IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人電気通信大学の特許一覧

特許7194437干渉信号強度取得方法及び干渉信号強度取得装置
<>
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図1
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図2
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図3
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図4
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図5
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図6
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図7
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図8
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図9
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図10
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図11
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図12
  • 特許-干渉信号強度取得方法及び干渉信号強度取得装置 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-14
(45)【発行日】2022-12-22
(54)【発明の名称】干渉信号強度取得方法及び干渉信号強度取得装置
(51)【国際特許分類】
   G01J 3/453 20060101AFI20221215BHJP
   G01J 3/10 20060101ALI20221215BHJP
【FI】
G01J3/453
G01J3/10
【請求項の数】 4
(21)【出願番号】P 2019509000
(86)(22)【出願日】2019-01-22
(86)【国際出願番号】 JP2019001857
(87)【国際公開番号】W WO2019167476
(87)【国際公開日】2019-09-06
【審査請求日】2021-12-24
(31)【優先権主張番号】P 2018038103
(32)【優先日】2018-03-02
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成25年度、独立行政法人科学技術振興機構、戦略的創造研究推進事業、総括実施型研究、研究プロジェクト名「ERATO美濃島知的シンセサイザプロジェクト」に係る産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】504133110
【氏名又は名称】国立大学法人電気通信大学
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(74)【代理人】
【識別番号】100169764
【弁理士】
【氏名又は名称】清水 雄一郎
(72)【発明者】
【氏名】美濃島 薫
(72)【発明者】
【氏名】加藤 峰士
【審査官】横尾 雅一
(56)【参考文献】
【文献】特開2017-090259(JP,A)
【文献】特開2015-155822(JP,A)
【文献】特開2012-013574(JP,A)
【文献】特表2013-507005(JP,A)
【文献】特表2011-529180(JP,A)
【文献】米国特許第7123402(US,B1)
【文献】米国特許出願公開第2011/0069309(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01J 3/00 - G01J 3/52
G01B 11/00 - G01B 11/30
G01B 9/02
G01N 21/00 - G01N 21/61
G02F 1/35
H01S 3/13
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、
前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、
前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、
前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、
を備える干渉信号強度取得方法。
【請求項2】
前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備える、
請求項1に記載の干渉信号強度取得方法。
【請求項3】
周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、
前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、
前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、
前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、
前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、
前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、
を備える干渉信号強度取得装置。
【請求項4】
前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備える、
請求項3に記載の干渉信号強度取得装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、干渉信号強度取得方法及び干渉信号強度取得装置に関する。本願は、2018年3月2日に、日本に出願された特願2018-038103号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
従来、分光情報を得る手法として、撮像法やフーリエ変換赤外分光法(Fourier Transform Infrared Spectroscopy:FT-IR)、分散型の赤外分光法などをはじめとする多くの手法が用いられている。これらの手法では、2次元の空間情報と1次元の波長情報とを同時に得ることは困難であった。以下、2次元の空間情報と1次元の波長情報とをまとめて、2次元分光情報という場合がある。
【0003】
近年、天文学や地球科学、物性分野などの学術分野では、2次元分光情報に含まれる各情報を同時にリアルタイムで取得可能な2次元分光への期待が高まっている。2次元分光は、面分光、あるいはハイパースペクトルイメージングとも呼ばれる。2次元分光情報が得られれば、例えば取得データから任意の波長の画像を抽出でき、例えば銀河などの拡がった天体について詳細に解析できる。従来の2次元分光法では、例えば2次元平面の各点(複数の測定領域)をスキャンしつつ、各点についてFT-IRを行い、2次元分光情報を取得できる。ところが、従来の2次元分光法では空間掃引に時間がかかるため、動的対象物の計測が困難であるという問題があった。一方、一度に2次元分光情報を取得できれば、様々な動的対象物の分光計測を正確に行うことができる。
【0004】
2次元分光の手法としては、例えば可変バンドパスフィルタで透過させる波長帯を掃引しながら取得する手法などが挙げられる。非特許文献1には、可変バンドパスフィルタで透過させる波長帯を掃引しつつ、2次元の空間情報と1次元の波長情報とを取得する手法に適用可能な可変バンドパスフィルタが開示されている。
【先行技術文献】
【非特許文献】
【0005】
【文献】H. R. Morris, C. C. Hoyt, P. Miller and P. J. Treado, “Liquid Crystal Tunable Filter Raman Chemical Imaging,” Appl. Spectrosc. vol. 50, no. 6, pp. 805-811 (1996).
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、非特許文献1に開示されている可変バンドパスフィルタで異なる波長帯の光を透過させて2次元の空間情報と1次元の波長情報とを取得する場合、波長帯を掃引する必要があるため、掃引時間がかかり、瞬時に高解像度の波長情報やスペクトル分布を得るのは困難であるという問題があった。そのため、上述の可変バンドパスフィルタを用いて波長帯を掃引する2次元分光は、動的現象の計測には不向きであった。このような問題を解決するために、波長帯や遅延時間の掃引をせずに波長情報を直接取得可能とする技術が求められていた。
【0007】
測定対象の試料の波長情報を直接取得可能とする1つの方法として、試料の光学情報を含まない光パルス列と試料の光学情報を含む光パルス列とのスペクトル干渉を用いて、波長依存の干渉信号の包絡線強度を測定する方法が挙げられる。また、波長依存の干渉信号の包絡線強度を測定する手段として、例えばヒルベルト変換に基づく手法が挙げられる。ところが、ヒルベルト変換では高速フーリエ変換(Fast Fourier Transform:FFT)を行うので、変換対象の一連の干渉波形を予め取得しなければならない。そのため、ヒルベルト変換に基づく2次元分光法では、ある瞬間での包絡線強度を算出できないという問題があった。
【0008】
本発明は、上述の問題を解決するためになされたものであって、瞬時に干渉信号の包絡線強度を取得可能な干渉信号強度取得方法及び干渉信号強度取得装置を提供する。
【課題を解決するための手段】
【0009】
本発明の干渉信号強度取得方法は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、前記第3の光周波数コム、または前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、を備える。
【0010】
上述の干渉信号強度取得方法において、前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備えてもよい。
【0011】
本発明の干渉信号強度取得装置は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、前記第3の光周波数コム、または前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、を備える。
【0012】
上述の干渉信号強度取得装置において、前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備えてもよい。
【発明の効果】
【0013】
本発明によれば、瞬時に干渉信号の包絡線強度を取得可能な干渉信号強度取得方法及び干渉信号強度取得装置が提供される。
【図面の簡単な説明】
【0014】
図1】本発明の2次元分光計測方法を説明するための図であり、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)の模式図である。
図2】繰り返し周波数がキャリア・エンベロップ・オフセットの4倍である関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。
図3】互いに位相が90°ずれた光周波数コム(光パルス列)を生成するパルス生成光学系の概略図である。
図4】光周波数コムにおける時間軸上で1番目の光パルスと2番目の光パルスとの時間間隔を説明するための模式図である。
図5】光周波数コムの光路に生じた変動を安定化させる光学系の一例を示す概略図である。
図6】本発明の2次元分光計測装置に適用可能な干渉信号強度取得装置の構成を示す概略図である。
図7図6に示す干渉信号強度取得装置及び図11に示す2次元分光計測装置の遅延機構の構成を示す模式図である。
図8図6に示す干渉信号強度取得装置のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。
図9図6に示す干渉信号強度取得装置の別のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。
図10図6に示す干渉信号強度取得装置のさらに別のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。
図11】互いに位相が90°ずれた干渉信号の包絡線強度分布を示す模式図である。
図12】本発明の2次元分光計測装置の構成を示す概略図である。
図13図12に示す2次元分光計測装置のフィルタの透過率の波長依存性を示すグラフである。
【発明を実施するための形態】
【0015】
以下、本発明の干渉信号強度取得方法及び干渉信号強度取得装置の実施形態について、図面を参照して説明する。
【0016】
<原理的説明>
図1は、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)を示す模式図である。周波数軸上の強度分布は、スペクトル分布を表す。図1の上段に示すように、一定の繰り返しで発振される光パルス列の繰り返し時間Trepと周波数間隔frepとの間には、(1)式に示す関係が成り立つ。
【0017】
【数1】
【0018】
それぞれの光パルス列は、光源の共振器などの内部で伝搬する多くの縦モードの重ね合わせから成り立っている。光パルス列は、これらの縦モードの重ね合わせの波である搬送波と、搬送波の包絡線を構成する波束によって構成されている。搬送波は、キャリアとも呼ばれる。搬送波の包絡線は、エンベロップとも呼ばれる。このような光パルス列では、搬送波の速度と波束の速度は互いに異なるため、時間の経過に伴い、位相差が生じる。レーザー共振器は分散媒質によって構成される。時間軸上で所定の繰り返し時間Trepの間隔ごとに繰り返し発せられる光パルス列では、隣り合うパルス間に位相のずれφCEOが生じる。位相のずれφCEOの周期は、時間TCEOで一周期する。
【0019】
時間軸上における上述の超短パルス列をフーリエ変換し、周波数軸上で観測すると、図1の下段に示すように、互いに繰り返し時間Trepの逆数に相当する繰り返し周波数frepの間隔をあけて並んだ多数の周波数モードが観測される。
【0020】
図1の下段に示すように、光周波数コムは、周波数軸で零に対して所定のキャリア・エンベロップ・オフセット(Carrier Envelope Offset: CEO、オフセット周波数)fCEOを有する周波数モード(第1の周波数モード)fと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モード(第2の周波数モード)fと、を有する。光周波数コムのキャリア・エンベロップ・オフセットfCEOは、時間TCEOの逆数に相当する。キャリア・エンベロップ・オフセットfCEO、位相のずれφCEO、時間TCEOの間には、(2)式に示す関係が成り立つ。
【0021】
【数2】
【0022】
光周波数コムのn番目のスペクトルの周波数は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOとをパラメータとして、(3)式のように表される。
【0023】
【数3】
【0024】
上述の相互関係をふまえ、光周波数コムの複数の周波数モードに関するパラメータを制御することで、搬送波や包絡線を制御することができる。本実施形態では、光周波数コムの2つのパラメータ、すなわち繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように、光周波数コムの複数の周波数モードに関するパラメータを制御する。
【0025】
【数4】
【0026】
図2は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。図2に示すように、時間軸上で隣り合う光パルスの位相のずれは、(π/2)=90°になる。基準とする光パルスから時間軸上で4つ前方の光パルスには、基準とする光パルスと同じ位相及び波形パターンが表れる。時間TCEOとキャリア・エンベロップ・オフセットfCEOとの間には、(5)式の関係が成り立つ。
【0027】
【数5】
【0028】
図3は、互いに位相が90°ずれた光パルス列を生成する光学系120の一例を示す概略図である。図3に示すように、光学系120は、光周波数コム出射部103と、ハーフミラー(第2の分岐部)112、ハーフミラー118と、全反射ミラー114,116と、遅延付与部(位相差付与部)123とを備える。光周波数コム出射部103は、不図示のファンクションジェネレーターなどを備える。光周波数コム出射部103は、ファンクションジェネレーターの操作によって繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように、主にキャリア・エンベロップ・オフセットfCEOを制御し、キャリア・エンベロップ・オフセットfCEOが制御された光周波数コムC1を出射する。
【0029】
光周波数コムC1は、ハーフミラー112を透過し、光周波数コムC4と光周波数コムC5に分離される。光周波数コムC4は、全反射ミラー116で反射され、ハーフミラー118に入射する。光周波数コムC5は、ハーフミラー112及び全反射ミラー114で反射され、遅延付与部123を通り、ハーフミラー118に入射する。遅延付与部123は、それぞれの反射面を対向させた2枚の全反射ミラー121,122で構成されている。全反射ミラー114で反射された光周波数コムC5は、遅延付与部123に入射し、光路をずらしつつ全反射ミラー121,122の反射面の間を所定の回数往復し、ハーフミラー118に向けて出射する。ハーフミラー118に入射する光周波数コムC4,C5の一方の位相が他方の位相に対して90°ずれるように、全反射ミラー121,122の位置及び離間距離が調整されている。すなわち、光学系120では、光周波数コムを分岐し、一方を他方に対して、ある光パルスと時間軸上で1つ後の光パルスとの時間差の分だけ、遅延させる。時間軸上で隣り合う光パルスの時間差は、繰り返し時間Trep分に相当する。
【0030】
図3に示すように、光学系120では、各種ミラーの振動や空気揺らぎなどによって、光周波数コムC4,C5の各々の光路長差が変動する。このことをふまえ、光周波数コムC1の繰り返し周波数frepを制御し、光周波数コムC1の光パルスの繰り返し時間Trepを微調整することによって、光周波数コムC4,C5の光路差の変動を吸収し、光周波数コムC4,C5を安定させることができる。図4は、時間軸上で基準とする光周波数コムC1の1番目の光パルス〈図3及び図4に示す“1st”の光パルス〉と2番目の光パルス〈図3及び図4に示す“2nd”の光パルス〉との時間間隔を説明するための模式図である。1番目の光パルスと時間軸上で隣り合う2番目の光パルスとの繰り返し時間Trep1,Trep2,Trep3は、繰り返し周波数frep1,frep2,frep3によって(6)式~(8)式のように表される。
【0031】
【数6】
【0032】
【数7】
【0033】
【数8】
【0034】
図4及び(6)式~(8)式に示すTrepとfrepとの相対関係をふまえ、光周波数コムC1の繰り返し周波数frepを制御する。
【0035】
図4及び(6)式~(8)式からわかるように、光周波数コム出射部103のファンクションジェネレーターなどを操作し、光周波数コムC1の繰り返し周波数frepを制御することによって、繰り返し時間Trepを制御できる。
【0036】
図3に示すように、互いに位相が90°ずれた光周波数コムC4,C5の時間軸上における光パルス1つ分のずれに対して、光周波数コムC4,C5のそれぞれの光路に生じた変動によって、さらに時間差δが加わる、または時間差δが減じられる。図5は、光周波数コムC4,C5の光路に生じた変動を安定化させることが可能な光学系124の一例を示す概略図である。光学系124は、光学系120の構成に加え、ハーフミラー126と、フィードバック機構128と、を備える。ハーフミラー126は、ハーフミラー118より光周波数コムC4,C5の進行方向の前方に配置されている。フィードバック機構128は、ハーフミラー126で分離され、且つハーフミラー126を透過する光周波数コムC4,C5とは異なる光周波数コムC4,C5の進路上に配置されている。ハーフミラー118によって合波され、且つ時間差δを含む光周波数コムC4,C5は、ハーフミラー126で2つに分離される。分離された一方の光周波数コム(第4の光周波数コム及び第5の光周波数コムの一部)C4,C5はハーフミラー126で反射され、フィードバック機構128に入力し、光周波数コム出射部103にフィードバックされる。このことによって、光周波数コムC1の繰り返し周波数frepが調整される。図5に示すように、光周波数コム出射部103から出射される光周波数コムC1の繰り返し時間Trepが時間差δだけ増減される。繰り返し時間Trepが時間差δで調整されることによって、ハーフミラー118に入射する光周波数コムC4,C5同士の位相のずれが再び90°、すなわち光パルス1つ分になる。
【0037】
<干渉信号強度取得装置>
図6は、本発明の干渉信号強度取得装置であって、互いに90°だけ位相がずれた干渉強度信号を瞬時に得る干渉強度信号取得光学系130の構成を示す概略図である。干渉強度信号取得光学系130は、光周波数コム出射部103と、部分光学系124Pと、分岐部150と、遅延機構206と、撮像カメラ(包絡線強度取得部)161とを備える。図6に示す部分光学系124Pは、図5に示す光学系124のうち、光周波数コム出射部103を除いた構成を示す。分岐部150は、光周波数コムC6,C7を光周波数コムC3から取り出す。分岐部150は、ハーフミラー(干渉信号生成部)152、ハーフミラー(第1の分岐部)153,155,158と、全反射ミラー154,156,157とを備える。
【0038】
光周波数コム出射部103は、繰り返し周波数frepがキャリア・エンベロップ・オフセットfCEOの4倍である光周波数コム(第1の光周波数コム)C1を出射する。第1の分岐部104は、光周波数コムC1を光周波数コム(第2の光周波数コム)C2と光周波数コム(第3の光周波数コム)C3に分ける。第2の分岐部105は、光周波数コムC2を光周波数コム(第4の光周波数コム)C4と光周波数コム(第5の光周波数コム)C5に分ける(図5参照)。位相差付与部106は、光周波数コムC4の時間軸上の位相と光周波数コムC5の時間軸上の位相とを90°ずらす。干渉信号生成部107は、光周波数コムC4と任意の光学情報を含む光周波数コム(第3の光周波数コム)C6とを干渉させて干渉信号(第1の干渉信号)IM1を生成し、光周波数コムC5と光学情報を含む光周波数コム(第3の光周波数コム)C7とを干渉させて干渉信号(第2の干渉信号)IM2を生成する。
【0039】
本明細書における光学情報は、各光周波数コム自身が有する光学的特性や各光周波数コムの光路上の屈折率の分布・揺らぎ、光路上に配置された試料を通過することにより付加される試料の形状などをすべて含む。例えば、図6に示す干渉強度信号取得光学系130のように試料Sが設置されていない場合、光学情報は光周波数コムC3自身が有する光学的特性や光周波数コムC3,C6,C7の光路上の屈折率の分布・揺らぎを意味する。一方、後述する2次元分光計測装置200のように測定対象の試料Sが配置されている場合、光学情報としては試料Sの形状を含む光学的特性が主体になる。図11に示すように、包絡線強度取得部108は、干渉信号IM1と干渉信号IM2との包絡線強度EVを取得する。
【0040】
図6に示すように、光周波数コム出射部103から出射された光周波数コムC1は、ハーフミラー153によって、光周波数コムC2,C3に分離される。光周波数コムC2は、部分光学系124Pに入射し、上述したように互いに位相が90°だけずれた光周波数コムC4,C5として出射する。一方、ハーフミラー153で反射された光周波数コムC3は、分岐部150に入射し、全反射ミラー154で反射され、ハーフミラー155で光周波数コムC6,C7に分離される。
【0041】
遅延機構206は、光周波数コムC3に所定の遅延時間を付加する機構であり、光周波数コムC3の進路上に配置されている。遅延機構206は、図7に示すように、それぞれの反射面207rが対向配置された2個の全反射プリズム207を有する。遅延機構206が矢印Mに沿って移動することによって、光周波数コムC3の光路長が変わり、所定の遅延時間が付加される。
【0042】
図8は、部分光学系124P(すなわち、光学系124)のハーフミラー118における光周波数コムC4の反射及び光周波数コムC5の透過の様子を示す模式図である。図8に示すように、光周波数コムC4,C5のうち、光周波数コムC4は、ハーフミラー118の反射面118aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC4,C5のうち、光周波数コムC5は、ハーフミラー118の反射面118aとは反対側の面118b及び反射面118aを透過し、上面視で光周波数コムC4の進路と重なる進路に沿ってハーフミラー118から出射される。高さ方向においては、光周波数コムC4,C5のそれぞれの進路は、互いにずれている。
【0043】
図9は、分岐部150のハーフミラー158における光周波数コムC6の反射及び光周波数コムC7の透過の様子を示す模式図である。図9に示すように、光周波数コムC6,C7のうち、光周波数コムC6は、ハーフミラー158の反射面158aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC6,C7のうち、光周波数コムC7は、ハーフミラー158の反射面158aとは反対側の面158b及び反射面158aを透過し、上面視で光周波数コムC6の進路と重なる進路に沿ってハーフミラー158から出射される。高さ方向においては、光周波数コムC6,C7のそれぞれの進路は、互いにずれている。光周波数コムC6の進路の高さは光周波数コムC4の高さと一致し、光周波数コムC7の高さは光周波数コムC5の高さと一致している。
【0044】
図10は、分岐部150のハーフミラー152における光周波数コムC4,C5の透過及び光周波数コムC6,C7の反射の様子を示す模式図である。図10に示すように、ハーフミラー118から出射された光周波数コムC4,C5は、ハーフミラー152の反射面152aとは反対側の面152bを透過する。一方、ハーフミラー158から出射された光周波数コムC6,C7は、ハーフミラー152の反射面152aによって上面視で入射方向に対して略直角に反射され、面152bを透過した光周波数コムC4,C5と干渉し合い、干渉信号IM1,IM2が生成される。干渉信号IM1は光周波数コムC4,C6同士の干渉信号であり、干渉信号IM2は光周波数コムC5,C7同士の干渉信号である。本実施形態では、図8から図10に示すように、ハーフミラー118における光周波数コムC4,C6同士の照射位置を互いに異ならせ、ハーフミラー158における光周波数コムC5,C7同士の照射位置を互いに異ならせる。このことによって、光周波数コムC4,C6が重なって干渉信号IM1が生成される位置と、光周波数コムC5,C7が重なって干渉信号IM2が生成される位置とを異ならせる。
【0045】
光周波数コムC4,C5同士の位相が互いに90°ずれているので、干渉信号IM1,IM2同士の位相は、互いに90°ずれている。図11は、干渉信号IM1,IM2から得られる包絡線強度EVの一例を示すグラフである。撮像カメラ161によって、ある瞬間の干渉信号IM1の強度T1と干渉信号IM2の強度T2を取得すれば、{(T1)+(T2)1/2を算出することによって、包絡線強度EVが瞬時に得られる。
【0046】
上述のように、包絡線強度EVは、撮像カメラ161によって検出される。撮像カメラ161で検出された包絡線強度EVは、撮像カメラ161に付属の処理部(図示略)によって適宜処理される。処理部は、例えば撮像カメラ161に接続されているコンピュータに内蔵されているプログラムなどである。干渉強度信号取得光学系130では、互いに90°だけ位相がずれた干渉信号IM1,IM2の包絡線強度EVが瞬時に得られる。
【0047】
<干渉信号強度取得方法>
本発明の干渉信号強度取得方法は、干渉信号強度取得光学系130を用いて干渉信号IM1,IM2の包絡線強度EVを取得可能な方法であり、光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、を備える。
【0048】
光周波数コム生成工程では、光周波数コムC1を生成する(図1参照)。光周波数コムC1は、周波数軸で零に対して所定のキャリア・エンベロップ・オフセットfCEOを有する周波数モードfと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モードfと、を有する。光周波数コムC1において、frep=4×fCEOの関係が成立している。前述の関係を成立させるために、光周波数コム出射部103のファンクションジェネレーターを用いて、キャリア・エンベロップ・オフセットfCEO及び繰り返し周波数frepを制御する。
【0049】
次に、位相差付与工程では、光周波数コムC1をハーフミラー153で光周波数コムC2と光周波数コムC3に分け、光周波数コムC2をさらにハーフミラー112(図3参照)で光周波数コムC4と光周波数コムC5に分ける。続いて、遅延付与部123によって、光周波数コムC5の時間軸上の位相を光周波数コムC4の時間軸上の位相に対して90°ずらす。
【0050】
本実施形態では、光周波数コムC3、または光周波数コムC4,C5に任意の光学情報を含む。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC4と光周波数コムC6とを合わせて干渉させ、干渉信号IM1を生成する。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC5と光周波数コムC7とを合わせて干渉させ、干渉信号IM2を生成する。
【0051】
次に、包絡線強度取得工程では、干渉信号IM1,IM2を撮像カメラ161で同時に検出し、包絡線強度EVを得る。本実施形態の干渉信号強度取得方法は、上述の各工程に加え、さらに周波数調整工程を備えている。周波数調整工程では、フィードバック機構128によって光周波数コムC4,C5の一部を光周波数コム出射部103にフィードバックし、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepを調整する。
【0052】
<2次元分光計測装置>
図12は、2次元分光計測装置200の構成を示す概略図である。図12に示すように、2次元分光計測装置200は、上述した干渉強度信号取得光学系130の構成に加え、単体の撮像カメラ161に替えて、波長情報取得部208を備える。2次元分光計測装置200においても、フィードバック機構128によって光周波数コムC4,C5が光周波数コム出射部103にフィードバックされ、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepが調整されている。
【0053】
波長情報取得部208は、ハーフミラー231と、全反射ミラー232と、フィルタF1,F2と、互いに同じ画素数を有する2台の撮像カメラ241,242と、画像処理部(光学情報抽出部)250と、を備える。干渉強度信号取得光学系130の全反射ミラー154は、ハーフミラー159に替えられている。分光計測の対象である試料Sは、ハーフミラー159を透過する光周波数コムC3の進路上に配置されている。
【0054】
図12に示すように、ハーフミラー153で反射された光周波数コムC3は、ハーフミラー159を透過し、試料Sに照射される。試料Sから反射された光周波数コムC3には、試料Sの分光情報や位相・形状に関する情報をすべて含む光学情報が含まれる。光周波数コムC3からハーフミラー155によって2つに分けられた光周波数コムC6,C7にも試料Sの光学情報が含まれる。試料Sの光学情報は、干渉信号IM1,IM2に反映される。干渉信号IM1,IM2の包絡線強度EVは、ハーフミラー231によって2つに分けられ、分けられた2つの包絡線強度EV1,EV2はそれぞれフィルタF1,F2を通過する。
【0055】
図13は、フィルタF1,F2の透過率の波長依存性を示すグラフである。図13に示すように、フィルタF1,F2の透過率の波長依存性は互いに逆である。フィルタF1の透過率は、波長が増加するにしたがって概ね低下する。一方、フィルタF2の透過率は、波長が増加するにしたがって概ね上昇する。このようにフィルタF1,F2の透過率の波長依存性が互いに逆であることによって、フィルタF1,F2を通過した包絡線強度EV1,EV2に関する光強度比と波長との1対1対応が成立する。
【0056】
画像処理部50では、フィルタF1,F2を通して撮像カメラ241,242で取得した試料Sの測定領域ごとの包絡線強度EV1,EV2の透過強度の比が算出される。撮像カメラ241,242の各画素について算出した包絡線強度EV1,EV2の透過強度の比に基づいて、各画素の信号強度比が求まり、包絡線強度EVの分布内の各強度を発現する波長が瞬時に決定される。瞬時に波長情報を得ることで、各空間位置(測定領域)における試料Sから反射された光周波数コムC3の位相情報が計測される。光周波数コムC3の位相情報は、時間差であって、物理的な位置の違いや屈折率の違いを示す。本実施形態では、物理的な位置を瞬時に取得する際には、試料Sから反射された光周波数コムC6の位相スペクトルは基本的に変化しないと想定する。
【0057】
<2次元分光計測方法>
上述の2次元分光計測装置200を用いた2次元分光計測方法は、2次元分光計測装置200を用いて干渉信号IM1,IM2の包絡線強度EVを瞬時に取得し、取得した包絡線強度EVに基づいて試料Sの光学情報を得ることが可能な方法である。2次元分光計測装置200を用いた2次元分光計測方法は、光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、光学情報抽出工程と、を備える。2次元分光計測装置200を用いた2次元分光計測方法における光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程は上述の干渉信号強度取得方法の各工程と同様であるため、各工程の重複する説明は省略する。
【0058】
光学情報抽出工程では、包絡線強度EVに基づいて試料Sの光学情報を抽出する。本実施形態では、包絡線強度取得工程において、包絡線強度EVを2つの包絡線強度EV1,EV2に分け、包絡線強度EV1,EV2がフィルタF1,F2のそれぞれを通過したときの透過強度を撮像カメラ241,242で取得する。光学情報抽出工程では、包絡線強度取得工程で取得した包絡線強度EV1,EV2の透過強度の比に基づいて試料Sに関する波長情報を瞬時に取得し、画像処理部250によって前述の波長情報から試料Sの光学情報を算出する。具体的には、予め計測した強度比から求めた波長情報と遅延距離との関係と比較することによって、試料Sの2次元分光情報及び3次元形状を算出できる。
【0059】
2次元分光計測装置200においても、フィードバック機構128によって光周波数コムC4,C5を光周波数コム出射部103にフィードバックし、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepを調整する。
【0060】
以上説明したように、本実施形態の干渉信号強度取得方法は、上述の光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、を備える。本実施形態の干渉強度信号取得光学系130は、上述の光周波数コム出射部103と、第1の分岐部104と、第2の分岐部105と、位相差付与部106と、干渉信号生成部107と、包絡線強度取得部108と、を備える。本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130では、光周波数コムの繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOを制御してfrep=4×fCEOとし、繰り返し周波数frepを調整した光周波数コムを2つに分けて互いに位相が90°ずれた光周波数コムを生成する。互いに位相が90°ずれた2つの光周波数コムは、参照光として機能する光パルス列である。これら2つの光周波数コムのそれぞれと任意の光学情報を含む光周波数コムとを干渉させ、90°位相がずれた干渉信号を光学的にリアルタイムで生成する。任意の光学情報を含む光周波数コムは、プローブ光として機能する光パルス列である。このことによって、干渉信号の包絡線強度を瞬時に、計測時においてリアルタイムに取得できる。光周波数コムを用いることによって、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが原子時計と同程度の安定性と正確性を有して制御される。キャリア・エンベロップ・オフセットfCEOを制御することによって、時間軸上で隣り合う光パルス同士の位相差を活かし、計測時のターゲットとする全波長域で原理的に位相差を正確に揃えることができる。したがって、本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130によれば、互いに位相が正確に90°ずれた参照光を生成でき、参照光及びプローブ光を安定して制御できると共に、干渉信号の包絡線強度を高精度に取得できる。
【0061】
本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130では、光周波数コムC4と光周波数コムC5を光周波数コム出射部103にフィードバックし、光周波数コムC4と光周波数コムC5との位相のずれ(時間差δ)に応じて繰り返し周波数frepを調整する。このことによって、参照光の光周波数コム同士の位相のずれをなくすことができる。本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130によれば、干渉強度信号取得光学系130を構成するミラーなどの光学素子が振動して光周波数コムの光路に変動が生じた場合であっても、従来のようにピエゾ素子などのように機械的に駆動する構成を光学系に追加しなくても、光周波数コムの光路の変動を光学的に補償できる。
【0062】
以上、本発明の好ましい実施形態について詳述したが、本発明は上述の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。
【0063】
例えば、上述の実施形態では、光周波数コムC3が試料Sを通過することによって、光周波数コムC3に試料Sの光学情報が付与される。試料Sの光学情報は、光周波数コムC3に替えて光周波数コムC4,C5に付与されてもよい。その場合は、光周波数コムC4,C5の偏光を互いに直交させて合波し、試料Sを通過させた後に分波する。試料Sの光学情報を含む光周波数コムC4,C5のそれぞれと試料Sの光学情報を含まない光周波数コムC6,C7との干渉信号(第1の干渉信号、第2の干渉信号)を得ることによって、上述の実施形態と同様の作用効果が得られる。但し、試料Sの光学情報は、偏光依存性を有しておらず、偏光依存性を考慮せずに取得できると想定する。
【0064】
図12に示す2次元分光計測装置200では、試料Sから反射された光周波数コムC3を取得しているが、光周波数コムC3を試料Sに照射して試料Sから透過した光周波数コムC3を取得してもよい。その場合、ハーフミラー159を全反射ミラーに替え、試料Sを光周波数コムC3の進路上で前述のように置き換えた全反射ミラーとハーフミラー155との間に配置すればよい。
【0065】
上述の実施形態の2次元分光計測装置200において、試料Sに関する位相スペクトルを測定する際に、試料Sから反射した光周波数コムC3の位相スペクトルが変化してもよい。その場合、光周波数コムC3の位相スペクトルは、波長に対して一意に決まらなければならない。試料Sに関する位相スペクトルは、光周波数コムC3または光周波数コムC1に対して時間遅延を加え、干渉信号IM1,IM2の強度の遅延時間依存性を測定することによって取得できる。
【符号の説明】
【0066】
103・・・光周波数コム出射部
104・・・第1の分岐部
105・・・第2の分岐部
106・・・位相差付与部
107・・・干渉信号生成部
108・・・包絡線強度取得部
130・・・干渉強度信号取得光学系(干渉信号強度取得装置)
C1・・・光周波数コム(第1の光周波数コム)
C2・・・光周波数コム(第2の光周波数コム)
C3・・・光周波数コム(第3の光周波数コム)
C4・・・光周波数コム(第4の光周波数コム)
C5・・・光周波数コム(第5の光周波数コム)
C6・・・光周波数コム(第3の光周波数コム)
C7・・・光周波数コム(第3の光周波数コム)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13