(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】光合成阻害物質混入検出装置及び光合成阻害物質混入検出方法
(51)【国際特許分類】
C12M 1/34 20060101AFI20221213BHJP
G01N 21/64 20060101ALI20221213BHJP
G01N 21/05 20060101ALI20221213BHJP
【FI】
C12M1/34 B
G01N21/64 Z
G01N21/05
(21)【出願番号】P 2019026026
(22)【出願日】2019-02-15
【審査請求日】2021-12-23
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成26年度から平成30年度 内閣府総合科学技術・イノベーション会議により創設された「戦略的イノベーション創造プログラム(次世代海洋資源調査技術)」事業、国立研究開発法人国立環境研究所における「海洋生態系観測と変動予測手法の開発」、産業技術力強化法、第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】501273886
【氏名又は名称】国立研究開発法人国立環境研究所
(73)【特許権者】
【識別番号】504194878
【氏名又は名称】国立研究開発法人海洋研究開発機構
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100192773
【氏名又は名称】土屋 亮
(74)【代理人】
【識別番号】100181722
【氏名又は名称】春田 洋孝
(74)【代理人】
【識別番号】100178847
【氏名又は名称】服部 映美
(72)【発明者】
【氏名】越川 海
(72)【発明者】
【氏名】河地 正伸
(72)【発明者】
【氏名】淵田 茂司
(72)【発明者】
【氏名】大田 修平
(72)【発明者】
【氏名】三輪 哲也
(72)【発明者】
【氏名】古島 靖夫
(72)【発明者】
【氏名】近藤 俊祐
【審査官】太田 雄三
(56)【参考文献】
【文献】国際公開第2005/062027(WO,A1)
【文献】特開2015-8676(JP,A)
【文献】米国特許出願公開第2012/0184440(US,A1)
【文献】特表2004-533853(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C12M 1/00
G01N 21/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
被検液を採取する採取装置と、
前記採取装置により採取された前記被検液を植物プランクトンを含有する状態にて貯留する遮光性の前処理槽と、
前記前処理槽に貯留された前記被検液中の植物プランクトンの浮遊状態を維持するための撹拌装置と、
前記前処理槽に貯留された前記被検液中の前記植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射する照射光源と、
前記前処理槽から排出させた前記被検液を流入させる排液管路と、
前記排液管路に設けられ、前記前処理槽から排出された前記被検液中の前記植物プランクトンの蛍光量子収率を計測する蛍光量子収率測定機と、を有する、
光合成阻害物質混入検出装置。
【請求項2】
前記照射光源から前記前処理槽に貯留された前記被検液への弱光照射の開始から予め設定した時間が経過した時点で、前記照射光源から前記前処理槽内の前記被検液への弱光照射が継続された状態で前記被検液を前記前処理槽から予め設定した排液動作パターンで排出する排液動作を開始し、排液完了後に駆動を停止する排液装置をさらに有し、
前記照射光源は前記前処理槽からの前記被検液の排液完了まで前記前処理槽内の前記被検液への弱光照射を継続する、請求項1に記載の光合成阻害物質混入検出装置。
【請求項3】
複数の前記前処理槽のそれぞれに接続して設けられ、前記採取装置によって採取された前記被検液を前記採取装置から前記前処理槽に導く給液管路と、複数の前記前処理槽毎の前記給液管路のそれぞれに設けられた給液側開閉弁とをさらに有し、
前記排液管路は、複数の前記前処理槽毎に設けられた槽毎排液管と、各槽毎排液管の下流端が接続された排液合流管路とを有し、前記蛍光量子収率測定機は前記排液合流管路に設けられ、
前記排液装置は、前記槽毎排液管のそれぞれに設けられた排液側開閉弁の開閉ならびに前記排液合流管路に設けられた排出ポンプの駆動及び停止の組み合わせ動作により前記前処理槽の前記被検液の排液制御を実現する装置であり、
開閉動作を行う前記排液側開閉弁の切り換えによって前記被検液を排出させる前記前処理槽を複数の前記前処理槽から選択される1つに変更可能に構成され、
複数の前記前処理槽から選択された1つにおける貯留完了から排液完了までに、排液対象の前記前処理槽以外の前記前処理槽のそれぞれに対応する前記給液管路から選択される1以上について前記給液側開閉弁を開放し、開放状態の前記給液側開閉弁が位置する前記給液管路を介して前記採取装置から前記前処理槽への前記被検液の供給を開始する請求項2に記載の光合成阻害物質混入検出装置。
【請求項4】
前記蛍光量子収率測定機により測定された前記蛍光量子収率が予め設定した値よりも低くなったときに警報及びデータ情報を出力する警報出力装置をさらに有する請求項1~3のいずれか1項に記載の光合成阻害物質混入検出装置。
【請求項5】
前記排液管路から分岐され1または複数の全ての前記前処理槽から排出された前記被検液が前記排液流路を介して流入可能な分岐排出管路と、前記分岐排出管路に設けられ、前記蛍光量子収率測定機により測定された前記蛍光量子収率が予め設定した値よりも低くなったときに前記分岐排出管路内を流れる前記被検液を前記分岐排出管路から保管容器に流入させる試料分取装置とをさらに有する請求項1~4のいずれか1項に記載の光合成阻害物質混入検出装置。
【請求項6】
遮光性の前処理槽内の被検液に、被検液中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射しながら、前記被検液を、予め設定した時間で予め設定した貯留量まで給液する給液工程と、
前記被検液が予め設定した貯留量に達した時に前記前処理槽への被検液の給液を停止し、且つ給液停止時刻を始点とする予め設定した時間の間、前記給液工程と同じ水中光量子束密度の光を照射する貯留弱光照射工程と、
前記貯留弱光照射工程の完了後に、前記貯留弱光照射工程と同じ水中光量子束密度の光を前記前処理槽内に照射しながら、前記前処理槽から前記被検液を、排液管路を通じて排出させ、且つ前記被検液の前記前処理槽からの排出期間に排液管路への流入を停止させたときに、前記排液管路内に滞留した前記被検液に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定工程と、を有する、
光合成阻害物質混入検出方法。
【請求項7】
前記蛍光量子収率測定工程が、前記前処理槽から前記被検液の排液管路を通じた排液動作と、排出を停止させたときに前記排液管路内に滞留した前記被検液への測定光及び飽和パルス光の順次照射による蛍光量子収率の計測動作とを、前記前処理槽に前記被検液が残存する期間に2回以上反復するものである、請求項6に記載の光合成阻害物質混入検出方法。
【請求項8】
前記給液工程から前記蛍光量子収率測定工程までの一連の工程を、1または複数の前記前処理槽を組み合わせて反復実施し、異なる時間に採取された複数の被検液の蛍光量子収率の経時変化を測定する、請求項6または7のいずれか1項に記載の光合成阻害物質混入検出方法。
【請求項9】
予め設定した蛍光量子収率、または、被検液中の植物プランクトンの光合成に対して阻害影響を有する光合成阻害物質が含まれないか若しくは阻害影響を及ぼす濃度未満で含まれる複数の被検液の蛍光量子収率の変動幅の下限未満の蛍光量子収率を基準として、別の被検液について前記光合成阻害物質が阻害影響を及ぼす濃度以上で含まれた場合に生じる蛍光量子収率の低下を判定する、請求項6~8のいずれか1項に記載の光合成阻害物質混入検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光合成阻害物質混入検出装置及び光合成阻害物質混入検出方法に関する。
【背景技術】
【0002】
近年、商業化に向けた海底鉱物資源の開発が世界中で行われている。発明者らは、調査船(かいれい、ちきゅう、かいめい)及び実験室における試験により、海底熱水鉱床の硫化鉱物は、海洋表層のような高温且つ酸化的な条件において海水との反応性が上昇し、多様な重金属元素が溶出すること、並びにppb~ppmレベルの重金属元素を含む溶出液は、植物プランクトンの現存量低下や生長阻害をもたらすことを明らかにした。
この結果から、将来の商業的な海底鉱物資源開発においては、深海に比べて高温且つ酸化的環境である海洋表層への洋上プラントからの鉱石粒子や溶出重金属の漏洩を最小化するための対策を講じるとともに、洋上プラントからの漏洩の有無を継続監視するための表層海水の水質モニタリングシステムを導入していくべきであると考えられた。
【0003】
発明者らは、洋上プラントにおいて実施可能な化学分析による手法について検討を行ったが、多くの化学分析法では、海水中の重金属の定量を行うためには脱塩操作などの時間を要する前処理が必要であり、リアルタイムな計測は容易ではないことが整理された。
また、多元素の同時分析には誘導結合プラズマ質量分析計や誘導結合プラズマ分光分析計などの高価で大型な機器が必要であることなどから、洋上プラントにおける水質モニタリング機器として適当ではないと考えられた。
【0004】
ところで、植物プランクトンが含有するクロロフィルは、光を照射すると、蛍光を発する。そして、特許文献1には、植物プランクトンのクロロフィルが発する蛍光のうち、最大蛍光強度、最低蛍光強度等を測定することにより、植物プランクトンの基礎生産力を推定する方法が記載されている。
【0005】
また、非特許文献1には、植物及び植物プランクトンの最大蛍光強度、最低蛍光強度に基づいて、蛍光強度変化量や蛍光量子収率を算出する方法が記載されている。
【0006】
また、非特許文献2には、光合成阻害を生じさせる濃度の重金属の混入によって、植物及び植物プランクトンの蛍光強度変化量や蛍光量子収率は低下することが記載されている。
【0007】
さらに、非特許文献3には、イルガロールやジウロン等の植物の光合成を直接阻害する農薬によって、海洋植物プランクトンの蛍光量子収率が低下することが記載されている。
【0008】
海洋の表層水には、存在量の多寡はあるものの、植物プランクトンは常に存在する。また、特許論文1や非特許論文1に記載されているように、蛍光強度変化量や蛍光量子収率は、植物プランクトンを含む試水を当該計測機の光学センサー部に保持し、適切な強度のクロロフィル励起光をパルス照射することで数秒以内に計測可能である。
【0009】
洋上プラントからの重金属の漏洩発生は偶発的であり、プラント周辺の表層海水への光合成阻害を生じさせる濃度の重金属混入には突発性があると考えられる。表層海水への重金属混入が発生すると、その海水の蛍光強度変化量や蛍光量子収率は、平時の重金属非混入の海水のそれらに比較して、低下すると考えられる。
【先行技術文献】
【特許文献】
【0010】
【非特許文献】
【0011】
【文献】Schreiber, U., 2004. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview.
【文献】Joshi, M.K., Mohanty, P., 2004. Chlorophyll a Fluorescence as a Probe of Heavy Metal Ion Toxicity in Plants, In: Papageorgiou, G.C., Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Netherlands, Dordrecht, pp. 637-661.
【文献】Sjollema, S.B., MartinezGarcia, G., van der Geest, H.G., Kraak, M.H.S., Booij, P., Vethaak, A.D., Admiraal, W., 2014. Hazard and risk of herbicides for marine microalgae. Environmental Pollution 187, 106-111.
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、植物プランクトンの蛍光強度変化量や蛍光量子収率は、植物プランクトンが採取時あるいは採取前に浴びていた光の強さ、すなわち、水中光量子束密度に大きく影響される。とくに、海洋表層のように、水中光量子束密度が日周及び日間変動する環境から採取された植物プランクトンの蛍光強度変化量や蛍光量子収率の自然変動は大きく、それらの自然変動との光合成阻害物質の混入によって生じる変化とを区別し、光合成阻害物質の混入の有無を判定することは困難であった。
【0013】
そこで、本発明は、表層海水等から経時的に採取した植物プランクトンの蛍光量子収率を、その自然変動を抑制する手法を講じた上で計測し、海水等の被検液中への光合成阻害物質の混入を判定し、さらに光合成阻害物質の混入が疑われる被検液を保存容器に分取する、安価かつ小型の光合成阻害物質混入検出装置、及び、簡便な光合成阻害物質混入検出方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、以下の態様を含む。
[1]被検液を採取する採取装置と、前記採取装置により採取された前記被検液を植物プランクトンを含有する状態にて貯留する遮光性の前処理槽と、前記前処理槽に貯留された前記被検液中の植物プランクトンの浮遊状態を維持するための撹拌装置と、前記前処理槽に貯留された前記被検液中の前記植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射する照射光源と、前記前処理槽から排出させた前記被検液を流入させる排液管路と、前記排液管路に設けられ、前記前処理槽から排出された前記被検液中の前記植物プランクトンの蛍光量子収率を計測する蛍光量子収率測定機と、を有する、光合成阻害物質混入検出装置。
[2]前記照射光源から前記前処理槽に貯留された前記被検液への弱光照射の開始から予め設定した時間が経過した時点で、前記照射光源から前記前処理槽内の前記被検液への弱光照射が継続された状態で前記被検液を前記前処理槽から予め設定した排液動作パターンで排出する排液動作を開始し、排液完了後に駆動を停止する排液装置をさらに有し、前記照射光源は前記前処理槽からの前記被検液の排液完了まで前記前処理槽内の前記被検液への弱光照射を継続する、[1]に記載の光合成阻害物質混入検出装置。
[3]複数の前記前処理槽のそれぞれに接続して設けられ、前記採取装置によって採取された前記被検液を前記採取装置から前記前処理槽に導く給液管路と、複数の前記前処理槽毎の前記給液管路のそれぞれに設けられた給液側開閉弁とをさらに有し、前記排液管路は、複数の前記前処理槽毎に設けられた槽毎排液管と、各槽毎排液管の下流端が接続された排液合流管路とを有し、前記蛍光量子収率測定機は前記排液合流管路に設けられ、前記排液装置は、前記槽毎排液管のそれぞれに設けられた排液側開閉弁の開閉ならびに前記排液合流管路に設けられた排出ポンプの駆動及び停止の組み合わせ動作により前記前処理槽の前記被検液の排液制御を実現する装置であり、開閉動作を行う前記排液側開閉弁の切り換えによって前記被検液を排出させる前記前処理槽を複数の前記前処理槽から選択される1つに変更可能に構成され、複数の前記前処理槽から選択された1つにおける貯留完了から排液完了までに、排液対象の前記前処理槽以外の前記前処理槽のそれぞれに対応する前記給液管路から選択される1以上について前記給液側開閉弁を開放し、開放状態の前記給液側開閉弁が位置する前記給液管路を介して前記採取装置から前記前処理槽への前記被検液の供給を開始する[2]に記載の光合成阻害物質混入検出装置。
[4]前記蛍光量子収率測定機により測定された前記蛍光量子収率が予め設定した値よりも低くなったときに警報及びデータ情報を出力する警報出力装置をさらに有する[1]~[3]のいずれかに記載の光合成阻害物質混入検出装置。
[5]前記排液管路から分岐され1または複数の全ての前記前処理槽から排出された前記被検液が前記排液流路を介して流入可能な分岐排出管路と、前記分岐排出管路に設けられ、前記蛍光量子収率測定機により測定された前記蛍光量子収率が予め設定した値よりも低くなったときに前記分岐排出管路内を流れる前記被検液を前記分岐排出管路から保管容器に流入させる試料分取装置とをさらに有する[1]~[4]のいずれかに記載の光合成阻害物質混入検出装置。
[6]遮光性の前処理槽内の被検液に、被検液中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射しながら、前記被検液を、予め設定した時間で予め設定した貯留量まで給液する給液工程と、前記被検液が予め設定した貯留量に達した時に前記前処理槽への被検液の給液を停止し、且つ給液停止時刻を始点とする予め設定した時間の間、前記給液工程と同じ水中光量子束密度の光を照射する貯留弱光照射工程と、前記貯留弱光照射工程の完了後に、前記貯留弱光照射工程と同じ水中光量子束密度の光を前記前処理槽内に照射しながら、前記前処理槽から前記被検液を、排液管路を通じて排出させ、且つ前記被検液の前記前処理槽からの排出期間に排液管路への流入を停止させたときに、前記排液管路内に滞留した前記被検液に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定工程と、を有する、光合成阻害物質混入検出方法。
[7]前記蛍光量子収率測定工程が、前記前処理槽から前記被検液の排液管路を通じた排液動作と、排出を停止させたときに前記排液管路内に滞留した前記被検液への測定光及び飽和パルス光の順次照射による蛍光量子収率の計測動作とを、前記前処理槽に前記被検液が残存する期間に2回以上反復するものである、[6]に記載の光合成阻害物質混入検出方法。
[8]前記給液工程から前記蛍光量子収率測定工程までの一連の工程を、1または複数の前記前処理槽を組み合わせて反復実施し、異なる時間に採取された複数の被検液の蛍光量子収率の経時変化を測定する、[6]及び[7]のいずれかに記載の光合成阻害物質混入検出方法。
[9]予め設定した蛍光量子収率、または、被検液中の植物プランクトンの光合成に対して阻害影響を有する光合成阻害物質が含まれないか、若しくは阻害影響を及ぼす濃度未満で含まれる複数の被検液の蛍光量子収率の変動幅の下限未満の蛍光量子収率を基準として、別の被検液について前記光合成阻害物質が阻害影響を及ぼす濃度以上で含まれた場合に生じる蛍光量子収率の低下を判定する、[6]~[8]のいずれかに記載の光合成阻害物質混入検出方法。
【発明の効果】
【0015】
本発明によれば、経時的に採取された海水等の被検液に含まれる植物プランクトンの蛍光量子収率を半連続的に測定し、半連続的に測定された被検液のうち、重金属の突発性混入の発生の有無を判定する、安価かつ小型の光合成阻害物質混入検出装置、及び、簡便に光合成阻害物質混入検出方法を提供することができる。
【図面の簡単な説明】
【0016】
【
図1】光合成阻害物質混入検出装置1の構成を模式的に示す図である。
【
図2】(a)は各時刻における空中光量子束密度を表すグラフである。(b)は、植物プランクトンを採取した時刻と、最大蛍光量子収率F
v/F
mの関係を解析した結果を示すグラフである。(c)は、採取時の空中光量子束密度と、対応する最大蛍光量子収率F
v/F
mの関係を解析した結果を示すグラフである。
【
図3】(a)は各時刻における空中光量子束密度を表すグラフである。(b)は、植物プランクトンを採取した時刻と、蛍光量子収率F
v’/F
m’を解析した結果を示すグラフである。(c)は、採取時の空中光量子束密度と、対応する蛍光量子収率F
v’/F
m’の関係を解析した結果を示すグラフである。
【
図4】異なる濃度の重金属添加に対する弱光照射下の植物プランクトンの蛍光量子収率F
v’/F
m’の経時応答を表すグラフである。
【
図5】重金属添加に対する弱光照射下の植物プランクトンの蛍光量子収率F
v’/F
m’と暗所保持下の植物プランクトンの最大蛍光量子収率F
v/F
mの変化を表すグラフである。
【
図6】(a)は、日中に採取された海水の貯留環境を暗所から明所、明所から暗所に変更したときの、海水中に含まれる植物プランクトンの蛍光量子収率の連続的な変化を解析した結果を表すグラフである。(b)は、夜間に採取された海水について、(a)と同様な解析をした結果を表すグラフである。
【発明を実施するための形態】
【0017】
[光合成阻害物質混入検出装置]
本発明の一実施形態にかかる光合成阻害物質混入検出装置を、
図1に示す光合成阻害物質混入検出装置1を例に説明する。
【0018】
光合成阻害物質混入検出装置1は、被検液2を採取するポンプ10(採取装置)と、被検液2を前処理する1つ以上の前処理装置20と、ポンプ10から前処理装置20へ導く給液管路30と、前処理装置20から被検液2を排出する排液管路40と、前処理を完了した被検液2中の植物プランクトンの蛍光量子収率を測定する蛍光量子収率測定機50と、警報を出力する警報出力装置70とを備えている。また、光合成阻害物質混入検出装置1は、排液管路40から被検液2を分岐させる分岐排出管路90と、被検液2を分取する試料分取装置80、装置全体の動作を制御する制御装置(図示略)も備えている。
【0019】
図1のポンプ10の吸込口には吸上げ管11が接続されている。ポンプ10は吸上げ管11を介して吸い込んだ被検液2を吐出口から給液管路30へ供給する。
【0020】
給液管路30は、ポンプ10の吐出口に接続された給液主管31と、その給液主管31から分岐され、それぞれ先端が各前処理装置20に接続された複数の分岐給液管32とを備えている。各分岐給液管32にはそれぞれ給液側開閉弁33が設けられている。
給液管路30は、ポンプ10の吐出口から給液主管31へ吐出供給された被検液2を分岐給液管32を介して前処理装置20へ導く。
【0021】
各前処理装置20は、被検液2を貯留する遮光性の前処理槽21と、前処理槽21に貯留された被検液2に含まれる植物プランクトンの浮遊状態を維持するための撹拌装置23と、前処理槽21に貯留された被検液2に弱光を照射する照射光源22とを備えている。各前処理槽21には、各前処理槽21の内部に被検液2を供給する各分岐給液管32が1本ずつ接続されている。ポンプ10から給液主管31へ供給された被検液2は、開放状態の給液側開閉弁33及び分岐給液管32を介して前処理槽21内へ送給される。
【0022】
前処理槽21の撹拌装置23は前処理槽21内の被検液2を撹拌して被検液2中の植物プランクトンの浮遊状態を維持する。
【0023】
蛍光量子収率の測定前に前処理装置20が行う前処理は、前処理槽21内の被検液2に対し、被検液2が植物プランクトンを含む状態にて、被検液中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射する処理である。
【0024】
ここで、強光阻害とは、葉緑体の消費を上回る光エネルギーが供給されたときに生じる光合成機能の低下を指す。強光の過剰な光エネルギーにより細胞内で過酸化水素や活性酸素が生成し、光合成系の酵素の失活や葉緑体そのものの損傷などが起こると考えられている。
【0025】
強光阻害は、海洋表層に存在する植物プランクトンの、昼間の蛍光量子収率が低下する原因のひとつと考えられている。強光阻害を受けた植物プランクトンは、強光阻害を生じさせない水中光量子束密度の弱光を照射することで、光合成機能、蛍光量子収率ともに回復すると考えられる。
【0026】
実施例において後述するように、前処理において植物プランクトンに照射する弱光を300μmol/m2/sec以下の水中光量子束密度の光とすることにより、植物プランクトンの蛍光量子収率の日周変動を低減することができる。前処理において植物プランクトンに照射する弱光の強さは、蛍光量子収率の日周変動を低減できるように、予め設定することができる。前処理において植物プランクトンに照射する弱光の強さは、被検液中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光であってもよい。
【0027】
排液管路40は、各前処理装置20の前処理槽21に接続された各槽毎排液管41と、各槽毎排液管41の前処理槽21側の上流端とは逆の下流端がそれぞれ接続された排液合流管路42とを備えている。排液管路40の各槽毎排液管41には排液側開閉弁61が設けられている。
【0028】
光合成阻害物質混入検出装置1は、給液側開閉弁33及び排液側開閉弁61を含む。
図1において、給液側開閉弁33は、分岐給液管32の先端部(下流側端部)に設けられている。排液側開閉弁61は槽毎排液管41の上流側端部に設けられている。
【0029】
排液合流管路42における蛍光量子収率測定機50の下流には第1排出ポンプ62(排出ポンプ)が接続されている。第1排出ポンプ62は、開放状態の排液側開閉弁61を有する前処理槽21から各槽毎排液管41、排液合流管路42、さらに蛍光量子収率測定機50を経由して被検液2を吸い込み、光合成阻害物質混入検出装置1の外へ排出する。排液側開閉弁61の開閉ならびに第1排出ポンプ62の駆動及び停止の組み合わせ動作により排液制御を実現する装置を排液装置という。ただし、蛍光量子収率測定機50による蛍光強度の計測中及びその前後数秒間、第1排出ポンプ62は停止される。
【0030】
蛍光量子収率測定機50はデータ処理部(図示略)を備え、排液合流管路42の途中に接続されている。蛍光量子収率測定機50は、排液合流管路42上の被検液2に測定光及び飽和パルス光を順次照射して、それぞれ蛍光強度を測定する。続いて、データ処理部(図示略)は、測定した蛍光強度から蛍光量子収率を算出する。
【0031】
警報出力装置70は、警報を出力するスピーカー71(図示略)を備えており、蛍光量子収率測定機50に接続されている。警報出力装置70は、蛍光量子収率測定機50により測定された蛍光量子収率が予め設定した値よりも低くなったときに、スピーカー71から警報を出力する。
【0032】
分岐排出管路90は、排液合流管路42における蛍光量子収率測定機50よりも上流側部分から分岐されている。分岐排出管路90の途中部には第2排出ポンプ63と試料分取装置80とが設けられている。分岐排出管路90延在方向において、第2排出ポンプ63は試料分取装置80よりも分岐排出管路90の上流側(排液合流管路42側)に設けられている。
第2排出ポンプ63は、分岐排出管路90延在方向において、第2排出ポンプ63よりも上流側に存在する被検液2を第2排出ポンプ63から下流側へ送り出す。
【0033】
試料分取装置80には、被検液の保管に使用される保管容器81が脱着可能に複数接続されている。
試料分取装置80は、排液合流管路42の途中部に設けられた切換弁と、切換弁を介して排液合流管路42と接続可能に設けられた分取流路とを有する。
分取流路の切換弁側の上流端とは逆の下流端は保管容器81に接続されている。
【0034】
切換弁は、分岐排出管路90延在方向における切換弁から上流側の部分と切換弁から下流側の部分とを互いに連通させる第1状態と、分岐排出管路90延在方向における切換弁よりも上流側の部分と分取流路とを互いに連通させる第2状態とを切り換える。
光合成阻害物質混入検出装置1は、試料分取装置80の切換弁が第1状態となっている状態で運転を開始する。光合成阻害物質混入検出装置1は、蛍光量子収率測定機50により測定された蛍光量子収率が予め設定した値よりも低くなったときに、切換弁を第1状態から第2状態に切り換える。切換弁が第2状態となると、分岐排出管路90内を流れる被検液2は分岐排出管路90から分取流路を介して保管容器81に流入される。試料分取装置80は、保管容器81への被検液2の流入量が予め設定した量に達したところで、切換弁を第2状態から第1状態に復帰させ、保管容器81への被検液2の流入を停止させる。その結果、予め設定した量の被検液2が保管容器81に保管される。
分岐排出管路90及び試料分取装置80は、蛍光量子収率測定機50により測定された蛍光量子収率が予め設定した値よりも低い被検液2とともに前処理装置20の前処理槽21から排液合流管路42に流入し排液合流管路42から分岐排出管路90へ分岐された被検液2が保管容器81に流入、保管されるように構成されている。
【0035】
切換弁を第2状態から第1状態に復帰させた後、分取流路の下流端に接続する保管容器81を交換する。分取流路の下流端には、例えば空の保管容器81を接続する。
第2状態から第1状態に復帰された切換弁は、蛍光量子収率測定機50により測定された蛍光量子収率が予め設定した値よりも低くなったときに、第1状態から第2状態に切り換えられる。
【0036】
以下、光合成阻害物質混入検出装置1を用いた光合成阻害物質混入検出方法を説明する。
光合成阻害物質混入検出装置1は、まず、ポンプ10により被検液2を採取する。ポンプ10により採取された被検液2は、給液管路30を介して、給液主管31を通り、開放されている給液側開閉弁33を通り、開放されている給液側開閉弁33が設けられた分岐給液管32から前処理装置20の前処理槽21内に流入する。被検液2を流入させる前処理槽21に対応する排液側開閉弁61は閉止状態とされる。
上述の、ポンプ10により被検液2を採取して前処理槽21に給液する工程を給液工程という。給液工程にある前処理槽21内においては、照射光源22が被検液2中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射する。
【0037】
給液管路30から前処理槽21に流入された被検液2が、予め設定した時間で予め設定した貯留量に達したとき、給液側開閉弁33を閉止して被検液2の前処理槽21への給液を停止させ、予め設定した貯留量を維持した状態を、給液停止時刻を始点とする予め設定した時間の間、継続する。この間、前処理装置20の照射光源22から前処理槽21内の被検液2中の植物プランクトンに対して、給液工程中と同じ水中光量子束密度の弱光を照射する。この工程を貯留弱光照射工程という。貯留弱光照射工程は、給液停止時刻から始まり、給液工程を完了した前処理槽21の被検液2が、次に述べるように排液され始める直前まで継続される。
上述の給液停止時刻を始点とする予め設定した時間は、30~60分としてもよい。
【0038】
貯留弱光照射工程が完了したら、前処理槽21から被検液2を排液管路40を通じて排出させ、排液管路40内の被検液2に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定工程を行なう。
蛍光量子収率測定工程では、貯留弱光照射工程が完了した後に、まず、排液側開閉弁61を開放して前処理槽21から排液管路40への被検液2の排出を開始する。但し、排液側開閉弁6の開放及びそれによる前処理槽21から排液管路40への被検液2の排出は、貯留弱光照射工程と同じ水中光量子束密度の光を前処理槽21内に照射しながら行なう。
【0039】
また、蛍光量子収率測定工程では、排液側開閉弁61を開放及び第1排出ポンプ62を駆動して前処理槽21から排液管路40への被検液2の排出を開始した後、前処理槽21内の被検液2の全量排出が完了するまでの期間(排出期間)において、第1排出ポンプ62の駆動を一時的に停止することにより前処理槽21から排液管路40への被検液2の流入を停止し、排液管路40内に滞留した被検液2に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する。
排液管路40内の被検液2に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定機50の計測動作を、以下、収率計測動作、とも言う。
排液管路40内の被検液2への測定光及び飽和パルス光の照射は第1排出ポンプ62の駆動を一時停止したときに行なう。蛍光量子収率測定機が収率計測動作における排液管路40内の被検液2への測定光及び飽和パルス光の照射を実施するとき、排液側開閉弁61は開放の状態であっても、第1排出ポンプ62の駆動停止に合わせて閉止しても良い。
【0040】
なお、排液装置は、貯留弱光照射工程完了後の排液側開閉弁61の開放による前処理槽21から排液管路40への被検液2の排出開始後、排液期間の終了前に第1排出ポンプ62を停止して前処理槽21から排液管路40への被検液2の流入を停止したときには、排液管路40内の被検液2への測定光及び飽和パルス光の照射完了後に第1排出ポンプを再び駆動させ、前処理槽21から排液管路40への被検液の排出を再開する。
1回または複数回の収率計測動作により蛍光量子収率測定が完了した後、前処理槽21内に被検液2が残存する場合には、排液側開閉弁61を開放した状態で第1排出ポンプ62を駆動させ前処理槽21内の残液を排出する。
【0041】
前処理が完了した植物プランクトンを含む被検液2は、前処理槽21から排液合流管路42を通り蛍光量子収率測定機50に流入する。蛍光量子収率測定機50において、植物プランクトンを含む被検液2の蛍光量子収率は、次のように測定される。
植物プランクトンに光を照射すると、クロロフィルが光を吸収し、光エネルギーの一部は光化学系に伝達され、一部は蛍光として放出される。実施形態において、蛍光量子収率(Fv’/Fm’)は、次のような計測動作によって測定された測定値に基づいて算出される。
まず、排液合流管路42に滞留した被検液2に測定光が照射され、蛍光強度(Fo’)が測定される。続いて、飽和パルス光が植物プランクトンを含む被検液2に照射される。このとき、蛍光強度(Fm’)が測定される。続いて、データ処理部(図示略)において、Fm’とFo’の差(Fm’-Fo’)が蛍光量子強度変化量(Fv’)として算出され、さらに、蛍光量子収率(Fv’/Fm’)が算出される。
【0042】
前述したように、排液装置は、排液側開閉弁61の開閉ならびに第1排出ポンプ62の駆動及び停止の組み合わせ動作を実現する。第1排出ポンプ62としては、特に限定されず、例えば、渦巻ポンプ、チュービングポンプ等であってもよい。
【0043】
第1排出ポンプ62が、例えば、渦巻ポンプである場合、蛍光量子収率測定工程において、排液装置は、次に述べるように動作する。
蛍光量子収率測定工程は、被検液2の前処理槽21から排液管路40を通じた排液動作(排液側開閉弁61の開放と第1排出ポンプ62の駆動)と、排液動作によって駆動された第1排出ポンプ62の停止と排液側開閉弁61の閉止により被検液2の排出を停止させたときに排液管路40(具体的には排液合流管路42)内に滞留した被検液2への測定光及び飽和パルス光の順次照射による蛍光量子収率の計測動作とを、排出期間に2回以上反復する。
複数の蛍光量子収率の測定値から、蛍光量子収率の平均値、標準偏差などを算出してもよい。
但し、蛍光量子収率測定工程は、排液動作(排液側開閉弁61の開放と第1排出ポンプ62の駆動)と、第1排出ポンプ62の停止と排液側開閉弁61の閉止によって被検液2の排出を停止させて行なう上述の計測動作とを、排出期間に1回のみ行なう構成でも良い。
【0044】
また、第1排出ポンプ62が、例えば、チュービングポンプである場合、蛍光量子収率測定工程において、排液装置は、次に述べるように動作する。
蛍光量子収率測定工程は、被検液2の前処理槽21から排液管路40を通じた排液動作(排液側開閉弁61の開放と第1排出ポンプ62の駆動)と、排液動作によって駆動された第1排出ポンプ62の停止と排液側開閉弁61の閉止により被検液2の排出を停止させたときに排液管路40(具体的には排液合流管路42)内に滞留した被検液2への測定光及び飽和パルス光の順次照射による蛍光量子収率の計測動作とを、排出期間に2回以上反復する。
複数の蛍光量子収率の測定値から、蛍光量子収率の平均値、標準偏差などを算出してもよい。
但し、蛍光量子収率測定工程は、排液動作(排液側開閉弁61の開放と第1排出ポンプ62の駆動)と、第1排出ポンプ62の停止と排液側開閉弁61の閉止によって被検液2の排出を停止させて行なう上述の計測動作とを、排出期間に1回のみ行なう構成でも良い。
第1排出ポンプ62がチュービングポンプである場合、蛍光量子収率の計測動作の際に、排液側開閉弁61は開放状態を継続してもよい。
【0045】
第1排出ポンプ62が渦巻ポンプである場合、各槽毎排液管41及び排液合流管路42を流れる被検液2の量を調節するために、電磁可変バルブ等の流量制御器を排液合流管路42に設置してもよい。
第1排出ポンプ62がチュービングポンプである場合、第1排出ポンプ62は、予め設定した流量で被検液2を排出することができる。
第1排出ポンプ62がチュービングポンプである場合、第1排出ポンプ62を停止すると、排液側開閉弁61を開放した状態を継続しても、各槽毎排液管41及び排液合流管路42内の被検液2の流れを停止することができる。
【0046】
開放された排液側開閉弁61が設けられた前処理槽21の被検液2について、蛍光量子収率の計測を完了した後に、その前処理槽21に被検液2が残存していた場合、前処理槽21の照射光源22は弱光の照射を停止してもよい。
残存した被検液2の排出が完了するまで、第1排出ポンプの駆動と、残存した被検液2の前処理槽21の排液側開閉弁61の開放は継続される。
【0047】
なお、蛍光量子収率測定工程における、排液装置の排液動作の開始、収率計測動作期間の排液動作の一時停止と再開、1回または複数回の収率計測動作の完了後の前処理槽21内の被検液2の排出完了は、装置全体を制御する制御装置(図示略)に排液側開閉弁61及び第1排出ポンプ62の動作パターンを予め設定することで実現される。
排液側開閉弁61及び第1排出ポンプ62に設定する動作パターンは、以下のとおりである。蛍光量子収率測定工程が開始されると、排液側開閉弁61が開放され、第1排出ポンプ62が駆動し、排液装置は排液動作を開始する。次いで、動作パターンで設定された時間間隔で排液動作を一時的に停止する。排液動作の停止中は、第1排出ポンプ62の駆動は停止され、排液側開閉弁61は、第1排出ポンプ62の種類に応じて、開放状態を継続するか、もしくは閉止状態とする。排液動作の停止中に蛍光量子収率が測定される。排液動作の停止及び蛍光量子収率の測定回数が動作パターンで設定された回数に達した後、前処理槽21中の被検液2が完全に排出されるまでの期間、排液装置の排液動作が継続される(排液側開閉弁61の開放と第1排出ポンプ62の駆動)。排出完了(前処理槽21内の被検液2が無くなった状態)後は、排液装置は、第1排出ポンプ62を停止し、且つ排液側開閉弁61を閉止する。
【0048】
2つ以上の前処理装置20が設けられ、そのうち1つの前処理装置の前処理槽21における被検液2の貯留維持期間、すなわち貯留弱光照射工程が経過したとき、貯留弱光照射工程が完了した前処理槽21に対応して設けられている排液側開閉弁61は開放(排液動作)され、それ以外の前処理槽21に設けられた排液側開閉弁61は閉止される。すなわち、貯留弱光照射工程が完了した前処理槽21に設けられた排液側開閉弁61のみが開放される。
開放された排液側開閉弁61が設けられた前処理槽21の被検液2の排液が完了し、別の前処理槽21の被検液2の貯留弱光照射工程が完了した状態で、排液動作(排液側開閉弁61の開放)をさせる排液装置の切り換えが行われる。具体的には、排液が完了した前処理槽21に設けられた排液側開閉弁61は閉止され、貯留弱光照射工程が完了した被検液2を含む前処理槽21に設けられた排液側開閉弁61が開放され、それ以外の前処理槽21に設けられた排液側開閉弁61は閉止される。
被検液2を排液している前処理槽21において、植物プランクトンに対して、給液工程及び貯留弱光照射工程と同じ水中光量子束密度の光を照射する。
【0049】
排液側開閉弁61が開放された前処理槽21の被検液2は、その前処理槽21に接続する各槽毎排液管41を通り排液合流管路42へ流入する。1つの前処理槽21の被検液2が排出されている間、排液中の前処理槽21以外の前処理槽21に設けられた排液側開閉弁61は閉止されて排液は停止している。したがって、複数の前処理槽から排液された液体が混合されて排液合流管路42へ流入することはない。
【0050】
排液が完了した前処理槽21においては、排液側開閉弁61が閉止された後に、給液側開閉弁33が開放されて、被検液2は、開放された給液側開閉弁33が設けられた分岐給液管32を通り、その分岐給液管32が接続した前処理槽21の内部への流入が開始される。
【0051】
前処理槽21の撹拌装置23は前処理槽21内の被検液2を撹拌して被検液2中の植物プランクトンの浮遊状態を維持する。撹拌は給液工程開始時から蛍光量子収率測定工程の終了直前まで継続することが好ましい。被検液2の継続的な撹拌により、被検液2中の植物プランクトンに対して均一な弱光が照射されるとともに、蛍光量子収率測定機50や試料分取装置80に供給される被検液2の性状が、より均質化する。
【0052】
撹拌装置23の駆動による被検液2の撹拌は、必ずしも、給液工程の開始から蛍光量子収率測定工程の終了まで連続駆動(撹拌)でなくても良い。例えば、蛍光量子収率測定工程の予め設定された工程時間の後半において、撹拌装置23に駆動による被検液2の撹拌を省略しても良い。但し、撹拌装置23の駆動による被検液2の撹拌は、給液工程の開始から蛍光量子収率測定工程の終了までの間において、少なくとも、給液工程の予め設定された工程時間の後半、及び蛍光量子収率測定工程の予め設定された工程時間の前半に実施することが好ましい。
【0053】
光合成阻害物質混入検出装置1における被検液2は、光合成阻害物質の混入がない状態、且つ光合成阻害物質混入検出装置1の前処理槽21や管路等の環境において植物プランクトンを死滅させない液体であれば、どのような液体であってもよい。被検液2としては、例えば、植物プランクトンを含む、海水、河川水、湖沼水等が挙げられる。植物プランクトンを含まない地下水、温泉水、雨水、下水、工場排水等における光合成阻害物質混入を検出する場合は、光合成阻害物質混入のない状態のこれら液体と混合されたときであっても死滅しない植物プランクトンを、ポンプ10により採取されたこれら液体と混合し、光合成阻害物質混入検出装置1における被検液2とすることが好ましい。
【0054】
実施例において後述するように、被検液2に重金属が混入されると、弱光照射後の植物プランクトンの蛍光量子収率は低下する。被検液2が海底熱水鉱床付近の海水、陸上金属鉱山付近の環境水、工場排水等である場合は、混入し得る光合成阻害物質として、重金属を挙げることができる。
【0055】
被検液2が海水である場合、採取する海水は、植物プランクトンを含む海水であることが好ましい。海水中では、水深が増すにつれて、照度が低下し、光合成を行う植物プランクトンの数は減少する。また、蛍光量子効率を測定するためには、植物プランクトンの濃度が(クロロフィルa濃度として0.1μg/L以上)であることが好ましい。蛍光量子収率の測定に充分な濃度の植物プランクトンを含む海水を採取するために、本実施形態において採取する海水は、深度0~150mの海水であることが好ましく、表層水であることがより好ましい。
【0056】
一般的に、植物プランクトンは、弱光照射によって、蛍光量子収率の日周変動を低減することができる(例えば、非特許文献2を参照)。実施例において後述するように、被検液2への重金属の混入は、弱光照射後の植物プランクトンの蛍光量子収率を低下させる。光合成阻害物質混入検出装置1及び光合成阻害物質混入検出方法は、重金属の混入検出に用いることができる。
被検液2に混入した物質が弱光照射後の植物プランクトンの蛍光量子収率を低下させる光合成阻害物質である場合、重金属と同様に、光合成阻害物質混入検出装置1及び光合成阻害物質混入検出方法を用いて、光合成阻害物質の混入を検出することができる。
混入が予想される特定の化学物質等の混入検出が可能か否かは、植物プランクトンを含む被検液2に当該物質を添加し、弱光照射後の植物プランクトンの蛍光量子収率を測定する試験を行って予め調べることができる。
【0057】
混入検出が可能な光合成阻害物質の種類としては、実施例において後述するように、例えば、亜鉛、鉛等の重金属が挙げられる。
また、非特許文献3には、イルガロールやジウロン等の植物の光合成を直接阻害する農薬によって、海洋植物プランクトンの蛍光量子収率が低下することが記載されている。光合成阻害物質としては、例えば、上述のような農薬を挙げることができるが、これに限定されない。
被検液2は、上述したような光合成阻害物質のうち1種または複数種を含んでいてもよい。
【0058】
光合成阻害物質混入検出装置1及び光合成阻害物質混入検出方法は、海底熱水鉱床付近の海水、工場排水等の、混入が予想される光合成阻害物質が明らかな被検液2については、混入が予想される光合成阻害物質の混入検出に利用可能である。
被検液2に混入することが予想される光合成阻害物質が不明である場合は、光合成阻害物質混入検出装置1において蛍光量子収率低下を検出したときに、試料分取装置80により採取された保管容器81内の被検液2を分析することにより、被検液2に混入した光合成阻害物質を分析、同定することができる。
【0059】
光合成阻害物質混入検出装置1を設置する場所は、特に限定されず、例えば、被検液2付近の陸地、船上等を挙げることができる。船上に光合成阻害物質混入検出装置1を設置することにより、ポンプ10により、被検液2として植物プランクトンを含む海水を採取することができる。
【0060】
経時的に採取した海水の蛍光量子収率変化を測定することにより、海水中の光合成阻害物質の混入を検出することができる。例えば、海底鉱物資源を開発する洋上プラント付近の海水の蛍光量子収率を経時的に測定することにより、洋上プラントから海水中への重金属の漏洩を検出することができる。
【0061】
光合成阻害物質混入検出装置1により検出可能な光合成阻害物質濃度レベルは、植物プランクトンの蛍光量子収率を低下させる濃度である。被検液2として供給される植物プランクトンが自然状態の海洋環境から採取された海水である場合、光合成阻害物質混入検出装置1及び判定方法により光合成阻害物質の混入発生が有ると判定される光合成阻害物質濃度レベルは、海水を採取した海洋環境の海洋生態系を構成する植物プランクトン群集に対して光合成阻害や生長阻害を及ぼす可能性の高い濃度レベルに相当する。
【0062】
逆に、光合成阻害物質の混入発生が有ると判定されない光合成阻害物質濃度レベルは、前記海洋環境の植物プランクトン群集に対して光合成阻害や生長阻害を及ぼす可能性の低い濃度レベルに相当する。
【0063】
また、ポンプ10により採取された液体に植物プランクトンが含まれず、採取した液体に培養等によって得た特定の種の植物プランクトンを混合して被検液2とする場合には、混合した植物プランクトン種について、光合成阻害物質の異なる濃度レベルに対する蛍光量子収率の低下量を予め把握することによって、光合成阻害物質混入検出装置1及び判定方法における混入発生の有無を判定する濃度レベルを事前に知ることができる。
【0064】
光合成阻害物質混入検出装置1によれば、化学分析法に比べて簡便に、光合成阻害物質の混入を検出することが可能である。また、混入が想定される光合成阻害物質が重金属である場合、本発明の光合成阻害物質混入検出装置は、重金属分析に必要な質量分析装置に比べて安価かつ小型である。そのため、光合成阻害物質混入検出装置1を船上等に積載することは容易である。
【0065】
光合成阻害物質混入検出装置1の吸い上げ管11先端付近の一定時間における平均的な液体について光合成阻害物質の混入を判定したいときには、ポンプ10による被検液2の採水は一定の流量で行われることが好ましい。
【0066】
一定の流量で採水されるとき、1個の前処理槽21における給液工程時間は、前記流量と予め設定した前処理槽21の貯留量により定まり、給液工程完了後に前処理槽21に貯留され、その後、蛍光量子収率測定工程において重金属等の混入判定が行われる被検液2は、吸い上げ管11先端付近の給液工程時間の平均的な質を備えることができる。
【0067】
光合成阻害物質混入検出装置1の前処理槽21の個数は、1個であってもよいし、1個以上であってもよい。光合成阻害物質混入検出装置1が備える前処理槽21の個数を、1個の前処理槽21における給液工程、貯留弱光照射工程、蛍光量子収率測定工程に要する時間に応じて充分増やすことにより、1個または複数の前処理槽21内の被検液2が貯留弱光照射工程あるいは排出中であっても、新たな被検液2をポンプ10により蛍光量子収率測定工程が完了した前処理槽21に給液することが可能となる。すなわち、採水停止期間のない光合成阻害物質混入検出装置1の運転状態を作ることができる。
【0068】
光合成阻害物質混入検出装置1では、ポンプ10による被検液2の採水を一定の流量で行い、且つ充分な個数の前処理槽21を設けて採水停止期間のない運転状態を作ることができる。
さらに、給液工程から蛍光量子収率測定工程までの一連の工程を、1または複数の前処理槽を組み合わせて反復実施することにより、給液工程時間に吸い上げ管11先端付近に存在した、異なる時間に採取された複数の被検液2の蛍光量子収率の経時変化を観測することができる。
【0069】
光合成阻害物質混入検出装置1における光合成阻害物質の混入発生の有無の判定は、被検液中の植物プランクトンの光合成に対して阻害影響を有する光合成阻害物質が含まれないか、または阻害影響を及ぼす濃度未満で含まれる複数の被検液の蛍光量子収率の変動幅の下限未満の蛍光量子収率を基準として行われることが好ましい。
【0070】
光合成阻害物質混入の判定基準となる蛍光量子収率は、前記の条件を満たす液体を被検液2として、光合成阻害物質混入検出装置1により測定できる。また、前記の条件を満たす液体が継続的に採取できる場において、光合成阻害物質混入検出装置1による蛍光量子収率の経時測定を行うことにより、その場の蛍光量子収率の自然の変動幅及び下限値を測定することができる。
【0071】
前記の光合成阻害物質混入検出装置1における光合成阻害物質の混入の判定基準は、光合成阻害物質の混入発生を監視したい場において、光合成阻害物質の混入発生がないと判断できる期間に行うことが好ましい。
【0072】
光合成阻害物質の混入を監視したい場において、重金属等の光合成阻害物質の混入の判定基準を設定したとき、光合成阻害物質混入検出装置1による蛍光量子収率の経時測定を継続することにより、光合成阻害物質の混入を定期的あるいは連続的に監視することができる。
【0073】
また、判定基準設定後の連続的な光合成阻害物質の混入の有無の監視期間において、重金属等の混入がないと判断できる期間が存在するならば、その期間の蛍光量子収率をその場の蛍光量子収率の自然の変動幅及び下限値を定めるための追加データとして光合成阻害物質の混入の有無の判定基準に加えることができる。
【0074】
貯留弱光照射工程等において前処理槽21内の被検液2に照射する光は弱光であるため、前処理槽21は外部からの入射する光の影響がない遮光性の処理槽であることが好ましい。
【0075】
また、前処理槽21から排出された被検液2が、蛍光量子収率測定機50に至るまでの排液管路40及び給液管路30はいずれも遮光性を有することが好ましい。遮光しない場合は、排液管路40及び給液管路30に照射され得る光強度が、弱光照射工程において照射する光の光強度以下であることが好ましい。
【0076】
植物の蛍光量子収率は、飽和パルス光の照射による蛍光量子収率の測定の直前まで植物に対して光を照射したときに得られる値(Fv’/Fm’)と、一定時間以上、植物を暗所に保持したのち直ちに飽和パルス光を照射して得られる値(Fv/Fm)の2つに大別される。
【0077】
被検液2に対して弱光照射を行い直ちに蛍光量子収率を測定する光合成阻害物質混入検出装置1では、前者のFv’/Fm’が測定される。一方、後者のように植物を暗所に保持すると、植物の光化学系内のプラストキノンの酸化が進むことによって、蛍光量子収率は上昇することが多い。一定時間以上、暗所に保持されると完全に酸化され、蛍光量子収率は最大値を示す。このときの蛍光量子収率は、最大蛍光量子収率(Fv/Fm)と呼ばれる。
【0078】
最大蛍光量子収率(Fv/Fm)は、暗所に保持された植物について測定された、最大蛍光強度(Fm)と、最大蛍光強度(Fm)と飽和パルス光を照射する前の微弱の測定光照射により得られる蛍光強度(Fo)の差から求められる最大蛍光強度変化量(Fv=Fm-Fo)とを用いて算出する。
【0079】
植物の最大蛍光量子収率(Fv/Fm)は、一般に、植物を10~60分間暗所に保持することにより測定できると報告されることが多いが、その保持時間は、植物の種類等により異なる。
【0080】
前処理槽21においては、照射光源22によって、被検液2中の植物プランクトンに対して、強光阻害を生じさせない水中光量子束密度の弱光を照射する。照射光源は、例えば、発光ダイオード照明、蛍光灯等を用いることができるが、光合成有効放射域の波長を有する光、もしくは被検液2中の植物プランクトンの光合成に適した所定の波長を有する光を照射できる光源であればこれに限定されない。
【0081】
植物プランクトンの生理状態及び蛍光量子収率は水温変化によっても影響を受ける。したがって、光合成阻害物質混入検出装置1は、被検液2の温度が採取されたときの温度に近い環境に設置するか、被検液2の温度が維持される構造を有することが好ましい。また、照射光源22は、発熱の少ない光源を選択することが好ましい。
【0082】
実験例1において後述するように、弱光照射を行わない表層海水の最大蛍光量子収率は、海水採取時に海水中の植物プランクトンが浴びていた光の強さと逆相関に近い関係を有する。とくに空中光量子束密度が300~500μmol/m2/secを上回るときに採取された表層海水の最大蛍光量子収率は、それ以下の空中光量子束密度のときに採取された表層海水の最大蛍光量子収率に比べて、著しく低下する。
【0083】
一方、実験例2、実験例5において後述するように、採取後の海水に水中光量子束密度35~300μmol/m2/secの弱光を30~60分程度照射した後の蛍光量子収率は、海水採取時に海水中の植物プランクトンが浴びていた光の強さへの依存性が抑制される。
【0084】
実験例3において後述するように、植物プランクトンを含む海水に弱光照射下で光合成阻害物質である重金属を一定濃度以上で添加すると、蛍光量子収率は数時間以内に低下する。重金属濃度が高い場合は、数分で低下する。したがって、海水の蛍光量子収率の低下が、混入のない海水の蛍光量子収率の変動範囲を下回るとき、重金属の混入を判定することができる。
【0085】
実験例4において後述するように、海水に重金属を添加したとき、弱光照射下では蛍光量子収率が低下するが、暗所下では蛍光量子収率の低下が起こらない場合がある。ゆえに、夜間の海域等で重金属の混入が生じた場合には、海水採取後に弱光照射を行わない限り、蛍光量子収率の低下を検出できない可能性がある。
【0086】
昼間の海域等で重金属の混入が生じた場合には、海水採取後の弱光照射に関わらず、蛍光量子収率が低下すると考えられる。しかし、弱光照射をしない場合には、昼間の太陽光下で生じる蛍光量子収率の自然の低下と重金属混入による蛍光量子収率の低下を区別できない可能性がある。
【0087】
したがって、弱光照射は、蛍光量子収率の被検液採取時に被検液が浴びていた光の強さに対する依存性を抑制することで蛍光量子収率を用いた重金属の混入の判定を容易にするとともに、暗所において発生した重金属混入に関しても蛍光量子収率の測定により検出するために必要な工程である。光合成阻害物質の混入の判定に関しても同様である。
【0088】
実験例5において後述するように、60分間、弱光照射した海水の蛍光量子収率は、その後、その海水を30分程度暗所に保持しても、大きな変化は生じない。ゆえに、弱光照射した被検液の蛍光量子収率の測定では、測定直前まで被検液を同じ弱光照射下に保持する必要はなく、暗所下で保持できる。
【0089】
一方、弱光照射後により強い光を照射すると蛍光量子収率が変化する可能性がある。したがって、被検液の弱光照射のための前処理槽から蛍光量子収率測定機への移送においては、遮光された管路を用いることが好ましいと考えられる。
【0090】
蛍光量子収率の変動を抑え、重金属の存在を検出するためには、貯留弱光照射工程を経た後、被検液2は、30分以内に、各槽毎排液管41と排液合流管路42を通り、蛍光量子収率測定機50において蛍光量子収率を測定することが好ましい。
【0091】
各槽毎排液管41と排液合流管路42を流下する被検液2においては、遮光下に設置するか、前処理と同程度の光を照射してもよい。
【0092】
蛍光量子収率の変動を抑えつつ重金属の存在を検出するための適切な前処理の条件は、植物プランクトンの種類を考慮して適宜設定してもよい。
【0093】
蛍光量子収率測定機50において蛍光量子収率を測定時に照射する、パルス光の、波長、強度、照射時間は、公知の蛍光量子収率の測定方法を参照して決定することができる。植物プランクトンの種類によって、吸収する光のスペクトル、蛍光のスペクトルは異なる。用いる植物プランクトンを事前に調査したうえで、パルス光の波長、強度、照射時間等を適切に決定することができる。
【0094】
蛍光量子収率測定機50により測定された蛍光量子収率が予め設定した値よりも低くなったとき、被検液2は分岐排出管路90を流れて試料分取装置80に入り、被検液2は保管容器81に流入する。保管容器81で保管された被検液2は、化学分析等の更なる解析に用いることもできる。
【0095】
警報出力装置70は、被検液2中に重金属が存在することを知らせる装置であれば、どのようなものであってもよい。例えば、警報出力装置70は、スピーカー、警告灯等で警報を発してもよい。また、警報出力装置70は、無線回線、電気通信回線等を介して警報を伝達する装置であってもよい。
【0096】
なお、無線回線等で警報を伝達する場合は、警報の発生時刻、場所(緯度・経度)、蛍光量子収率やその他の現場で計測されたデータや情報を警報に合わせて同報してもよい。
【0097】
実施形態の光合成阻害物質混入検出装置1により、半連続的に被検液2の蛍光量子収率を測定することができる。通常時において被検液2が重金属を含まず、ある時間帯において被検液2が重金属を含む場合に、光合成阻害物質混入検出装置1は蛍光量子収率を測定することにより被検液2中の重金属の存在を検出することができる。
【0098】
蛍光量子収率が通常時の蛍光量子収率よりも低い値である場合に、警報出力装置70は警報を出力する。警報を出力する蛍光量子収率の値の範囲は、通常時の蛍光量子収率を参照し、予め設定してよい。
【0099】
光合成阻害物質混入検出方法は、遮光性の前処理槽21内の被検液2に、被検液2中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射しながら、被検液2を、予め設定した時間で予め設定した貯留量まで給液する給液工程と、前記被検液2が予め設定した貯留量に達した時に前処理槽21への被検液2の給液を停止し、且つ給液停止時刻を始点とする予め設定した時間の間、給液工程と同じ水中光量子束密度の光を照射する貯留弱光照射工程と、貯留弱光照射工程の完了後に、貯留弱光照射工程と同じ水中光量子束密度の光を前処理槽21内に照射しながら、前処理槽21から被検液2を排液管路40を通じて排出させ、且つ被検液2の前処理槽21からの排出期間に排液管路40への流入を停止させたときに、排液管路40内に滞留した被検液2に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定工程と、を有する、構成を適用できる。
【0100】
被検液2の採取は手動で行ってもよい。排液装置に設けられた排液側開閉弁61は手動で行ってもよい。また、排液装置は、排液側開閉弁61の代わりに、被検液2を排液するポンプを備えていてもよい。
【0101】
図1において、前処理装置20の近傍で給液主管31は分岐給液管32に分岐しているが、この分岐点は
図1に示す位置に限定されない。例えば、
図1に示す位置よりも上流にあってもよい。
【実施例】
【0102】
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
【0103】
[実験例1]
(最大蛍光量子収率の自然変動)
採取時に植物プランクトンが浴びていた光が、植物プランクトンの最大蛍光量子収率に与える影響を解析した。解析は、海洋研究開発機構調査船かいめい(航海番号KM17-12C)上で、沖縄トラフ海域において連続98時間に亘って行った。
【0104】
植物の蛍光量子収率は、光合成反応のうち光化学系IIの電子伝達速度を推定するためのパラメータである。植物を暗所に保持することにより、光化学系のプラストキノンが完全に酸化される。この時の蛍光量子収率は、最大蛍光量子収率と呼ばれる。
【0105】
まず、1分間隔で取得した空中光量子束密度を15分毎に平均し、日周変動を解析した。
図2(a)は実験期間98時間内の各時刻における15分平均の空中光量子束密度の分布を表すグラフである。
【0106】
図2(a)中、横軸は時刻を表し、縦軸は、空中光量子束密度を示す。その結果、正午付近にピークを有する空中光量子束密度の分布が認められた。表層水の水中光量子束密度は空中光量子密度と正の相関を有すると考えられる。
【0107】
次に、採取した海水の最大蛍光量子収率を測定した。まず、植物プランクトンを含む海中の表層水を、一定速度で15分間に亘って遮光容器に採取し、採取した海水を、フロート型回転子を用いて撹拌しながら15分間、暗所に保持した。暗所保持の工程により、蛍光量子収率は最大蛍光量子収率となる。
【0108】
さらに、15分間に亘って、暗所保持した海水を遮光された配管を通じて蛍光量子収率測定機にチュービングポンプを用いて間欠的に導入した。蛍光量子収率測定機への海水導入速度は、導入終了時に遮光容器から海水全量が排出される速度に設定した。
【0109】
蛍光量子収率測定機に導入された海水に対して、波長460nm、水中光量子束密度1μmol/m2/secの測定光を照射して蛍光強度を測定し、次いで0.8秒間、波長460nm、水中光量子束密度2000μmol/m2/secの飽和パルス光を照射して蛍光強度を測定した。
【0110】
これらの蛍光強度の計測は1分間隔で15分間行った。また、同一の植物プランクトン群に対してこれらの蛍光強度の計測を行うために、計測中はチュービングポンプの駆動を停止した。
【0111】
測定光を照射したときの蛍光強度をFoと定義し、飽和パルス光を照射した際の蛍光強度をFmと定義し、蛍光強度の変化量であるFm-FoをFvと定義し、最大蛍光量子収率をFv/Fmと定義した。15分間の計測により得られた複数の最大蛍光量子収率Fv/Fmを平均し、遮光容器に採取された海水の最大蛍光量子収率Fv/Fmとした。蛍光量子収率測定機として、WATER-PAM(Walz社)にフロースルー型セルを装着した装置を使用した。
【0112】
本実験例1では、暗所保持を行うための容器を3つ設けた。各容器への海水試料の採取開始時刻に15分の位相差を設けた上で、海水採取、暗所保持及び蛍光量子収率計測の一連の工程を繰り返すことにより、実験期間の15分間隔の最大蛍光量子収率F
v/F
mを得た。最大蛍光量子収率F
v/F
mの解析結果を
図2(b)、(c)に示す。
【0113】
図2(b)は、遮光容器に植物プランクトンを採取した時刻と、最大蛍光量子収率F
v/F
mの関係を解析した結果を示すグラフであり、
図2(c)は、採取時の空中光量子束密度と、対応する最大蛍光量子収率F
v/F
mの関係を解析した結果を示すグラフである。
【0114】
その結果、海水に含まれる植物プランクトンの最大蛍光量子収率F
v/F
mは、昼間に低く、夜間に高くなる日周変動が確認された。とくに、
図2(c)は、海水の最大蛍光量子収率F
v/F
mの低下は、空中光量子束密度が300~500μmol/m
2/secを超える条件で採取されたときに顕著であることを示す。
【0115】
また、
図2(c)は、空中光量子束密度と最大蛍光量子収率F
v/F
mの間には逆相関の関係があることを示すが、日の出から正午にかけての傾きの絶対値よりも、正午から日の入りにかけての傾きの絶対値の方が大きい。
【0116】
これは、植物プランクトンの最大蛍光量子収率は、海水採取直前の短時間の光強度ではなく、海水採取した時刻から数時間前までの光強度の変化に影響を受けていることを示唆する。
【0117】
[実験例2]
(蛍光量子収率の日周変動の除去)
予め弱光を照射することにより、蛍光量子収率の日周変動を緩和する手法を検討した。解析は、実験例1と同様に沖縄トラフ海域において行い、実験期間は連続61時間である。
【0118】
表層水を、3つの遮光容器に、それぞれ30分かけて一定速度で採取した。各容器への採取開始時刻は互いに30分の位相差を与えた。採取した各海水を各容器内に留め、さらに各容器から30分間かけて間欠的に排水を行った。
【0119】
遮光容器内の海水に対して、光合成有効波長域(400~700nm)を有する白色LEDを、150μmol/m2/sの強さで、照射し続けた。排液管路上に設けた蛍光量子収率測定機を用いて、間欠的に排水された海水の蛍光量子収率を測定した。
【0120】
表層水の採取、光照射及び蛍光量子収率計測の一連の工程を繰り返すことにより、61時間に亘って測定を継続した。実験例1とは異なり、蛍光量子収率の測定の前に、暗所保持はしなかった。
【0121】
図3(a)は実験期間における空中光量子束密度の30分毎の平均値を表すグラフである。
図3(a)中、横軸は時刻を表す。
【0122】
蛍光強度をF
o’と定義し、飽和パルス光を照射した際の蛍光強度をF
m’とし、蛍光強度の変化量であるF
o’-F
m’をF
v’と定義し、蛍光量子収率F
v’/F
m’と定義した。白色LEDを照射した海水の蛍光量子収率F
v’/F
m’の解析結果を
図3(b)、(c)に示す。
【0123】
図3(b)は、植物プランクトンを採取した時刻と、蛍光量子収率F
v’/F
m’を解析した結果を示すグラフであり、
図3(c)は、採取時の空中光量子束密度と、対応する蛍光量子収率F
v’/F
m’の関係を解析した結果を示すグラフである。
【0124】
その結果、植物プランクトンに弱光を照射し測定した蛍光量子収率Fv’/Fm’は、実験例1の弱光を照射しなかった最大蛍光量子収率Fv/Fmと比較して、日周変動が大幅に抑制されることが示された。
【0125】
[実験例3]
(蛍光量子収率Fv’/Fm’による重金属の検出1)
蛍光量子収率の測定値に基づいて、海水中の重金属の存在を検出する手法を検討した。
【0126】
実験例1,2と同様に、沖縄トラフ海域の表層水を1つの前処理槽に採取した。光合成有効波長域(400~700nm)を有する白色LEDを用いて、前処理槽に(150μmol/m2/s)の水中光量子束密度の光を連続照射した。
【0127】
約60分の光照射後、前処理槽内の海水に亜鉛及び鉛を含む海底鉱物模擬溶出液を表1のいずれかの濃度の組み合わせで加えた。光照射開始時点から海底鉱物模擬溶出液を添加した180分後まで、前処理槽内の海水の蛍光量子収率Fv’/Fm’を測定した。
【0128】
この実験を航海調査期間の異なる日時に4回反復し、表1の異なる3つの濃度の組み合わせの系、及び海底鉱物模擬溶出液を加えないコントロール系の実験を行った。
【0129】
結果を
図4に示す。
図4は、異なる濃度の重金属添加に対する植物プランクトンの蛍光量子収率F
v’/F
m’の低下を表すグラフである。
図4中、横軸は、海底鉱物模擬溶出液を加えた時点からの経過時間を示す。
【0130】
【0131】
その結果、海底鉱物模擬溶出液を加えた直後から、蛍光量子収率Fv’/Fm’はコントロールに対して低下する傾向が確認された。すなわち、海水中に重金属の混入がない状態における蛍光量子収率Fv’/Fm’の変動範囲が予め把握されていれば、その変動範囲を下回る蛍光量子収率Fv’/Fm’が測定されたときに、海水中への重金属の混入を疑うことができることが示された。
【0132】
[実験例4]
(蛍光量子収率Fv’/Fm’による重金属の検出2)
実験例1、2で示したように、弱光照射処理は蛍光量子収率の日周変動を抑制する効果を有する。一方、実験例1で示したように、最大蛍光量子収率の日周変動と空中光量子束密度との間に逆相関関係が成り立つならば、この相関関係を利用して昼夜の蛍光量子収率の変動を補正する手法も考えられる。
ここでは、暗所保持または弱光照射した海水に重金属を添加した際の蛍光量子収率の経時変化データを示すことにより、前記の相関関係を利用した蛍光量子収率の補正に対する、弱光照射の利点を解析した。
【0133】
実験例1,2と同様に、沖縄トラフ海域の表層水を2つの前処理槽A、Bに入れた。ただし、表層水の採取日時は前処理槽A、Bで異なる。
【0134】
前処理槽Aには、光合成有効波長域(400~700nm)を有する白色LEDを、(150μmol/m2/s)の強さで、240分間、連続照射した。前処理槽Bは光を照射せず、240分間、暗所保持した。
【0135】
実験開始から60分後に、海水に対し、亜鉛及び鉛を含む海底鉱物模擬溶出液を加えた。加えた後の、海水中の亜鉛及び鉛の濃度は、表1に示される濃度Bと同一である。
【0136】
両方の前処理槽から5分間隔で海水を抜き取り、前処理槽A内の海水については蛍光量子収率Fv’/Fm’を測定し、前処理槽B内の海水については最大蛍光量子収率Fv/Fmを測定した。
【0137】
結果を
図5に示す。
図5は、重金属添加に対する弱光照射下の植物プランクトンの蛍光量子収率F
v’/F
m’と暗所保持下の植物プランクトンの最大蛍光量子収率F
v/F
mの変化を表すグラフである。
図5中、横軸の目盛は、海底鉱物模擬溶出液を加えた時点からの経過時間を示す。
【0138】
その結果、連続的に弱光を照射した前処理槽Aは、実験例3と同様に、重金属の添加後に、蛍光量子収率は低下した。一方、暗所保持した前処理槽Bでは、重金属が添加された後も、最大蛍光量子収率はほとんど低下しなかった。
【0139】
すなわち、暗所の海水に重金属が混入しても植物プランクトンの最大蛍光量子収率はほとんど変化せず、最大蛍光量子収率の値に基づく方法では重金属の混入を検出できない場合があることが示された。
【0140】
一方、暗所の海水に重金属が混入した場合でも、その後の前処理工程において弱光照射を行い、蛍光量子収率を測定することで、重金属の存在を検出することができることが明らかとなった。
【0141】
弱光照射は、蛍光量子収率の日周変動の抑制と共に、暗期に発生した重金属の存在を蛍光量子収率の測定に基づいて検出するために必要な工程であることが確認された。
【0142】
本実験及び実験例3では、異なる強度の弱光照射下における、重金属添加に対する蛍光量子収率の応答については確認していない。
【0143】
[実験例5]
(弱光照射条件の最適化)
弱光照射による蛍光量子収率の日周変動の抑制における、弱光の最適な弱光照射強度及び必要な照射時間を検討するために、日中及び夜間に採取した海水に異なる強度の弱光を照射し、蛍光量子収率の短時間応答を解析した。
【0144】
実験は海洋研究開発機構調査船かいめい(航海番号KM18-07C)上で、沖縄トラフ海域において行った。日中(空中光量子束密度は800~1200μmol/m2/s)の間に2回、夜間(空中光量子束密度は1μmol/m2/s以下)の間に3回、表層海水を採取し、直ちに遮光した前処理槽に導入し暗所保持した。
【0145】
30分後、光合成有効波長域(400~700nm)を有する白色LEDを用いて、前処理槽内の海水に300、150、35μmol/m2/sの何れかの水中光量子束密度の弱光を60分間照射した。その後、弱光照射を停止し、さらに30分間暗所保持した。
【0146】
前処理槽内の海水は採取直後から少量ずつ排水し、排液管路上に設けた蛍光量子収率測定機を用いて、蛍光量子収率を1分間隔で測定した。蛍光量子収率測定機として、WATER-PAM(Walz社)にフロースルー型セルを装着した測定機を使用した。
【0147】
結果を
図6に示す。
図6は、弱光照射と暗所保持による蛍光量子収率の変化を解析した結果である。
図6中、横軸は、経過時間0は弱光照射の開始を示し、-30分から0分までは暗所で保持したことを示し、0分から60分までは弱光を照射したことを示し、60分から90分までは暗所で保持したことを示す。
【0148】
日中に採取した海水の初期の蛍光量子収率は0.4~0.5の間であった。それらの値は、暗所保持した30分間、ほとんど変化しなかった。弱光照射開始直後から上昇し、照射開始から約30~45分後に0.60~0.65に至った。
【0149】
弱光照射を停止した後、蛍光量子収率はほぼ一定に保たれた。日中採取した海水に照射した光の強度は150及び35μmol/m2/sの2段階であるが、弱光照射による蛍光量子収率の上昇傾向にはほとんど差異は認められなかった。
【0150】
夜間に採取した海水の初期の蛍光量子収率は、0.55~0.65の間であった。それらの値は、暗所保持した最初の30分間はほとんど変化せず、次の60分間の前記何れかの強さの弱光照射においても、僅かな低下しか認められなかった。さらに、弱光照射を停止した後の蛍光量子収率もほぼ一定に保たれた。
【0151】
本実験により、夜間に採取された表層海水の植物プランクトンの蛍光量子収率は、水中光量子束密度35~300μmol/m2/sの弱光照射では、ほとんど変化しないこと、すなわち、空中光量子束密度が300~500μmol/m2/sを超える日中の海域において生じるような蛍光量子収率の低下は引き起こされないことが示された。
【0152】
日中に採取した海水中の植物プランクトンの蛍光量子収率は、夜間に採取した海水のそれと比較して低いが、35~150μmol/m2/sの弱光を照射することによって、30~45分の間に夜間に採取した海水の蛍光量子収率に近い値まで上昇し、その後の照射期間においてはほぼ一定の値が維持された。
【0153】
本実験では、日中に採取した海水に水中光量子束密度300μmol/m2/sの弱光を照射した実験は行われていないが、夜間に採取した海水に対して水中光量子束密度300μmol/m2/sの弱光を照射しても蛍光量子収率の低下は認められていない。このことを考慮すれば、海域において日中に低下する蛍光量子収率は、35~300μmol/m2/sの弱光を30~60分以上照射することによって、夜間の蛍光量子収率近くまで回復させる効果があると考えられた。
【0154】
水中光量子束密度300μmol/m2/sを超える光を前処理槽内に照射した実験は行っていないが、実験例1において、空中光量子束密度が300~500μmol/m2/sを超える海域から採取された海水では、植物プランクトンの蛍光量子収率は低下する傾向が認められていることから、自然海域における蛍光量子収率の日周変動を抑制するための弱光の照射強度の上限は、水中光量子束密度300μmol/m2/s程度であると考えられた。
【0155】
また、水中光量子束密度35μmol/m2/s未満の弱光照射下での蛍光量子収率の応答は確認していないため、弱光照射の下限は不明である。ただし、本実験における弱光照射前の30分の暗所保持期間には、蛍光量子収率はいずれの海水もほとんど変化していない。すなわち、自然海域の蛍光量子収率の日周変動を抑制させるための弱光の下限値は、水中光量子束密度35μmol/m2/s未満であると考えられるが、暗所保持では変動抑制効果はないと考えられた。
【0156】
以上のことから、水中光量子束密度300μmol/m2/s以下の弱光を30~60分以上照射することにより、自然海域における蛍光量子収率の日周変動が抑制できると考えられた。
【0157】
本実験において、60分の弱光照射後に暗所保持した海水の蛍光量子収率は、海水採取時間や弱光照射強度の違いに関わらず、約30分間、弱光照射完了時の蛍光量子収率に近い値に維持された。したがって、蛍光量子収率の測定は、必ずしも弱光照射完了直後に行う必要はなく、被検液を暗所に保持した状態であれば、30分以内に実施すれば良いことが示された。
【0158】
以上、本発明を最良の形態に基づいて説明してきたが、本発明は上述の最良の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
光合成阻害物質混入検出装置を用いた光合成阻害物質混入検出方法は、前処理層内の被検液中の植物プランクトンに対して強光阻害を生じさせない水中光量子束密度の弱光を照射しながら前処理槽に給液する給液工程と、前処理槽への給液停止(給液工程の完了)後に前処理層内の被検液中の植物プランクトンに給液工程と同じ弱光を予め設定した時間だけ照射する貯留弱光照射工程と、貯留弱光照射工程の完了後、前処理層内の被検液中の植物プランクトンに給液工程と同じ弱光を照射しながら前処理槽から排液し、被検液の前処理槽からの排出期間に排液管路への流入を停止させたときに、前記排液管路内に滞留した前記被検液に測定光及び飽和パルス光を順次照射して蛍光量子収率を計測する蛍光量子収率測定工程とを有する構成に限定されない。
光合成阻害物質混入検出装置を用いた光合成阻害物質混入検出方法は、例えば、上述の給液工程、貯留弱光照射工程、蛍光量子収率測定工程のうち、給液工程における弱光照射のみを省略した構成や、給液工程及び蛍光量子収率測定工程における弱光照射を省略した構成も採用可能である。
【符号の説明】
【0159】
1…光合成阻害物質混入検出装置、2…被検液、10…ポンプ、11…吸上げ管、20…前処理装置、21…前処理槽、22…照射光源、23…撹拌装置、30…給液管路、31…給液主管、32…分岐給液管、33…給液側開閉弁、40…排液管路、41…槽毎排液管、42…排液合流管路、50…蛍光量子収率測定機、61…排液側開閉弁、62…排出ポンプ(第1排出ポンプ)、63…第2排出ポンプ、70…警報出力装置、71…スピーカー、80…試料分取装置、81…保管容器、90…分岐排出管路