(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-13
(45)【発行日】2022-12-21
(54)【発明の名称】励磁作動ブレーキ
(51)【国際特許分類】
F16D 55/00 20060101AFI20221214BHJP
H01F 7/06 20060101ALI20221214BHJP
【FI】
F16D55/00 A
H01F7/06 P
(21)【出願番号】P 2018188907
(22)【出願日】2018-10-04
【審査請求日】2021-09-14
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(73)【特許権者】
【識別番号】000185248
【氏名又は名称】小倉クラッチ株式会社
(74)【代理人】
【識別番号】100098394
【氏名又は名称】山川 茂樹
(74)【代理人】
【識別番号】100064621
【氏名又は名称】山川 政樹
(72)【発明者】
【氏名】貴傳名 康生
(72)【発明者】
【氏名】中島 啓太
(72)【発明者】
【氏名】前田 武
(72)【発明者】
【氏名】加藤 基
(72)【発明者】
【氏名】黒須 義弘
(72)【発明者】
【氏名】小内 宏泰
(72)【発明者】
【氏名】村上 幸佑
【審査官】山本 健晴
(56)【参考文献】
【文献】特開昭60-179531(JP,A)
【文献】特開昭59-047538(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16D 55/00
H01F 7/06
(57)【特許請求の範囲】
【請求項1】
被制動部材としての制動軸と、
前記制動軸に一体に回転するように装着されたアーマチュアと、
前記制動軸の軸線方向において前記アーマチュアと対向する円板部を有するフィールドコアと、
前記フィールドコアの環状溝に収容された励磁コイルとを備え、
前記円板部は、前記励磁コイルが通電されることにより発生した磁束を径方向に流す磁束路を構成するものであり、
前記円板部には、前記磁束が前記アーマチュアに複数回にわたって迂回するように複数の断磁部が設けられ、
前記複数の断磁部のうち、前記径方向の外側に位置する断磁部は、磁気抵抗が相対的に小さくなるバイパス磁路を有
し、
前記アーマチュアは、前記外側断磁部と対向する外側アーマチュアと、前記内側断磁部と対向する内側アーマチュアとを備え、
前記外側アーマチュアと前記内側アーマチュアは、前記制動軸と一体に回転する非磁性材からなる支持部材にそれぞれ前記制動軸の軸線方向へ移動可能に支持され、
前記支持部材は、前記制動軸に一体に回転する状態で軸線方向へ移動可能に支持された円板状の本体部と、前記制動軸を中心とする環状に形成され、前記外側アーマチュアの内周部および前記内側アーマチュアの外周部と嵌合する環状壁と、前記環状壁から径方向の内側に突出して前記内側アーマチュアと係合する内側係合突起および前記環状壁から径方向の外側に突出して前記外側アーマチュアと係合する外側係合突起とを備え、
前記外側アーマチュア、前記内側アーマチュアおよび前記支持部材からなるアーマチュア組立体は、ばね部材によって前記円板部に向けて付勢されていることを特徴とする励磁作動ブレーキ。
【請求項2】
請求項1記載の励磁作動ブレーキにおいて、
前記複数の断磁部は、前記円板部の径方向の外側に位置する外側断磁部と、この外側断磁部より前記径方向の内側に位置する内側断磁部とからなり、
前記外側断磁部および前記内側断磁部は、それぞれ前記円板部の周方向に所定の間隔をおいて並ぶ複数の円弧状の長円からなるスリットと、これらのスリットどうしの間に形成されたブリッジ部とを有し、
前記周方向における、前記外側断磁部の前記スリットの形成幅は、前記外側断磁部の前記ブリッジ部の形成幅より狭く、
前記周方向における、前記内側断磁部の前記スリットの形成幅は、前記内側断磁部の前記ブリッジ部の形成幅より広く、
前記外側断磁部の前記ブリッジ部が前記バイパス磁路であることを特徴とする励磁作動ブレーキ。
【請求項3】
請求項2記載の励磁作動ブレーキにおいて、
前記外側断磁部の前記スリットの一端から他端に向かう際の前記周方向の角度は、前記内側断磁部の前記スリットの一端から他端に向かう際の前記周方向の角度より小さいことを特徴とする励磁作動ブレーキ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転部材や移動部材の制動またはその制動状態を保持する励磁作動ブレーキに関する。
【背景技術】
【0002】
従来、励磁作動ブレーキ(以下、単に電磁ブレーキという)は、制動装置および制動保持装置を構成するものであり、様々な分野において安全装置として使用されている。この種の従来の電磁ブレーキは、励磁コイルを有するフィールドコアが移動できないように支持体に固定され、制動の対象となる制動軸にアーマチュアが設けられていることが多い。この電磁ブレーキにおいては、励磁コイルに通電されてアーマチュアがフィールドコアに磁気により吸着されることによって、制動軸の回転が制動される。
【0003】
この種の電磁ブレーキに生じる摩擦トルクTは、摩擦係数μ×軸方向の全圧力P×摩擦面の有効半径R×摩擦面の数Nという計算式によって求められる。このトルク値は、鉄心のB(磁束密度)-H(磁界の強さ)特性に沿った値になる。このため、電磁ブレーキの制動トルクは、
図11に示すように、励磁コイルに印加する電圧の増大に伴って大きくなる。
図11において破線は、制動トルクが相対的に低くなるように構成された電磁ブレーキ(以下、単に低トルク用電磁ブレーキという)の動作特性を示し、
図11において二点鎖線は、制動トルクが相対的に高くなるように構成された電磁ブレーキ(以下、単に高トルク用電磁ブレーキという)の動作特性を示す。
【0004】
低トルク用電磁ブレーキは、いわゆるシングルフラックス型の電磁ブレーキである。シングルフラックスとは、励磁コイルの磁束がフィールドコアからアーマチュア側に1回迂回する磁気回路をいう。
高トルク用電磁ブレーキは、いわゆるダブルフラックス型の電磁ブレーキである。ダブルフラックスとは、励磁コイルの磁束がフィールドコアからアーマチュア側に2回迂回する磁気回路をいう。
高トルク用電磁ブレーキは、低トルク用電磁ブレーキより磁気吸引力を大きくすることができるため、高い制動トルクが得られる。また、
図11から分かるように、高トルク用電磁ブレーキの最小制動トルクは、低トルク用電磁ブレーキの最小制動トルクより大きい。
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来の電磁ブレーキの中には、最小制動トルクが生じている状態において制動軸を回すことができ、しかも、制動軸を停止させるときには大きな最大制動トルクで完全に止めることができる性能を求められているものがある。この要請に応えるためには、大きな最大制動トルクを得るために高トルク用電磁ブレーキを使用する必要がある。しかし、従来の高トルク用電磁ブレーキでは、最小制動トルクが低トルク用電磁ブレーキの最小制動トルクより大きくなってしまうために、最小制動トルクが生じている状態で制動軸が回り難くなってしまい、上述した要請に応えることはできなかった。
【0006】
本発明の目的は、低トルク用電磁ブレーキの最小制動トルクに近似した最小制動トルクを得ることができるとともに、高トルク用電磁ブレーキの最大制動トルクに近似した最大制動トルクを得ることが可能な励磁作動ブレーキを提供することである。
【課題を解決するための手段】
【0007】
この目的を達成するために、本発明に係る励磁作動ブレーキは、被制動部材としての制動軸と、前記制動軸に一体に回転するように装着されたアーマチュアと、前記制動軸の軸線方向において前記アーマチュアと対向する円板部を有するフィールドコアと、前記フィールドコアの環状溝に収容された励磁コイルとを備え、前記円板部は、前記励磁コイルが通電されることにより発生した磁束を径方向に流す磁束路を構成するものであり、前記円板部には、前記磁束が前記アーマチュアに複数回にわたって迂回するように複数の断磁部が設けられ、前記複数の断磁部のうち、前記径方向の外側に位置する断磁部は、磁気抵抗が相対的に小さくなるバイパス磁路を有しているものである。
【0008】
本発明は、前記励磁作動ブレーキにおいて、前記複数の断磁部は、前記円板部の径方向の外側に位置する外側断磁部と、この外側断磁部より前記径方向の内側に位置する内側断磁部とからなり、前記外側断磁部および前記内側断磁部は、それぞれ前記円板部の周方向に所定の間隔をおいて並ぶ複数の円弧状の長円からなるスリットと、これらのスリットどうしの間に形成されたブリッジ部とを有し、前記周方向における、前記外側断磁部の前記スリットの形成幅は、前記外側断磁部の前記ブリッジ部の形成幅より狭く、前記周方向における、前記内側断磁部の前記スリットの形成幅は、前記内側断磁部の前記ブリッジ部の形成幅より広く、前記外側断磁部の前記ブリッジ部が前記バイパス磁路であってもよい。
【0009】
本発明は、前記励磁作動ブレーキにおいて、前記外側断磁部の前記スリットの一端から他端に向かう際の前記周方向の角度は、前記内側断磁部の前記スリットの一端から他端に向かう際の前記周方向の角度より小さくてもよい。
【0010】
本発明は、前記励磁作動ブレーキにおいて、前記アーマチュアは、前記外側断磁部と対向する外側アーマチュアと、前記内側断磁部と対向する内側アーマチュアとを備え、前記外側アーマチュアと前記内側アーマチュアは、前記制動軸と一体に回転する円板状の支持部材にそれぞれ支持され、前記外側アーマチュア、前記内側アーマチュアおよび前記支持部材からなるアーマチュア組立体は、ばね部材によって前記円板部に向けて付勢されていてもよい。
【発明の効果】
【0011】
本発明において、励磁コイルに低電流が供給されている場合は、磁束がフィールドコアの円板部の径方向の内側において径方向内側の断磁部を避けてアーマチュアに迂回する。また、この場合に円板部の径方向外側においては、磁束が外側断磁部のバイパス磁路を主に流れ、アーマチュアの径方向外側に迂回して流れる磁束は少なくなる。このため、低電流が供給された場合は、円板部の径方向内側でアーマチュアに迂回される磁束の磁気吸引力でアーマチュアの径方向内側の部分が円板部に吸引されることによって、制動軸が制動される。すなわち、この場合は、実質的にシングルフラックス型電磁ブレーキとして機能し、低トルク用電磁ブレーキと同等の最小制動トルクが得られる。
【0012】
励磁コイルに高電流が供給されている場合は、径方向外側の断磁部を避けてアーマチュアに迂回する磁束が増え、磁束の磁気吸引力が増大する。このため、アーマチュアの径方向外側の部分も磁気吸引力で円板部に吸引されるようになり、制動軸を制動する制動力も強くなる。すなわち、この場合は、実質的に高トルク用電磁ブレーキとして機能し、高トルク用電磁ブレーキと同等の最大制動トルクが得られる。
したがって、本発明によれば、低トルク用電磁ブレーキの最小制動トルクに近似した最小制動トルクを得ることができるとともに、高トルク用電磁ブレーキの最大制動トルクに近似した最大制動トルクを得ることが可能な励磁作動ブレーキを提供することができる。
【図面の簡単な説明】
【0013】
【
図1】本発明に係る励磁作動ブレーキの正面図である。
【
図2】本発明に係る励磁作動ブレーキの背面図である。
【
図3】
図2におけるIII-III線断面図である。
【
図4】アーマチュア組立体を
図3中にIV-IV線で示す位置で破断して示す断面図である。
【
図7】
図6におけるVII-VII線断面図である。
【
図8】低電流が供給されているときの磁束の状態を示す要部の断面図である。
【
図9】高電流が供給されているときの磁束の状態を示す要部の断面図である。
【
図10】アーマチュア組立体の変形例を示す断面図である。
【
図11】励磁作動ブレーキの制動トルクと電圧との関係を示すグラフである。
【発明を実施するための形態】
【0014】
以下、本発明に係る励磁作動ブレーキの一実施の形態を
図1~
図9を参照して詳細に説明する。
図1に示す励磁作動ブレーキ(以下、単に電磁ブレーキという)1は、
図1の中心部に位置する制動軸2を被制動部材とし、この制動軸2の回転を制動するノーギャップ方式ダブルフラックス型電磁ブレーキである。この電磁ブレーキ1は、制動軸2と、この制動軸2の一端側(
図1の手前側であって
図3においては右側)に設けられたアーマチュア組立体3と、このアーマチュア組立体3と並ぶフィールドコア組立体4などによって構成されている。以下において、この電磁ブレーキ1の構成を説明するうえで方向を示すにあたっては、便宜上、アーマチュア組立体3が位置する一側部を前側として説明する。
【0015】
アーマチュア組立体3は、
図3および
図4に示すように、円板状に形成されており、径方向の内側に位置する内側アーマチュア5と、径方向の外側に位置する外側アーマチュア6と、これらの内側アーマチュア5と外側アーマチュア6との間に位置するカップリング7とを備えている。
内側アーマチュア5と外側アーマチュア6は磁性材料によって形成され、カップリング7は非磁性材料によって形成されている。内側アーマチュア5と外側アーマチュア6は、最終形状に形成された後に硬化処理が施されている。カップリング7は、繊維強化プラスチックによって形成されている。なお、カップリング7を形成する材料は、金属材料や、必要な強度を有していればその他のプラスチック材料やゴム材料などでもよい。
【0016】
内側アーマチュア5の軸心部は、
図4に示すように、制動軸2の一対のカット面8を有する連結部2aに制動軸2の軸線方向へ移動可能に嵌合している。内側アーマチュア5の外周部は、カップリング7の環状壁11に嵌合する外周面5aと、カップリング7の複数の内側係合突起12にそれぞれ係合する複数の係合溝13とを有し、カップリング7に制動軸2の軸線方向へ移動可能に支持されている。
【0017】
外側アーマチュア6は、円環板状に形成されている。外側アーマチュア6の内周部は、カップリング7の環状壁11に嵌合する内周面6aと、カップリング7の複数の外側係合突起14にそれぞれ係合する複数の係合溝15とを有し、カップリング7に制動軸2の軸線方向へ移動可能に支持されている。外側アーマチュア6の外径は、後述するフィールドコア組立体4の前端部を構成する円板部21(
図3参照)の外径と略等しい。この実施の形態においては、内側アーマチュア5と外側アーマチュア6とが本発明でいう「制動軸に一体に回転するように装着されたアーマチュア」に相当する。
【0018】
カップリング7は、
図3に示すように、制動軸2の連結部2aが貫通する円板状の本体部22と、この本体部22から後側に突出した環状壁11、内側係合突起12および外側係合突起14などによって構成されている。
本体部22は、制動軸2の連結部2aに嵌合した状態で軸線方向へ移動可能に支持されている。また、本体部22は、制動軸2の前端側のスプリングシート23との間に設けられたばね部材24によって、制動軸2に対して後側に付勢されている。すなわち、アーマチュア組立体3は、ばね部材24によって後述するフィールドコアの円板部21に向けて付勢されている。この実施の形態によるばね部材24は、圧縮コイルばね25によって構成されている。スプリングシート23は、制動軸2が貫通するリングからなり、制動軸2に係合したスナップリング26に後側から重ねられている。
【0019】
カップリング7の環状壁11は、
図4に示すように、制動軸2を中心とする環状に形成されている。この環状壁11を周方向に3等分する位置に内側係合突起12と外側係合突起14とが設けられている。内側係合突起12は、環状壁11から径方向の内側に突出している。外側係合突起14は、環状壁11から径方向の外側に突出している。内側係合突起12と外側係合突起14は、環状壁11の周方向において同一の位置に形成されている。
【0020】
環状壁11の高さ(本体部22から突出する突出量)と、内側係合突起12および外側係合突起14の高さは、同一である。また、環状壁11の後端と、内側係合突起12および外側係合突起14の後端は、
図3に示すように、カップリング7に取付けられた内側アーマチュア5および外側アーマチュア6の後端より前側に位置している。
この実施の形態においては、このカップリング7が請求項4記載の発明でいう「支持部材」に相当する。
【0021】
フィールドコア組立体4は、
図3において最も外側に位置するフィールドコア31に各種の部品を組付けて形成されている。フィールドコア31は、
図3、
図5~
図7に示すように、径方向の内側に位置する円筒状の内側円筒部32と、この内側円筒部32と同一軸線上に位置付けられて内側円筒部32より径方向の外側に位置する円筒状の外側円筒部33と、内側円筒部32の前端と外側円筒部33の前端とを接続する環状の円板部21とを有している。
【0022】
内側円筒部32の内周部には、
図3に示すように、第1および第2の滑り軸受34,35が設けられている。内側円筒部32は、これらの第1および第2の滑り軸受34,35を介して制動軸2を回転自在かつ軸線方向へ移動自在に支持している。第1および第2の滑り軸受34,35は、フィールドコア31を通る磁束Φが制動軸2に漏洩することを防ぐために、非磁性材料によって形成されている。
第1および第2の滑り軸受34,35のうち、後側に位置する第1の滑り軸受34は、制動軸2に取付けられた抜け止めリング36と接触し、制動軸2の前側への移動を規制している。
【0023】
内側円筒部32の外周面には、円環状のコア板37が嵌合状態で固着されている。このコア板37の外周面と外側円筒部33の内周面との間には断磁用の空隙Sが形成されている。
外側円筒部33は、内側円筒部32より後側に突出するように形成されている。この外側円筒部33の後端には、径方向の外側へ延びる取付用フランジ38が一体に形成されている。
【0024】
円板部21は、上述したアーマチュア組立体3と接触する部分である。円板部21の前面には、アーマチュア組立体3の外側アーマチュア6と内側アーマチュア5とがそれぞればね部材24のばね力で押し付けられている。この円板部21は、内側円筒部32および外側円筒部33と協働して環状溝41を形成している。この環状溝41の中には、励磁コイル42がボビン43とともに収容されている。
励磁コイル42は、給電用ケーブル44を介して電源装置(図示せず)に接続されており、電源装置によって給電されることにより励磁し、磁束Φを発生させる。給電用ケーブル44は、外側円筒部33の貫通孔45に通されてフィールドコア31の外に導出されている。励磁コイル42に通電されると、
図3中に二点鎖線で示すように磁束Φが生じる。この磁束Φは、内側円筒部32と、円板部21と、外側円筒部33と、コア板37などによって構成された閉じた磁束路46を通る。
【0025】
フィールドコア31の円板部21は、励磁コイル42が通電されることにより発生した磁束Φがアーマチュア組立体3に複数回にわたって迂回するように、磁束Φを通り難くする複数の断磁部47,48を有している。この実施の形態による複数の断磁部47,48は、円板部21の径方向の外側に位置する外側断磁部47と、この外側断磁部47より径方向の内側に位置する内側断磁部48とによって構成されている。外側断磁部47は、磁束Φを外側アーマチュア6に迂回させるために、外側アーマチュア6と対向する位置に設けられている。内側断磁部48は、磁束Φを内側アーマチュア5に迂回させるために、内側アーマチュア5と対向する位置に設けられている。
【0026】
外側断磁部47は、円板部21の前面に開口する外側溝51を含んでいる。内側断磁部48は、円板部21の前面に開口する内側溝52を含んでいる。
これらの外側溝51と内側溝52は、
図5に示すように、前側から見てそれぞれ環状に形成されている。この実施の形態による外側溝51の溝幅(円板部21の径方向の幅)は、内側溝52の溝幅より広い。外側溝51の中には、
図3に示すように、外側摩擦板53が設けられている。内側溝52の中には、内側摩擦板54が設けられている。
【0027】
外側溝51の溝底51a(
図5参照)には、複数の外側スリット55が形成されている。この実施の形態においては、外側溝51の中に3つの外側スリット55が形成されている。外側スリット55の開口形状は、制動軸2の軸心を中心とする円弧状の長円である。3つの外側スリット55は、円板部21を周方向に3等分する位置にそれぞれ形成されており、それぞれ溝底51aを前後方向に貫通している。この実施の形態においては、外側スリット55が本発明でいう「外側断磁部のスリット」に相当する。
【0028】
外側スリット55は、その一端から他端に向かう際の円板部21の周方向の角度が角度αとなるように形成されている。
3つの外側スリット55が外側溝51に形成されることにより、外側溝51の溝底51aであって外側スリット55どうしの間には外側ブリッジ部56が形成される。
円板部21の周方向における、外側スリット55の形成幅W1は、外側ブリッジ部56の形成幅W2より狭い。
【0029】
内側溝52の溝底52aには、複数の内側スリット57が形成されている。この実施の形態においては3つの内側スリット57が形成されている。内側スリット57の開口形状は、制動軸2の軸心を中心とする円弧状の長円である。3つの内側スリット57は、円板部21を周方向に3等分する位置にそれぞれ形成されており、それぞれ溝底52aを前後方向に貫通している。この実施の形態においては、内側スリット57が本発明でいう「内側断磁部のスリット」に相当する。
【0030】
内側スリット57は、その一端から他端に向かう際の円板部21の周方向の角度が角度βとなるように形成されている。
3つの内側スリット57が内側溝52に形成されることにより、内側溝52の溝底52aであって内側スリット57どうしの間には内側ブリッジ部58が形成される。
円板部21の周方向における、内側スリット57の形成幅W3は、内側ブリッジ部58の形成幅W4より広い。なお、内側断磁部47の断磁率を更に高くする場合は、図示してはいないが、内側スリット57の代わりに内側溝52に環状の穴を形成することができる。この場合は、環状の穴に非磁性材料製の断磁部材を充填して、環状の穴によって分断された円板部21の内周側と外周側とを断磁部材を介して一体に接続することが望ましい。
【0031】
このように円板部21に外側溝51と内側溝52とが形成されることにより、円板部21に外側アーマチュア6と対向する第1および第2の磁極面61,62と、内側アーマチュア5と対向する第3および第4の磁極面63,64が形成される。
第1の磁極面61は、円板部21の外周縁と外側溝51との間に形成されている。
第2の磁極面62は、外側溝51と内側溝52との間であって、外側アーマチュア6と対向する径方向外側の一部に形成されている。
第3の磁極面63は、外側溝51と内側溝52との間であって、内側アーマチュア5と対向する径方向内側の一部に形成されている。
第4の磁極面64は、円板部21の内周縁と内側溝52との間に形成されている。
【0032】
このように構成された電磁ブレーキ1においては、フィールドコア31に磁束Φが生じて内側アーマチュア5や外側アーマチュア6が円板部21に磁気によって吸着されることにより、制動軸2の回転が制動される。この制動時に生じる制動トルクは、励磁コイル42に供給される電流(電圧)の大きさに応じて変化する。
【0033】
励磁コイル42に低電流が供給される場合は、
図8に示すように、磁束Φが円板部21の内側断磁部48を避けて第3および第4の磁極面63,64を通って内側アーマチュア5に迂回する。また、この場合は磁束量が相対的に少なくなるために、円板部21の径方向外側においては、磁気抵抗が相対的に大きい磁路を通る磁束Φaは相対的に少なくなり、磁気抵抗が相対的に小さい磁路を通る磁束Φbが相対的に多くなる。磁気抵抗が相対的に大きい磁路は、外側スリット55を横切るような磁路や、第1および第2の磁極面61,62から外側アーマチュア6を迂回する磁路などである。磁気抵抗が相対的に小さい磁路は、外側ブリッジ部56を横切る磁路である。
すなわち、この場合、磁束Φは、内側アーマチュア5から円板部21に流れた後、外側アーマチュア6に迂回するとともに、その一部は外側ブリッジ部56に分流する。この外側ブリッジ部56がバイパス磁路71となり、磁束Φが外側ブリッジ部56を円板部21の径方向に通過する。
【0034】
このため、励磁コイル42に低電流が供給された場合は、円板部21の径方向内側で内側アーマチュア5に迂回される磁束Φの磁気吸引力で内側アーマチュア5が円板部21に吸引されることによって、制動トルクが生じ、制動軸2が制動される。この場合は、電磁ブレーキ1が実質的にシングルフラックス型電磁ブレーキとして機能するから、低トルク用電磁ブレーキと同等の最小制動トルクが得られる。
【0035】
励磁コイル42に高電流が供給される場合は、
図9に示すように、外側断磁部47を避けて外側アーマチュア6に迂回する磁束Φ、言い換えれば第1および第2の磁極面61,62を通って外側アーマチュア6に迂回する磁束Φaが増える。このため、外側アーマチュア6も磁気吸引力で円板部21に吸引されるようになり、制動軸2を制動する制動力も強くなる。この場合は、内側アーマチュア5と外側アーマチュア6との両方が使用されて制動力が生じ、この電磁ブレーキ1が実質的にダブルフラックス型電磁ブレーキとして機能するから、高トルク用電磁ブレーキと同等の最大制動トルクが得られる。
【0036】
この電磁ブレーキ1の制動トルクは、励磁コイル42に印加される電圧の変化に伴って
図11中に実線で示すように変化する。
図11に示すように、この実施の形態の電磁ブレーキ1においては、電流(電圧)値が低いときには、低トルク用電磁ブレーキの制動トルクの最小値に近似した制動トルクを得ることができるとともに、電流(電圧)値が高くなったときには、高トルク用電磁ブレーキの制動トルクの最大値に近似した制動トルクを得ることができる。また、この実施の形態を採ることにより、電圧が低い状態から高い状態に移行する過程において、従来の低トルク用電磁ブレーキおよび高トルク用電磁ブレーキより制動トルクの増加率が高くなる動作特性が得られることが分かった。なお、電磁ブレーキ1の励磁コイル42の巻数などの設計上の数値は、高トルク用電磁ブレーキの数値とは相異する。
【0037】
この実施の形態による複数の断磁部は、円板部21の径方向の外側に位置する外側断磁部47と、円板部21の径方向の内側に位置する内側断磁部48とによって構成されている。内側断磁部48および外側断磁部47は、それぞれ円板部21の周方向に所定の間隔をおいて並ぶ複数の円弧状の長円からなるスリット(外側スリット55および内側スリット57)と、これらのスリットどうしの間に形成されたブリッジ部(外側ブリッジ部56および内側ブリッジ部58)とを有している。円板部21の周方向における、外側スリット55の形成幅W1は、外側ブリッジ部56の形成幅W2より狭い。円板部21の周方向における、内側スリット57の形成幅W3は、内側ブリッジ部58の形成幅W4より広い。外側ブリッジ部56がバイパス磁路71である。
【0038】
この実施の形態によれば、内側断磁部48の断磁率を高くすることができ、外側断磁部47の断磁率を低くすることができる。このため、アーマチュア(外側アーマチュア6と内側アーマチュア5)の磁気吸引力が作用する部位を径方向内側(内側アーマチュア5)に限定することができるから、摩擦面の有効半径を小さくでき、低電流供給時の制動トルクを確実に小さくすることができる。
【0039】
この実施の形態において、外側スリット55の一端から他端に向かう際の円板部21の周方向の角度αは、内側スリット57の一端から他端に向かう際の円板部21の周方向の角度βより小さい。
このため、外側断磁部47の断磁率を内側断磁部48の断磁率より小さくすることが可能になるから、低電流供給時にアーマチュアの径方向外側(外側アーマチュア6)を迂回する磁束Φaをより一層低減でき、最小制動トルクをより一層小さくすることが可能になる。
【0040】
この実施の形態によるアーマチュアは、外側断磁部47と対向する外側アーマチュア6と、内側断磁部48と対向する内側アーマチュア5とによって構成されている。外側アーマチュア6と内側アーマチュア5は、制動軸2と一体に回転する円板状のカップリング7にそれぞれ支持されている。外側アーマチュア6、内側アーマチュア5およびカップリング7からなるアーマチュア組立体3は、ばね部材24によってフィールドコア31の円板部21に向けて付勢されている。
この実施の形態によれば、フィールドコア31の摩擦面(円板部21の前面)と、外側および内側アーマチュア5,6の摩擦面(後面)との間にエアギャップが形成されないノーギャップ式の電磁ブレーキを構成することができる。このため、制動トルクの立ち上がり特性に優れ、迅速な応答性を有する励磁作動ブレーキを提供することができる。
【0041】
(アーマチュア組立体の変形例)
アーマチュア組立体は、
図10に示すように構成することができる。
図10において、
図1~
図9によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図10に示すアーマチュア組立体81のカップリング7は、制動軸2が貫通するボス部82を有しているとともに、フィールドコア31の前端部を覆うカバー部83を有している。ボス部82は、制動軸2の連結部2aが嵌合する軸孔84を有する円筒状に形成されており、制動軸2の連結部2aに軸線方向へ移動可能に支持されている。このボス部82の後端は、フィールドコア31の円板部21に当接している。内側アーマチュア5の内周部は、ボス部82に嵌合している。
【0042】
カバー部83は、円筒状に形成されており、外側アーマチュア6より径方向の外側で後側に突出している。カバー部83の突出側端部は、制動軸2の軸線方向において、フィールドコア31の前端部と重なっている。
このようにカバー部83を備えることにより、フィールドコア31とアーマチュア組立体81との摩擦係合部で生じた摩耗粉が飛散することを防止できるとともに、この摩擦係合部に外部から異物が侵入することを防ぐことができる。
【符号の説明】
【0043】
1…励磁作動ブレーキ、2…制動軸、3,81…アーマチュア組立体、5…内側アーマチュア、6…外側アーマチュア、7…カップリング(支持部材)、21…円板部、24…ばね部材、31…フィールドコア、42…励磁コイル、46…磁束路、47…外側断磁部、48…内側断磁部、55…外側スリット、56…外側ブリッジ部、57…内側スリット、58…内側ブリッジ部、71…バイパス磁路、Φ…磁束。