24及び第3半導体素子26は、第1導体板12及び第2導体板14の長手方向(
図2、
図3における左右方向)に沿って、直線的に配列されている。複数の半導体素子22、24、26は、第1導体板12と第2導体板14との間に並列に配置されている。複数の半導体素子22、24、26は、封止体16によって封止されている。
【0032】
第1導体板12及び第2導体板14は、銅又はその他の金属といった、導体で形成されている。第1導体板12と第2導体板14は、複数の半導体素子22、24、26を挟んで互いに対向している。各々の半導体素子22、24、26は、第1導体板12に接合されているとともに、第2導体板14にも接合されている。なお、各々の半導体素子22、24、26と第1導体板12との間には、導体スペーサ18が設けられている。ここで、第1導体板12及び第2導体板14の具体的な構成は特に限定されない。例えば、第1導体板12と第2導体板14との少なくとも一方は、例えばDBC(Direct Bonded Copper)基板といった、絶縁体(例えばセラミック)の中間層を有する絶縁基板であってもよい。即ち、第1導体板12と第2導体板14との各々は、必ずしも全体が導体で構成されていなくてもよい。
【0033】
第1半導体素子22、第2半導体素子24及び第3半導体素子26は、電力回路用のいわゆるパワー半導体素子であって、互いに同一の構成を有している。第1半導体素子22は、上面電極22aと、下面電極22bと、複数の信号パッド22cとを有する。上面電極22aと、下面電極22bは電力用の電極であり、複数の信号パッド22cは信号用の電極である。上面電極22a及び複数の信号パッド22cは第1半導体素子22の上面に位置しており、下面電極22bは第1半導体素子22の下面に位置している。上面電極22aは、導体スペーサ18を介して第1導体板12へ電気的に接続されており、下面電極22bは、第2導体板14へ電気的に接続されている。同様に、第2半導体素子24及び第3半導体素子26についても、上面電極24a、26aと、下面電極24b、26bと、複数の信号パッド24c、26cとをそれぞれ有する。上面電極24a、26aは、導体スペーサ18を介して第1導体板12へ電気的に接続されており、下面電極24b、26bは、第2導体板14へ電気的に接続されている。
【0034】
一例ではあるが、本実施例における半導体素子22、24、26は、エミッタ及びコレクタを有するIGBT構造を含んでいる。IGBT構造のエミッタは、上面電極22a、24a、26aに接続されており、IGBT構造のコレクタは、下面電極22b、24b、26bに接続されている。但し、半導体素子22、24、26の具体的な種類や構造は特に限定されない。半導体素子22、24、26は、ダイオード構造をさらに有するRC(Reverse Conducting)-IGBT素子であってもよい。あるいは、半導体素子22、24、26は、IGBT構造に代えて、又は加えて、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)構造を有してもよい。また、半導体素子22、24、26に用いられる半導体材料についても特に限定されず、例えばシリコン(Si)、炭化シリコン(SiC)、又は窒化ガリウム(GaN)といった窒化物半導体であってよい。
【0035】
封止体16は、特に限定されないが、例えばエポキシ樹脂といった熱硬化性樹脂又はその他の絶縁体で構成されることができる。封止体16は、例えばモールド樹脂又はパッケージとも称される。半導体装置10は、三つの半導体素子22、24、26に限られず、より多くの半導体素子を備えてもよい。この場合でも、複数の半導体素子は、単一の封止体16によって封止され、第1導体板12及び第2導体板14との間において、並列に配置されることができる。
【0036】
第1導体板12及び第2導体板14は、複数の半導体素子22、24、26と電気的に接続されているだけでなく、複数の半導体素子22、24、26と熱的にも接続されている。また、第1導体板12及び第2導体板14は、それぞれ封止体16の表面に露出しており、各々の半導体素子22、24、26の熱を封止体16の外部へ放出することができる。これにより、本実施例の半導体装置10は、複数の半導体素子22、24、26の両側に放熱板が配置された両面冷却構造を有する。
【0037】
半導体装置10はさらに、第1外部接続端子32と、二つの第2外部接続端子34と、11本の第3外部接続端子36とを備える。各々の外部接続端子32、34、36は、銅又はアルミニウムといった導体で構成されており、封止体16の内部から外部に亘って延びている。第1外部接続端子32は、封止体16の内部において、第1導体板12に接続されている。各々の第2外部接続端子34は、封止体16の内部において、第2導体板14に接続されている。これにより、複数の半導体素子22、24、26は、第1外部接続端子32と、各々の第2外部接続端子34との間で、電気的に並列に接続されている。各々の第3外部接続端子36は、半導体素子22、24、26の対応する一つの信号パッド22c、24c、26cに、ボンディングワイヤ38を介して接続されている。一例ではあるが、第1外部接続端子32は、はんだ付けによって第1導体板12に接合されており、各々の第2外部接続端子34は、第2導体板14に一体に形成されている。但し、第1外部接続端子32は、第1導体板12と一体に形成されていてもよい。また、各々の第2外部接続端子34は、例えばはんだ付けによって、第2導体板14に接合されていてもよい。さらに、各々の第3外部接続端子36は、対応する一つの信号パッド22c、24c、26cに、ボンディングワイヤ38を介することなく接続されてもよい。
【0038】
図5に示すように、第1半導体素子22、第2半導体素子24及び第3半導体素子26は、第1導体板12に垂直であるとともに第2半導体素子24を通過する平面PSを対称面として、左右対称に配列されている。そして、第1外部接続端子32は、対称面PSと交差する範囲33において、第1導体板12に接続されている。この範囲33は、三つの半導体素子22、24、26のなかで、第2半導体素子24に最も近接する。このような構成であると、第1導体板12に接続された第1外部接続端子32と、各々の半導体素子22、24、26との間の距離は、完全に一致しない。例えば、第1外部接続端子32から第1半導体素子22までの距離と、第1外部接続端子32から第3半導体素子26までの距離とは互いに等しい。しかしながら、第1外部接続端子32から第2半導体素子24までの距離については、第1外部接続端子32から第1半導体素子22又は第3半導体素子26までの距離よりも短くなる。このような距離の相違が存在すれば、第1外部接続端子32と各々の半導体素子22、24、26との間の電気抵抗にも、無視できない差が生じる。その結果、各々の半導体素子22、24、26には、電流が不均等に流れてしまう。
【0039】
上記の問題に対して、本実施例における第1導体板12には、第1外部接続端子32が接続されている範囲33と、第2半導体素子24が接続されている範囲との間に、孔40が設けられている。これにより、
図6に示すように、第1外部接続端子32と第2半導体素子24との間を流れる電流C24の少なくとも一部は、孔40を迂回して流れる必要があり、実際に電流が流れる経路長が長くなることによって、電気抵抗は増大する。その結果、第2半導体素子24を流れる電流が抑制されることによって、各々の半導体素子22、24、26に流れる電流C22、C24、C26の不均等が解消又は低減される。加えて、
図7に示すように、孔40を挟んだ両側では電流C24が互いに逆方向に流れるので、第1導体板12で生じるインダクタンスが低減される。この点は、半導体装置10がインバータやコンバータに採用され、各々の半導体素子22、24、26が高頻度でスイッチングされる場合に特に有利である。なお、本実施例における孔40は貫通孔であるが、孔40は有底の孔(即ち、凹部)であってもよい。この場合でも、孔40の位置では、第1導体板12の厚み寸法が減少することにより、電気抵抗が上昇する。また、孔40の内部には、第1導体板12を構成する材料よりも高抵抗の材料が配置されてもよい。
【0040】
孔40の形状及び寸法は特に限定されない。孔40の形状及び寸法は、各々の半導体素子22、24、26に流れる電流C22、C24、C26を実験又はシミュレーションによって検証しながら、適宜設計することができる。
図5に示すように、本実施例における孔40は、長穴形状を有しており、その長穴形状の長手軸は、対称面PSに垂直である。また、孔40は、対称面PSに関して左右対称の開口形状を有しており、長穴形状の中心は対称面PS上に位置している。孔40の開口形状が対称面PSに関して左右対称であると、第1半導体素子22と第3半導体素子26との間の対称性が、孔40の存在によって失われることを避けることができる。なお、孔40は、比較的に単純な長穴形状に代えて、より複雑な形状で設計されてもよい。また、第1導体板12には、一つの孔40に限られず、複数の孔が形成されてもよい。
【0041】
概して、孔40の寸法(特に、対称面PSに垂直な方向における寸法)を大きくするほど、第1外部接続端子32と第2半導体素子24との間を流れる電流C24のより多くが、孔40を迂回することになる。この点に関して、本実施例における孔40は、第1外部接続端子32と第2半導体素子24との間を流れる電流C24の全てが、孔40を迂回するように形成されている。具体的には、対称面PSに垂直な方向に関して(即ち、
図5における左右方向に関して)、孔40の寸法は、第2半導体素子24の寸法よりも大きく、かつ、第1導体板12において第1外部接続端子32が接続されている範囲33の寸法よりも大きくなっている。なお、第1外部接続端子32は、対称面PSに沿って延びており、第1導体板12において第1外部接続端子32が接続されている範囲33についても、対称面PSに対して左右対称である。
【0042】
その一方で、孔40の寸法が大きすぎると、第1外部接続端子32と第2半導体素子24との間を流れる電流C24が、孔40によって過剰に迂回することになる。この場合、第1外部接続端子32と第2半導体素子24との間で、電気抵抗が無用に増大してしまう。そのことから、対称面PSに垂直な方向に関して、孔40の寸法は、第1半導体素子22と第3半導体素子26との間の中心間距離よりも小さいとよい。なお、
図5において、点22Xは第1半導体素子22の中心を示し、点24Xは第2半導体素子24の中心を示し、点26Xは第3半導体素子26の中心を示す。第1半導体素子22の中心22Xは対称面PSの一方側に位置しており、第2半導体素子24の中心24Xは対称面PS上に位置しており、第3半導体素子26の中心26Xは対称面PSの他方側に位置している。
【0043】
図5に示すように、第1導体板12は、第1外部接続端子32が接続されている範囲33から、複数の半導体素子22、24、26が接続されている範囲に向けて、対称面PSに垂直な方向の寸法が拡大する部分13(以下、拡大部分13と称する)を有している。そして、孔40は、その拡大部分13に位置している。このような構成によると、比較的に大きなサイズの孔40を設けることができる。また、このような拡大部分13を設けることで、第1外部接続端子32と第1半導体素子22との間の電流経路や、第1外部接続端子32と第3半導体素子26との間の電流経路を短くすることができ、半導体装置10における電力損失を低減することができる。なお、本実施例における孔40は、その全体が上記した拡大部分13に設けられているが、他の実施形態として、孔40の一部のみが拡大部分13に設けられていてもよい。ここで、第1導体板12の拡大部分13は、第1導体板12の他の範囲(即ち、複数の半導体素子22、24、26が接続されている範囲)よりも、薄く形成されている。
【0044】
拡大部分13の具体的な構造は特に限定されない。一例ではあるが、本実施例における拡大部分13は、一対の側縁13aを有する。各々の側縁13aは、複数の半導体素子22、24、26側に位置する基端13bから、第1外部接続端子32側に位置する先端13cまで延びている。
図5に示すように、第1導体板12及び第2導体板14に対して垂直な方向から平面視したときに、拡大部分13の側縁13aの基端13bは、第2外部接続端子34の内側縁34a(即ち、第1外部接続端子32側に位置する側縁34a)よりも、外側(即ち、第1外部接続端子32から見て遠い側)に位置する。また、拡大部分13の側縁13aの先端13cは、第2外部接続端子34の内側縁34aよりも内側(即ち、第1外部接続端子32から見て近い側)に位置し、第1外部接続端子32と第2外部接続端子34との間に位置している。
【0045】
上記した構成によると、第1外部接続端子32と第1半導体素子22又は第3半導体素子26への各電流経路を短くしつつ、拡大部分13と第2外部接続端子34との間の絶縁性を高めることができる。特に、第2外部接続端子34には、その先端側に向かって上方(即ち、拡大部分13側)へ変位する屈曲部34bが設けられており(
図4、
図5参照)これによって、第1外部接続端子32と二つの第2外部接続端子34が、少なくとも封止体16から突出する部分において同一平面上に位置している。従って、仮に拡大部分13の側縁13aの先端13cが、第2外部接続端子34の内側縁34aよりも外側に位置していると、拡大部分13と、それに向けて屈曲された第2外部接続端子34とが近接することで、両者の間の絶縁性が不足するおそれがある。これに対して、拡大部分13の側縁13aの先端13cが、第2外部接続端子34の内側縁34aよりも内側に位置していると、拡大部分13と第2外部接続端子34との間の距離を大きくして、両者の間の絶縁性が高めることができる。
【0046】
第1導体板12の拡大部分13における厚み寸法は、第1導体板12の複数の半導体素子22、24、26が接続されている範囲における厚み寸法よりも小さい。これにより、第1導体板12の拡大部分13は、封止体16によって覆われており、封止体16の表面に露出しない。第1導体板12の拡大部分13が、封止体16によって覆われていることで、第1導体板12の拡大部分13と、第2導体板14に接続された第2外部接続端子34との間で、封止体16の表面に沿った沿面距離を長くして、絶縁性を高めることができる。
【0047】
図5に示すように、拡大部分13の少なくとも一部は、第2外部接続端子34に対向している。第1外部接続端子32に接続された拡大部分13では、第2外部接続端子34とは逆向きに電流が流れる。従って、拡大部分13の少なくとも一部が、第2外部接続端子34に対向していると、通電に伴って生じる磁場が相殺されることによって、電流経路のインダクタンスを低減することができる。この点に関して、拡大部分13と第2外部接続端子34とが対向する面積が大きくなるほど、インダクタンスを低減する効果は高くなる。そのことから、
図13に示すように、第1外部接続端子32の拡大部分13をさらに拡張してもよい。これにより、拡大部分13と第2外部接続端子34とが対向する面積を、より大きくすることができる。一例ではあるが、
図13に示す変形例では、拡大部分13の側縁13aが、その基端13bから先端13cの全体に亘って、第2外部接続端子34上に位置している。
【0048】
本実施例では、第1半導体素子22、第2半導体素子24及び第3半導体素子26が、対称面PSに垂直な直線に沿って配列されている。このような構成によると、これらの半導体素子22、24、26の配列が単純であることから、例えば孔40についても単純な構成とすることができ、適切な孔40の設計及び形成を容易に行うことができる。但し、第1半導体素子22、第2半導体素子24及び第3半導体素子26の配列は適宜変更可能である。例えば、第1半導体素子22、第2半導体素子24及び第3半導体素子26は、対称面PSに関して左右対称なV字状又は逆V字状に配列されてもよい。また、第1半導体素子22、第2半導体素子24及び第3半導体素子26は、必ずしも正確に左右対称で配列されていなくてもよく、その配列には一定の誤差が許容される。その誤差としては、例えば、半導体素子22、24、26のサイズ(いわゆるチップサイズ)の半分以内の誤差や、1/4以内の誤差が想定される。
【0049】
本実施例の半導体装置10では、第2導体板14に、二つの第2外部接続端子34が接続されており、二つの第2外部接続端子34は、対称面PSに関して左右対称に設けられている。このように、二以上の第2外部接続端子34が対称面PSに関して左右対称に設けられていると、各々の半導体素子22、24、26に対する第2導体板14の電気抵抗を、比較的に均等にすることができる。なお、二つの第2外部接続端子34は、必ずしも、対称面PSに関して厳密に左右対称でなくてもよい。但し、二つの第2外部接続端子34の一方は、対称面PSの一方側において第2導体板14に接続されているとよく、二つの第2外部接続端子34の他方は、対称面PSの他方側において第2導体板14に接続されているとよい。第2導体板14には、第1導体板12と同様に、孔40を有する構造が採用されてもよく、この場合、第2外部接続端子34の数は一つであってもよい。
【0050】
なお、第2導体板14への孔の付加に関係なく、第2外部接続端子34の数は一つであってもよい。この場合、一例ではあるが、本実施例における二つの第2外部接続端子34の一方を、単に省略すればよい。二つの第2外部接続端子34のいずれを省略するかについては特に限定されない。いずれの第2外部接続端子34を省略しても、半導体装置10の表裏を反転すれば、第1外部接続端子32及び第2外部接続端子34の配列は同じとなる。但し、第2導体板14に、二以上の第2外部接続端子34が接続されていると、半導体装置10が電力変換回路等へ組み込まれたときに、二以上の第2外部接続端子34によって、半導体装置10は安定して支持されることができる。また、半導体装置10の製造時においても、二以上の第2外部接続端子34によって第2導体板14は安定して支持される。
【0051】
次に、
図8を参照して、複数の第3外部接続端子36に係る構成について説明する。前述したように、複数の第3外部接続端子36は、複数の半導体素子22、24、26の信号パッド22c、24c、26cに接続されている。ここで、本実施例では、各々の半導体素子22、24、26が、五つの信号パッド22c、24c、26cを有している。第1半導体素子22の五つの信号パッド22c、24c、26cには、第1温度センスパッドK、第2温度センスパッドA、ゲート駆動パッドG、電流センスパッドSE及びケルビンエミッタパッドKEが含まれる。第1温度センスパッドK及び第2温度センスパッドAは、第1半導体素子22内の温度センサ(例えばダイオード)に接続されている。ゲート駆動パッドGは、第1半導体素子22内のIGBT構造のゲートに接続されている。電流センスパッドSEは、第1半導体素子22に流れる電流に比例する微小な電流を出力する。そして、ケルビンエミッタパッドKEは、第1半導体素子22内のIGBT構造のエミッタに接続されている。同様に、第2半導体素子24の五つの信号パッド24c及び第3半導体素子26の五つの信号パッド26cにも、第1温度センスパッドK、第2温度センスパッドA、ゲート駆動パッドG、電流センスパッドSE及びケルビンエミッタパッドKEが含まれる。
【0052】
上記から理解されるように、本実施例の半導体装置10では、合計15個の信号パッド22c、24c、26cが存在する。それに対して、複数の第3外部接続端子36の数は11であり、信号パッド22c、24c、26cの数よりも少ない。これは、第1半導体素子22の第1温度センスパッドK及び第2温度センスパッドAと、第3半導体素子26の第1温度センスパッドK及び第2温度センスパッドAには、複数の第3外部接続端子36が接続されていないためである。半導体装置10では、両側に位置する第1半導体素子22及び第3半導体素子26よりも、中央に位置する第2半導体素子24の方が、高温になりやすい。そのことから、第2半導体素子24の温度を監視しておけば、第1半導体素子22及び第3半導体素子26が過熱することも避けることができる。この観点に基づいて、半導体装置10では、第1半導体素子22の第1温度センスパッドK及び第2温度センスパッドAと、第3半導体素子26の第1温度センスパッドK及び第2温度センスパッドAに関して、第3外部接続端子36の接続が省略されている。これにより、複数の第3外部接続端子36の数が削減されている。複数の第3外部接続端子36の数が削減されることで、例えば、複数の第3外部接続端子36に接続される外部コネクタの数を削減することができる。一例ではあるが、本実施例の半導体装置10では、11本の第3外部接続端子36が、二つの外部コネクタに接続されることが想定されており、5本のグループと6本のグループとに分けて配列されている。
【0053】
次に、
図9-
図12を参照して、半導体装置10の製造方法の一例について説明する。先ず、
図9に示すように、第1リフロー工程を実施する。この工程では、複数の半導体素子22、24、26、複数の導体スペーサ18及びリードフレーム19を用意する。リードフレーム19には、第2導体板14、第1外部接続端子32、二つの第2外部接続端子34及び複数の第3外部接続端子36が一体に設けられている。次いで、リードフレーム19の第2導体板14上に、複数の半導体素子22、24、26及び複数の導体スペーサ18をはんだ付けする。このとき、複数の半導体素子22、24、26は、それぞれ第2導体板14上にはんだ付けされ、各々の半導体素子22、24、26上に一つの導体スペーサ18がはんだ付けされる。
【0054】
続いて、
図10に示すように、第2リフロー工程を実施する。この工程では、第1導体板12を用意し、複数の導体スペーサ18上に第1導体板12をはんだ付けする。続いて、
図11に示すように、封止工程を実施する。この工程では、複数の半導体素子22、24、26を、例えば封止樹脂によって封止することにより、封止体16を形成する。この段階では、第1導体板12及び第2導体板14が、封止体16によって覆われてもよい。また、封止工程に先立って、リードフレーム19にプライマを塗布する工程が実施されてもよい。最後に、
図12に示すように、リードフレーム19の不要部分を切除するとともに、封止体16の表面を切削又は研削することによって、第1導体板12及び第2導体板14を封止体16の表面に露出される。これにより、半導体装置10が完成する。
【0055】
以上のように、本明細書で開示する技術では、第1導体板12に孔40を形成することによって、第1導体板12に接続された第1外部接続端子32と、各々の半導体素子22、24、26との間の電気抵抗の不均等を改善する。この孔40を用いた技術は、第2導体板14にも同様に採用することができる。あるいは、半導体装置10が第2導体板14を備えない場合でも、同様に採用することができる。加えて、他の構成例としては、孔40に代えて、第1導体板12又は第2導体板14にスリットを形成してもよい。この場合でも、複数の半導体素子22、24、26の間で、電流C22、C24、C26の経路長の均等化を図ることができる。あるいは、第1外部接続端子32と、各々の半導体素子22、24、26との間の距離に応じて、各々の半導体素子22、24、26の電流C22、C24、C26が流れる経路の断面積を変化させてもよい。このような構成によっても、第1外部接続端子32と各々の半導体素子22、24、26との間の電気抵抗の不均等を改善することができる。
【0056】
上述した実施例では、半導体装置10が二つの第2外部接続端子34を備えているが、第2外部接続端子34の数は特に限定されない。前述したように、半導体装置10は、単一の第2外部接続端子34のみを有してもよいし、三以上の第2外部接続端子34を有してもよい。また、第2外部接続端子34は、封止体16に対して第1外部接続端子32と同じ側に位置してもよいし、第1外部接続端子32とは異なる側に位置してもよい。
【0057】
図14、
図15は、単一の第2外部接続端子34を有する半導体装置10a、10bを示す。
図14に示す半導体装置10aでは、前述した半導体装置10の二つの第2外部接続端子34のうち、一方の第2外部接続端子34が省略されている。
図15に示す半導体装置10bでは、前述した半導体装置10の二つの第2外部接続端子34のうち、他方の第2外部接続端子34が省略されている。
【0058】
本明細書で開示する半導体装置10、10a、10bは、前述したように、コンバータやインバータといった電力変換回路に採用することができる。この場合、
図16に示すように、二つの半導体装置10、10a、10bを直列に接続することで、コンバータやインバータにおける上下のアームを構成することができる。二つの半導体装置10、10a、10bの各々には、本明細書で開示する三種類の半導体装置10、10a、10bのいずれを採用してもよい。
【0059】
図17-
図20は、二つの半導体装置10、10a、10bが直列に接続された、いくつかの形態を示す。
図17に示す形態では、
図14に示した半導体装置10aと、
図15に示した半導体装置10bとが、直列に接続されている。二つの半導体装置10a、10bは、対向するように配置されており、
図17では図示されないが、一方の(手前側の)半導体装置10aの第2導体板14と、他方の(奥側の)半導体装置10bの第1導体板12とが向かい合っている。一方の半導体装置10aの第2外部接続端子34は、バスバー11を介して、他方の半導体装置10bの第1外部接続端子32に接続されている。なお、
図17-
図20における符号P、O、Nは、それぞれ
図16における符号P、O、Nとそれぞれ対応する。
【0060】
図18に示す形態においても、
図14に示した半導体装置10aと、
図15に示した半導体装置10bとが、直列に接続されている。但し、
図17に示した形態と比較して、二つの半導体装置10a、10bの位置が入れ替えられており、
図18では図示されないが、一方の(奥側の)半導体装置10aの第1導体板12と、他方の(手前側の)半導体装置10bの第2導体板14とが向かい合っている。一方の半導体装置10aの第2外部接続端子34は、バスバー11を介して、他方の半導体装置10bの第1外部接続端子32に接続されている。
【0061】
図19に示す形態では、
図14に示した半導体装置10aの二つが、直列に接続されている。二つの半導体装置10aは、対向するように配置されており、
図19では図示されないが、一方の(手前側の)半導体装置10aの第1導体板12と、他方の(奥側の)半導体装置10aの第1導体板12とが向かい合っている。即ち、二つの半導体装置10aは、互いに反転された姿勢となっている。一方の半導体装置10aの第1外部接続端子32は、バスバー11を介して、他方の半導体装置10aの第2外部接続端子34に接続されている。
【0062】
図20に示す形態においても、
図14に示した半導体装置10aの二つが、直列に接続されている。但し、
図19に示した形態と比較して、それぞれの半導体装置10aの向きが反転されており、
図20では図示されないが、一方の半導体装置10aの第2導体板14と、他方の半導体装置10aの第2導体板14とが向かい合っている。一方の半導体装置10aの第1外部接続端子32は、バスバー11を介して、他方の半導体装置10aの第2外部接続端子34に接続されている。なお、二以上の半導体装置10、10a、10bを接続する形態は、
図17-
図20に示した形態に限定されるものではない。
【0063】
本明細書で開示された技術によると、半導体装置は、第1導体板と、第1導体板上に配置された複数の半導体素子と、第1導体板12に接続されている第1外部接続端子とを備えることができる。この場合、複数の半導体素子は、第1半導体素子、第2半導体素子及び第3半導体素子を含むことができる。そして、第1導体板には、少なくとも一つの孔を設けることができ、それによって、第1半導体素子、第2半導体素子及び第3半導体素子のそれぞれに流れる電流を均一化することができる。ここでいう均一化とは、孔が存在しない場合と比較して、電流の差異が低減されることを意味する。
【0064】
次に、
図21-
図25を参照して、実施例2の半導体装置110について説明する。この半導体装置110では、第1導体板112と第2導体板114に絶縁基板が採用されており、この点において上述した半導体装置10、10a、10bと相違する。第2に、第3外部接続端子36の数も変更されており、詳しくは、第3外部接続端子36の数は、複数の半導体素子22、24、26の信号パッド22c、24c、26cの数に等しい。第3に、各々の半導体素子22、24、26は、導体スペーサ18を介することなく、第1導体板112へ接合されている。他の構成については、上述した半導体装置10、10a、10bと同一又は対応している。上述した半導体装置10、10a、10bと同一又は対応する構成については、同一の符号を付すことによって、重複する説明は省略する。
【0065】
図21-
図25に示すように、第1導体板112は、内側導体層112aと絶縁層112bと外側導体層112cとを有する。絶縁層112bは、内側導体層112aと外側導体層112cとの間に位置している。一例ではあるが、内側導体層112a及び外側導体層112cのそれぞれは、銅又はアルミニウム等の金属層であってよく、絶縁層112bはセラミック基板であってよい。このような第1導体板112には、例えばDBC(Direct Bonded Copper)又はDBA(Direct Bonded Aluminum)を採用することができる。
【0066】
内側導体層112aには、封止体16の内部において、複数の半導体素子22、24、26の上面電極22a、24a、26aが接合されている。また、内側導体層112aには、第1外部接続端子32も接合されている。これにより、第1外部接続端子32は、内側導体層112aを介して、半導体素子22、24、26へ電気的に接続されている。そして、内側導体層112aには、各々の半導体素子22、24、26に流れる電流を均一化するための孔40が形成されている。孔40の機能については、前述した半導体装置10と同様である。即ち、孔40は、第2半導体素子24と第1外部接続端子32との間を流れる電流を迂回させ、それによって、第1外部接続端子32からの距離が異なる複数の半導体素子22、24、26に流れる電流を均一化する。孔40の具体的な構成(例えば、位置、大きさ、形状)についても、前述した半導体装置10と同様に、適宜設計することができる。
【0067】
なお、第1導体板112の内側導体層112aは、メイン部分Xと、複数の信号ライン部分Yとを有する。メイン部分Xには、複数の半導体素子22、24、26と第1外部接続端子32が接合されており、かつ、孔40が設けられている。複数の信号ライン部分Yは、メイン部分Xから離間(絶縁)して設けられており、複数の信号パッド22c、24c、26cを、複数の第3外部接続端子36へそれぞれ接続する。このように、第1導体板112が絶縁基板であると、内側導体層112aのプロファイルを自由に設計することができ、半導体装置110の内部構造を簡素にすることができる。
【0068】
第1導体板112の孔40は、内側導体層112aのみに設けられており、絶縁層112bによって画定された底面を有する。このような構成によると、第1導体板112の剛性が、孔40の存在によって低下することを避けることができる。また、内側導体層112aと外側導体層112cとが意図せず導通することも回避することができる。なお、外側導体層112cは、封止体16の表面に露出しており、例えば外部の冷却器に隣接して配置される。
【0069】
第2導体板114は、内側導体層114aと絶縁層114bと外側導体層114cとを有する。絶縁層114bは、内側導体層114aと外側導体層114cとの間に位置している。第1導体板112の内側導体層112aに対向している。一例ではあるが、内側導体層114a及び外側導体層114cのそれぞれは、銅又はアルミニウム等の金属層であってよく、絶縁層114bはセラミック基板であってよい。このような第2導体板114には、例えばDBC又はDBAを採用することができる。
【0070】
内側導体層114aには、封止体16の内部において、複数の半導体素子22、24、26の下面電極22b、24b、26bが接合されている。また、内側導体層114aには、二つの第2外部接続端子34も接合されている。これにより、二つの第2外部接続端子34は、内側導体層114aを介して、半導体素子22、24、26へ電気的に接続されている。一方、外側導体層112cは、封止体16の表面に露出しており、例えば外部の冷却器に隣接して配置される。
【0071】
以上のように、半導体装置110では、第1導体板112と第2導体板114に、絶縁基板が採用されている。このような構成によると、内側導体層112a、114aを自由なプロファイルで形成することができ、例えば、第1導体板112の内側導体層112aと第2導体板114の内側導体層114aとを広い面積で対向させることができる。第1導体板112の内側導体層112aと第2導体板114の内側導体層114aには、互いに逆向きの電流が流れることから、それらの内側導体層112a、114aが広い面積で対向していると、半導体装置110のインピーダンスを有意に低下させることができる。これにより、例えば半導体素子22、24、26のスイッチング時に生じるサージ電圧を抑制することができる。
【0072】
以上、いくつかの具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものである。
【符号の説明】
【0073】
10、10a、10b:半導体装置
12:第1導体板
14:第2導体板
16:封止体
18:導体スペーサ
22:第1半導体素子
24:第2半導体素子
26:第3半導体素子
32:第1外部接続端子
34:第2外部接続端子
36:第3外部接続端子
40:孔
112:絶縁基板である第1導体板
112a:第1導体板の内側導体層
112b:第1導体板の絶縁層
112c:第1導体板の外側導体層
114:絶縁基板である第2導体板
114a:第2導体板の内側導体層
114b:第2導体板の絶縁層
114c:第2導体板の外側導体層
PS:対称面