(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-13
(45)【発行日】2022-12-21
(54)【発明の名称】管路内面の夾雑物除去方法
(51)【国際特許分類】
E03B 7/09 20060101AFI20221214BHJP
B08B 9/055 20060101ALI20221214BHJP
【FI】
E03B7/09
B08B9/055 551
B08B9/055 552
B08B9/055 553
(21)【出願番号】P 2018047866
(22)【出願日】2018-03-15
【審査請求日】2021-02-22
(31)【優先権主張番号】P 2017050119
(32)【優先日】2017-03-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000142595
【氏名又は名称】株式会社栗本鐵工所
(73)【特許権者】
【識別番号】506046470
【氏名又は名称】日本水機調査株式会社
(74)【代理人】
【識別番号】100130513
【氏名又は名称】鎌田 直也
(74)【代理人】
【識別番号】100074206
【氏名又は名称】鎌田 文二
(74)【代理人】
【識別番号】100130177
【氏名又は名称】中谷 弥一郎
(74)【代理人】
【識別番号】100112575
【氏名又は名称】田川 孝由
(74)【代理人】
【識別番号】100167380
【氏名又は名称】清水 隆
(72)【発明者】
【氏名】霜村 潤
(72)【発明者】
【氏名】道浦 吉貞
(72)【発明者】
【氏名】平田 祥一
(72)【発明者】
【氏名】硲 昌也
(72)【発明者】
【氏名】藤本 光伸
(72)【発明者】
【氏名】山本 政和
【審査官】遠藤 邦喜
(56)【参考文献】
【文献】特許第6232650(JP,B1)
【文献】特開平08-066669(JP,A)
【文献】特開平05-050050(JP,A)
【文献】特開2010-051885(JP,A)
【文献】特開2002-200465(JP,A)
【文献】特開2009-189910(JP,A)
【文献】特開2009-022918(JP,A)
【文献】特開2016-107247(JP,A)
【文献】特開2005-040742(JP,A)
【文献】特開平09-126399(JP,A)
【文献】特開平04-061977(JP,A)
【文献】特開2014-064961(JP,A)
【文献】特開平11-245300(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E03B 7/09
B08B 9/055
(57)【特許請求の範囲】
【請求項1】
管路(A)の一部からその管路内径以上の径のピグ(20)を前記管路(A)内に投入し、その管路(A)の一部から前記管路(A)内に流体を圧送して、前記管路(A)の長さ方向に前記ピグ(20)を走行させ、そのピグ(20)の走行に伴い、前記ピグ(20)と前記管路(A)内面との摩擦によって前記管路(A)内の夾雑物(a、a’)を剥離して押し進め、前記管路(A)の他部から前記ピグ(20)及び剥離した前記夾雑物(a、a’)を取り出す管路内面の夾雑物除去方法であって、
上記複数のピグ(20Y、20B、20W)を、先行きのピグが上記管路の他部に至る前に上記一部から後行きのピグを前記管路(A)に投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させ、かつ前記ピグ(20)の硬度を、先行きのピグ(20)より後行きのピグ(20)を硬く
するとともに、ピグ(20)の透水率は、先行きのピグ(20)を後行きのピグ(20)より高くしたことを特徴とする管路内面の夾雑物除去方法。
【請求項2】
上記ピグ(20)の径が、先行きのピグ(20)より後行きのピグ(20)が大きいことを特徴とする請求項1に記載の管路内面の夾雑物除去方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、上水道、農業用水、工業用水等の流体管路内面(内部)の夾雑物の除去方法及びその方法に使用する装置に関するものである。
【背景技術】
【0002】
この種の管路、例えば、上水道、農業用水、工業用水等の水管路は、長時間の共用年数を経過すると、その内面(内部)に、水質由来の析出物が付着したり、取水の際に混入した砂等の固形物が堆積したりして、水(流体)の通過断面積が減少したり、管路の機能診断を行う際の観察の支障となる場合がある。以下、その析出物や固形物等を「夾雑物」という。
【0003】
このような夾雑物が堆積・付着した管路は水などの流体の流れが悪くなることにより出水不足となり、所要の流量を流すことができなくなるとともに、堆積及び付着した夾雑物からの濁質異物流出により水質悪化の原因となる。このため、従来から、その管路内の夾雑物を除去する方法が発案されている。例えば、管路の一部(投入口)からピグを管路内に投入し、その管路の一部から管路内に流体(水)を圧送して管路の長さ方向に前記ピグを走行させ、その走行に伴う、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部(排出口)からピグ及び剥離した夾雑物を流体と共に取り出す管路内面の夾雑物を除去する方法がある(特許文献1、2参照)。
従来の管路内面の夾雑物除去方法は、径の異なる複数のピグを用意し、その径の小さいピグから少しずつ径の大きいピグを管路に順々に投入し、夾雑物を徐々に除去するようにしている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2002-200465号公報
【文献】特開2009-189910号公報
【文献】特開2009-22918号公報
【文献】特開2016-107247号公報
【文献】特許第6232650号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記従来において、各ピグの管路への投入は、その投入されたピグが管路の他部から取り出された(回収した)後、つぎのピグを投入している。これは、ピグが夾雑物の除去を完了したか否かを確認するためである。このとき、所要量の圧送流体を送り込んでもピグが管路他部に至らない場合(ピグが管路内に詰まった場合)、後押しのピグを投入してそのピグによって先行きのピグを押し出すようにもしている(特許文献1段落0021等参照)。
この一のピグの管路一部から他部に至る毎に(一通過毎に)、流体の圧送を繰り返すのは、流体の無駄であるとともに、ピグの挿入毎に、そのための装置を設置し直すのに多くの時間がかかり、夾雑物を除去する管路の休止時間(断水時間)も長くなるため、その管路を敷設した地域の社会生活に大きな影響が出ている。
【0006】
この発明は、以上の実状の下、夾雑物の除去時間を短くするとともに圧送流体の使用量を少なくすることを課題とする。
【課題を解決するための手段】
【0007】
上記課題を達成するため、この発明は、先行きのピグが上記管路の他部に至る前に後行きのピグを投入して連続的に走行させることとしたのである。すなわち、この夾雑物除去方法を「連球法」と称し、この連球法は、通常の洗浄方法が1回の洗浄に1つのピグを投入して回収し、その投入・回収作用におけるピグの直径等を変えて複数回繰り返すのに対し、管路内に所定の間隔(距離)を空けて複数のボールを順々に投入してそれぞれ独立し自由に走行させて夾雑物を除去することとしたのである。
先行きのピグが管路内にある時に、後行きのピグが管路に投入されて流体によって押されれば、前後のピグ間の流体を介して先行きのピグが押されて夾雑物の除去を行いながら進行(走行)して取り出し部(他部)に至る。このとき、特許文献3
図1に示されるように、清掃具(ピグ)を連結せず、各ピグを独立して自由に管路内を走行させるので、各ピグは他のピグの動向に関係なく夾雑物の除去作用を行い、効率の良い除去作用が行われる。また、何らかの事情によって、先行きのピグが管路内に留まっていても、後行きのピグに押されて一緒に取り出し部に至る。
このように、ピグを連続的に投入すれば(連球法によれば)、その各ピグで夾雑物の除去を行うことができ、各ピグの一通過毎に除去作用を行う場合に比べれば、作業時間も短くなるとともに、ピグ走行用流体量も少なくなる。また、ピグの挿入は同一作業の繰り返しのため、その同一作業を連続して繰り返せば、そのピグの挿入装置の設置時間も短くなり、さらに洗管中の断水時間の大幅な短縮もできる。
【0008】
この発明の具体的な構成としては、管路の一部からピグを管路内に投入し、その管路の一部から管路内に流体を圧送して管路の長さ方向にピグを走行させ、そのピグの走行に伴い、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部から前記ピグ及び剥離した夾雑物を取り出す管路内面の夾雑物除去方法であって、前記複数のピグを、先行きのピグが管路の他部に至る前に前記一部から後行きのピグを連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させる構成を採用することができる。
このとき、「連球法」には、管路内に、2つ以上のピグがあれば、その態様が含まれ、当然に、全てのピグが管路内に位置する態様も含まれる。但し、ピグが管路内に詰まって、後押し用のピグを投入する態様は含まれない。連球法によるピグの管路への投入方法は、一のピグを管路に投入してその管路途中で停止させ、つぎのピグを投入する動作を繰り返したり、複数の投入機で連続して投入したりすることができる(
図12参照)。
上記ピグの管路内の走行は、管路の一部から管路内に流体を圧送する手段に代えて、洗浄区間を独立させずに、上流から下流に流体の流れがある箇所では、その流れにより、ピグを走行させることができる(管路内に元々存在する流体によってピグを走行させることができる)。
【0009】
この構成において、上記ピグの硬度を、先行きのピグより後行きのピグが硬いものとしたり、先行きのピグの径より後行きのピグの径を大きくしたり、その両者を採用したりすることができる。一方、その逆に、上記ピグの硬度を、先行きのピグより後行きのピグが柔らかいものとしたり、先行きのピグの径より後行きのピグの径を小さくしたり、その両者を採用したりすることもできる。この硬度や径、及びそれらの異なるピグの投入順序は、管路の状態等に基づく洗浄効果の向上や時間短縮等を図れるように、実験や実操業に基づき適宜に設定する。
【0010】
通常、ピグの硬度が高くなれば、同一径の場合、剥離効果が高まる。透水性が高ければ、ピグを通り過ぎた流水によってピグ進行方向前方の夾雑物をほぐして移動し易くなる効果がある。このため、最初は、透水性の高いピグを投入し、徐々に、透水性が低くても弾性定数の高いピグを投入することが好ましい。
いずれにしても、先行きのピグと後行きのピグは、密度、透水率、弾性定数(弾性係数)を異ならせることが好ましい。また、管路内径とピグ径の比は、1:1.0~1.5が好ましい。さらに、管路の材質に応じてピグの硬さも変更することが好ましい。
このように、投入するピグの硬度を徐々に高く(硬く)したり、径を徐々に大きくしたり等することによって、夾雑物の円滑な除去を行うことができる。ここでいう硬度はアスカーゴム硬度計C型で計った場合の硬度を言う。その硬度は弾性定数に影響する。
以上のピグの密度、透水率、弾性定数を異ならせることは、各ピグが独立して自由に走行するため、その異ならせたことに基づく機能を有効に発揮する。
【0011】
なお、管路内のピグの走行は、そのピグの投入部からの流体流入によって行えば、例え
ば、複数の投入機と、流体圧送用ポンプとを有し、各投入機は、切替弁を介して管路及び
ポンプにそれぞれ接続されており、切替弁によって管路及びポンプに各投入機を個別かつ
選択的に接続する構成を採用すれば、装置全体の小型化が図れるが、特許文献5のように、導管からの流体流入によってその管路内のピグの走行を行うようにすることもできる。
【発明の効果】
【0012】
この発明は、以上のように、先行きのピグが管路の他部(取り出し部)に至る前に後行きのピグを投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させることとしたので、夾雑物の除去作業時間の短縮を図り得るとともに、圧送流体の量を少なくできるため、作業効率の向上を図るとともに作業コストの低減を図ることができる。
【図面の簡単な説明】
【0013】
【
図1】この発明に係る管路内の夾雑物除去方法を実施するための実験管路図であり、(a)は概略図、(b)は分岐部の拡大図
【
図2】同夾雑物除去方法の一実施形態に使用するピグ(PCボール)の各例図
【
図5】連球洗浄模式図を示し、(a)は管路内に夾雑物が無い場合、(b)は同夾雑物を介在した場合
【
図6】同夾雑物除去方法の一実施形態の管路の断面図
【発明を実施するための形態】
【0014】
図1に示す実験管路を製作し、この管路Aにおいて、管路内の夾雑物の除去作用を実験した。その管路はパイプ材料からなり、そのパイプ1は、内部が観察できるよう透明の塩化ビニル製(呼び径:φ100、外径:114mm、内径:104mm、厚さ:5mm)を用い、ランチャー(投入機)L及びキャッチャー(受け取り機)Cの他、約20m間隔で分岐部(分岐1~4)を設置した。
ランチャーLとキャッチャーCには圧力計(アナログ4a及びデジタル4b)を設置し、圧力の監視及びデータ採取を行うとともに、キャッチャーCに流量計5を設置して、これを基に管内流速の設定を行った。管路長等は図示及び下記表1のとおりである。図中、6はポンプ、7は水槽である。
【0015】
【0016】
ランチャーL及びキャッチャーCは、特許文献4などに開示されている従来周知のものであって、後述のピグ20を管路内に投入し得るとともに、管路から取り出し得るものである。
分岐部(分岐1~4)10は、
図1(b)に示すように、T字管11をパイプ1の間に介設し、その一口に単管12を接続し、その単管12の上端をフランジや蓋によって閉塞したものであり、その蓋を外すことによってピグ20を投入したり、取り出したり、洗浄距離を変えたり、万一、管路が閉塞した場合のピグ20等の排出口としたりした。
【0017】
ピグ20は、
図2に示す、軟質ウレタン樹脂の発泡体からなる球状をしたものであって、表2に示す、ソフトタイプ20Y(
図2(a)、表1のNo1~5)、ハードタイプ20B(同図(b)、同表のNo6~10)、中空タイプ20C(同図(c)、同表のNo11~12)、成型品タイプ20W(同図(d)、同表のNo13)を製作した。以下、これらのピグ20Y、20B、20C、20Wの総称符号を「20」とする。
【0018】
ソフトタイプ20Y、ハードタイプ20Bは無垢(中実)の連続気泡、中空タイプ20Cは、ハードタイプ20Bを二つ割りにしてその中を切り取って(中空21を形成して)接合したものであり、成型品タイプ20Wは金型成形であり、他の20Y、20B(C)は、発泡後、切削整形して球状とした。表2中の「呼び径」の列のY、B、C、Wにつづく数字は「呼び径」、例えば、「Y-110」は「ソフトタイプ20Yで呼び径:110」を示す。
この実験では、ソフトタイプ20Yを黄色に着色し、成型品タイプ20Wを白色に着色し、ハードタイプ20B、中空タイプ20Cを黒色に着色した。また、ソフトタイプ20Yのアスカーゴム硬度計C型で計った硬度は2~5、ハードタイプ20Bの同硬度は10~20であった。
【0019】
【0020】
また、ソフトタイプY-110、ハードタイプB-110について、常温体積及び乾燥質量から密度を求めた結果を表3に示す。その数値は、各々2回の測定の平均値を示し、常温とは実験場所の空気調和をしていない時の温度を言い、乾燥質量とは、同じく、その実験場所の空気調和をしていない大気中における実験前の質量を言う。この実験時の温度:15℃、湿度:60%であった。
この結果から、ソフトタイプY-110は、見かけ密度:0.05(g/cm3)程度、ハードタイプB-110は、同0.08(g/cm3)程度である。
【0021】
【0022】
さらに、ソフトタイプY-110、ハードタイプB-110について、透水率を求め、その結果を表4に示す。その透水率は、
図3に示すように、φ104透明VP(塩化ビニル)管(パイプ1)にピグ20を両者の間から水wが通過しないように嵌め込み、矢印のようにピグ20を透過した水の透水率(cm/s)=透過水体積(cm
3)/(通過断面積(cm
2)×通過時間(s))で求めた。
【0023】
【0024】
また、ソフトタイプY-110、ハードタイプB-110について、弾性定数を求め、その結果を表5に示す。その弾性定数は、
図4に示すように、上皿秤Hにピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w
70)及び50%(w
50)に圧縮するために必要な荷重(N)を求めた。このとき、自然状態からの圧縮直径dが70%の場合の荷重を「w
70」、同50%の場合の荷重を70%時点からの増加分「w
50-w
70」とし、その弾性定数(N/cm)は、=荷重(N)/区間変位(cm)で求めた。その区間変位は、各々、圧縮率30%の場合は自然直径~70%圧縮直径間、圧縮率50%の場合は自然直径~50%圧縮直径間の距離とした。表5中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。
【0025】
【0026】
この各ピグ20を、上記管路Aに投入した際の「対管内径比」、ランチャーLへの「押込み圧力(水圧)」、管路A内にピグ20を移動させるための「始動圧力」、「定常圧力(始動から排出までの水圧)」及び「排出圧力」を表6に示す。
【0027】
【0028】
この実験結果によると、押込み圧力は、ピグ(PCボール)20が中実の場合、硬さの差による違いはほとんどないが、直径の影響が顕著であり(No1、2と3~5)、管内径との比が1.5を超えるφ150辺りから急激に上昇する(No3~5、No8~10)。一方の中空タイプ(No11、12)は、φ150であってもさほど押込み圧力が上昇することはない。
始動圧力及び定常圧力については、始動圧力がハードタイプのφ150以上(No8~10)で高くなる傾向がある以外はほぼ0.01~0.03MPaと一定である。
排出圧力は、一連の圧力変動の中で最も高くなる傾向があり、0.3MPa以上となると、水撃圧による管路の振動、軋みが感じられた。
【0029】
つぎに、上記管路Aにおいて、無負荷(ピグ20の入っていない)状態で、同一ポンプ圧力:0.3MPa、吐出量:19.8m3/h(流速:0.7m/s)の条件下の、各ピグ20の各区間(スタート位置S(ランチャーL)→分岐1等)の移動時間及び移動速度を表7に示す。なお、ポンプの吐出圧及び流量は、上水道における洗浄作業の実績値から決定した。
【0030】
【0031】
この実験結果によると、同一圧力、同一流量の設定の下では、ソフトタイプ20Y(No1~5)とハードタイプ20B(No6~10)の速度差が顕著であり、同一径を比較した場合、ハードタイプ20Bの速度はソフトタイプ20Yの80~85%程度となる。
中空タイプ20C(No11、12)については、φ120(No11)ではソフトタイプ20Yとハードタイプ20Bの中間的値、φ150(No12)はハードタイプ20Bと同等となっている。
【0032】
さらに、ポンプ6の作動を上記表7の実験と同様に設定し、先行きのピグ20が管路Aの他部(キャッチャーC)に至る前に後行きのピグ20を連続的に走行させるとともに、先行きピグ20及び後行きのピグ20を独立して自由に同時に走行させる実験(「連球法」実験)の結果を表8及び
図5(a)に示す。
この表の各実験No1~6において、ピグ20を投入した順番、種類とともに、発射(投入)時及び到達時のピグ20の位置(ランチャーLからの距離)、相互の間隔を示し、
図5(a)にそれらの模式図を示す。その
図5(a)中、灰色丸のピグがソフトタイプ20Y、黒色丸のピグがハードタイプ20Bである。下記
図5(b)も同様である。
このとき、ピグ20は、ランチャーLから1投目を投入後、ポンプ6を作動させて所定距離を先送りして停止させ、以後、同様の手順で2投目以降を投入した。予定数のピグ20が投入し終わったら(管路A内に全てのピグ20が位置する状態、好ましくは、分岐1まで、又は分岐2までに位置する状態で)、ポンプ6を再作動させて各ピグ20を一斉に移動させ、1投目がキャッチャーC直下のエルボに到着した時点でピグ20を停止させた(水の圧入を停止させた状態)。測定項目は、投入直後のピグ20の位置、2投目以降との間隔、及び1投目のピグ20がキャッチャーC直下のエルボに到達した時点での移動距離、2投目以降との間隔、並びに移動時間である。
【0033】
【0034】
この実験結果から、同一硬さであれば(実験No1~3)、80mの移動の間に複数のピグ20の相対位置が変化する割合は15%以内であり、かつ距離が縮まる方向である。一方、ソフトタイプ20Yとハードタイプ20Bを一緒に送った場合は(実験No4~6)、ハードタイプ20Bが遅れる傾向にあり、ソフトタイプ20Yとハードタイプ20Bの走行距離からハードタイプ20Bが85~90%の速度差で移動しているとみられ、これは上記表7の基礎実験の傾向と整合している。
【0035】
つぎに、管路A内に、夾雑物a、a’がある状態で連球法にてピグ20を通過させ、洗浄性の確認とピグ20の挙動を確認した。このとき、夾雑物の投入量は
図6に示すように、夾雑物a、a’が管路A(パイプ1)内径の1/4かつ長さが100m堆積した状態を想定し、その体積から砂a及びシルト混じり粘土a’の比重又は密度を乗じて算出した質量とした。なお、砂(硅砂5号)aのかさ比重は1.56、現場採取土(シルト混じり粘土)a’については、過去に行った同種の土壌の分析結果から密度2.81(g/cm
3)、含水比120%の単位体積当たりの質量1.41(kg/cm
3)を用いた。
ピグ20の投入種類及び順番については、上水道での経験と応用実験の結果から1投目:Y-120→2投目:B-150の順とし、現場採取土a’については3投目としてY-180を追加した。すなわち、管路に投入するピグ20の径及び硬度を順々に大きくかつ硬くした。その結果を表9及び
図5(b)に示し、前者が同実験No1、後者が同実験No2である。
【0036】
【0037】
砂aは、1投目のピグ20YがランチャーLから1mほど進んだところで停滞してしまった。このため、圧力を0.3MPaから0.4MPaに上げると前記停滞した1投目のピグ20Yは徐々に動き始め、そのピグ20Yを通り抜けた水流が堆積した砂aの上部を押し流す作用が強まると、速度を上げて砂aを押し始め、最終的にキャッチャーCまで運んだ。ただし、1投目だけでは、管底部に残留分が確認でき、それらが2投目(ピグ20B)で除去される様子も確認できた。
その連球法での洗浄途中の様子から、1投目で押し残した残留分を、2投目、3投目(現場採取土a’のみ)が搬送、除去していることが確認できた。この実験No2では3投目にソフトタイプ20Yを使用した。このことから、管路Aの状況に応じて、ソフトタイプ20Yとハードタイプ20Bの硬度や径の異なるピグ20を適宜に選択して投入したり、最終はソフトタイプ20Yによって仕上げ洗浄したりすれば、円滑な夾雑物a、a’の除去ができることが推測できる。
【0038】
以上の実験結果から以下の考察を行った。
1.基礎実験(ピグ(PCボール)20)の基本的な挙動の確認
「ランチャーLの押込み圧力、始動圧力、定常圧力及びキャッチャーCの排出圧力の確認」
ランチャーLの押込み圧力がピグ20の直径に影響を受けるのは、ランチャーLのなかでは、非圧縮状態のピグ20を管路A(パイプ1)内径まで縮径する必要があるためで、中実タイプ20Y,20Bでは管路A(パイプ1)の直径に応じた押込み圧力が必要となるのは当然の結果であると考える。また、中空タイプ20Cは、口径の小さい投入口から大径の管路洗浄を可能とするために試行されたタイプで、押込み圧力、排出圧力は中実タイプ20Y,20Bより低く抑えられることが確認できたが、一方で反発力の低下に伴う洗浄性への影響については別途検証を要するものと考えるが、洗浄力は低下すると考える。
始動圧力、定常圧力は、ほぼ、どのタイプでも変わりなく、ハードタイプ20Bのφ150以上のもので始動圧力がやや高まるのみであった。これもピグ20Bの硬さが弾性定数に基づく反発力として現れたものであり、その傾向が数値的に把握できたことは有意である。
排出圧力については、移動していたピグ20が管路A(パイプ1)より小さい口径を通過しようとして一時的に管路Aが閉塞状態となるため、水撃圧が発生しているようである。
管路Aの口径や管路長が大きくなると、その作用も増大する可能性があり、排出圧力の管理が重要な要素であると考える。
【0039】
2.同一圧力下での移動速度の確認
実用的な条件設定であるポンプ圧力:0.3MPa、管内流速:0.7m/sの下で種類の異なるピグ20を送ると、ピグ口径(直径)の影響よりも、硬さの影響が大きく出ることが分かる。ソフトタイプ20Yはほぼ無負荷時の流速と等しい速度で移動する一方で、ハードタイプ20Bはその85~90%程度の速度となる。
【0040】
参考として、今回使用したピグ20について、φ104透明VP(塩化ビニル)管(パイプ1)における接触面積と静止摩擦力、動摩擦力を測定した結果を表10に示す。その測定方法は
図7の方法による。このとき、静止摩擦力Nは、荷重Fをピグ20にのみに加えたとき、動き出す瞬間のはかりDの値、動摩擦力Nはおよそ30mm/sで移動中の値を読んだ。Lはピグ20の接触長さである。
【0041】
【0042】
この実験結果から、動摩擦力については、φ150のハードタイプ20Bはソフトタイプ20Yの約2倍となることが判った。また、ハードタイプ20Bの速度低下の原因は、おそらく動摩擦力の差によるものであると考えるが、一部に、製造方法の差による透水率の違いなども考えられる。
【0043】
連球法における挙動については、
第1投目のピグが約20mほど先行した状態から、キャッチャーCまで移動する間の、各ピグ20Y、20Bの位置関係に着目した。すなわち約80~85mを移動する間の相互間隔の変化については、同一硬さであれば、その間隔は縮まる傾向にあるが、短縮代はもとの間隔の10~15%程度である。
これにハードタイプ20Bが加わると、ソフトタイプ20Yに比べさらに15%程度遅れながら移動し、最終的にハードタイプ20Bの後ろにソフトタイプ20Yを入れる場合は当初距離の25~30%程度間隔が縮まると考えなければならない。
このことから、ソフトタイプ20Y→ハードタイプ20Bを順々に投入するのが好ましいことが分かる(
図5(a)参照)。
【0044】
夾雑物除去実験(砂及び現場採取土)においては、
管路内への夾雑物の投入量は、
図6に示すように、砂(硅砂5号)a、現場採取土(シルト混じり粘土)a’とも300kgを投入した。砂aについては、ポンプ圧力を0.4MPaまで上昇して排出することができたが、排出時間も16分と夾雑物のない状態とくらべて5倍を要した。管路Aへの圧力の影響や、模擬管路の内面状況が理想的であることを鑑みると、0.3MPa以下での運用が実用上の限界条件と考える。
一方、現場採取土a’については、ポンプ圧0.3MPaで全量排出でき、2投目、3投目が各々積み残した夾雑物を回収しながら搬送していく様子が確認できた。
洗浄性については、当初粘着性のあるシルト混じり粘土a’のほうが悪いと予測していたが、砂aに比べて良好であった。これは、模擬管路の内面状態が良好なことや細粒分が多く見かけの比重が軽いことに加え、充填してから間がなく圧密されずに浮遊状態の粒子が多く存在していることも影響しているのではないかと考える。
この実験結果から、洗浄性は、「粘土混じりシルトa’」→「砂a」→「石」の順に悪くなるといえる。
「連球法」の効果については、夾雑物a、a’を投入した状態(表8のNo3の時間:4分22秒)と夾雑物がない状態(表8のNo1の時間:3分24秒)とをくらべると、1分程度時間は遅くなるが、3回ボール(ピグ)を個々に通過させる場合に比べると、水量も時間も短縮できる。
今回の実験結果から、連球法と単純に3回洗浄との時間及び水量を比較すると表11のようになり、連球法が優れていることが理解できる。
【0045】
【0046】
さらに、このPCボール(ピグ)20の密度、弾性定数(弾性率、弾性係数)及び透水率が使用に耐え得るかを検証するために、各径のPCボール20に、
図2(a)、(b)に示す軟質ウレタン樹脂の発泡体からなる球状をした無垢のソフトタイプ及びハードタイプを用い、「密度」、「透水率」、「弾性定数」を各々以下の方法で測定した。
【0047】
「密度の測定」
各PCボール20について、上記と同様に、実外径(直径)d(mm)から求めた体積(cm
3)の計算結果と質量m(g)を用い、下記式(1)により、密度ρ(g/cm
3)を算出した。
ρ=m/V ・・・・・・(1)
その結果を表12、
図8に示す。
この
図8及び表12によると、ソフトタイプが0.059[g/cm
3]、0.058[g/cm
3]程度、ハードタイプが0.099[g/cm
3]、0.091[g/cm
3]程度となっており、後者が前者に対し、密度が約1.6倍と高い。
【0048】
【0049】
「弾性定数]
上記
図4において、上皿秤Hに代えて偏平状体重計を採用し、上記弾性定数の測定と同様に、その体重計の上面(載置面)にピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w
70)及び50%(w
50)に圧縮するために必要な荷重(N)を求めた。
その測定結果を表13、
図9に示す。その表13中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。
この表13及び
図9によると、ハードタイプの弾性定数(弾性係数)がソフトタイプより、1.2~1.5倍高くなって硬いことが分かる。
【0050】
【0051】
「透水率]
図10に示す装置によって測定した。その装置は、100mmφの塩化ビニル管31の両端面にゴム輪32を固定するとともに、ゴム板33を宛がい、ゴム輪32を間にして前記ゴム板33と押し輪34をボルト・ナット35で締め付けることによって管31内を止水する。その管31内に金網36で塞いだ75mmφの塩化ビニル管37を同軸に設け、前記管31内にPCボール20を装填する。管31の一方には、複数のバルブ38a、38b、38cを設けたホース38、38を介して水Wを流入可能とすると共に、管31の他方からは、バルブ38dを設けたホース38を介してポリタンク39に前記水Wを流入可能とする。図中、38eは水圧計である。
【0052】
この透水性試験装置において、まず、図中、一番左のバルブ38aとその直線上にあるバルブ38bを開き、管31内を満水とする。つぎに、出口側(右側)のバルブ38dを開き、管31内及びPCボール20内のエアを抜き抜き取った後、一番左のバルブ38aを一旦閉じ、出口側のホース38をポリタンク39の中に入れる。
この状態において、一番左のバルブ38aを開けると共に、ストップウォッチでその開放時からの経過時間を計測しつつ、ポリタンク39に10Lの水が入ったら、バルブ38aとストップウォッチを止める。
この作用の後、蓋40を開け、ボール20のサイズ・種類を変更し、上記の作用を繰り返して、各PCボール20の透水率を測定した。その測定結果を表14、
図11に示す。
【0053】
【0054】
この透水率実験の結果によると、
図11に示すように、ハードタイプのボール20Bの方がソフトタイプのボール20Yに比べて透水率が高いことが分かる。このため、ソフトタイプのボール20Yがハードタイプのボール20Bに比べて水圧を受けやすいことが理解でき、最初の夾雑物除去には好ましいことが分かる。すなわち、ソフトタイプのボール20Yで最初の夾雑物除去を行い、続いて、ハードタイプのボール20Bで除去し残った夾雑物除去を行うことが好ましいことが分かる。
また、透水率が変化すると、ボール20を押す力が変わってくるため、管31内の進行速度が変化しやすいと言える。管31に対してPCボール20が大きくなると、ボールにできるシワが大きくなり、透水率に影響が出やすかった。
【0055】
以上の実験から、連球法による洗浄が優れていることを確認でき、これによって、既設管路の洗浄を円滑に行い得ることが確認できる。この管路内の夾雑物の除去は、従来と同様に、その除去のみならず、管路の機能診断を行う前に行ったり、その除去の後に、前記機能診断を行ったりする場合がある。
その連球法による洗浄は、上水道のみならず、農業用パイプライン(農業用水管路)、化学工場の薬品ライン等の他の流体管路に採用し得ることは言うまでもない。
なお、連球法によって複数のピグ20を連続して管路に投入する場合は、ランチャーLを複数用意することが好ましい。例えば、
図12に示す態様とし、回路切替弁8によって両ランチャーL、Lを管路A及びポンプ6に交互に(個別かつ選択的に)接続してピグ20を投入する。
ピグ20は球状に限らず、特許文献1
図7、
図12等に記載の銃弾状等と任意である。また、ピグ20の外周面には慣性を高める、シリコーンゴム等のコーティングをすることが好ましい。
【0056】
なお、上記実施形態は、管路が塩化ビニル製であったため、ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)→ソフトタイプ20Y(黄色)の順で投入したが、管路の材質によって適宜に変更することは勿論であり、例えば、内面モルタルライニングのダクタイル鋳鉄管にあっては、ソフトタイプ20Y(黄色)→ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)の順で投入する。
このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0057】
C キャッチャー
L ランチャー
1 パイプ
4 圧力計
5 流量計
20、20Y、20B、20W ピグ(PCボール)