IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 積水化学工業株式会社の特許一覧

特許7194299非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
<>
  • 特許-非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム 図1
  • 特許-非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-12-13
(45)【発行日】2022-12-21
(54)【発明の名称】非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
(51)【国際特許分類】
   H01M 4/136 20100101AFI20221214BHJP
   H01M 4/62 20060101ALI20221214BHJP
   H01M 4/58 20100101ALI20221214BHJP
   H01M 4/66 20060101ALI20221214BHJP
   H01M 4/36 20060101ALI20221214BHJP
【FI】
H01M4/136
H01M4/62 Z
H01M4/58
H01M4/66 A
H01M4/36 C
【請求項の数】 7
(21)【出願番号】P 2022040527
(22)【出願日】2022-03-15
【審査請求日】2022-08-02
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100152272
【弁理士】
【氏名又は名称】川越 雄一郎
(74)【代理人】
【識別番号】100147267
【弁理士】
【氏名又は名称】大槻 真紀子
(74)【代理人】
【識別番号】100188592
【弁理士】
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】吉川 輝
(72)【発明者】
【氏名】佐飛 裕一
【審査官】小森 利永子
(56)【参考文献】
【文献】特開2018-055836(JP,A)
【文献】国際公開第2013/005739(WO,A1)
【文献】特開2014-017199(JP,A)
【文献】特開2019-160550(JP,A)
【文献】特開2021-153012(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/13-4/62
H01M 4/64-4/66
(57)【特許請求の範囲】
【請求項1】
集電体と、前記集電体上に存在する正極活物質層とを有し、
前記集電体の、前記正極活物質層側の表面の少なくとも一部に集電体被覆層が存在し、
前記正極活物質層は正極活物質粒子を含み、導電性炭素を含む導電助剤を含むか、又は前記導電助剤を含まず、
前記正極活物質粒子は、正極活物質からなる芯部と、前記芯部の表面を覆う活物質被覆部とを有し、
前記集電体被覆層及び前記活物質被覆部は、それぞれ導電性炭素を含み、
前記集電体被覆層の厚さをAμmとし、
前記正極活物質層に存在する粒子の粒度分布におけるメジアン径をBμmとするとき、前記Aが3.0μm未満であり、
A/Bが0.007以上0.050以下である、非水電解質二次電池用正極。
【請求項2】
前記Bが10.0~80.0μmである、請求項1に記載の非水電解質二次電池用正極。
【請求項3】
前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、請求項1又は2に記載の非水電解質二次電池用正極。
【請求項4】
前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1~のいずれか一項に記載の非水電解質二次電池用正極。
【請求項5】
前記正極活物質層が結着材を含む、請求項1~のいずれか一項に記載の非水電解質二次電池用正極。
【請求項6】
請求項1~のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質を備える、非水電解質二次電池。
【請求項7】
請求項に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。
【背景技術】
【0002】
非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
【0003】
特許文献1には、非水電解質二次電池の正極において、アルミニウム箔集電体と、リチウム遷移金属複合酸化物を含む正極活物質層との間に、カーボンを導電剤とする導電性塗料層を設けることによってサイクル寿命を向上させる方法が記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2001-351612号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1の方法は必ずしも充分ではなく、電池特性のさらなる向上が求められている。
本発明は、非水電解質二次電池のインピーダンスを低減するとともに、エネルギー密度を高められる非水電解質二次電池用正極の提供を課題とする。
【課題を解決するための手段】
【0006】
本発明は以下の態様を有する。
[1] 集電体と、前記集電体上に存在する正極活物質層とを有し、前記集電体の、前記正極活物質層側の表面の少なくとも一部に集電体被覆層が存在し、前記正極活物質層は正極活物質粒子を含み、前記正極活物質粒子は、正極活物質からなる芯部と、前記芯部の表面を覆う活物質被覆部とを有し、前記集電体被覆層及び前記活物質被覆部は、それぞれ導電材料を含み、前記集電体被覆層の厚さをAμmとし、前記正極活物質層に存在する粒子の粒度分布におけるメジアン径をBμmとするとき、A/Bが0.007以上0.050以下である、非水電解質二次電池用正極。
[2] 前記Bが10.0~80.0μmである、[1]の非水電解質二次電池用正極。
[3] 前記Aが3.0μm未満である、[1]又は[2]の非水電解質二次電池用正極。
[4] 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、[1]~[3]のいずれかの非水電解質二次電池用正極。
[5] 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]~[4]のいずれかの非水電解質二次電池用正極。
[6] 前記正極活物質層が結着材を含む、[1]~[5]のいずれかの非水電解質二次電池用正極。
[7] 前記正極活物質層が導電助剤を含まない、[1]~[6]のいずれかの非水電解質二次電池用正極。
[8] 前記[1]~[7]のいずれかの非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質を備える、非水電解質二次電池。
[9] [8]の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
【発明の効果】
【0007】
本発明によれば、非水電解質二次電池のインピーダンスを低減するとともに、エネルギー密度を高められる非水電解質二次電池用正極が得られる。
【図面の簡単な説明】
【0008】
図1】本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。
図2】本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。
【発明を実施するための形態】
【0009】
本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
【0010】
<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、集電体(以下「正極集電体」という。)11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
正極集電体11は、正極活物質層12側の表面の少なくとも一部に集電体被覆層15が存在する。すなわち、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。
【0011】
[正極活物質層]
正極活物質層12は正極活物質粒子を含む。
正極活物質層12は、さらに結着材を含むことが好ましい。
正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。
正極活物質層12は、さらに分散剤を含んでもよい。
正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
【0012】
正極活物質層の厚さ(正極集電体の両面上に正極活物質層が存在する場合、両面の合計)は30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚さが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。
【0013】
[正極活物質粒子]
正極活物質粒子は、正極活物質からなる芯部と、導電材料を含む活物質被覆部とを有する。活物質被覆部は前記芯部の表面を覆う。
正極活物質層中の正極活物質粒子は、芯部が1個であり活物質被覆部を有する単体の被覆粒子でもよく、複数個の芯部を含み、隣り合う芯部の間に活物質被覆部が存在し、一体的に集合している集合粒子でもよく、これらが混在してもよい。インピーダンスを低下させやすい点では、正極活物質粒子が集合粒子を含むことが好ましい。
【0014】
(被覆粒子)
被覆粒子において、正極活物質粒子の表面には、導電材料を含む活物質被覆部が存在する。活物質被覆部が存在することで、電池容量、サイクル特性をより高められる。
被覆粒子において、活物質被覆部は、予め正極活物質粒子の表面に形成されており、かつ正極活物質層中において、正極活物質粒子の表面に存在する。即ち、本稿における活物質被覆部は、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で欠落するものではない。
例えば、正極製造用組成物を調製する際に、被覆粒子を溶媒と共にミキサー等で混合しても、活物質被覆部は正極活物質(芯部)の表面を被覆している。また、仮に、正極から正極活物質層を剥がし、これを溶媒に投入して正極活物質層中の結着材を溶媒に溶解させた場合にも、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極活物質層中の粒子の粒度分布をレーザー回折・散乱法により測定する際に、凝集した粒子をほぐす操作を行った場合にも活物質被覆部は正極活物質の表面を被覆している。
被覆粒子において、活物質被覆部は、正極活物質粒子の外表面全体の面積の50%以上に存在することが好ましく、70%以上に存在することが好ましく、90%以上に存在することが好ましい。
すなわち、被覆粒子は、正極活物質である芯部と、前記芯部の表面を覆う活物質被覆部とを有し、芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。
【0015】
被覆粒子の製造方法としては、例えば、焼結法、蒸着法等が挙げられる。
焼結法としては、正極活物質の粒子と有機物とを含む活物質製造用組成物(例えば、スラリー)を、大気圧下、500~1000℃、1~100時間で焼成する方法が挙げられる。活物質製造用組成物に添加する有機物としては、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂等、スクロース、グルコース、ラクトース等の糖類、リンゴ酸、クエン酸などのカルボン酸、アリルアルコール、プロパルギルアルコール等の不飽和一価アルコール、アスコルビン酸、ポリビニルアルコール等が挙げられる。この焼結法によれば、活物質製造用組成物を焼成することで、有機物中の炭素を正極活物質の表面に焼結して、活物質被覆部を形成する。
また、他の焼結法としては、いわゆる衝撃焼結被覆法が挙げられる。
【0016】
衝撃焼結被覆法は、例えば、衝撃焼結被覆装置において燃料の炭化水素と酸素の混合ガスを用いてバーナに点火し燃焼室で燃焼させてフレームを発生させ、その際、酸素量を燃料に対して完全燃焼の当量以下にしてフレーム温度を下げ、その後方に粉末供給用ノズルを設置し、そのノズルから被覆する有機物と溶媒を用いて溶かしスラリー状にしたものと燃焼ガスからなる固体―液体―気体三相混合物を粉末供給ノズルから噴射させ、室温に保持された燃焼ガス量を増して、噴射微粉末の温度を下げて、粉末材料の変態温度、昇華温度、蒸発温度以下で加速し、衝撃により瞬時焼結させて、正極活物質の粒子を被覆する。
蒸着法としては、物理気相成長法(PVD)、化学気相成長法(CVD)等の気相堆積法、メッキ等の液相堆積法等が挙げられる。
【0017】
被覆粒子において、芯部の表面積に対する活物質被覆部の面積(被覆率)を求めるには、正極活物質層中の粒子をエネルギー分散型X線分光法(TEM-EDX)により検出し、正極活物質粒子の外周部をEDXで元素分析する。元素分析は炭素について行い、正極活物質粒子を被覆している炭素を特定する。炭素の被覆部が1nm以上の厚さである箇所を被覆部分とし、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、これを被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値とすることができる。
また、前記活物質被覆部は、正極活物質のみから構成される粒子(芯部)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層であり、この厚みは上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
【0018】
被覆粒子において、サイクル特性により優れる点から、芯部の表面積に対する活物質被覆部の面積は、100%が特に好ましい。
なお、この被覆率(%)は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子(単一粒子)が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。
【0019】
(集合粒子)
本明細書において、「一体的に集合している集合粒子」とは、後述の正極活物質層に存在する粒子の粒度分布を測定する際に、1個の粒子として挙動する集合粒子を意味する。
集合粒子は、正極活物質のみから構成される粒子(芯部)を複数含み、隣り合う芯部の間に活物質被覆部が存在する。
集合粒子の外側の表面の少なくとも一部は活物質被覆部で被覆されている。集合粒子の外側の表面積のうち、活物質被覆部で被覆されている面積は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましく、100%が特に好ましい。
なお、この外側の表面の被覆率(%)は、正極活物質層中に存在する集合粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、外側の表面に活物質被覆部を有しない集合粒子が微量に存在することを排除するものではない。
集合粒子は、複数の芯部が活物質被覆部を介して一体化するように造粒された二次粒子(以下「活物質造粒体」ともいう)でもよく、複数個の被覆粒子が結着材によって一体的に結着した凝集体でもよく、複数個の活物質造粒体が結着材によって一体的に結着した凝集体でもよく、これらが混在してもよい。
活物質造粒体は公知の方法(例えば、特許第5509598号公報)で製造できる。市販品からも入手できる。
被覆粒子を含む凝集体には、被覆粒子以外の粒子(例えば導電助剤)が含まれていてもよい。また結着材以外の成分(例えば分散剤)が含まれていてもよい。
活物質造粒体を含む凝集体には、活物質造粒体以外の粒子(例えば導電助剤)が含まれていてもよい。また結着材以外の成分(例えば分散剤)が含まれていてもよい。
【0020】
活物質造粒体において、活物質被覆部は予め形成されており、かつ正極活物質層中において、集合粒子(活物質造粒体)の外側の表面及び隣り合う芯部の間に存在する。即ち、活物質造粒体の活物質被覆部は、前記被覆粒子の活物質被覆部と同様に、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で欠落するものではない。
活物質造粒体において、それぞれの芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましく、100%が特に好ましい。
なお、この芯部の被覆率(%)は、正極活物質層中に存在する芯部についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない芯部が微量に存在することを排除するものではない。
活物質造粒体において、芯部の表面を覆う活物質被覆部、又は外側の表面を覆う活物質被覆部の面積及び被覆率は、前記被覆粒子の活物質被覆部と同様に、正極活物質層中の粒子をエネルギー分散型X線分光法(TEM-EDX)により検出し、芯部の外周部、又は集合粒子(活物質造粒体)の外周部を、EDXで元素分析して求めることができる。
活物質造粒体において、外側の表面を覆う活物質被覆部及び隣り合う芯部の間に存在する活物質被覆部は、正極活物質のみから構成される粒子(芯部)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層であり、この厚みは上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
【0021】
被覆粒子又は活物質造粒体において、活物質被覆部の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
【0022】
被覆粒子又は活物質造粒体の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は被覆粒子又は活物質造粒体の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。
【0023】
正極活物質粒子の粒子径は、後述の正極活物質層に存在する粒子の粒度分布におけるメジアン径Bが好ましい範囲となるように設計することが好ましい。
被覆粒子の平均粒子径は、0.1~20.0μmが好ましく、0.5~15.0μmがより好ましい。2種以上の被覆粒子を用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
活物質造粒体の平均粒子径は、3.0~20.0μmが好ましく、5.0~15.0μmがより好ましい。2種以上の活物質造粒体を用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質粒子の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
【0024】
正極活物質粒子は、正極活物質としてオリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
【0025】
正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質粒子は、芯部が1個である単体の被覆粒子でもよく、複数の芯部が活物質被覆部を介して一体化するように造粒された二次粒子(活物質造粒)でもよく、これらが混在してもよい。
【0026】
正極活物質粒子の総質量に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
【0027】
[結着材]
正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層の総質量に対して、結着材の含有量は2.0質量%以下が好ましく、1.5質量%以下がより好ましい。
正極活物質層が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層の総質量に対して0.1質量%以上が好ましく、0.3質量%以上がより好ましい。
【0028】
[導電助剤]
正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば独立した炭素粒子)が存在しない状態が望ましい。
正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
【0029】
[分散剤]
正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)等が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
分散剤は正極活物質層における粒子の分散性向上に寄与する。一方、分散剤の含有量が多すぎると抵抗が増大しやすい。
正極活物質層の総質量に対して、分散剤の含有量は0.5質量%以下が好ましく、0.2質量%以下がより好ましい。
正極活物質層が分散剤を含有する場合、分散剤の含有量の下限値は、正極活物質層の総質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましい。
【0030】
[正極集電体本体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚さは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚さ及び正極集電体11の厚さは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
【0031】
[集電体被覆層]
正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在する。集電体被覆層15は導電材料を含む。
ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
【0032】
集電体被覆層15の厚さをAμmとする。Aは3.0μm未満が好ましく、2.5μm以下がより好ましく、2.0μm以下がさらに好ましい。3.0μm未満であると、体積エネルギー密度を高めやすい。集電体被覆層15の厚さの下限は特に限定されず、製造可能な範囲であればよい。例えば0.01μm以上が好ましく、0.05μm以上がより好ましく、0.10μm以上がさらに好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。
又は、正極集電体11の厚さ及び正極集電体本体14の厚さをマイクロメータで測定し、正極集電体11の厚さから正極集電体本体14の厚さを差し引く方法で、集電体被覆層15の厚さを求めることもできる。
本明細書における集電体被覆層15の厚さは、任意の5点の平均値である。
正極集電体本体14の両面に集電体被覆層15が存在する場合、集電体被覆層の厚さは片面のみの厚さである。
【0033】
[粒度分布]
本明細書において、正極活物質層12に存在する粒子の粒度分布(以下「正極活物質層の粒度分布」ともいう。)は、レーザー回折・散乱法による粒度分布測定器で測定した体積基準の粒度分布である。
粒度分布を測定する試料は、正極1から正極活物質層12を剥がし、正極活物質層12中に存在する粒子を水に分散させた水分散液を用いる。例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を水に分散させた水分散液を試料とする。
水分散液を超音波処理して、粒子を充分に分散させた状態で粒度分布を測定する。
【0034】
正極活物質層の粒度分布におけるメジアン径をBμmとする。
メジアン径B(μm)に対する集電体被覆層の厚さA(μm)の比を表すA/Bは0.007~0.050であり、0.010~0.045が好ましく、0.015~0.040がより好ましい。
A/Bが上記範囲の下限値以上であると、体積エネルギー密度を高めやすく、上限値以下であるとインピーダンスを低減しやすい。
A/Bが上記の範囲内であると、集電体被覆層の厚さと正極活物質粒子の大きさとのバランスが良好となり、両者の接触状態が適性化されると考えられる。
例えば、正極活物質粒子の粒子径が大きいほど、正極活物質層における正極活物質粒子の総表面積が小さくなり、正極活物質粒子どうしの接触抵抗及び正極活物質粒子と集電体被覆層との接触抵抗が高くなる傾向がある。周波数1kHzにおけるインピーダンスはこれらの接触抵抗の指標となる。A/Bを上記の範囲内とすることで、集電体被覆層と正極活物質粒子の良好な接触状態が得られ、周波数1kHzにおけるインピーダンスが低くなる。
【0035】
メジアン径Bは10.0~80.0μmが好ましく、15.0~75.0μmがより好ましく、20.0~70.0μmがさらに好ましい。
メジアン径Bが上記範囲内であると、体積エネルギー密度を高めやすく、インピーダンスを低減しやすい。
【0036】
正極活物質粒子が活物質造粒体を含み、メジアン径Bが上記範囲であることがより好ましい。
活物質造粒体の形態とすることにより芯部間の導電パスが良好となる。周波数0.1Hzにおけるインピーダンスは芯部間の抵抗の指標となる。活物質造粒体の粒子径を大きくするほど、導電パスが良好な芯部が多くなり、周波数0.1Hzにおけるインピーダンスが低減する。
【0037】
[導電性炭素含有量]
本実施形態において、正極活物質層12が導電性炭素を含むことが好ましい。正極活物質層が導電性炭素を含む態様としては、下記態様1、2が挙げられる。
態様1:正極活物質層が導電助剤を含み、正極活物質粒子の活物質被覆部の導電材料及び前記導電助剤の一方又は両方が導電性炭素を含む態様。
態様2:正極活物質層が導電助剤を含まず、正極活物質粒子の活物質被覆部の導電材料が導電性炭素を含む態様。
電池におけるエネルギー密度改善の点では態様2がより好ましい。
【0038】
正極活物質層の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.2~2.6質量%がさらに好ましい。
正極活物質層中の導電性炭素の含有量が、上記範囲の下限値以上であると正極活物質層での導電パス形成に十分な量となり、上限値以下であると分散性向上に優れる。
【0039】
正極活物質層の総質量に対する導電性炭素の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含む。結着材中の炭素は含まれない。分散剤中の炭素は含まれない。
【0040】
≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示差熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
【0041】
[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
【0042】
[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
【0043】
≪導電性炭素の分析方法≫
正極活物質粒子の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により検出し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質粒子(被覆粒子)であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質粒子であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、広がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
【0044】
[正極活物質層の体積密度]
本実施形態において、正極活物質層12の体積密度は2.00~2.60g/cmが好ましく、2.05~2.50g/cmがより好ましい。
正極活物質層の体積密度は、例えば以下の測定方法により測定できる。
正極1及び正極集電体11の厚さをそれぞれマイクロメータで測定し、これらの差から正極活物質層12の厚さを算出する。正極1及び正極集電体11の厚さは、それぞれ任意の5点以上で測定した値の平均値とする。正極集電体11の厚さとして、後述の正極集電体露出部13の厚さを用いてよい。
正極1を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層12の質量を算出する。
下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚さ(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
【0045】
正極活物質層の体積密度が上記範囲の下限値以上であると、非水電解質二次電池のエネルギー密度を高めやすい。上限値以下であると、プレス荷重によるクラックが正極活物質層に発生し難く、優れた導電パスを形成できる。
正極活物質層の体積密度は、例えば、正極活物質の含有量、正極活物質の粒子径、正極活物質層の厚さ等によって調整できる。正極活物質層が導電助剤を有する場合は、導電助剤の種類(比表面積、比重)、導電助剤の含有量、導電助剤の粒子径によっても調整できる。
【0046】
<正極の製造方法>
本実施形態の正極1の製造方法は、正極活物質を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程を有する。
例えば、正極活物質及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極1を製造できる。正極製造用組成物は導電助剤を含んでもよい。正極製造用組成物は結着材を含んでもよい。正極製造用組成物は分散剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚さ方向に均一に加圧する方法で、正極活物質層12の厚さを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
【0047】
正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。
【0048】
<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
【0049】
[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
【0050】
負極活物質及び導電助剤としては、例えば炭素材料、チタン酸リチウム(LTO)、シリコン、一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。
【0051】
負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
負極製造用組成物中の結着材としては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
負極製造用組成物中の溶媒としては、水、有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
【0052】
負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。
【0053】
[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
【0054】
セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
【0055】
[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
非水電解液は、さらに添加剤を含むことが好ましい。製造後(初期充電後)の非水電解質二次電池10は、有機溶媒と電解質塩を含み、さらに添加剤に由来する残留物又は痕跡を含んでもよい。
【0056】
有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。
【0057】
電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。
【0058】
添加剤としては、硫黄原子及び窒素原子の一方又は両方を含む化合物Aが挙げられる。添加剤は、1種単独でもよいし、2種以上の組み合わせでもよい。
化合物Aの例としては、リチウムビス(フルオロスルホニル)イミド(LiN(SOF)、以下「LiFSI」とも記す。)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、以下「LiTFSI」とも記す。)が挙げられる。
【0059】
<非水電解質二次電池の製造方法>
本実施形態の非水電解質二次電池の製造方法は、正極、セパレータ、負極、非水電解液、外装体等を公知の方法で組み立て、非水電解質二次電池を得る方法が挙げられる。
本実施形態の非水電解質二次電池の製造方法の一例について説明する。例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製する。電極積層体をアルミラミネート袋等の外装体(筐体)5に封入する。次いで、非水電解液(図示せず)を外相体に注入し、外装体5を密閉して、非水電解質二次電池とする。
【0060】
本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
【実施例
【0061】
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
【0062】
<測定方法>
[厚さの測定方法]
マイクロメータを用いて、正極シートの厚さ、正極集電体露出部13の厚さを測定した。正極集電体露出部13の集電体被覆層15を除去して正極集電体本体14の厚さを測定した。それぞれ任意の5点で測定して平均値を求めた。
正極集電体露出部13の厚さを、正極集電体11の厚さとして用いた。正極集電体露出部13の厚さから正極集電体本体14の厚さを差し引いて集電体被覆層の厚さ(両面合計)を算出し、その2分の1の値を片面の集電体被覆層の厚さAとした。
【0063】
[粒度分布の測定方法]
正極活物質層の最表面の、深さ数μmの部分をスパチュラで剥がし、得られた粉体を水に分散させた分散液を試料とした。
測定には、レーザー回折式粒度分布測定装置(堀場製作所社製品名LA-960V2)を用い、フローセルを使用した。試料は、循環、撹拌及び超音波照射(10分間)を行い、分散状態が充分に安定した状態で粒度分布を測定した。
体積基準の粒度分布曲線を得てメジアン径B(D50)、分布幅(D90-D10)を求めた。
【0064】
[体積密度の測定方法]
正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備した。
各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体の質量を差し引くことにより、測定試料中の正極活物質層の質量を算出した。各測定値の平均値から前記式(1)に基づいて、正極活物質層の体積密度を算出した。
式(1)における正極活物質層(両面合計)の厚さは、正極シートの厚さから正極集電体露出部13の厚さを差し引いて算出した。
【0065】
<評価方法>
[インピーダンス(交流抵抗)の測定方法]
定格容量が1Ahとなるようにセルを作製し、得られたセルに対して、25℃(常温)環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に、常温(25℃)、周波数1kHz及び0.1Hzの2通りの条件でインピーダンスを測定した。
測定は正負極タブにそれぞれ電流端子、電圧端子を取り付ける4端子法にて実施した。測定装置は、一例としてBioLogic社製インピーダンスアナライザを用いた。
【0066】
[体積エネルギー密度の測定方法]
体積エネルギー密度の評価は、下記(1)~(3)の手順に沿って行った。
(1)定格容量が1Ahとなるようにセルを作製し、セルの体積を測定した。体積はアルキメデスの原理により測定した。体積測定はその他の手法としてもよく、一例としてはレーザー体積計や3Dスキャン等の方式でも可能である。
(2)得られたセルに対して、25℃(常温)環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に30分間、開回路状態で休止した。
(3)放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときに放電開始から放電終了までに測定された合計の放電電力(単位:Wh)を(1)にて測定したセルの体積(単位:L)で除する事で体積エネルギー密度(単位:Wh/L)を算出した。
【0067】
<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
【0068】
<製造例2:集電体被覆層を有する集電体の製造>
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを厚さ15μmのアルミニウム箔(正極集電体本体)の表裏両面に、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層は、塗工量及び厚さが互いに均等になるように形成した。塗工量によって、乾燥後の集電体被覆層の厚さ(片面)Aを調整した。
【0069】
正極活物質粒子として、多数の芯部(リン酸鉄リチウム)が活物質被覆部(炭素)を介して一体化された活物質造粒体、又は芯部(リン酸鉄リチウム)と活物質被覆部(炭素)からなる単体の被覆粒子(非造粒体)を用いた。
活物質造粒体(1):平均粒子径19.4μm、炭素含有量2.5質量%。
活物質造粒体(2):平均粒子径14.5μm、炭素含有量1.5質量%。
活物質造粒体(3):平均粒子径7.8μm、炭素含有量1.5質量%。
活物質造粒体(4):平均粒子径31.1μm、炭素含有量1.5質量%。
被覆粒子(1):平均粒子径0.9μm、炭素含有量1.1質量%、被覆率90%以上。
活物質造粒体(1)~(4)をマッピング機能付き走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)にて観察したところ、いずれも、リン酸鉄リチウムからなる芯部を多数個含む略球形の粒子(造粒体)であった。隣り合う芯部の間には炭素が存在し、造粒体の外側の表面が薄膜状の炭素で被覆されていた。芯部の被覆率は90%以上、外側の表面の被覆率は90%以上であった。
【0070】
結着材としてポリフッ化ビニリデン(PVDF)を用いた。
溶媒としてN-メチルピロリドン(NMP)を用いた。
正極集電体として、製造例2で得た集電体被覆層を有するアルミニウム箔を用いた。
【0071】
<例1~8>
例1~5は実施例、例6~8は比較例である。
以下の方法で正極活物質層を形成した。
表1に示す配合で、正極活物質粒子、結着材及び溶媒(NMP)をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表に示す配合は正極活物質粒子と結着材の合計量を100質量%とするときの割合である。
得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。正極製造用組成物の塗工量は、両面合計で20mg/cmとなるように設定した。両面それぞれの正極活物質層は、塗工量及び厚さが互いに均等になるように形成した。得られた積層物を加圧プレスして正極シートを得た。加圧プレスの荷重は10kNとした。
得られた正極シートを打ち抜き、正極とした。
【0072】
得られた正極シートについて、集電体被覆層の厚さA、正極活物質層の粒度分布、正極活物質層の総質量に対する導電性炭素含有量、及び正極活物質層の体積密度を求めた。結果を表2に示す。
具体的に、上記の方法で集電体被覆層の厚さA、正極活物質層の粒度分布、及び正極活物質層の厚さと体積密度を測定した。粒度分布よりメジアン径Bを求め、A/Bを算出した。
正極活物質粒子の炭素含有量と配合量に基づいて、正極活物質層の総質量に対する導電性炭素の含有量を算出した。上記≪導電性炭素含有量の測定方法≫に記載の方法を用いて確認することも可能である。
【0073】
以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法で、インピーダンス及び体積エネルギー密度を測定した。結果を表2に示す。
【0074】
【表1】
【0075】
【表2】
【0076】
表2の結果に示されるように、A/Bが0.007以上0.050以下である例1~5は、非水電解質二次電池のインピーダンスが低く、体積エネルギー密度が高かった。
例1、4、5は、集電体被覆層の厚さAが同程度であり、メジアン径Bが異なる。例1、4、5において、1kHzにおけるインピーダンスは同程度であるが、Bが大きくなるにしたがって0.1Hzにおけるインピーダンスが低下した。
【0077】
一方、A/Bが0.007未満である例6は、集電体被覆層の厚さAが例1、4、5と同程度であるが、1kHz及び0.1Hzにおけるインピーダンスが例1、4、5より高かった。また体積密度が低く、体積エネルギー密度が低かった。Aに対してBが大きすぎるため、正極活物質粒子どうしの接触及び正極活物質粒子と集電体被覆層との接触が不十分であったと考えられる。
A/Bが0.050を超える例7は、集電体被覆層の厚さAが例1、4、5と同程度であるが、Bが小さいため、例1、4、5より0.1Hzにおけるインピーダンスが高かった。
A/Bが0.050を超える例8は、メジアン径Bが例5と同程度であるが、Aが大きいため、体積エネルギー密度が例5より低下した。
【符号の説明】
【0078】
1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 集電体(正極集電体)
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
【要約】
【課題】非水電解質二次電池のインピーダンスを低減するとともに、エネルギー密度を高められる非水電解質二次電池用正極を提供する。
【解決手段】集電体11と、集電体11上に存在する正極活物質層12とを有し、集電体11の、正極活物質層12側の表面の少なくとも一部に集電体被覆層15が存在し、正極活物質層12は正極活物質粒子を含み、正極活物質粒子は、正極活物質からなる芯部と、芯部の表面を覆う活物質被覆部とを有し、集電体被覆層15及び活物質被覆部は、それぞれ導電材料を含み、集電体被覆層15の厚さをAμmとし、正極活物質層12に存在する粒子の粒度分布におけるメジアン径をBμmとするとき、A/Bが0.007以上0.050以下である、非水電解質二次電池用正極1。
【選択図】図1
図1
図2