(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】ガス分析装置
(51)【国際特許分類】
G01N 21/3504 20140101AFI20221213BHJP
【FI】
G01N21/3504
(21)【出願番号】P 2019044180
(22)【出願日】2019-03-11
【審査請求日】2022-01-19
(32)【優先日】2018-04-25
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-02-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】000006507
【氏名又は名称】横河電機株式会社
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100149249
【氏名又は名称】田中 達也
(72)【発明者】
【氏名】松尾 純一
【審査官】古川 直樹
(56)【参考文献】
【文献】米国特許第05781306(US,A)
【文献】国際公開第2009/128138(WO,A1)
【文献】特開2013-57651(JP,A)
【文献】米国特許出願公開第2003/0090665(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/00-G01N21/01
G01N21/17-G01N21/61
G01N1/00
G01N1/22
G01N15/02
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
被測定ガスが流動する流路の流路壁に設けられた開口から一部が挿入された状態で前記流路壁に取り付け可能なプローブ部材と、
前記プローブ部材の前記流路への挿入方向と反対側の基端に位置する第1接続部に着脱可能な第2接続部を有する分析部材と、を備え、
前記プローブ部材は、反射部を有し、かつ、前記被測定ガスを導入可能な測定領域を内部に区画し、
前記分析部材は、発光部と、受光部と、を有し、
前記分析部材が前記プローブ部材に装着された状態で、前記発光部は測定光を前記測定領域に向けて照射し、前記反射部は前記測定領域に入射した前記測定光を反射させ、前記受光部は前記反射部で反射した前記測定光を受光し、
前記プローブ部材は、前記測定領域を前記基端側の外部から隔離し、かつ、前記測定光を透過させる、窓部を有
し、
前記分析部材の前記第2接続部に着脱可能な第3接続部と、校正反射部と、を有し、かつ、校正ガスを導入可能な校正領域を内部に区画する、校正部材を更に備え、
前記校正部材が前記分析部材に装着された状態で、前記発光部は前記測定光を前記校正領域に向けて照射し、前記校正反射部は前記校正領域に入射した前記測定光を反射させ、前記受光部は前記校正反射部で反射した前記測定光を受光し、
前記校正部材は、前記プローブ部材の前記第1接続部に着脱可能な第4接続部を更に有し、前記プローブ部材及び前記分析部材に同時に装着可能である、ガス分析装置。
【請求項2】
前記分析部材は、前記発光部及び前記受光部を前記第2接続部側の外部から隔離し、かつ、前記測定光を透過させる、分析窓部を有する、請求項
1に記載のガス分析装置。
【請求項3】
前記分析窓部は、サファイアガラス又はボロシリケートガラスを含む、請求項
2に記載のガス分析装置。
【請求項4】
前記校正部材が前記分析部材に装着された状態で、前記校正領域は、前記校正反射部から前記分析窓部までの領域に亘って延在する、請求項
2に記載のガス分析装置。
【請求項5】
前記分析部材は、前記校正領域と外部とを連通させる第1連通孔を区画し、
前記校正部材は、前記校正領域と外部とを連通させる第2連通孔を区画する、請求項
4に記載のガス分析装置。
【請求項6】
前記校正部材は、前記校正反射部を前記第3接続部側の外部から隔離し、かつ、前記測定光を透過させる、校正窓部を有し、
前記校正領域は、前記校正反射部から前記校正窓部までの領域に亘って延在する、請求項
1に記載のガス分析装置。
【請求項7】
前記校正部材は、前記校正領域と外部とを連通させる第1連通孔と、前記校正領域の延在方向における前記第1連通孔とは異なる位置で前記校正領域と外部とを連通させる第2連通孔と、を区画する、請求項
6に記載のガス分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ガス分析装置に関する。
【背景技術】
【0002】
従来より、所定の流路を流動する被測定ガスの濃度等の物性を分析するガス分析装置が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載のガス分析装置としてのガス濃度測定装置は、プローブ部材と、分析部材としてのケーシングと、を備え、当該プローブ部材を所定の流路の流路壁に形成された孔に挿入した状態で、当該分析部材内の発光部からの測定光を当該プローブ部材の内部に導入された被測定ガスを通過させた後、当該分析部材内の受光部で検出することで、被測定ガスの物性としての濃度を分析することができる。
【0005】
特許文献1に記載のガス分析装置では、仮に分析部材をプローブ部材から脱離させると、流路内の被測定ガスが、プローブ部材の内部を通じて流路の外部に漏出する虞があった。
【0006】
本開示の目的は、分析部材をプローブ部材から脱離させても、流路内の被測定ガスが漏出することを抑制可能なガス分析装置を提供することである。
【課題を解決するための手段】
【0007】
幾つかの実施形態に係るガス分析装置は、被測定ガスが流動する流路の流路壁に設けられた開口から一部が挿入された状態で前記流路壁に取り付け可能なプローブ部材と、前記プローブ部材の前記流路への挿入方向と反対側の基端に位置する第1接続部に着脱可能な第2接続部を有する分析部材と、を備え、前記プローブ部材は、反射部を有し、かつ、前記被測定ガスを導入可能な測定領域を内部に区画し、前記分析部材は、発光部と、受光部と、を有し、前記分析部材が前記プローブ部材に装着された状態で、前記発光部は測定光を前記測定領域に向けて照射し、前記反射部は前記測定領域に入射した前記測定光を反射させ、前記受光部は前記反射部で反射した前記測定光を受光し、前記プローブ部材は、前記測定領域を前記基端側の外部から隔離し、かつ、前記測定光を透過させる、窓部を有する。このように、プローブ部材が、窓部を有し、窓部が測定領域を基端側の外部から隔離し、かつ、測定光を透過させるので、被測定ガスの測定を妨げることなく、分析部材をプローブ部材から脱離させても流路内の被測定ガスが漏出することを抑制できる。
【0008】
一実施形態において、ガス分析装置は、前記分析部材の前記第2接続部に着脱可能な第3接続部と、校正反射部と、を有し、かつ、校正ガスを導入可能な校正領域を内部に区画する、校正部材を更に備え、前記校正部材が前記分析部材に装着された状態で、前記発光部は前記測定光を前記校正領域に向けて照射し、前記校正反射部は前記校正領域に入射した前記測定光を反射させ、前記受光部は前記校正反射部で反射した前記測定光を受光してもよい。このように、ガス分析装置は、分析部材に着脱可能な校正部材を更に備えれば、校正を行うことが可能となる。また、校正部材が可搬性を有する場合、被測定ガスの測定のために分析部材に接続された配管や配線を取り外さなくても、校正を行うことができる。さらに、校正部材を分析部材と着脱可能な構成とすることで、被測定ガスの測定時には校正部材を脱離させることができるので、被測定ガスの測定時におけるガス分析装置のサイズを小さく抑えることができると共に、被測定ガスによる熱の影響を校正部材に与える虞を低減できる。
【0009】
一実施形態のガス分析装置において、前記校正部材は、前記プローブ部材の前記第1接続部に着脱可能な第4接続部を更に有し、前記プローブ部材及び前記分析部材に同時に装着可能であってもよい。このように、校正部材がプローブ部材及び分析部材に同時に装着可能であれば、プローブ部材を流路壁に取り付けた状態のまま、校正を行うことが可能となる。すなわち、流路内に被測定ガスが流動している状態であっても、ガス分析装置の校正を行うことができる。
【0010】
一実施形態のガス分析装置において、前記分析部材は、前記発光部及び前記受光部を前記第2接続部側の外部から隔離し、かつ、前記測定光を透過させる、分析窓部を有してもよい。このように分析部材が分析窓部を有し、分析窓部が発光部及び受光部を第2接続部側の外部から隔離し、かつ、測定光を透過させれば、ガスの測定を妨げることなく、発光部及び受光部を外部から保護することが可能となる。
【0011】
一実施形態のガス分析装置において、前記分析窓部は、サファイアガラス又はボロシリケートガラスを含んでもよい。このように、分析窓部は、防爆の要求に応じて好適な材料を用いることができる。
【0012】
一実施形態のガス分析装置において、前記校正部材が前記分析部材に装着された状態で、前記校正領域は、前記校正反射部から前記分析窓部までの領域に亘って延在してもよい。このように、校正領域が校正部材と分析部材とに跨って延在する場合、校正部材の内部に窓部を設ける必要がないため、製造工程を簡易とすることが可能となる。
【0013】
一実施形態のガス分析装置において、前記分析部材は、前記校正領域と外部とを連通させる第1連通孔を区画し、前記校正部材は、前記校正領域と外部とを連通させる第2連通孔を区画してもよい。このように、第1連通孔及び第2連通孔を、校正領域の延在方向で互いに異なる位置に設けることで、校正領域に校正ガスを短時間で満たすことが可能となる。
【0014】
一実施形態のガス分析装置において、前記校正部材は、前記校正反射部を前記第3接続部側の外部から隔離し、かつ、前記測定光を透過させる、校正窓部を有し、前記校正領域は、前記校正反射部から前記校正窓部までの領域に亘って延在してもよい。このように、校正窓部を設けることで、校正ガスにより光吸収される光路長が、校正部材の内部のみで規定されるので、校正部材と分析部材との接続状態によらず、当該光路長を一定に保つことができる。
【0015】
一実施形態のガス分析装置において、前記校正部材は、前記校正領域と外部とを連通させる第1連通孔と、前記校正領域の延在方向における前記第1連通孔とは異なる位置で前記校正領域と外部とを連通させる第2連通孔と、を区画してもよい。このように第1連通孔及び第2連通孔を、校正領域の延在方向で互いに異なる位置に設けることで、校正領域に校正ガスを短時間で満たすことが可能となる。
【発明の効果】
【0016】
本開示によれば、分析部材をプローブ部材から脱離させても、流路内の被測定ガスが漏出することを抑制可能なガス分析装置を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の第1の実施形態に係るガス分析装置を上方から示す斜視図である。
【
図2】
図1のガス分析装置を下方から示す斜視図である。
【
図3】
図1のガス分析装置の測定時の使用態様を示す正面図である。
【
図4】
図1のガス分析装置を分解して示す上方からの斜視図である。
【
図5】
図1のガス分析装置が備える校正部材を上方から示す斜視図である。
【
図6】校正部材をプローブ部材及び分析部材に接続する様子を上方から示す斜視図である。
【
図7】
図1のガス分析装置の校正時の使用態様を示す断面図である。
【
図8】本発明の第2の実施形態に係るガス分析装置の校正時の使用態様を示す断面図である。
【発明を実施するための形態】
【0018】
以下、本発明の各実施形態について、図面を参照して説明する。以下の説明中の前後、左右、及び上下の方向は、図中の矢印の方向を基準とする。各矢印の方向は、異なる図面同士で互いに整合している。
【0019】
図1は、本発明の第1の実施形態に係るガス分析装置1を上方から示す斜視図である。
図2は、ガス分析装置1を下方から示す斜視図である。
図3は、ガス分析装置1の測定時の使用態様を示す正面図である。
図3は、一例として、流路P内を流動する被測定ガスGの所定の物性値を測定するために、ガス分析装置1が流路壁Sに取り付けられている様子を示す。流路Pは、例えば、配管、煙道、又は燃焼炉等である。被測定ガスGの所定の物性値は、例えば、対象成分の成分濃度を含む。
図4は、ガス分析装置1を分解して示す上方からの斜視図である。
図1~
図3には、被測定ガスGの所定の物性値を測定するために、後述する分析部材30が後述するプローブ部材10に装着された状態(以下、適宜「第1の組立状態」と称する。)のガス分析装置1を示す。
【0020】
図1~
図4を参照して、第1の実施形態に係るガス分析装置1の、第1の組立状態での機能及び構成について説明する。
【0021】
図3に示すように、ガス分析装置1は、例えば被測定ガスGが流動する流路Pの流路壁Sに直接取り付けられ、測定対象成分の成分濃度分析を行う。被測定ガスGは、例えばCO、CO
2、H
2O、C
nH
m(炭化水素)、NH
3、及びO
2等のガスを含む。
【0022】
ガス分析装置1は、例えば防爆エリア内で使用され、耐圧防爆構造を有するプローブ型TDLAS(Tunable Diode Laser Absorption Spectroscopy:波長可変ダイオードレーザ吸収分光)式ガス分析計を含む。ここで、プローブ型とは、例えば、光源、反射構造、及び光検出器を一体的に内蔵し、片側から流路に差し込む構造となるガス分析装置1の種類を意味する。ガス分析装置1は、例えばプロセスガス等を含む被測定ガスG中に測定光となるレーザ光を照射することで測定対象成分の成分濃度を分析する。
【0023】
被測定ガスGに含まれるガス分子は、赤外から近赤外域において、分子の振動及び回転エネルギー遷移に基づく光吸収スペクトルを示す。吸収スペクトルは、成分分子に固有である。測定光に関するガス分子の吸光度は、Lambert-Beerの法則により、その成分濃度及び光路長に比例する。したがって、吸収スペクトル強度を測定することで測定対象成分の成分濃度が分析可能である。
【0024】
TDLASでは、ガス分子が有するエネルギー遷移の吸収線幅よりも十分に狭い線幅の半導体レーザ光を測定光として被測定ガスGに照射する。半導体レーザの駆動電流を高速変調することで、測定光の波長を掃引する。被測定ガスGを透過した測定光の光強度を測定して、1本の独立した吸収スペクトルを取得する。
【0025】
レーザ光の掃引範囲は用途によって異なる。測定対象がO2の場合、レーザ光の線幅は例えば0.0002nmであり、掃引幅は例えば0.1~0.2nmである。0.1~0.2nmの掃引幅を掃引することで、吸収スペクトルの測定を行う。取得した1本の吸収スペクトルから濃度換算を行うことにより、測定対象成分の成分濃度が求められる。濃度換算の手法は、ピーク高さ法、スペクトル面積法、及び2f法等の既知の方法を含む。
【0026】
図1及び
図2に示すように、ガス分析装置1は、プローブ部材10と、分析部材30と、を備える。
図1~
図3に示すように、第1の組立状態のガス分析装置1では、分析部材30がプローブ部材10に装着されている。
【0027】
図3に示すように、プローブ部材10は、被測定ガスGが流動する流路Pの流路壁Sに設けられた開口Tから一部が挿入された状態で、流路壁Sに取り付け可能である。プローブ部材10は、例えば、被測定ガスGの流動方向に対して所定の向きで使用される。
図3に、プローブ部材10の流路Pへの挿入方向Eを示している。
図3において、被測定ガスGの流動方向は、白抜き矢印で示している。
【0028】
本実施形態のプローブ部材10は、
図1及び
図2に示すように、例えば、断面形状が略円形状の筒状物体である。プローブ部材10は、任意の金属部材により形成されている。
【0029】
図1に示すように、プローブ部材10は、左右方向に亘って延在し、上方に向けて開口している開口12を有する。プローブ部材10は、プローブ部材10の強度を維持するために開口12に設けられている複数のリブ13を有する。
図2に示すように、プローブ部材10は、その表面の一部を下方から内部に向けて切り欠いた切欠き14を有する。切欠き14は、開口12の左右両端と略同一の左右位置にそれぞれ形成されている。
【0030】
図3に示すように、プローブ部材10は、内部空間の左端(以下、適宜「先端」とも記載する。)近傍に配置された反射部15を有する。反射部15は、コーナーキューブプリズム及びレトロリフレクター等の測定光に対する任意の反射構造を含む。反射部15は、後述する発光部31からの測定光を反射させる。
【0031】
図3に示すように、プローブ部材10は、その大部分が流路Pの内部に位置する状態で支持されている。具体的に、ガス分析装置1は、プローブ部材10の一部に形成されたフランジ等の取り付け部11を有し、取り付け部11が流路壁Sの外面に取り付けられることで、流路壁Sによって支持されている。
【0032】
図3に示すように、開口12は、プローブ部材10の対応する内部を流路P内に露出させる。切欠き14は、開口12によって流路P内に露出しているプローブ部材10の内部と、当該内部よりも下側の流路P内の空間と、を連通する。プローブ部材10の左端から、取り付け部11の左端までの、プローブ部材10の延在方向に沿う長さは、例えば、0.5~2メートル程度である。
【0033】
図4に示すように、プローブ部材10は、流路Pへの挿入方向Eと反対側の基端に、第1接続部16を有する。また、
図4に示すように、分析部材30は、プローブ部材10の第1接続部16に着脱可能な第2接続部35を有する。
【0034】
図3に示すように、第1の組立状態における分析部材30は、流路Pの外部で、プローブ部材10の右端(反射部15が設けられている先端に対して反対側の端部)に位置する第1接続部に接続された状態で、支持される。
図3に示すように、分析部材30は、被測定ガスGに測定光を照射する発光部31と、反射部15で反射した測定光を受光する受光部32と、表示部33と、演算部34と、を有する。発光部31、受光部32、表示部33、及び演算部34は、例えば複数枚の電子基板を介して、互いに電気的に接続されている。分析部材30の筐体は、例えば、これらの各構成部を格納する耐圧防爆容器である。
【0035】
発光部31は、被測定ガスGに対してTDLASによる測定が可能な任意の光源を有する。発光部31は、例えば、半導体レーザを出射するレーザーダイオードを有する。受光部32は、被測定ガスGに対してTDLASによる測定が可能な任意の光検出器を有する。受光部32は、例えば、フォトダイオードを有する。被測定ガスGの所定の物性値に応じた信号を、演算部34に出力する。表示部33は、発光部31、受光部32、及び演算部34を用いて測定された、例えば被測定ガスGに含まれる対象成分の成分濃度等、被測定ガスGの所定の物性値の情報等を表示可能である。表示部33は、例えば液晶表示デバイスを有する。演算部34は、発光部31、受光部32、及び表示部33を含む、ガス分析装置1全体の動作を制御する。演算部34は、例えば1つ以上のプロセッサを有する。演算部34は、受光部32から入力された信号を物性値に変換し、表示部33に物性値の情報を表示させる。
【0036】
図3に示す例では、流路Pは上下方向に延在しており、被測定ガスGの流動方向は、下方から上方に向かう方向である。このような被測定ガスGの流動方向に対して、プローブ部材10は、
図3に示すように、切欠き14が下方、すなわち流動方向の上流側を向き、開口12が上方、すなわち流動方向の下流側を向くような向きで使用されることで、後述するように、測定領域R1に被測定ガスGを導入して満たしつつ、領域R2及び領域R3にパージガスを満たすことができる。ここで、測定領域R1、領域R2、及び領域R3は、プローブ部材10の内部に区画された空間である。測定領域R1は、開口12によって流路P内に露出する。領域R2は、測定領域R1の左側に形成された領域である。領域R3は、測定領域R1の右側に形成された領域である。
【0037】
図3に示すように、本実施形態では、プローブ部材10の流路Pへの挿入方向Eは、被測定ガスGの流動方向と略直交する。そして、本実施形態のプローブ部材10は、流路Pの内部において被測定ガスGの流動方向と略直交する方向に延在する。そのため、流路P内を流れる被測定ガスGの一部は、切欠き14を介して下方からプローブ部材10内の測定領域R1に流入する。被測定ガスGの他の一部は、開口12から回り込んで上方からプローブ部材10内の測定領域R1に流入する。このように、流路Pを流れる被測定ガスGは、プローブ部材10の内部を流通する。プローブ部材10の内部を流通した被測定ガスGは、例えば開口12から再度流路P内に流出する。このように、測定領域R1は、被測定ガスGによって満たされる。
【0038】
一方、領域R2及び領域R3には、任意の機構によりパージガスが供給されている。パージガスは、反射部15、発光部31、及び受光部32等の光学部品に汚染及び腐食等の不具合が生じないよう、これらの構成部への被測定ガスGの流入を抑制する。このように、領域R2及び領域R3は、パージガスによって満たされる。
【0039】
切欠き14は、測定領域R1と、領域R2及び領域R3と、において、被測定ガスGとパージガスとの混合を抑制する。より具体的には、切欠き14は、流路Pからプローブ部材10内の測定領域R1に被測定ガスGを導くことで、測定領域R1へのパージガスの混入を抑制する。同様に、切欠き14は、領域R2及び領域R3への被測定ガスGの混入を抑制する。
【0040】
第1の組立状態で、発光部31は、プローブ部材10の測定領域R1に向けて測定光を照射する。測定領域R1に入射した測定光は、反射部15に照射される。
図3において、測定光のうちの反射部15で反射する前の光は、出射光L1として示されている。出射光L1は、その光軸に沿って測定領域R1と重畳するように延在するプローブ部材10の内部を通過し、反射部15に入射する。反射部15は、プローブ部材10において発光部31と反対側の先端近傍に位置し、測定領域R1を通過した出射光L1を反射させる。
図3において、反射部15で反射した後の測定光は、反射光L2として示されている。反射光L2は、測定領域R1を含むプローブ部材10の内部を再度通過する。受光部32は、反射部15で反射し、測定領域R1を通過した反射光L2を受光する。
【0041】
受光部32は、検出された測定光に関する測定信号を任意の増幅回路によって電気的に増幅した後、測定光の光検出強度を、被測定ガスGの所定の物性値に応じた信号として、演算部34に出力する。出射光L1及び反射光L2それぞれの一部は、プローブ部材10の内部を通過する際に、測定領域R1に流通する被測定ガスGによって吸収される。受光部32によって取得した測定信号に基づいてその吸収スペクトルを測定することで、被測定ガスG中の測定対象成分の成分濃度が求まる。
【0042】
図3及び
図4に示すように、プローブ部材10は、プローブ窓部17を有する。
図3に示すように、プローブ窓部17は、測定領域R1を、基端(
図3の右端)側の外部から隔離する。詳細には、プローブ窓部17は、測定領域R1内の被測定ガスGが、プローブ部材10の基端に区画された基端開口18(
図4参照)を通じて外部に流出することを妨げる。また、プローブ窓部17は、基端開口18を通じて、外部のガス等が測定領域R1内に流入することを妨げる。
図3に示すように、プローブ窓部17は、測定光、すなわち、出射光L1及び反射光L2を透過させる。
【0043】
図4に示すように、本実施形態のプローブ窓部17は、基端開口18を隙間なく覆うように配置されている。プローブ窓部17は、被測定ガスGによる圧力に耐え得る程度の耐圧性を有することが好ましい。プローブ窓部17は、例えば、ボロシリケートガラスを含む。
【0044】
図3に示すように、分析部材30は、分析窓部36を有する。後述する
図7に示すように、分析窓部36は、発光部31及び受光部32を、第2接続部35側の外部から隔離する。
図3に示すように、分析窓部36は、測定光、すなわち、出射光L1及び反射光L2を透過させる。このように、分析窓部36は、発光部31及び受光部32を外部から保護しつつ、測定光を透過させることができる。
【0045】
分析窓部36は、例えば、サファイアガラス又はボロシリケートガラスを含む。詳細には、分析窓部36は、ガス分析装置1が防爆エリア(ゾーン1)に設置される等、ガス分析装置1に防爆の要求がある場合、例えば、サファイアガラスで構成される。サファイアガラスは、透明度が高く曲げ強度が高いため、例えば防爆エリア(ゾーン1)での使用に好適である。また、分析窓部36は、ガス分析装置1が防爆エリア(ゾーン2)に設置される場合、例えば、ボロシリケートガラスで構成される。ボロシリケートガラスは、サファイアガラスよりも強度が弱いが、サファイアガラスよりも安価で流通性が高いため、例えば防爆エリア(ゾーン2)での使用に好適である。
【0046】
図4に示すように、本実施形態のプローブ部材10の基端(
図4の右端)に位置する第1接続部16は、基端側に突出した拘束ねじ19を有する。
図4に示す例では、第1接続部16は拘束ねじ19を複数有し、当該複数の拘束ねじ19それぞれは、第1接続部16の基端面の中心から略等距離で、周方向の異なる位置に配置されている。また、
図4に示すように、本実施形態の分析部材30の先端(
図4の左端)に位置する第2接続部35は、分析部材30の軸方向(
図4の左右方向)に直交する平面(
図4の上下前後平面)内で外側に突出した突起部38を有する。突起部38は、分析部材30の軸方向に貫通したダルマ穴39を区画している。ダルマ穴39は、拘束ねじ19の頭部の外径よりも大きい第1内径部と、拘束ねじ19の頭部の外径よりも小さく拘束ねじ19の円筒部の外径よりも大きい第2内径部と、を有する。
図4に示す例では、第2接続部35は、突起部38及びダルマ穴39をそれぞれ複数有し、当該複数のダルマ穴39それぞれは、第2接続部35の先端面の中心から略等距離で、周方向の異なる位置に配置されている。第1接続部16の基端面の中心から拘束ねじ19までの距離と、第2接続部35の先端面の中心からダルマ穴39までの距離とは、略等しい。
【0047】
第1接続部16と第2接続部35とを左右方向に接近させて、拘束ねじ19の頭部をダルマ穴39の第1内径部から通過させた後、左右方向に沿う軸の周りで第2接続部35を第1接続部16に対して回転させることで、拘束ねじ19が第2内径部の位置に移動して、第1接続部16と第2接続部35とが接続する。これにより、拘束ねじ19を着脱しなくても、第1接続部16と第2接続部35との位置関係を変更するだけで、簡易にプローブ部材10と分析部材30とを着脱することができる。
【0048】
図4に示すように、第1接続部16の基端開口18の周囲には、溝部20が形成されている。溝部20には、例えばOリングを設置することができる。これにより、第1接続部16と第2接続部35とが接続された状態で、第1接続部16と第2接続部35との間の気密性を向上させることができる。また、第1接続部16を後述する校正部材50の第4接続部52と接続する場合にも、第1接続部16と第4接続部52との間の気密性を向上させることができる。
【0049】
上述したようなプローブ型のガス分析装置1では、第1の組立状態で設置現場に取り付けられている場合、発光部31、反射部15、及び受光部32の各光学部品が、所定条件を満たす。所定条件は、発光部31から照射された出射光L1が測定領域R1を通過して反射部15で反射し、反射光L2が測定領域R1を再度通過して受光部32に入射するような各構成部の位置関係を含む。反射部15は、プローブ部材10の周方向に対称に配置されていない場合がある。そのため、第1接続部16と第2接続部35とが接続された状態では、プローブ部材10と、分析部材30と、の互いの周方向の位置関係は固定されていることが好ましい。
【0050】
ところで、上述したようなガス分析装置1は、定期的に、或いは、トラブル発生時等に、校正(ゼロ、スパン)を行う必要がある。通常の手法を用いて校正を行う場合、まず、現場作業員等の操作者は、ガス分析装置1に接続された各種配管・ケーブル類を全て取り外す。その後、取り付け部11の流路壁Sへの固定を緩めて、プローブ部材10を流路壁Sから引き抜き、ガス分析装置1全体を流路Pから取り外す。そして、ガス分析装置1を校正可能な環境に持っていき、プローブ部材10に覆いをかけるなどしてプローブ部材10周辺に密閉環境を作り出し、必要な配管、配線を取り付ける。その後、パージガスのラインから既知濃度の校正ガス(ゼロガス、スパンガス)を導入して、プローブ部材10が校正ガスで満たされる状況を作り出して測定を行い、校正ガスの濃度と実際の測定値とを対比して、ゼロスパン校正作業を行う。校正作業が完了すると、再度、配管、配線を取り外し、ガス分析装置1をもとの設置現場に持っていき、取り付け部11を介して流路壁Sに取り付け、外してあった配管・ケーブル類を配線する。
【0051】
このように校正を行う場合、ケーブルの取り付け・取り外しや、プローブ部材10の流路壁Sへの取り付け・取り外しを、校正を行うたびに実行する必要があり、作業者の負担となり得る。また、流路Pを流れる被測定ガスGは、炉の稼働中は高温(約400~500°)であり、腐食性ガスや有毒ガスであることも多い。プローブ部材10を流路壁Sから取り外したり、取り付けたりする際に、被測定ガスGが流路壁Sの開口Tから漏れてしまう可能性があり、安全性に向上の余地がある。
【0052】
そこで、本実施形態のガス分析装置1は、校正部材50を更に備える。
図5は、ガス分析装置1が備える校正部材50を上方から示す斜視図である。
図5に示すように、校正部材50は、第3接続部51と、第4接続部52と、を有する。
【0053】
図6は、校正部材50をプローブ部材10及び分析部材30に接続する様子を上方から示す斜視図である。
図6に示す例では、校正部材50が、分析部材30に装着され、プローブ部材10には装着されていない状態を示す。しかし、校正部材50は、プローブ部材10及び分析部材30に同時に装着可能である。
図6に示すように、校正部材50の第3接続部51は、分析部材30の第2接続部35に着脱可能である。また、校正部材50の第4接続部52は、プローブ部材10の第1接続部16に着脱可能である。
【0054】
校正部材50は、ガス分析装置1の校正を行うときのみ装着され、通常の測定時は、上記の通り脱離される。ガス分析装置1を、
図3に示した測定時の使用態様から校正時の使用態様に変化させる場合、プローブ部材10を流路壁Sに取り付けた状態のまま、分析部材30をプローブ部材10から脱離させ、校正部材50の第3接続部51を分析部材30の第2接続部35に装着すると共に、校正部材50の第4接続部52をプローブ部材10の第1接続部16に装着する。このとき、分析部材30への配管や配線を、予めある程度の距離範囲を移動可能に設置しておくことで、測定時の使用態様と校正時の使用態様との間で、配管や配線を着脱不要とすることができる。
【0055】
図5及び
図6に示すように、本実施形態の校正部材50の基端(
図5の右端)に位置する第3接続部51は、基端側に突出した拘束ねじ57を有する。
図5及び
図6に示す例では、第3接続部51は、拘束ねじ57を複数有し、当該複数の拘束ねじ57それぞれは、第3接続部51の基端面の中心から略等距離で、周方向の異なる位置に配置されている。拘束ねじ57は、プローブ部材10の第1接続部16が有する拘束ねじ19と同一の形状であってもよい。第3接続部51の基端面の中心から拘束ねじ57までの距離は、分析部材30の第2接続部35の先端面の中心からダルマ穴39までの距離と、略等しい。
【0056】
図6に示すように、第2接続部35と第3接続部51とを左右方向に接近させて、拘束ねじ57の頭部をダルマ穴39の第1内径部から通過させた後、左右方向に沿う軸の周りで第2接続部35を第3接続部51に対して回転させることで、拘束ねじ57が第2内径部の位置に移動して、第2接続部35と第3接続部51とが接続する。これにより、拘束ねじ57を着脱しなくても、第2接続部35と第3接続部51との位置関係を変更するだけで、簡易に分析部材30と校正部材50とを着脱することができる。
【0057】
図5に示すように、第3接続部51の基端面の開口の周囲には、溝部58が形成されている。溝部58には、例えばOリングを設置することができる。これにより、第3接続部51と第2接続部35とが接続された状態で、第3接続部51と第2接続部35との間の気密性を向上させることができる。
【0058】
図5及び
図6に示すように、本実施形態の校正部材50の先端(
図5の左端)に位置する第4接続部52は、校正部材50の軸方向(
図5の左右方向)に直交する平面(
図5の上下前後平面)内で外側に突出した突起部59を有する。突起部59は、校正部材50の軸方向に貫通したダルマ穴60を区画している。ダルマ穴60は、拘束ねじ19の頭部の外径よりも大きい第1内径部と、拘束ねじ19の頭部の外径よりも小さく拘束ねじ19の円筒部の外径よりも大きい第2内径部と、を有する。
図5に示す例では、第4接続部52は、突起部59及びダルマ穴60をそれぞれ複数有し、当該複数のダルマ穴60それぞれは、第4接続部52の先端面の中心から略等距離で、周方向の異なる位置に配置されている。第4接続部52の先端面の中心からダルマ穴60までの距離は、第1接続部16の基端面の中心から拘束ねじ19までの距離と、略等しい。
【0059】
図6に示すように、第1接続部16と第4接続部52とを左右方向に接近させて、拘束ねじ19の頭部をダルマ穴60の第1内径部から通過させた後、左右方向に沿う軸の周りで第4接続部52を第1接続部16に対して回転させることで、拘束ねじ19が第2内径部の位置に移動して、第1接続部16と第4接続部52とが接続する。これにより、拘束ねじ19を着脱しなくても、第1接続部16と第4接続部52との位置関係を変更するだけで、簡易にプローブ部材10と校正部材50とを着脱することができる。
【0060】
図7は、ガス分析装置1の校正時の使用態様を示す断面図である。
図7に示すように、第2の使用態様のガス分析装置1は、校正ガスを用いた校正を行うために、校正部材50がプローブ部材10及び分析部材30に装着された状態(以下、適宜「第2の組立状態」と称する。)である。
【0061】
図7に示すように、校正部材50は、内部空間の左端近傍に配置された校正反射部53を有する。校正反射部53は、プローブ部材10の反射部15(
図3参照)と同様に、コーナーキューブプリズム及びレトロリフレクター等の測定光に対する任意の反射構造を含む。校正反射部53は、発光部31からの測定光を反射させる。
【0062】
図7に示すように、校正部材50は、校正ガスを導入可能な、左右方向に延在した校正領域R4を内部に区画する。
図7に示すように、校正部材50が分析部材30に装着された状態(
図7に示す例では第2の組立状態)で、校正領域R4は、校正反射部53から分析窓部36までの領域に亘って延在する。
図7に示すように、本実施形態では、分析部材30は、校正領域R4と外部とを連通させる第1連通孔37を区画し、校正部材50は、校正領域R4と外部とを連通させる第2連通孔56を区画する。第1連通孔37及び第2連通孔56のうち、一方は校正ガスを外部から校正領域R4内に導入するガス導入孔として使用され、他方は校正領域R4内の校正ガスを外部に導出するガス導出孔として使用される。このように、ガス導入孔及びガス導出孔を用いて、校正領域R4に校正ガスを満たすことができる。さらに、ガス導入孔及びガス導出孔が校正領域R4の延在方向で互いに異なる位置に設けられているため、校正領域R4に、校正ガスを短時間で満たすことができる。校正ガスとしては、ゼロ校正を行う場合にはゼロガス、スパン校正を行う場合にはスパンガスを用いることができる。
【0063】
図7に示すように、校正部材50が分析部材30に装着された状態(
図7に示す例では第2の組立状態)で、発光部31は、測定光を校正領域R4に向けて照射する。校正領域R4に入射した測定光は、校正反射部53に照射される。
図7において、測定光のうちの校正反射部53で反射する前の光は、出射光L3として示されている。出射光L3は、その光軸に沿って校正領域R4と重畳するように延在する校正部材50の内部を通過し、校正反射部53に入射する。校正反射部53は、校正部材50において発光部31と反対側の左端近傍に位置し、校正領域R4に入射した出射光L3を反射させる。
図7において、校正反射部53で反射した後の測定光は、反射光L4として示されている。反射光L4は、校正領域R4を含む校正部材50の内部を再度通過する。受光部32は、校正反射部53で反射し、校正領域R4を通過した反射光L4を受光する。
【0064】
出射光L3及び反射光L4は、校正領域R4を通過する際、校正ガスによって一部が吸収される。校正領域R4内の校正ガスの濃度を既知濃度としておくことで、受光部32が受光した反射光L4から得られる校正ガスの濃度の測定値と、校正ガスの濃度の計算値とを対比して、ゼロスパン校正を行うことができる。校正ガスにより光吸収される光路長は、校正領域R4の延在方向に沿う距離、すなわち校正反射部53と分析窓部36との間の距離、の2倍である。
【0065】
図8は、本発明の第2の実施形態に係るガス分析装置2の校正時の使用態様を示す断面図である。
図8に示すように、本実施形態に係るガス分析装置2は、第1の実施形態に係るガス分析装置1と同様に、プローブ部材10と、分析部材30と、校正部材50と、を備える。本実施形態の校正部材50は、校正窓部54を有し、第1連通孔55を区画する点で、第1実施形態の校正部材50と異なり、その他の構成は第1実施形態の校正部材50と同一である。また、本実施形態のプローブ部材10及び分析部材30は、第1実施形態のプローブ部材10及び分析部材30とそれぞれ同一である。
【0066】
図8に示すように、校正窓部54は、校正反射部53を、第3接続部51側の外部から隔離する。
図8に示すように、校正窓部54は、測定光、すなわち、出射光L3及び反射光L4を透過させる。このように、校正窓部54は、校正反射部53を外部から保護しつつ、測定光を透過させることができる。
【0067】
校正窓部54は、校正部材50の第3接続部51に区画された開口を隙間なく覆うように配置されている。校正窓部54は、校正ガスによる圧力に耐え得る程度の耐圧性を有することが好ましい。校正窓部54は、例えば、ボロシリケートガラスを含む。校正窓部54には、測定光の反射防止のためのコーティングを施すことが好ましい。当該コーティングは、測定光の波長に応じて使い分けることが好ましい。
【0068】
本実施形態では、校正部材50が校正窓部54を有するので、校正ガスが校正窓部54よりも分析部材30側には流動しない。従って、本実施形態の校正領域R5は、校正反射部53から校正窓部54までの領域に亘って延在する。この場合、校正ガスにより光吸収される光路長は、校正領域R5の延在方向に沿う距離、すなわち校正反射部53と校正窓部54との間の距離、の2倍である。従って、校正ガスにより光吸収される光路長が、校正部材50の内部のみで規定されるので、校正部材50と分析部材30との接続状態によらず、当該光路長を一定に保つことができる。
【0069】
図8に示すように、本実施形態の校正部材50は、校正領域R5と外部とを連通させる第1連通孔55と、校正領域R5の延在方向における第1連通孔55とは異なる位置(
図8では左側)で、校正領域R5と外部とを連通させる第2連通孔56と、を区画する。第1連通孔55及び第2連通孔56のうち、一方は校正ガスを外部から校正領域R5内に導入するガス導入孔として使用され、他方は校正領域R5内の校正ガスを外部に導出するガス導出孔として使用される。このように、ガス導入孔及びガス導出孔を用いて、校正領域R5に校正ガスを満たすことができる。さらに、ガス導入孔及びガス導出孔が校正領域R5の延在方向で互いに異なる位置に設けられているため、校正領域R5に、校正ガスを短時間で満たすことができる。校正ガスとしては、ゼロ校正を行う場合にはゼロガス、スパン校正を行う場合にはスパンガスを用いることができる。
【0070】
上述のように、第1及び第2の実施形態に係るガス分析装置1,2は、被測定ガスGが流動する流路Pの流路壁Sに設けられた開口Tから一部が挿入された状態で流路壁Sに取り付け可能なプローブ部材10と、プローブ部材10の流路Pへの挿入方向Eと反対側の基端に位置する第1接続部16に着脱可能な第2接続部35を有する分析部材30と、を備え、プローブ部材10は、反射部15を有し、かつ、被測定ガスGを導入可能な測定領域R1を内部に区画し、分析部材30は、発光部31と、受光部32と、を有し、分析部材30がプローブ部材10に装着された状態で、発光部31は測定光L1を測定領域R1に向けて照射し、反射部15は測定領域R1に入射した測定光L1を反射させ、受光部32は反射部15で反射した測定光L2を受光し、プローブ部材10は、測定領域R1を基端側の外部から隔離し、かつ、測定光L1,L2を透過させる、プローブ窓部17を有する。このように、プローブ部材10が、プローブ窓部17を有し、プローブ窓部17が測定領域R1を基端側の外部から隔離し、かつ、測定光L1,L2を透過させるので、被測定ガスGの測定を妨げることなく、分析部材30をプローブ部材10から脱離させても流路P内の被測定ガスGが漏出することを抑制できる。
【0071】
また、第1及び第2の実施形態に係るガス分析装置1,2は、分析部材30の第2接続部35に着脱可能な第3接続部51と、校正反射部53と、を有し、かつ、校正ガスを導入可能な校正領域R4,R5を内部に区画する、校正部材50を更に備え、校正部材50が分析部材30に装着された状態で、発光部31は測定光L3を校正領域R4,R5に向けて照射し、校正反射部53は校正領域R4,R5に入射した測定光L3を反射させ、受光部32は校正反射部53で反射した測定光L4を受光する。このように、ガス分析装置1,2は、分析部材30に着脱可能な校正部材50を更に備えるので、校正を行うことが可能となる。また、校正部材50が可搬性を有する場合、被測定ガスGの測定のために分析部材30に接続された配管や配線を取り外さなくても、校正を行うことができる。さらに、校正部材50を分析部材30と着脱可能な構成とすることで、被測定ガスGの測定時には校正部材50を脱離させることができるので、被測定ガスGの測定時におけるガス分析装置1,2のサイズを小さく抑えることができると共に、被測定ガスGによる熱の影響を校正部材50に与える虞を低減できる。
【0072】
第1及び第2の実施形態に係るガス分析装置1,2において、校正部材50は、プローブ部材10の第1接続部16に着脱可能な第4接続部52を更に有し、プローブ部材10及び分析部材30に同時に装着可能である。このように、校正部材50がプローブ部材10及び分析部材30に同時に装着可能であるので、プローブ部材10を流路壁Sに取り付けた状態のまま、校正を行うことが可能となる。すなわち、流路P内に被測定ガスGが流動している状態であっても、ガス分析装置1の校正を行うことができる。
【0073】
第1及び第2の実施形態に係るガス分析装置1,2において、分析部材30は、発光部31及び受光部32を第2接続部35側の外部から隔離し、かつ、測定光L1~L4を透過させる、分析窓部36を有する。このように分析部材30が分析窓部36を有し、分析窓部36が発光部31及び受光部32を第2接続部35側の外部から隔離し、かつ、測定光L1~L4を透過させるので、ガスの測定を妨げることなく、発光部31及び受光部32を外部から保護することが可能となる。
【0074】
第1及び第2の実施形態に係るガス分析装置1,2において、分析窓部36は、サファイアガラス又はボロシリケートガラスを含む。このように、分析窓部36は、防爆の要求に応じて好適な材料を用いることができる。
【0075】
第1の実施形態のガス分析装置1において、校正部材50が分析部材30に装着された状態で、校正領域R4は、校正反射部53から分析窓部36までの領域に亘って延在する。このように、校正領域R4が校正部材50と分析部材30とに跨って延在する場合、校正部材50の内部に窓部を設ける必要がないため、製造工程を簡易とすることが可能となる。
【0076】
第1の実施形態のガス分析装置1において、分析部材30は、校正領域R4と外部とを連通させる第1連通孔37を区画し、校正部材50は、校正領域R4と外部とを連通させる第2連通孔56を区画する。このように、第1連通孔37及び第2連通孔56を、校正領域R4の延在方向で互いに異なる位置に設けることで、校正領域R4に校正ガスを短時間で満たすことが可能となる。
【0077】
第2の実施形態のガス分析装置2において、校正部材50は、校正反射部53を第3接続部51側の外部から隔離し、かつ、測定光L3,L4を透過させる、校正窓部54を有し、校正領域R5は、校正反射部53から校正窓部54までの領域に亘って延在する。このように、校正窓部54を設けることで、校正ガスにより光吸収される光路長が、校正部材50の内部のみで規定されるので、校正部材50と分析部材30との接続状態によらず、当該光路長を一定に保つことができる。
【0078】
第2の実施形態のガス分析装置2において、校正部材50は、校正領域R5と外部とを連通させる第1連通孔55と、校正領域R5の延在方向における第1連通孔55とは異なる位置で校正領域R5と外部とを連通させる第2連通孔56と、を区画する。このように第1連通孔55及び第2連通孔56を、校正領域R5の延在方向で互いに異なる位置に設けることで、校正領域R5に校正ガスを短時間で満たすことが可能となる。
【0079】
本発明は、上述した各実施形態で特定された構成に限定されるものではなく、特許請求の範囲に記載した内容を逸脱しない範囲内で種々の変形が可能である。
【産業上の利用可能性】
【0080】
本開示は、ガス分析装置に関する。
【符号の説明】
【0081】
1、2:ガス分析装置
10:プローブ部材
11:取り付け部
12:開口
13:リブ
14:切欠き
15:反射部
16:第1接続部
17:プローブ窓部
18:基端開口
19:拘束ねじ
20:溝部
30:分析部材
31:発光部
32:受光部
33:表示部
34:演算部
35:第2接続部
36:分析窓部
37:第1連通孔
38:突起部
39:ダルマ穴
50:校正部材
51:第3接続部
52:第4接続部
53:校正反射部
54:校正窓部
55:第1連通孔
56:第2連通孔
57:拘束ねじ
58:溝部
59:突起部
60:ダルマ穴
E:プローブ部材の挿入方向
G:被測定ガス
L1:出射光
L2:反射光
L3:出射光
L4:反射光
P:流路
R1:測定領域
R2、R3:領域
R4:校正領域
R5:校正領域
S:流路壁
T:流路壁の開口