(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】モータ
(51)【国際特許分類】
H02K 9/19 20060101AFI20221213BHJP
H02K 5/20 20060101ALI20221213BHJP
H02K 5/22 20060101ALI20221213BHJP
H02K 11/30 20160101ALI20221213BHJP
【FI】
H02K9/19 A
H02K5/20
H02K5/22
H02K11/30
(21)【出願番号】P 2019532663
(86)(22)【出願日】2018-07-25
(86)【国際出願番号】 JP2018027813
(87)【国際公開番号】W WO2019022109
(87)【国際公開日】2019-01-31
【審査請求日】2021-06-15
(31)【優先権主張番号】P 2017147109
(32)【優先日】2017-07-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000232302
【氏名又は名称】日本電産株式会社
(72)【発明者】
【氏名】奥畑 佳久
(72)【発明者】
【氏名】梶田 国博
(72)【発明者】
【氏名】小長谷 美香
(72)【発明者】
【氏名】伊東 陽介
【審査官】若林 治男
(56)【参考文献】
【文献】国際公開第2013/069321(WO,A1)
【文献】特開2016-220391(JP,A)
【文献】米国特許第06909210(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 9/19
H02K 5/20
H02K 5/22
H02K 11/30
(57)【特許請求の範囲】
【請求項1】
一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、
前記ロータと径方向に隙間を介して対向するステータと、
前記ステータと電気的に接続されるインバータ部と、
前記インバータ部と電気的に接続されるコンデンサ部と、
前記ステータを収容するステータ収容部および前記インバータ部と前記コンデンサ部とを収容するインバータ収容部を有するハウジングと、
を備え、
前記インバータ収容部は、前記ステータ収容部の径方向外側に位置し、かつ、軸方向と直交する所定方向において前記ステータ収容部の一方側に位置し、
前記ハウジングは、前記ロータおよび前記ステータの径方向外側において前記ロータおよび前記ステータを囲む筒状の周壁部を有し、かつ、単一の部材であり、
前記周壁部は、
第1冷却流路と、
前記ステータ収容部と前記インバータ収容部とを仕切る仕切り壁部と、
を有し、
前記第1冷却流路は、周方向に延び、かつ、少なくとも一部が前記仕切り壁部に設けられ、
前記所定方向に沿って視て、前記第1冷却流路のうち前記仕切り壁部に設けられる部分は、前記インバータ部と重なる部分と、前記コンデンサ部と重なる部分と、を有
し、
前記周壁部は、
前記第1冷却流路の軸方向一方側に位置する第2冷却流路と、
前記第1冷却流路と前記第2冷却流路とを繋ぐ接続流路部と、
を有し、
前記第2冷却流路は、冷媒が流入される流入口を有し、かつ、周方向に延び、
前記第2冷却流路の少なくとも一部は、前記仕切り壁部に設けられ、
前記第1冷却流路は、前記冷媒が流出される流出口を有し、
前記コンデンサ部は、前記インバータ部の軸方向他方側に配置され、
前記所定方向に沿って視て、前記第2冷却流路のうち前記仕切り壁部に設けられる部分は、前記インバータ部と重なる部分を有し、
前記接続流路部の径方向の寸法は、前記第1冷却流路の径方向の寸法および第2冷却流路の径方向の寸法よりも大きい、モータ。
【請求項2】
前記仕切り壁部のうち前記第1冷却流路と前記インバータ収容部との径方向の間に位置する部分において、前記第1冷却流路と前記インバータ部との径方向の間に位置する部分は、前記第1冷却流路と前記コンデンサ部との径方向の間に位置する部分よりも、径方向の寸法が小さい、請求項1に記載のモータ。
【請求項3】
前記仕切り壁部のうち前記第1 冷却流路と前記インバータ収容部との径方向の間に位置する部分において、前記第1 冷却流路と前記コンデンサ部との径方向の間に位置する部分は、前記第1 冷却流路と前記インバータ部との径方向の間に位置する部分よりも、径方向の寸法が小さい、請求項1に記載のモータ。
【請求項4】
前記仕切り壁部のうち前記第1冷却流路と前記インバータ収容部との径方向の間に位置する部分は、前記仕切り壁部のうち前記第1冷却流路と前記ステータ収容部との径方向の間に位置する部分よりも、径方向の寸法が小さい、請求項1から3のいずれか一項に記載のモータ。
【請求項5】
前記第1冷却流路のうち前記仕切り壁部に設けられる部分は、前記ステータ収容部と前記インバータ部との径方向の間において単一層の流路であり、かつ、前記ステータ収容部と前記コンデンサ部との径方向の間において単一層の流路である、請求項1から4のいずれか一項に記載のモータ。
【請求項6】
前記第1冷却流路の軸方向の寸法と前記第2冷却流路の軸方向の寸法とは、互いに同じである、請求項
1に記載のモータ。
【請求項7】
前記コンデンサ部は、前記仕切り壁部に接触する、請求項1から
6のいずれか一項に記載のモータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータに関する。
【背景技術】
【0002】
ロータおよびステータとインバータ装置とがハウジングに収容され、一体化されたモータが知られる。例えば、特許文献1には、ロータおよびステータとインバータ装置とがハウジング内で中心軸線上に配置された構成が記載される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のようなモータにおいては、ステータおよびインバータ装置を効率的に冷却できることが求められる。特に、インバータ装置がインバータ部とコンデンサ部とを含む場合には、ステータ、インバータ部およびコンデンサ部を効率的に冷却できることが求められる。ステータ、インバータ部およびコンデンサ部を冷却する方法としては、冷媒が流れる冷却流路をハウジングに設けることが考えられる。しかし、単に冷却流路をハウジングに設けただけでは、ステータ、インバータ部およびコンデンサ部の冷却効率を十分に得られない場合があった。
【0005】
本発明は、上記事情に鑑みて、冷却流路によるステータ、インバータ部およびコンデンサ部の冷却効率を向上できる構造を有するモータを提供することを目的の一つとする。
【課題を解決するための手段】
【0006】
本発明のモータの一つの態様は、一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、前記ステータと電気的に接続されるインバータ部と、前記インバータ部と電気的に接続されるコンデンサ部と、前記ステータを収容するステータ収容部および前記インバータ部と前記コンデンサ部とを収容するインバータ収容部を有するハウジングと、を備え、前記インバータ収容部は、前記ステータ収容部の径方向外側に位置し、かつ、軸方向と直交する所定方向において前記ステータ収容部の一方側に位置し、前記ハウジングは、前記ロータおよび前記ステータの径方向外側において前記ロータおよび前記ステータを囲む筒状の周壁部を有し、かつ、単一の部材であり、前記周壁部は、第1冷却流路と、前記ステータ収容部と前記インバータ収容部とを仕切る仕切り壁部と、を有し、前記第1冷却流路は、周方向に延び、かつ、少なくとも一部が前記仕切り壁部に設けられ、前記所定方向に沿って視て、前記第1冷却流路のうち前記仕切り壁部に設けられる部分は、前記インバータ部と重なる部分と、前記コンデンサ部と重なる部分と、を有し、前記周壁部は、前記第1冷却流路の軸方向一方側に位置する第2冷却流路と、前記第1冷却流路と前記第2冷却流路とを繋ぐ接続流路部と、を有し、前記第2冷却流路は、冷媒が流入される流入口を有し、かつ、周方向に延び、前記第2冷却流路の少なくとも一部は、前記仕切り壁部に設けられ、前記第1冷却流路は、前記冷媒が流出される流出口を有し、前記コンデンサ部は、前記インバータ部の軸方向他方側に配置され、前記所定方向に沿って視て、前記第2冷却流路のうち前記仕切り壁部に設けられる部分は、前記インバータ部と重なる部分を有し、前記接続流路部の径方向の寸法は、前記第1冷却流路の径方向の寸法および第2冷却流路の径方向の寸法よりも大きい。
【発明の効果】
【0007】
本発明の一つの態様によれば、冷却流路によるステータ、インバータ部およびコンデンサ部の冷却効率を向上できる構造を有するモータが提供される。
【図面の簡単な説明】
【0008】
【
図1】
図1は、本実施形態のモータを示す斜視図である。
【
図2】
図2は、本実施形態のモータを示す図であって、
図1におけるII-II断面図である。
【
図3】
図3は、本実施形態のモータを示す図であって、
図2におけるIII-III断面図である。
【
図4】
図4は、本実施形態のモータを上側から視た図である。
【
図5】
図5は、本実施形態の冷却部を示す斜視図である。
【
図6】
図6は、本実施形態のモータの一部を示す断面図である。
【
図7】
図7は、本実施形態における変形例のモータの一部を示す断面図である。
【発明を実施するための形態】
【0009】
各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。Y軸方向は、各図に示す一方向に延びる中心軸Jと平行な方向であり、鉛直方向Zと直交する方向である。以下の説明においては、中心軸Jと平行な方向、すなわちY軸方向を「軸方向Y」と呼ぶ。また、軸方向Yの正の側を、「軸方向一方側」と呼び、軸方向Yの負の側を、「軸方向他方側」と呼ぶ。各図に示すX軸方向は、軸方向Yおよび鉛直方向Zの両方と直交する方向である。以下の説明においては、X軸方向を「幅方向X」と呼ぶ。また、幅方向Xの正の側を「幅方向一方側」と呼び、幅方向Xの負の側を「幅方向他方側」と呼ぶ。本実施形態において、鉛直方向Zは、所定方向に相当する。
【0010】
また、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向θ」と呼ぶ。また、周方向θにおいて、軸方向他方側から軸方向一方側に向かって視て、時計回りに進む側、すなわち図において周方向θを示す矢印の進む側を「周方向一方側」と呼び、反時計回りに進む側、すなわち図において周方向θを示す矢印の進む側と逆側を「周方向他方側」と呼ぶ。
【0011】
なお、鉛直方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。
【0012】
図1および
図2に示すように、本実施形態のモータ1は、ハウジング10と、蓋部11と、カバー部材12と、センサカバー13と、中心軸Jに沿って配置されるモータシャフト21を有するロータ20と、ステータ30と、インバータユニット50と、コネクタ部18と、回転検出部70と、を備える。
【0013】
図2に示すように、ハウジング10は、ロータ20とステータ30と回転検出部70とインバータユニット50とを収容する。ハウジング10は、単一の部材である。ハウジング10は、例えば、砂型鋳造で作製される。ハウジング10は、周壁部10bと、底壁部10aと、ベアリング保持部10cと、角筒部10eと、を有する。
【0014】
周壁部10bは、ロータ20およびステータ30の径方向外側においてロータ20およびステータ30を囲む筒状である。本実施形態において周壁部10bは、中心軸Jを中心とする略円筒状である。周壁部10bは、軸方向一方側に開口する。周壁部10bは、ステータ30およびインバータユニット50を冷却する冷却部60を有する。
【0015】
底壁部10aは、周壁部10bの軸方向他方側の端部に設けられる。底壁部10aは、周壁部10bの軸方向他方側を塞ぐ。底壁部10aは、底壁部10aを軸方向Yに貫通するセンサ収容部10gを有する。センサ収容部10gは、軸方向Yに沿って視て、例えば、中心軸Jを中心とする円形状である。底壁部10aと周壁部10bとによって、ステータ収容部14が構成される。すなわち、ハウジング10は、周壁部10bと底壁部10aとを有する有底筒状のステータ収容部14を有する。
【0016】
ベアリング保持部10cは、底壁部10aの軸方向一方側の面におけるセンサ収容部10gの周縁部から軸方向一方側に突出する円筒状である。ベアリング保持部10cは、後述するロータコア22よりも軸方向他方側においてモータシャフト21を支持するベアリングを保持する。
【0017】
図1から
図4に示すように、角筒部10eは、周壁部10bから上側に延びる角筒状である。角筒部10eは、上側に開口する。本実施形態において角筒部10eは、例えば、正方形筒状である。
図2に示すように、角筒部10eを構成する壁部のうち軸方向他方側の壁部は、底壁部10aの上端部に繋がる。角筒部10eは、角筒部10eを構成する壁部のうち軸方向一方側の壁部を軸方向Yに貫通する貫通孔10fを有する。貫通孔10fの下端部は、周壁部10bの軸方向一方側の開口と繋がる。角筒部10eと周壁部10bとによって、インバータ収容部15が構成される。すなわち、ハウジング10は、インバータ収容部15を有する。
【0018】
インバータ収容部15は、ステータ収容部14の径方向外側に位置する。本実施形態においてインバータ収容部15は、軸方向Yと直交する鉛直方向Zにおいて、ステータ収容部14の上側に位置する。ステータ収容部14とインバータ収容部15とは、仕切り壁部10dによって鉛直方向Zに仕切られる。仕切り壁部10dは、周壁部10bの上側の部分である。すなわち、周壁部10bは、ステータ収容部14とインバータ収容部15とを仕切る仕切り壁部10dを有する。
【0019】
図3に示すように、仕切り壁部10dの鉛直方向Zの寸法は、軸方向Yおよび鉛直方向Zの両方と直交する幅方向Xにおいて中心軸Jから離れる程、大きくなる。すなわち、仕切り壁部10dの鉛直方向Zの寸法は、幅方向Xの位置が中心軸Jと同じ中央部分において最も小さく、中央部分から幅方向Xの両側に離れるに従って大きくなる。
【0020】
図2に示す蓋部11は、板面が鉛直方向Zと直交する板状である。蓋部11は、角筒部10eの上端部に固定される。蓋部11は、角筒部10eの上側の開口を閉塞する。なお、
図4においては、蓋部11の図示を省略する。
図1および
図2に示すように、カバー部材12は、板面が軸方向Yと直交する板状である。カバー部材12は、周壁部10bおよび角筒部10eの軸方向一方側の面に固定される。カバー部材12は、周壁部10bの軸方向一方側の開口および貫通孔10fを閉塞する。
【0021】
図2に示すように、カバー部材12は、カバー部材12を軸方向Yに貫通する出力軸孔12aを有する。出力軸孔12aは、例えば、中心軸Jを通る円形状である。カバー部材12は、カバー部材12の軸方向他方側の面における出力軸孔12aの周縁部から軸方向他方側に突出するベアリング保持部12bを有する。ベアリング保持部12bは、後述するロータコア22よりも軸方向一方側においてモータシャフト21を支持するベアリングを保持する。
【0022】
センサカバー13は、底壁部10aの軸方向他方側の面に固定される。センサカバー13は、センサ収容部10gの軸方向他方側の開口を覆い、閉塞する。センサカバー13は、回転検出部70を軸方向他方側から覆う。
【0023】
ロータ20は、モータシャフト21と、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト21は、軸方向両側の部分をそれぞれベアリングによって回転自在に支持される。モータシャフト21の軸方向一方側の端部は、周壁部10bの軸方向一方側の開口から軸方向一方側へ向けて突出する。モータシャフト21の軸方向一方側の端部は、出力軸孔12aを通り、カバー部材12よりも軸方向一方側に突出する。モータシャフト21の軸方向他方側の端部は、センサ収容部10gに挿入される。
【0024】
ロータコア22は、モータシャフト21の外周面に固定される。マグネット23は、ロータコア22に設けられたロータコア22を軸方向Yに貫通する孔部に挿入される。第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向Yに挟む。第1エンドプレート24と第2エンドプレート25とは、ロータコア22の孔部に挿入されたマグネット23を軸方向両側から押さえる。
【0025】
ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸Jを中心とした円環状である。ステータコア31の外周面は、周壁部10bの内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。
【0026】
インバータユニット50は、ステータ30に供給される電力を制御する。インバータユニット50は、インバータ部51と、コンデンサ部52と、を有する。すなわち、モータ1は、インバータ部51と、コンデンサ部52と、を備える。インバータ部51は、インバータ収容部15に収容される。インバータ部51は、第1回路基板51aと、第2回路基板51bと、を有する。第1回路基板51aおよび第2回路基板51bは、板面が鉛直方向Zと直交する板状である。第2回路基板51bは、第1回路基板51aの上側に離れて配置される。第1回路基板51aと第2回路基板51bとは電気的に接続される。第1回路基板51aには、コネクタ端子53を介してコイル線32aが接続される。これにより、インバータ部51は、ステータ30と電気的に接続される。
【0027】
図2および
図4に示すように、コンデンサ部52は、幅方向Xに長い直方体状である。コンデンサ部52は、インバータ収容部15に収容される。コンデンサ部52は、インバータ部51の軸方向他方側に配置される。すなわち、インバータ収容部15において、インバータ部51とコンデンサ部52とは、軸方向Yに並んで配置される。コンデンサ部52は、インバータ部51と電気的に接続される。
図2に示すように、コンデンサ部52は、仕切り壁部10dの上面に固定される。コンデンサ部52は、仕切り壁部10dに接触する。
【0028】
図1に示すように、コネクタ部18は、角筒部10eの幅方向他方側の面に設けられる。コネクタ部18には、図示しない外部電源が接続される。コネクタ部18に接続された外部電源からインバータユニット50に電源が供給される。
【0029】
回転検出部70は、ロータ20の回転を検出する。本実施形態において回転検出部70は、例えば、VR(Variable Reluctance)型レゾルバである。
図2に示すように、回転検出部70は、センサ収容部10gに収容される。すなわち、回転検出部70は、底壁部10aに配置される。回転検出部70は、被検出部71と、センサ部72と、を有する。
【0030】
被検出部71は、周方向θに延びる環状である。被検出部71は、モータシャフト21に嵌め合わされて固定される。被検出部71は、磁性体製である。センサ部72は、被検出部71の径方向外側を囲む環状である。センサ部72は、センサ収容部10gに嵌め合わされる。センサ部72は、センサカバー13によって軸方向他方側から支持される。すなわち、センサカバー13は、回転検出部70を軸方向他方側から支持する。センサ部72は、周方向θに沿って複数のコイルを有する。
【0031】
図示は省略するが、モータ1は、回転検出部70とインバータ部51とを電気的に接続するセンサ配線をさらに備える。センサ配線の一端は、被検出部71に接続される。センサ配線は、被検出部71から、底壁部10aの内部および仕切り壁部10dを径方向に貫通する貫通孔を通って、インバータ収容部15内まで引き回される。センサ配線の他端は、例えば、第1回路基板51aに接続される。
【0032】
モータシャフト21とともに被検出部71が回転することによって、センサ部72のコイルには、被検出部71の周方向位置に応じた誘起電圧が生じる。センサ部72は、誘起電圧を検出することで、被検出部71の回転を検出する。これにより、回転検出部70は、モータシャフト21の回転を検出して、ロータ20の回転を検出する。回転検出部70が検出したロータ20の回転情報は、センサ配線を介してインバータ部51に送られる。
【0033】
図5に示すように、冷却部60は、複数の冷却流路としての上流側冷却流路61および下流側冷却流路62と、接続流路部63と、を有する。すなわち、周壁部10bは、複数の冷却流路としての上流側冷却流路61および下流側冷却流路62と、接続流路部63と、を有する。本実施形態において、上流側冷却流路61は、第2冷却流路に相当する。下流側冷却流路62は、第1冷却流路に相当する。なお、
図5においては、冷却部60の内部空間を立体形状として示す。
【0034】
複数の冷却流路、すなわち本実施形態では上流側冷却流路61および下流側冷却流路62は、軸方向Yに並ぶ。上流側冷却流路61と下流側冷却流路62とは、軸方向Yに隣り合う2つの冷却流路である。本実施形態において、上流側冷却流路61は、軸方向Yに隣り合う2つの冷却流路のうち軸方向一方側に位置する一方の冷却流路である。下流側冷却流路62は、軸方向Yに隣り合う2つの冷却流路のうち軸方向他方側に位置する他方の冷却流路である。
【0035】
上流側冷却流路61および下流側冷却流路62には、冷媒が流れる。冷媒は、ステータ30およびインバータ部51を冷却できる流体ならば、特に限定されない。冷媒は、水であってもよいし、水以外の液体であってもよいし、気体であってもよい。
【0036】
上流側冷却流路61は、周方向θに延びる。上流側冷却流路61は、上流側流路本体部61aと、流入部61bと、流入口61cと、を有する。上流側流路本体部61aは、軸方向Yに幅広で周方向θに延びる円弧状である。
図3に示すように、上流側流路本体部61aは、周壁部10bにおける幅方向他方側の部分から、周壁部10bの下端部を通って周方向他方側に延び、周壁部10bの上端部まで延びる。上流側流路本体部61aの中心角φは、180°よりも大きい。これにより、上流側冷却流路61は、中心角が180°よりも大きい円弧状である。
【0037】
流入部61bは、上流側流路本体部61aに繋がる。より詳細には、流入部61bは、上流側流路本体部61aの周方向一方側の端部に繋がる。流入部61bは、上流側流路本体部61aの周方向一方側の端部から上側に延びる。
図5に示すように、流入部61bの軸方向Yの寸法は、上流側流路本体部61aの軸方向Yの寸法と同じである。流入部61bの幅方向Xの寸法は、上流側流路本体部61aの径方向の寸法よりも大きい。
図3に示すように、流入部61bの上端部は、上流側流路本体部61aの上端部よりも下側に位置する。流入部61bは、上流側冷却流路61の周方向一方側の端部である。
【0038】
流入口61cは、流入部61bに設けられる。すなわち、流入口61cは、上流側冷却流路61の周方向一方側の端部に位置する。
図5に示すように、流入口61cは、流入部61bにおける軸方向Yおよび鉛直方向Zの中央部分から幅方向他方側に突出する。流入口61cには、冷媒が流入する。流入口61cの幅方向Xと直交する断面形状は、例えば、円形状である。
図3に示すように、流入口61cには、流入パイプ16が連結される。流入パイプ16は、ハウジング10に設けられた孔部に挿し込まれる。流入パイプ16は、ハウジング10から幅方向他方側に突出する。
【0039】
上流側冷却流路61の少なくとも一部は、仕切り壁部10dに設けられる。したがって、上流側冷却流路61を流れる冷媒によって、仕切り壁部10dで仕切られるステータ収容部14とインバータ収容部15とを冷却することができ、ステータ収容部14に収容されるステータ30およびインバータ収容部15に収容されるインバータ部51を冷却することができる。
【0040】
本実施形態では、上流側流路本体部61aの上側部分および流入部61bが、仕切り壁部10dに設けられる。鉛直方向Zに沿って視て、上流側冷却流路61のうち仕切り壁部10dに設けられる部分は、インバータ部51と重なる部分を有する。これにより、上流側冷却流路61によって、インバータ部51をより冷却しやすい。本実施形態においては、仕切り壁部10dに設けられる上流側冷却流路61の部分のうち、上流側流路本体部61aの上側部分が、鉛直方向Zに沿って視てインバータ部51と重なる。
【0041】
本実施形態において上流側冷却流路61のうち仕切り壁部10dに設けられる部分は、ステータ収容部14とインバータ部51との径方向の間において単一層の流路である。そのため、複数層の流路が径方向に並んで設けられる場合に比べて、上流側冷却流路61の構成を簡単化できる。また、仕切り壁部10dの径方向の寸法を小さくしやすく、モータ1を小型化しやすい。
【0042】
本明細書において「ある流路が、ある部分において単一層の流路である」とは、ある部分内において、ある連続した流路が1つのみ設けられることを含む。例えば、全体として連続した同じ流路であっても、ある部分内において非連続となる2つの部分が設けられる場合には、ある部分において複数層の流路が設けられた状態である。本実施形態では、ステータ収容部14とインバータ部51との径方向の間に設けられる上流側冷却流路61の部分は、連続した1つの部分のみである。
【0043】
図4に示すように、上流側冷却流路61の幅方向Xの最大寸法は、第2回路基板51bの幅方向Xの寸法およびコンデンサ部52の幅方向Xの寸法よりも大きい。また、図示は省略するが、上流側冷却流路61の幅方向Xの最大寸法は、第1回路基板51aの幅方向Xの寸法よりも大きい。そのため、上流側冷却流路61によって、インバータ部51をより冷却しやすい。上流側冷却流路61の幅方向Xの最大寸法とは、上流側冷却流路61において最も幅方向一方側に位置する部分と、上流側冷却流路61において最も幅方向他方側に位置する部分と、の間の幅方向Xの距離である。本実施形態において上流側冷却流路61の幅方向Xの最大寸法は、円弧状の上流側冷却流路61の外径に相当する。
【0044】
図5に示すように、下流側冷却流路62は、上流側冷却流路61の軸方向他方側に配置される。下流側冷却流路62の形状は、上流側冷却流路61の形状と同様である。下流側冷却流路62は、下流側流路本体部62aと、流出部62bと、流出口62cと、を有する。下流側流路本体部62aの形状は、上流側流路本体部61aの形状と同様である。
【0045】
流出部62bは、下流側流路本体部62aに繋がる。より詳細には、流出部62bは、下流側流路本体部62aの周方向一方側の端部に繋がる。流出部62bは、下流側流路本体部62aの周方向一方側の端部から上側に延びる。流出部62bの軸方向Yの寸法は、下流側流路本体部62aの軸方向Yの寸法と同じである。流出部62bの幅方向Xの寸法は、下流側流路本体部62aの径方向の寸法よりも大きい。流出部62bの上端部は、下流側流路本体部62aの上端部よりも下側に位置する。流出部62bの形状は、流入部61bの形状と同様である。流出部62bは、下流側冷却流路62の周方向一方側の端部である。
【0046】
流出口62cは、流出部62bに設けられる。すなわち、流出口62cは、下流側冷却流路62の周方向一方側の端部に位置する。流出口62cは、流出部62bにおける軸方向Yおよび鉛直方向Zの中央部分から幅方向他方側に突出する。流出口62cからは、冷媒が流出される。流出口62cの幅方向Xと直交する断面形状は、例えば、円形状である。流出口62cの形状は、流入口61cの形状と同様である。流入口61cと流出口62cとは、鉛直方向Zにおいて同じ位置に配置される。流入口61cと流出口62cとは、軸方向Yに間隔を空けて配置される。
【0047】
流出口62cには、
図1に示す流出パイプ17が連結される。流出パイプ17は、ハウジング10に設けられた孔部に挿し込まれる。流出パイプ17は、ハウジング10から幅方向他方側に突出する。流入パイプ16と流出パイプ17とは、鉛直方向Zにおいて同じ位置に配置される。流入パイプ16と流出パイプ17とは、軸方向Yに間隔を空けて配置される。
【0048】
図2に示すように、下流側冷却流路62の少なくとも一部は、仕切り壁部10dに設けられる。したがって、下流側冷却流路62を流れる冷媒によって、仕切り壁部10dで仕切られるステータ収容部14とインバータ収容部15とを冷却することができ、ステータ収容部14に収容されるステータ30およびインバータ収容部15に収容されるインバータ部51を冷却することができる。
【0049】
本実施形態では、下流側流路本体部62aの上側部分および流出部62bが、仕切り壁部10dに設けられる。鉛直方向Zに沿って視て、下流側冷却流路62のうち仕切り壁部10dに設けられる部分は、インバータ部51と重なる部分と、コンデンサ部52と重なる部分と、を有する。そのため、下流側冷却流路62に流れる冷媒によって、ステータ30とインバータ部51とコンデンサ部52とを冷却することができる。したがって、1つの下流側冷却流路62によって3つの部分を同時に冷却することができ、冷却流路の数を少なくしつつ、効率的に冷却を行うことができる。そのため、本実施形態によれば、冷却流路によるステータ30、インバータ部51およびコンデンサ部52の冷却効率を向上できる構造を有するモータ1が得られる。
【0050】
また、上述したように、本実施形態においてコンデンサ部52は、仕切り壁部10dに接触する。そのため、コンデンサ部52の熱が、仕切り壁部10dを伝って下流側冷却流路62内の冷媒に放出されやすい。したがって、下流側冷却流路62によってコンデンサ部52をより冷却しやすい。
【0051】
本実施形態において下流側冷却流路62のうち仕切り壁部10dに設けられる部分は、ステータ収容部14とインバータ部51との径方向の間において単一層の流路であり、かつ、ステータ収容部14とコンデンサ部52との径方向の間において単一層の流路である。すなわち、ステータ収容部14とインバータ部51との径方向の間に設けられる下流側冷却流路62の部分は、連続した1つの部分のみである。また、ステータ収容部14とコンデンサ部52との径方向の間に設けられる下流側冷却流路62の部分は、連続した1つの部分のみである。そのため、複数層の流路が径方向に並んで設けられる場合に比べて、下流側冷却流路62の構成を簡単化できる。また、仕切り壁部10dの径方向の寸法を小さくしやすく、モータ1を小型化しやすい。
【0052】
図4に示すように、下流側冷却流路62の幅方向Xの最大寸法は、第2回路基板51bの幅方向Xの寸法およびコンデンサ部52の幅方向Xの寸法よりも大きい。また、図示は省略するが、下流側冷却流路62の幅方向Xの最大寸法は、第1回路基板51aの幅方向Xの寸法よりも大きい。そのため、下流側冷却流路62によって、インバータ部51およびコンデンサ部52をより冷却しやすい。下流側冷却流路62の幅方向Xの最大寸法とは、下流側冷却流路62において最も幅方向一方側に位置する部分と、下流側冷却流路62において最も幅方向他方側に位置する部分と、の間の幅方向Xの距離である。本実施形態において下流側冷却流路62の幅方向Xの最大寸法は、円弧状の下流側冷却流路62の外径に相当する。下流側冷却流路62の幅方向Xの最大寸法は、例えば、上流側冷却流路61の幅方向Xの最大寸法と同じである。
【0053】
上流側冷却流路61の軸方向Yの寸法と下流側冷却流路62の軸方向Yの寸法とは、互いに同じである。すなわち、複数の冷却流路の軸方向Yの寸法は、互いに同じである。上流側冷却流路61の径方向の寸法と下流側冷却流路62の径方向の寸法とは、互いに同じである。すなわち、複数の冷却流路の径方向の寸法は、互いに同じである。
【0054】
なお、各冷却流路の軸方向Yの寸法および径方向の寸法の比較は、例えば、各流路本体部同士の比較を含む。すなわち、上流側流路本体部61aの軸方向Yの寸法と下流側流路本体部62aの軸方向Yの寸法とは、互いに同じである。上流側流路本体部61aの径方向の寸法と下流側流路本体部62aの径方向の寸法とは、互いに同じである。
【0055】
図6に示すように、仕切り壁部10dのうち冷却流路とインバータ収容部15との径方向の間に位置する部分10jにおいて、冷却流路とインバータ部51との径方向の間に位置する部分10iは、冷却流路とコンデンサ部52との径方向の間に位置する部分10hよりも、径方向の寸法が小さい。すなわち、部分10iの径方向の寸法L1は、部分10hの径方向の寸法L3よりも小さい。これにより、冷却流路をインバータ部51に近づけることができ、インバータ部51をより冷却しやすい。
【0056】
本実施形態において部分10iは、仕切り壁部10dのうち上流側冷却流路61とインバータ部51との径方向の間に位置する部分と、仕切り壁部10dのうち下流側冷却流路62とインバータ部51との径方向の間に位置する部分と、を含む。部分10hは、仕切り壁部10dのうち下流側冷却流路62とコンデンサ部52との径方向の間に位置する部分を含む。
【0057】
仕切り壁部10dのうち冷却流路とインバータ収容部15との径方向の間に位置する部分10jは、仕切り壁部10dのうち冷却流路とステータ収容部14との径方向の間に位置する部分10kよりも、径方向の寸法が小さい。すなわち、部分10iの径方向の寸法L1および部分10hの径方向の寸法L3は、部分10kの径方向の寸法L2よりも小さい。これにより、冷却流路をステータ収容部14よりもインバータ収容部15に近づけることができ、インバータ収容部15をより冷却しやすい。また、寸法L2を比較的大きくしやすいため、周壁部10bのうちステータコア31と接する部分の径方向の寸法を大きくしやすい。これにより、周壁部10bにおけるステータコア31を保持する強度を比較的大きくできる。以上のように、寸法L1と寸法L2と寸法L3とは、L1<L3<L2の関係を満たす。
【0058】
なお、上述した寸法L1と寸法L2と寸法L3との大小関係は、少なくとも各寸法の最小値同士の間において成り立てばよい。例えば、本実施形態では、寸法L1および寸法L2は周方向θの位置によって異なるが、寸法L1の最小値と寸法L2の最小値とを寸法L3と比べた際に、上述したL1<L3<L2の関係を満たせばよい。本実施形態では、寸法L1と寸法L2と寸法L3との大小関係は、仕切り壁部10dにおける幅方向Xの中央部分において、L1<L3<L2の関係を満たす。
【0059】
図5に示すように、接続流路部63は、軸方向Yに隣り合う冷却流路同士を繋ぐ。すなわち、本実施形態では、接続流路部63は、上流側冷却流路61と下流側冷却流路62とを繋ぐ。より詳細には、接続流路部63は、上流側冷却流路61の周方向他方側の端部と、下流側冷却流路62の周方向他方側の端部と、を繋ぐ。
【0060】
これにより、上流側冷却流路61内の冷媒が接続流路部63を介して下流側冷却流路62内に流れる。より詳細には、流入パイプ16から流入口61cを介して上流側冷却流路61に流入した冷媒は、流入部61bから上流側流路本体部61aおよび接続流路部63を介して下流側冷却流路62に流入する。すなわち、上流側冷却流路61内を流れる冷媒は、周方向一方側から周方向他方側に向かって流れ、かつ、接続流路部63を介して下流側冷却流路62に流入する。接続流路部63内を流れる冷媒は、軸方向他方側から軸方向一方側に向かって流れる。
【0061】
下流側冷却流路62内を流れる冷媒は、下流側流路本体部62a、流出部62bおよび流出口62cをこの順に介して、周方向他方側から周方向一方側に向かって流れる。このように、軸方向Yに隣り合う冷却流路同士においては、冷媒の流れる周方向θの向きが互いに逆向きになる。下流側冷却流路62内の冷媒は、流出口62cから流出パイプ17を介して、ハウジング10の外部に流出する。
【0062】
本実施形態によれば、冷却流路が複数設けられるため、冷却流路内を流れる冷媒の量を多くできる。これにより、ステータ30とインバータ部51とをより冷却しやすい。また、複数の冷却流路が接続流路部63によって接続されるため、流入口61cと流出口62cとをそれぞれ1つずつ設けることで複数の冷却流路に冷媒を流すことができ、簡便である。また、周方向θに延びる冷却流路を軸方向Yに並べてそれぞれ繋ぐため、例えば軸方向Yに延びる冷却流路を周方向θに並べてそれぞれ繋ぐような場合に比べて、各冷却流路および接続流路部63を作製しやすい。
【0063】
また、複数の冷却流路を軸方向Yに並べて配置することで、各冷却流路の軸方向Yの寸法を小さくして各冷却流路の流路断面積を小さくしつつ、複数の冷却流路全体としては、軸方向Yの寸法を確保できる。これにより、各冷却流路内を流れる冷媒の流速を比較的大きくして、冷媒によるステータ30およびインバータ部51の冷却効率を向上できる。また、複数の冷却流路全体としては軸方向Yの寸法を確保できるため、ステータ収容部14およびインバータ収容部15の比較的広範囲を冷却でき、ステータ30およびインバータ部51をより冷却できる。
【0064】
また、各冷却流路の軸方向Yの寸法を比較的小さくできるため、各冷却流路内において冷媒の流れが淀むことを抑制できる。これにより、周方向θの位置によって各冷却流路内の冷媒の流速が変化することを抑制でき、周方向θにおいて冷媒による冷却度合を均一化しやすい。したがって、ステータ30およびインバータ部51の冷却効率をより向上できる。
【0065】
以上により、本実施形態によれば、冷却流路によるステータ30およびインバータ部51の冷却効率を向上できる構造を有するモータ1が得られる。
【0066】
また、本実施形態によれば、接続流路部63は、上流側冷却流路61の周方向他方側の端部と、下流側冷却流路62の周方向一方側の端部と、を繋ぐ。そのため、上流側冷却流路61および下流側冷却流路62において、冷媒が滞留する部分が生じることを抑制できる。これにより、各冷却流路内において冷媒の流れが淀むことをより抑制でき、冷却効率をより向上できる。
【0067】
また、本実施形態によれば、冷却流路は、上流側冷却流路61と下流側冷却流路62との2つ設けられ、各冷却流路の周方向一方側の端部に流入口61cおよび流出口62cがそれぞれ位置する。すなわち、上流側冷却流路61と下流側冷却流路62とのそれぞれにおいて、周方向θの同じ側の端部に、流入口61cまたは流出口62cが設けられる。そのため、流入パイプ16および流出パイプ17をハウジング10における同一の側面に設けることができ、モータ1に対して冷媒を循環させるポンプ等を接続することが容易である。また、冷却流路の数を2つとすることで、冷却流路の数が比較的多くなる場合に比べて、複数の冷却流路の作製を容易にできる。
【0068】
また、本実施形態によれば、鉛直方向Zに沿って視て、上流側冷却流路61のうち仕切り壁部10dに設けられる部分は、インバータ部51と重なる部分を有し、かつ、下流側冷却流路62のうち仕切り壁部10dに設けられる部分は、コンデンサ部52と重なる部分を有する。そして、流入口61cから流入された冷媒は、下流側冷却流路62よりも先に上流側冷却流路61を流れる。そのため、流入口61cから流入された比較的温度が低い冷媒によってインバータ部51を冷却できる。これにより、インバータ部51をより冷却しやすい。インバータ部51は、特に発熱が大きくなりやすいため、インバータ部51を冷却しやすいことで、より好適にモータ1の冷却を行える。
【0069】
また、本実施形態によれば、各冷却流路は、中心角φが180°よりも大きい円弧状である。そのため、冷却流路によってステータ30の周りを囲みやすく、ステータ30をより冷却することができる。
【0070】
また、本実施形態によれば、複数の冷却流路の軸方向Yの寸法は、互いに同じである。そのため、複数の冷却流路を作製しやすい。また、各冷却流路の流路断面積を同じにしやすい。これにより、各冷却流路内において冷媒の流速を同じにしやすく、各冷却流路による冷却度合を均一化しやすい。本実施形態では、上流側冷却流路61の軸方向Yの寸法と下流側冷却流路62の軸方向Yの寸法とは、互いに同じである。そのため、上流側冷却流路61および下流側冷却流路62を作製しやすく、上流側冷却流路61による冷却度合と下流側冷却流路62による冷却度合とを同じにしやすい。
【0071】
また、本実施形態によれば、複数の冷却流路の径方向の寸法は、互いに同じである。そのため、複数の冷却流路を作製しやすい。また、各冷却流路の流路断面積を同じにしやすい。これにより、各冷却流路内において冷媒の流速をより同じにしやすく、各冷却流路による冷却度合をより均一化しやすい。
【0072】
図5に示すように、接続流路部63は、軸方向Yに延びる。接続流路部63の軸方向一方側の端部は、上流側冷却流路61の軸方向一方側の端部と軸方向Yにおいて同じ位置にある。接続流路部63の軸方向他方側の端部は、下流側冷却流路62の軸方向他方側の端部と軸方向Yにおいて同じ位置にある。
【0073】
図3に示すように、接続流路部63の径方向の寸法は、冷却流路の径方向の寸法、すなわち上流側冷却流路61の径方向の寸法および下流側冷却流路62の径方向の寸法よりも大きい。そのため、接続流路部63における流路断面積を上流側冷却流路61の流路断面積および下流側冷却流路62の流路断面積よりも大きくしやすい。これにより、接続流路部63から下流側冷却流路62に冷媒が流れる際に、流路断面積が小さくなることで、冷媒の流速を向上させることができる。これにより、下流側冷却流路62内において冷媒の流速を大きくしやすく、下流側冷却流路62による冷却効率をより向上できる。また、上流側冷却流路61から接続流路部63に流入した冷媒の圧力損失を低減できる。
【0074】
図5に示すように、接続流路部63の径方向の寸法は、冷却流路の軸方向Yの寸法、すなわち、上流側冷却流路61の軸方向Yの寸法および下流側冷却流路62の軸方向Yの寸法よりも小さい。これにより、接続流路部63の径方向の寸法が大きくなり過ぎることを抑制できる。したがって、接続流路部63内において冷媒の流れが淀むことを抑制できる。
【0075】
接続流路部63の径方向の寸法は、周方向θの位置によって異なる。接続流路部63の径方向の寸法は、接続流路部63における周方向θの中央部分において最も大きく、中央部分から周方向θの両側に離れるに従って小さくなる。接続流路部63の周方向θの中央部分および接続流路部63の周方向他方側の端部は、丸みを帯びる。
【0076】
図3に示すように、接続流路部63は、仕切り壁部10dに設けられる。そのため、接続流路部63を流れる冷媒によっても、ステータ30およびインバータ部51を冷却することができる。したがって、ステータ30およびインバータ部51をより冷却できる。また、本実施形態のように接続流路部63の流路断面積が、上流側冷却流路61の流路断面積および下流側冷却流路62の流路断面積よりも大きい場合、接続流路部63を流れる冷媒の量を多くでき、ステータ30およびインバータ部51をより冷却しやすい。
【0077】
本実施形態では、接続流路部63は、仕切り壁部10dのうち幅方向他方側寄りの部分に設けられる。ここで、上述したように、仕切り壁部10dの鉛直方向Zの寸法は、幅方向Xにおいて中心軸Jから離れる程、大きくなる。そのため、仕切り壁部10dのうち幅方向他方側寄りの部分は、仕切り壁部10dの幅方向Xの中央部分よりも鉛直方向Zの寸法が大きい。したがって、本実施形態のように接続流路部63の径方向の寸法が冷却流路の径方向の寸法よりも大きい場合であっても、接続流路部63を仕切り壁部10dに設けやすい。
【0078】
本実施形態において冷却部60は、ハウジング10が砂型鋳造によって作製される際に、冷却部60の形状を有する砂型の部分によって成形される。
図1および
図2に示すように、ハウジング10は、冷却部60を成形する砂型を排出するための複数の排出孔部19を有する。砂型鋳造によってハウジング10を製造した後、排出孔部19から冷却部60を成形する砂型を排出する。排出孔部19は、冷却部60と繋がる。排出孔部19には栓体80が圧入される。栓体80によって排出孔部19が閉塞され、冷却部60内の冷媒がハウジング10の外部に漏れることを抑制できる。
【0079】
(変形例)
図7に示すように、本変形例のハウジング110において、仕切り壁部110dのうち冷却流路とインバータ収容部15との径方向の間に位置する部分110jにおいて、冷却流路とコンデンサ部52との径方向の間に位置する部分110hは、冷却流路とインバータ部51との径方向の間に位置する部分110iよりも、径方向の寸法が小さい。すなわち、部分110hの径方向の寸法L6は、部分110iの径方向の寸法L4よりも小さい。これにより、冷却流路をコンデンサ部52に近づけやすく、コンデンサ部52をより冷却しやすい。
【0080】
本変形例において部分110iは、仕切り壁部110dのうち上流側冷却流路161とインバータ部51との径方向の間に位置する部分と、仕切り壁部110dのうち下流側冷却流路162とインバータ部51との径方向の間に位置する部分と、を含む。部分110hは、仕切り壁部110dのうち下流側冷却流路162とコンデンサ部52との径方向の間に位置する部分を含む。本変形例においてコンデンサ部52が接触する仕切り壁部110dの上面は、インバータ部51が設置される仕切り壁部110dの上面よりも下側に位置する。
【0081】
仕切り壁部110dのうち冷却流路とステータ収容部14との径方向の間に位置する部分110kは、仕切り壁部110dのうち冷却流路とインバータ収容部15との径方向の間に位置する部分110jよりも、径方向の寸法が小さい。すなわち、部分110kの径方向の寸法L5は、部分110iの径方向の寸法L4および部分110hの径方向の寸法L6よりも小さい。これにより、冷却流路をインバータ収容部15よりもステータ収容部14に近づけることができ、ステータ収容部14をより冷却しやすい。このように、寸法L4と寸法L5と寸法L6とは、L5<L6<L4の関係を満たす。
【0082】
本発明は上述の実施形態に限られず、他の構成を採用することもできる。冷却流路は、中心角φが180°以下の円弧状であってもよい。冷却流路の数は、第1冷却流路としての下流側冷却流路が設けられるならば、特に限定されない。第2冷却流路としての上流側冷却流路は、設けられなくてもよい。冷却流路は、第1冷却流路としての下流側冷却流路のみ設けられてもよい。複数の冷却流路の径方向の寸法は、互いに異なってもよい。複数の冷却流路の軸方向Yの寸法は、互いに異なってもよい。複数の冷却流路の形状は、互いに異なってもよい。冷却流路のうち仕切り壁部に設けられる部分は、鉛直方向Zに沿って視て、インバータ部と重ならなくてもよいし、コンデンサ部と重ならなくてもよい。
【0083】
接続流路部は、軸方向Yに隣り合う冷却流路同士を繋ぐならば、特に限定されない。接続流路部の径方向の寸法は、冷却流路の径方向の寸法と同じであってもよいし、冷却流路の径方向の寸法より小さくてもよい。接続流路部は、冷却流路における周方向θの中間部同士を繋いでもよい。接続流路部は、周壁部における仕切り壁部以外の部分に設けられてもよい。接続流路部は、複数設けられてもよい。また、接続流路部は設けられなくてもよい。
【0084】
上述した実施形態のモータの用途は、特に限定されない。上述した実施形態のモータは、例えば、車両に搭載される。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
【0085】
本願は、2017年7月28日に出願された日本特許出願である特願2017-147109号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。
【符号の説明】
【0086】
1…モータ、10,110…ハウジング、10b…周壁部、10d,110d…仕切り壁部、14…ステータ収容部、15…インバータ収容部、20…ロータ、21…モータシャフト、30…ステータ、51…インバータ部、52…コンデンサ部、61,161…上流側冷却流路(第2冷却流路)、61c…流入口、62,162…下流側冷却流路(第1冷却流路)、62c…流出口、63…接続流路部、J…中心軸、Y…軸方向、Z…鉛直方向(所定方向)、θ…周方向