IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社GSユアサの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】蓄電装置、及び、蓄電装置の管理方法
(51)【国際特許分類】
   H02J 7/02 20160101AFI20221213BHJP
   H02J 7/00 20060101ALI20221213BHJP
   H01M 10/44 20060101ALI20221213BHJP
   H01M 10/48 20060101ALI20221213BHJP
【FI】
H02J7/02 H
H02J7/00 Z
H01M10/44 P
H01M10/48 P
【請求項の数】 6
(21)【出願番号】P 2019063639
(22)【出願日】2019-03-28
(65)【公開番号】P2020167766
(43)【公開日】2020-10-08
【審査請求日】2021-12-16
(73)【特許権者】
【識別番号】507151526
【氏名又は名称】株式会社GSユアサ
(74)【代理人】
【識別番号】110001036
【氏名又は名称】弁理士法人暁合同特許事務所
(72)【発明者】
【氏名】和田 直也
(72)【発明者】
【氏名】冨士松 将克
【審査官】右田 勝則
(56)【参考文献】
【文献】特開2018-026923(JP,A)
【文献】特開2017-216879(JP,A)
【文献】特開2018-023258(JP,A)
【文献】特開2010-246225(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/02
H02J 7/00
H01M 10/44
H01M 10/48
(57)【特許請求の範囲】
【請求項1】
充電器と通信する機能を有しない蓄電装置であって、
複数の蓄電素子と、
前記複数の蓄電素子と直列に接続されている遮断器と、
前記複数の蓄電素子の電圧を均等化する均等化回路と、
管理部と、
を備え、
前記管理部は、前記遮断器がオンにされて前記充電器によって前記複数の蓄電素子が充電されている状態で前記均等化回路によって各前記蓄電素子の電圧均等化を開始し、
均等化を行っているときにいずれかの前記蓄電素子の過充電が予見されると前記遮断器をオフにして均等化を継続し、
各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにする、蓄電装置。
【請求項2】
請求項1に記載の蓄電装置であって、
前記遮断器は、前記蓄電素子を充電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている放電遮断器と、放電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている充電遮断器とが直列に設けられており、
前記制御部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記充電遮断器の前記スイッチをオフにする一方、前記放電遮断器の前記スイッチをオンに維持する、蓄電装置。
【請求項3】
請求項1又は請求項2に記載の蓄電装置であって、
前記制御部は、前記蓄電素子の充電状態が、前記蓄電素子の過充電が予見される閾値より小さい所定値以上まで上昇すると前記均等化回路による均等化を開始する、蓄電装置。
【請求項4】
請求項1乃至請求項3のいずれか一項に記載の蓄電装置であって、
前記蓄電素子は充電状態の変化に対する開放電圧の変化が小さいプラトー領域を有する、蓄電装置。
【請求項5】
請求項1乃至請求項4のいずれか一項に記載の蓄電装置であって、
前記蓄電素子はリチウムイオン電池であり、前記充電器は鉛蓄電池用の充電器である、蓄電装置。
【請求項6】
充電器と通信する機能を有しない蓄電装置の管理方法であって、
前記蓄電装置が備える複数の蓄電素子と直列に接続されている遮断器がオンにされて前記充電器によって前記複数の蓄電素子が充電されている状態で均等化回路によって各前記蓄電素子の電圧均等化を開始し、均等化を行っているときにいずれかの前記蓄電素子の過充電が予見されると前記遮断器をオフにして均等化を継続し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにするステップを含む、管理方法。
【発明の詳細な説明】
【技術分野】
【0001】
蓄電装置、及び、蓄電装置の管理方法に関する。
【背景技術】
【0002】
近年、鉛蓄電池などの低容量の電池をリチウムイオン電池などの高容量の電池に置き換えることが検討されている。例えば、一般に自動二輪車ではエンジン始動に用いられる蓄電装置として鉛蓄電池が用いられているが、特許文献1にはリチウムイオン二次電池などの蓄電素子を備えた蓄電装置を自動二輪車に適用することが記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-3846号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ある機器で用いられている蓄電装置を別の種類の蓄電装置に置き換える場合、機器側の設計を変更することなく当該別の種類の蓄電装置を適用できることが望ましい。例えば、自動二輪車の鉛蓄電池を、リチウムイオン電池などの蓄電素子を備える蓄電装置に置き換える場合、自動二輪車側の設計を変更しなくても当該蓄電装置を適用できる所謂レトロフィットが求められている。
【0005】
リチウムイオン電池などの蓄電素子を備える蓄電装置の中には外部の機器と通信する機能を有しないものがある。従来は、ある機器で用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の種類の蓄電装置に置き換えた場合の課題について検討されていなかった。
【0006】
本明細書では、ある機器に用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の蓄電装置に置き換えた場合に、当該別の蓄電装置が備える蓄電素子の過充電が頻繁に予見されることを、均等化回路の高出力化に伴う蓄電装置の大型化を抑制しつつ低減する技術を開示する。
【課題を解決するための手段】
【0007】
充電器と通信する機能を有しない蓄電装置であって、複数の蓄電素子と、前記複数の蓄電素子と直列に接続されている遮断器と、前記複数の蓄電素子の電圧を均等化する均等化回路と、管理部と、を備え、前記管理部は、前記遮断器がオフの状態で前記均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにする。
【発明の効果】
【0008】
ある機器に用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の蓄電装置に置き換えた場合に、当該別の蓄電装置が備える蓄電素子の過充電が頻繁に予見されることを、均等化回路の高出力化に伴う蓄電装置の大型化を抑制しつつ低減できる。
【図面の簡単な説明】
【0009】
図1】自動二輪車の側面図
図2】車両システムのブロック図
図3】バッテリの分解斜視図
図4】二次電池の平面図
図5図4のA-A線の断面図
図6】バッテリのブロック図
図7】充電状態と開放電圧との関係を示すグラフ
図8】充電制御処理のフローチャート
図9A】均等化処理を開始するタイミングを示すグラフ
図9B】均等化処理を示す模式図
図9C】いずれかの二次電池(セル)の電圧が、過充電が予見される閾値以上まで上昇した状態を示すグラフ
図9D】全ての二次電池(セル)の電圧が、均等化され、充電が終了したときの二次電池の電圧を示すグラフ
図10A】遮断器がオンの状態で均等化処理が実行されている状態を示す模式図
図10B】遮断器がオフの状態で均等化処理が実行されている状態を示す模式図
図10C】均等化処理が終了して充電が再開された状態を示す模式図
図11】4つの二次電池が直列に接続された蓄電装置において、蓄電素子1のみが不均等の状態で、鉛蓄電池用の充電器で充電した場合を比較例として示すグラフ
【発明を実施するための形態】
【0010】
(本実施形態の概要)
充電器と通信する機能を有しない蓄電装置であって、複数の蓄電素子と、前記複数の蓄電素子と直列に接続されている遮断器と、前記複数の蓄電素子の電圧を均等化する均等化回路と、管理部と、を備え、前記管理部は、前記遮断器がオフ(開、オープン)の状態で前記均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオン(閉、クローズ)にする。
【0011】
例えば自動二輪車のエンジン始動に用いられている鉛蓄電池を、リチウムイオン電池などの蓄電素子を備える蓄電装置に置き換える場合を考える。自動二輪車に用いられる鉛蓄電池は一般に定格12V[ボルト]であり、15Vでフロート充電(浮動充電)される。フロート充電は一定の電圧を印加し続けることによって常に満充電に維持する充電方法である。鉛蓄電池を15Vでフロート充電する場合は、鉛蓄電池の電圧が15Vに達するまでは定電流充電され、電圧が15Vまで上昇すると15Vで定電圧充電される。
これに対し、一般にリチウムイオン電池などの蓄電素子を備える蓄電装置は、当該蓄電装置の定格が12Vであるとすると、通常、15Vより低い電圧で充電される。リチウムイオン電池などの蓄電素子の電圧が3Vであり、蓄電装置はその蓄電素子を4つ直列に接続したものであると仮定する。蓄電素子の過充電が予見される電圧(まだ過充電には至っていないが、過充電が近いと判断される電圧)が4Vであると仮定する。この場合、蓄電装置を充電する電圧が14V(15Vより低い電圧)であると仮定すると、充電が完了したときの各蓄電素子の電圧は理想的には3.5Vとなり、いずれの蓄電素子も4Vにはならない。
ただし、実際には蓄電素子間で電圧のばらつきがあるため必ずしも一律に3.5Vにはならない。しかしながら、3.5Vと4Vとの間には0.5Vの余裕があるので、蓄電素子間で電圧が多少ばらついてもいずれかの蓄電素子の電圧が4Vを超える可能性は低い。
上述したリチウムイオン電池などの蓄電素子を備える蓄電装置を自動二輪車に適用する場合、自動二輪車側の設計を変更することなく適用すると、蓄電装置は15Vで充電される。この場合、充電が完了したときの各蓄電素子の電圧は理想的には3.75Vとなる。3.75Vと4Vとの差は0.25Vしかないため、図11に示すように、少しの電圧のばらつきでいずれかの蓄電素子の電圧が4Vを超える可能性がある。
フロート充電では電圧が低下すると直ぐに充電されるので、少しの電圧のばらつきでいずれかの蓄電素子が4Vを超えると、蓄電素子の過充電が頻繁に予見される。このため、過充電を防止するために遮断器が頻繁にオン/オフされ、遮断器が故障する可能性が高くなる。
充電と並行して均等化回路によって各蓄電素子の電圧を均等化することによってばらつきを抑制することも考えられる。しかしながら、蓄電装置の小型化や低コスト化が求められる場合は均等化回路も小型であり、大きな抵抗負荷とそれに伴う放熱部品を実装することは難しい。言い換えると、均等化回路を大型化することによる高出力化によってばらつきを抑制することは難しい。例えば充電電流が最大30Aであるとすると、小型の均等化回路に流れる電流は36mA程度である。このため放電が追いつかず、いずれかの蓄電素子が過充電になる前に電圧を均等化することは困難である。
蓄電装置が自動二輪車のECU(Engine Control Unit)と通信する機能を有している場合は、蓄電装置の管理部がECUに充電電圧を下げるよう要求することも可能である。しかしながら、ECUと通信する機能を有しない蓄電装置の場合は充電電圧を下げるよう要求することもできない。
上記の蓄電装置によると、遮断器がオフの状態で均等化回路によって各蓄電素子の電圧を均等化するので、時間をかけて均等化できる。このため均等化回路を大型化しなくてよい。
上記の蓄電装置によると、各蓄電素子の電圧を均等化した後に遮断器をオンにするので、充電器によって蓄電素子が充電される。各蓄電素子の電圧が均等化されていることから、その後に充電が終了したとき、各蓄電素子の電圧はいずれも過充電が予見される電圧未満となる可能性が高い。
このため上記の蓄電装置によると、ある機器に用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の蓄電装置(上記の蓄電装置)に置き換えた場合に、当該別の蓄電装置が備える蓄電素子の過充電が頻繁に予見されることを、均等化回路の高出力化に伴う蓄電装置の大型化を抑制しつつ低減できる。言い換えると、上記の蓄電装置によると、遮断器が頻繁にオン/オフされることによって遮断器が故障する可能性を、蓄電装置の大型化を抑制しつつ低減できる。
【0012】
前記管理部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記遮断器をオフにしてもよい。
【0013】
いずれかの蓄電素子の過充電が予見される前に遮断器をオフにすることも可能であるが、その場合は均等化が完了してから充電が終了するまでの時間が長くなるので、その間に再びばらつきが発生する可能性がある。
上記の蓄電装置によると、いずれかの蓄電素子の過充電が予見されると遮断器をオフにするので、均等化が完了してから充電が終了するまでの時間が短い。このため、その間に再びばらつきが発生する可能性を低減できる。
【0014】
前記遮断器は、前記蓄電素子を充電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている放電遮断器と、放電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている充電遮断器とが直列に設けられており、前記制御部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記充電遮断器の前記スイッチをオフにする一方、前記放電遮断器の前記スイッチをオンに維持してもよい。
【0015】
上記の蓄電装置によると、充電遮断器のスイッチをオフにしても放電遮断器のスイッチについてはオンを維持するので放電は許容される。このため外部の機器に電力が供給されない所謂パワーフェールを抑制できる。
【0016】
前記制御部は、前記蓄電素子の充電状態(SOC:State Of Charge)が、前記蓄電素子の過充電が予見される閾値より小さい所定値以上まで上昇すると前記均等化回路による均等化を開始してもよい。
【0017】
上記の蓄電装置によると、蓄電素子の過充電が予見される前に均等化を開始するので、いずれの蓄電素子も過充電が予見されることなく充電が終了する可能性が高くなる。
【0018】
前記蓄電素子は充電状態(SOC)の変化に対する開放電圧(OCV:Open Circuit Voltage)の変化が小さいプラトー領域を有していてもよい。
【0019】
図7に示すように、蓄電素子の中にはSOCの変化に対するOCVの変化が小さいプラトー領域を有しているものがある(例えば正極活物質に鉄が含有されている鉄系の蓄電素子)。プラトー領域は、具体的には例えばSOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。
プラトー領域を有している蓄電素子の場合、SOCがプラトー領域にあるときはOCVがほぼ一定になるので、SOCから蓄電素子の電圧差を検出して均等化を開始することが困難である。このためプラトー領域を抜けてから電圧差を検出して均等化を開始することになる(図9Aの円40で示されている区間)。
しかしながら、図7から判るように、プラトー領域の右側にはOCVが急峻に立ち上がる急峻領域がある。急峻領域は充電末期に存在しているため、SOCがプラトー領域を抜けてからいずれかの蓄電素子が過充電になるまでの時間が短い。このため均等化が間に合わず、いずれかの蓄電素子が過充電になる前に均等化を終了することが困難であった。
上記に蓄電装置によると、遮断器がオフの状態で均等化するので、過充電になる直前で均等化を開始しても、時間をかけて均等化できる。このため、プラトー領域を有している蓄電素子であっても、蓄電素子の過充電が頻繁に予見されることを、蓄電装置の大型化を抑制しつつ低減できる。このため、プラトー領域を有する蓄電素子の場合に特に有用である。
【0020】
前記蓄電素子はリチウムイオン電池であり、前記充電器は鉛蓄電池用の充電器であってもよい。
【0021】
前述したように、一般に鉛蓄電池を充電する充電器はリチウムイオン電池を充電する充電器より高い電圧で充電する。上記の蓄電装置によると、鉛蓄電池用の充電器でリチウムイオン電池を充電する場合に、リチウムイオン電池の過充電が頻繁に予見されることを、蓄電装置の大型化を抑制しつつ低減できる。
【0022】
本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。
【0023】
<実施形態1>
実施形態1を図1ないし図10によって説明する。
【0024】
図1に示すように、実施形態1に係るバッテリ50(蓄電装置の一例)は自動二輪車10に搭載される二輪車用のバッテリである。バッテリ50は定格12Vである。
【0025】
図2に示すように、バッテリ50には自動二輪車10に搭載されているスタータ10A、オルタネータ10B(充電器の一例)及び補機類10C(ヘッドライド、エアコン、オーディオなど)が接続されている。バッテリ50はスタータ10Aに電力を供給してエンジンを始動させるエンジン始動用のバッテリである。バッテリ50はエンジン動作中にオルタネータ10Bによって充電される。オルタネータ10Bは鉛蓄電池を充電するために設計されたものであり、バッテリ50を15Vでフロート充電する。
【0026】
自動二輪車10のエンジン動作中はオルタネータ10Bから補機類10Cに電力が供給される。このため、バッテリ50は、エンジン動作中は補機類10Cに電力を供給しないが、エンジン停止中に補機類10Cが使用される場合は補機類10Cにも電力を供給する。
一般に二輪車用のバッテリは自動二輪車10のECUと通信する機能を有していない。実施形態1に係る二輪車用のバッテリ50もECUと通信する機能を有していない。
【0027】
(1)バッテリの構成
図3に示すように、バッテリ50は組電池60と、回路基板ユニット65と、収容体71とを備える。
収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
【0028】
収容体71は、組電池60と回路基板ユニット65を収容する。組電池60は12個の二次電池62(蓄電素子の一例)を有する。二次電池62は一例として正極活物質に鉄を含有した鉄系のリチウムイオン電池である。12個の二次電池62は、3並列で4直列に接続されている。以降の説明では二次電池62のことをセルという場合もある。
回路基板ユニット65は、回路基板100と回路基板100上に搭載される電子部品とを含み、組電池60の上部に配置されている。
【0029】
蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極外部端子51が固定され、他方の隅部に負極外部端子52が固定されている。
【0030】
図4及び図5に示すように、二次電池62は直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
【0031】
正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
【0032】
蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。
【0033】
(2)バッテリの電気的構成
図6に示すように、バッテリ50は組電池60と、組電池60を管理するBMU101(Battery Management Unit)とを備えている。BMU101は管理装置の一例である。
【0034】
前述したように組電池60は12個の二次電池62から構成されており、3並列で4直列に接続されている。図6では並列に接続された3つの二次電池62を1つの電池記号で表している。
パワーライン70Pは、正極外部端子51と組電池60の正極とを接続するパワーラインである。パワーライン70Nは、負極外部端子52と組電池60の負極とを接続するパワーラインである。組電池60の負極はシグナルグランドG1に接続されている。組電池60はシグナルグランドG1を基準電位とする。負極外部端子52は、ボディグランドG2に接続されている。ボディグランドG2は自動二輪車10のボディである。ボディグランドG2は自動二輪車10の基準電位である。
【0035】
BMU101は電流センサ53、電圧センサ110、遮断器55、4つの均等化回路25及び管理部130を備える。組電池60、電流センサ53及び遮断器55は、パワーライン70P、パワーライン70Nを介して、直列に接続されている。遮断器55、電流センサ及び管理部130は回路基板100上に実装されており、回路基板100のシグナルグランドG1を基準電位(動作基準)とする。
【0036】
電流センサ53は、組電池60の負極に位置し、負極側のパワーライン70Nに設けられている。電流センサ53は、組電池60に流れる電流の電流値及び方向(充電方向/放電方向)を検出する。
電圧センサ110は、各二次電池62の電圧Vと組電池60の総電圧とを検出する。組電池60の総電圧は4つの二次電池62の合計電圧である。
【0037】
遮断器55は、組電池60の負極に位置し、負極のパワーライン70Nに設けられている。遮断器55は、充電用FET55A(充電遮断器の一例)と、放電用FET55B(放電遮断器の一例)とを有する。充電用FET55A及び放電用FET55Bは電力用の半導体スイッチであり、より具体的にはNチャンネルの電界効果トランジスタ(FET:Field Effect Transistor)である。充電用FET55A及び放電用FET55BのソースSは基準端子である。充電用FET55A及び放電用FET55BのゲートGは制御端子である。充電用FET55A及び放電用FET55BのドレンDは接続端子である。
【0038】
充電用FET55AはソースSが組電池60の負極に接続されている。放電用FET55BはソースSが負極外部端子52に接続されている。充電用FET55Aと放電用FET55BとはドレンD同士が接続されることによってバックツーバック接続されている。
充電用FET55Aは寄生ダイオード56A(放電する向きのみに電流を流す整流素子の一例)を有している。寄生ダイオード56Aは順方向が放電方向と同一である。放電用FET55Bは寄生ダイオード56B(充電する向きのみに電流を流す整流素子の一例)を有している。寄生ダイオード56Bは順方向が充電方向と同一である。
【0039】
放電用FET55BはソースSが負極外部端子52に接続されていることから、ボディグランドG2が基準電位である。充電用FET55AはソースSが組電池60の負極に接続されている。組電池60の負極は回路基板100のシグナルグランドG1に接続されているので、充電用FET55AはシグナルグランドG1が基準電位である。
充電用FET55AはゲートGにHレベルの電圧が印加されることでオンになり、ゲートGにLレベルの電圧が印加されることでオフになる。放電用FET55Bも同様である。
【0040】
4つの均等化回路25は二次電池62の電圧の均等化するためのものであり、それぞれ互いに異なる二次電池62に並列接続されている。各均等化回路25は放電抵抗25AとFETやリレーなどのスイッチ25Bとを備えている。
【0041】
管理部130は、CPU131、ROM132及びRAM133を備える。管理部130は電圧センサ110、電流センサ53、温度センサ111の出力に基づいてバッテリ50を管理する。管理部130は、正常時、充電用FET55AのゲートG及び放電用FET55BのゲートGにHレベルの電圧を印加し、充電用FET55A及び放電用FET55Bをオンにする。充電用FET55A及び放電用FET55Bの双方がオンの場合、組電池60は充電、放電の双方が可能である。
【0042】
(3)管理部よって実行される処理
管理部130によって実行される処理のうちSOC推定処理及び充電制御処理について説明する。
【0043】
(3-1)SOC推定処理
SOC推定処理は、電流積算法によって組電池60の充電状態を推定する処理である。電流積算法は、電流センサ53によって組電池60の充放電電流を所定の時間間隔で計測することで組電池60に出入りする電力量を計測し、これを初期容量から加減することでSOCを推定する方法である。
【0044】
電流積算法は組電池60の使用中でもSOCを推定できるという利点がある反面、常に電流を計測して充放電電力量を積算するので電流センサ53の計測誤差が累積して次第に不正確になる可能性がある。このため、管理部130は、電流積算法によって推定したSOCを組電池60の開放電圧(OCV)に基づいてリセットしてもよい。
【0045】
具体的には、図7に示すように、OCVとSOCとの間には比較的精度の良い相関関係があるので、OCVからSOCを推定し、電流積算法によって推定したSOCを、OCVから推定したSOCでリセットしてもよい。
OCVは回路が開放されている状態の電圧に限られない。例えば、OCVは二次電池62に流れる電流の電流値が微小な基準値未満であるときの電圧であってもよい。
【0046】
(3-2)充電制御処理
図8から図10を参照して、管理部130によって実行される充電制御処理について説明する。本処理はSOC推定処理によって組電池60のSOCが推定される毎に実行される。
前述したようにバッテリ50は12個の二次電池62を備えているが、理解を容易にするためここでは3Vの二次電池62が4個直列に接続されている場合を例に説明する。前述したようにオルタネータ10Bは15Vでバッテリ50を充電するので、充電が完了したとき、各二次電池62の電圧は理想的には3.75V(=15V/4)になる。
【0047】
S101では、管理部130は、組電池60のSOCが、過充電が予見される閾値S1(例えば95%)より小さい所定値S2(例えば90%)以上であるか否かを判断する(図9A)。管理部130は、SOCが所定値S2以上である場合はS102に進み、所定値S2未満である場合は本処理を終了する。
【0048】
S102では、管理部130は充電用FET55Aがオンの状態で均等化処理を開始する(図9B図10A)。便宜上、図9Bでは4つの二次電池62をセル1~セル4で示している。
均等化処理は、4個の二次電池62のうち電圧が最も小さい二次電池62の電圧を基準電圧とし、他の二次電池62の電圧が基準電圧と一致するまで他の二次電池62を放電抵抗25Aによって放電させることにより、各二次電池62の電圧を均等化する処理である。
【0049】
S103では、管理部130はいずれかの二次電池62の電圧が、過充電が予見される閾値電圧(例えば4V)以上であるか否かを判断する(図9C)。管理部130は、いずれかの二次電池62の電圧が閾値電圧以上である場合はS104に進み、いずれの二次電池62の電圧も閾値電圧未満である場合は所定時間経過後に再度S103を実行する。
【0050】
S104では、管理部130は充電用FET55Aをオフにする一方、放電用FET55Bをオンに維持する(図10B)。充電用FET55Aをオフにすると充電が中断されるが、放電用FET55Bがオンに維持されるので放電は許容される。
S105では、管理部130はS102で開始した均等化処理が終了したか否か(各二次電池62の電圧が均等化されたか否か)を判断し、終了していない場合はS106に進み、終了した場合はS107に進む。
【0051】
S106では、管理部130は電流センサによって放電方向の電流が検出されたか否かを判断し、放電方向の電流が検出された場合はS107に進み、検出されない場合はS105に戻って処理を繰り返す。
S107では、管理部130は充電用FET55Aをオンにする(図10C)。これにより各二次電池62の充電が再開される。
【0052】
(4)実施形態の効果
バッテリ50によると、充電用FET55Aがオフの状態で均等化回路25によって各二次電池62の電圧を均等化するので(図10B)、時間をかけて均等化できる。このため均等化回路25を大型化しなくてよい。
バッテリ50によると、各二次電池62の電圧を均等化した後に充電用FET55Aをオンにするので(図10C)、オルタネータ10Bによる二次電池62の充電が再開される。各二次電池62の電圧が均等化されていることから、その後に充電が終了したとき、各二次電池62の電圧はいずれも過充電が予見される電圧(4V)未満となる可能性が高くなる(図9D)。
このためバッテリ50によると、自動二輪車10に用いられている鉛蓄電池を、自動二輪車10の設計を変更することなくバッテリ50(外部の機器と通信する機能を有しない蓄電装置)に置き換えた場合に、二次電池62の過充電が頻繁に予見されることを、均等化回路25の高出力化に伴うバッテリ50の大型化を抑制しつつ低減できる。言い換えると、バッテリ50によると、充電用FET55Aが頻繁にオン/オフされることによって充電用FET55Aが故障する可能性を、バッテリ50の大型化を抑制しつつ低減できる。
【0053】
バッテリ50によると、オルタネータ10Bによって複数の二次電池62が充電されているときにいずれかの二次電池62の過充電が予見されると充電用FET55Aをオフにするので、均等化が完了してから充電が終了するまでの時間が短い。このため、その間に再びばらつきが発生する可能性を低減できる。
【0054】
バッテリ50によると、充電用FET55Aをオフにしても放電用FET55Bについてはオンを維持するので放電は許容される。このためスタータ10Aや補機類10Cに電力が供給されない所謂パワーフェールを抑制できる。
【0055】
バッテリ50によると、二次電池62の過充電が予見される前に均等化を開始するので、いずれの二次電池62も過充電が予見されることなく充電が終了する可能性が高くなる。
【0056】
バッテリ50によると、充電用FET55Aがオフの状態で均等化するので、過充電になる直前で均等化を開始しても、時間をかけて均等化できる。このため、プラトー領域を有している二次電池62であっても、二次電池62が過充電になる可能性を、バッテリ50の大型化を抑制しつつ低減できる。このため、プラトー領域を有する二次電池62の場合に特に有用である。
【0057】
バッテリ50によると、二次電池62はリチウムイオン電池であり、オルタネータ10Bは鉛蓄電池用の充電器である。バッテリ50によると、鉛蓄電池用の充電器でリチウムイオン電池を充電する場合に、リチウムイオン電池の過充電が頻繁に予見されることを、バッテリ50の大型化を抑制しつつ低減できる。
【0058】
バッテリ50によると、充電用FET55Aをオフにした後、放電方向の電流が検出された場合は、各二次電池62の電圧が均等化される前であっても充電用FET55Aをオンにするので、均等化処理が終了する前に大きな放電電流が流れても寄生ダイオード56Aの故障を抑制できる。
【0059】
<他の実施形態>
本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
【0060】
(1)上記実施形態では充電器として自動二輪車10のオルタネータ10Bを例に説明したが、充電器は自動二輪車10とは別の充電器であってもよい。
【0061】
(2)上記実施形態では二次電池62として鉄系の二次電池62を例に説明したが、二次電池62は鉄系に限られるものではなく、プラトー領域を有する他の種類の二次電池であってもよい。
【0062】
(3)上記実施形態ではプラトー領域を有する二次電池62を例に説明したが、二次電池62はプラトー領域を有するものに限定されない。
【0063】
(4)上記実施形態では、組電池60のSOCが、過充電が予見される閾値S1より小さい所定値S2以上である場合は、組電池60の過充電が予見されなくても均等化処理を開始する(S101及びS102)。これに対し、組電池60のSOCが閾値S1より小さい場合は均等化処理を開始せず、S103でいずれかの二次電池62の過充電が予見された場合にS105において均等化処理を開始してもよい。
【0064】
(5)上記実施形態では、S104において、充電用FET55Aをオフにする一方、放電用FET55Bをオンに維持する場合を例に説明したが、放電用FET55Bもオフにしてもよいし、放電用FET55Bを有していなくてもよい。
【0065】
(6)上記実施形態では充電遮断器として充電用FET55Aを例に説明したが、充電遮断器は整流素子とリレーとが並列に接続されているものであってもよい。放電遮断器についても同様である。
【0066】
(7)上記実施形態では遮断器が充電用FET55Aと放電用FET55Bとを備えている場合を例に説明したが、遮断器は一つのリレーであってもよい。
【0067】
(8)上記実施形態ではS106において放電方向の電流が検出されたか否かを判断するが、発熱による充電用FET55Aの寄生ダイオード56Aの故障が予見されるか否かを判断し、故障が予見される場合はS107に進んでもよい。
【0068】
(9)上記実施形態では蓄電素子としてリチウムイオン電池を例に説明したが、蓄電素子はこれに限られない。例えば、蓄電素子は電気化学反応を伴うキャパシタであってもよい。
(10)上記実施形態ではバッテリ50として自動二輪車10のエンジン始動用のバッテリを例に説明したが、バッテリ50の用途はこれに限られない。例えば、バッテリ50は四輪自動車のエンジン始動用のバッテリであってもよいし、電気自動車やプラグインハイブリッド自動車に搭載されて補機類に電力を供給する補機用のバッテリであってもよい。バッテリ50は無停電電源装置(UPS: Uninterruptible Power Supply)に用いられるバッテリあってもよい。
【符号の説明】
【0069】
10 自動二輪車
10B オルタネータ(充電器の一例)
25 均等化回路
50 バッテリ(蓄電装置の一例)
55 遮断器
55A 充電用FET(充電遮断器、スイッチの一例)
55B 放電用FET(放電遮断器、スイッチの一例)
56A 寄生ダイオード(整流素子の一例)
56B 寄生ダイオード(整流素子の一例)
62 二次電池(蓄電素子の一例)
130 管理部
図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図9C
図9D
図10A
図10B
図10C
図11