IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通テン株式会社の特許一覧

<>
  • 特許-画像処理装置および画像処理方法 図1A
  • 特許-画像処理装置および画像処理方法 図1B
  • 特許-画像処理装置および画像処理方法 図2
  • 特許-画像処理装置および画像処理方法 図3
  • 特許-画像処理装置および画像処理方法 図4
  • 特許-画像処理装置および画像処理方法 図5
  • 特許-画像処理装置および画像処理方法 図6
  • 特許-画像処理装置および画像処理方法 図7
  • 特許-画像処理装置および画像処理方法 図8
  • 特許-画像処理装置および画像処理方法 図9
  • 特許-画像処理装置および画像処理方法 図10
  • 特許-画像処理装置および画像処理方法 図11
  • 特許-画像処理装置および画像処理方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-15
(45)【発行日】2022-12-23
(54)【発明の名称】画像処理装置および画像処理方法
(51)【国際特許分類】
   G06T 7/00 20170101AFI20221216BHJP
   G06T 7/12 20170101ALI20221216BHJP
   G08G 1/16 20060101ALI20221216BHJP
【FI】
G06T7/00 650A
G06T7/12
G08G1/16 C
【請求項の数】 9
(21)【出願番号】P 2018234795
(22)【出願日】2018-12-14
(65)【公開番号】P2020095618
(43)【公開日】2020-06-18
【審査請求日】2021-09-30
(73)【特許権者】
【識別番号】000237592
【氏名又は名称】株式会社デンソーテン
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】金武 純
(72)【発明者】
【氏名】岡田 康貴
(72)【発明者】
【氏名】佐野 裕明
(72)【発明者】
【氏名】山本 徹夫
(72)【発明者】
【氏名】吉村 亮
(72)【発明者】
【氏名】吉原 篤
(72)【発明者】
【氏名】倭文 知騎
【審査官】伊知地 和之
(56)【参考文献】
【文献】米国特許出願公開第2018/0189577(US,A1)
【文献】特開2010-224934(JP,A)
【文献】特開2006-023958(JP,A)
【文献】国際公開第2017/068698(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 1/00
G06T 11/00 - 11/40
G06T 11/60 - 13/80
G06T 3/00 - 3/60
G06T 5/00 - 5/50
G06T 7/00 - 7/90
G08G 1/00 - 99/00
CSDB(日本国特許庁)
(57)【特許請求の範囲】
【請求項1】
駐車枠を検出する制御部を備える画像処理装置であって、
前記制御部は、
車両の周囲が撮影された画像データから各画素の輝度に基づくエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補を検出し、
前記区画線候補を所定の統合条件に基づいて統合した統合区画線候補を生成し、
統合対象となる2つの前記区画線候補間での始点と終点とをそれぞれ結ぶ線分のうち、最も長い線分の長さを前記統合区画線候補の長さとする、
画像処理装置。
【請求項2】
前記制御部は、
統合対象となる2つの前記区画線候補のうち長い区画線候補と前記最も長い線分とのなす角を前記2つの区画線候補のそれぞれの長さに応じて案分した角度を前記統合区画線候補の角度とする
請求項に記載の画像処理装置。
【請求項3】
前記制御部は、
統合対象となる2つの前記区画線候補のうち長い区画線候補の端点を前記統合区画線候補の線分の始点または終点とする、
請求項1または2に記載の画像処理装置。
【請求項4】
前記制御部は、
長い前記区画線候補から順に前記統合条件を満たすか否かを判定する
請求項1、2または3に記載の画像処理装置。
【請求項5】
前記制御部は、
現在のフレームにおける前記区画線候補または前記統合区画線候補と、過去のフレームにおける前記区画線候補または前記統合区画線候補とを組み合わせて前記統合区画線候補を生成する
請求項1~4のいずれか一つに記載の画像処理装置。
【請求項6】
前記制御部は、
前記現在のフレームにおける前記区画線候補または前記統合区画線候補のペアが前記過去のフレームにおける前記区画線候補または前記統合区画線候補で補間することで前記統合条件を満たす場合、前記ペアを統合して前記統合区画線候補を生成する
請求項5に記載の画像処理装置。
【請求項7】
前記制御部は、
前記現在のフレームにおける前記区画線候補または前記統合区画線候補に基づき、前記過去のフレームにおける前記区画線候補および前記統合区画線候補を更新する
請求項5または6に記載の画像処理装置。
【請求項8】
前記制御部は、
所定の消去条件を満たす前記区画線候補および前記統合区画線候補を消去する
請求項1~7のいずれか一つに記載の画像処理装置。
【請求項9】
車両の周囲が撮像された画像データから各画素の輝度に基づくエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補を検出する検出工程と、
前記検出工程によって検出された前記区画線候補を所定の統合条件に基づいて統合した統合区画線候補を生成する生成工程と
を含み、
前記生成工程は、
統合対象となる2つの前記区画線候補間での始点と終点とをそれぞれ結ぶ線分のうち、最も長い線分の長さを前記統合区画線候補の長さとする、
画像処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置および画像処理方法に関する。
【背景技術】
【0002】
近年、自動運転技術の発展に伴い、車両の周囲が撮像された画像データから車両を駐車させる駐車枠を検出する画像処理装置が普及しつつある。この種の画像処理装置では、画像データから駐車枠を区画する区画線を検出し、検出した区画線に基づいて駐車枠を検出する(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-87758号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術では、例えば、区画線が離散して検出される場合、駐車枠を検出できないおそれがある。
【0005】
本発明は、上記に鑑みてなされたものであって、駐車枠の検出精度を向上させることができる画像処理装置および画像処理方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決し、目的を達成するために、実施形態に係る画像処理装置は、検出部と、生成部とを備える。前記検出部は、車両の周囲が撮像された画像データから各画素の輝度に基づくエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補を検出する。前記生成部は、前記検出部によって検出された前記区画線候補を所定の統合条件に基づいて統合した統合区画線候補を生成する。
【発明の効果】
【0007】
本発明によれば、駐車枠の検出精度を向上させることができる。
【図面の簡単な説明】
【0008】
図1A図1Aは、画像処理装置の搭載例を示す図である。
図1B図1Bは、画像処理方法の概要を示す図である。
図2図2は、画像処理装置のブロック図である。
図3図3は、区画線検出部のブロック図である。
図4図4は、区画線情報の具体例を示す図である。
図5図5は、更新状態の一例を示す図である。
図6図6は、区画線候補の具体例を示す図である。
図7図7は、統合区画線候補の具体例を示す図(その1)である。
図8図8は、統合区画線候補の具体例を示す図(その2)である。
図9図9は、優先条件の一例を示す図である。
図10図10は、消去条件の具体例を示す図である。
図11図11は、画像処理装置が実行する処理手順を示すフローチャートである。
図12図12は、図11に示す区画線検出処理の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、添付図面を参照して、実施形態に係る画像処理装置および画像処理方法について詳細に説明する。なお、本実施形態によりこの発明が限定されるものではない。
【0010】
まず、図1Aおよび図1Bを用いて実施形態に係る画像処理装置の概要について説明する。図1Aは、画像処理装置の搭載例を示す図である。また、図1Bは、画像処理方法の概要を示す図である。なお、かかる画像処理方法は、図1Aに示す画像処理装置1によって実行される。
【0011】
図1Aに示すように、実施形態に係る画像処理装置1は、車両Cに搭載され、車載カメラ10によって撮像された画像データから駐車枠PSを検出する。
【0012】
車載カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を備え、車両Cの周囲を撮像する。また、車載カメラ10のレンズには、例えば、魚眼レンズなどの広角レンズが採用され、図1Aに示すような撮像領域Rを有する。
【0013】
なお、図1Aに示す例では、車載カメラ10が、車両Cの左側方を撮像する左サイドカメラである場合について示したが、車載カメラ10には、車両Cの前方を撮像する前方カメラ、車両Cの後方を撮像するバックカメラ、車両Cの右側方を撮像する右サイドカメラが含まれる。
【0014】
ところで、画像処理装置1は、駐車枠PSの検出を行うに当たり、各駐車枠PSを区画する区画線Lsの候補となる区画線候補Lcを検出し、検出した区画線候補に基づいて駐車枠PSを検出する。
【0015】
しかしながら、例えば、区画線候補が離散して検出される場合や、途切れて検出される場合、駐車枠PSを検出できないおそれがある。
【0016】
そこで、実施形態に係る画像処理装置1は、検出した区画線候補を所定の統合条件に基づいて統合することとした。これにより、実施形態に係る画像処理装置1では、駐車枠の検出精度を向上させることが可能となる。
【0017】
具体的には、図1Bに示すように、画像処理装置1は、まず、画像データIから区画線候補Lcを検出する(ステップS1)。例えば、画像処理装置1は、画像データIに対してエッジ処理を行うことで得られるエッジ点を繋いだエッジ線に基づいて区画線候補Lcを検出する。
【0018】
そして、画像処理装置1は、画像データIにおいて、区画線と路面との境界に対応するエッジ線を区画線候補Lcとして検出する。すなわち、区画線候補Lcは、区画線の幅方向の左右両端に対応するエッジ線のペアである。
【0019】
続いて、画像処理装置1は、ステップS1において、検出した区画線候補Lcを所定の統合条件に基づいて統合することで、統合区画線候補Liを生成する(ステップS2)。これにより、画像処理装置1では、統合区画線候補Liに基づいて駐車枠PSを検出することが可能となる。
【0020】
つまり、実施形態に係る画像処理装置1は、離散した区画線候補Lcを適切に統合することで、区画線を適切に検出することが可能となる。したがって、実施形態に係る画像処理装置1によれば、駐車枠PSの検出精度を向上させることが可能となる。なお、統合区画線候補Liの生成処理の詳細については、後述する。
【0021】
また、実施形態に係る画像処理装置1では、過去のフレームにおいて検出した区画線候補Lcや過去のフレームにおいて統合した統合区画線候補Liと今回検出した区画線候補Lcとを統合することも可能である。
【0022】
また、以下では、区画線候補Lcを統合区画線候補Liや、過去の区画線候補Lcなどを包括する概念であるものとし、現在のフレームで検出した区画線候補Lcおよび、かかる区画線候補Lc同士を統合した統合区画線候補Liについて観測区画線候補と記載し、過去のフレームにおける区画線候補Lcおよび統合区画線候補Liについて時系列区画線候補と記載する場合がある。
【0023】
次に、図2を用いて実施形態に係る画像処理装置1の構成例について説明する。図2は、画像処理装置1のブロック図である。なお、図2には、画像処理装置1を含む駐車支援システム100を示す。図2に示すように、駐車支援システム100は、画像処理装置1と、車載カメラ10と、センサ群Scと、上位ECU(Electronic Control Unit)50とを備える。また、図2に示すように、画像処理装置1と、センサ群Scと、上位ECU50とは、それぞれCAN(Control Area Network)通信の通信規格に準じた通信バスBによって相互に通信することができる。
【0024】
センサ群Scは、車両Cの走行状態を検出する各種センサであり、検出したセンサ値を画像処理装置1へ通知する。センサ群Scは、車両Cの車輪の回転数を検出する車速センサや、車両Cの舵角を検出する舵角センサ等を含む。
【0025】
上位ECU50は、例えば、車両Cの自動駐車を支援するECUであり、例えば、画像処理装置1によって検出された駐車枠PSに基づいて車両Cを駐車枠PSへ駐車させる。例えば、上位ECU50は、車両Cの操舵角を制御するEPS(Electric Power Steering)-ECUであり、画像処理装置1によって検出された駐車枠PSへの操舵角を制御することができる。なお、上位ECU50は、アクセル制御やブレーキ制御を行うECUを含むようにすることにしてもよい。なお、以下では、上位ECU50が、車両Cをバック駐車にて駐車枠PSへ駐車させるものとして説明する。
【0026】
図2に示すように、画像処理装置1は、制御部2と、記憶部3とを備える。制御部2は、線分抽出部21と、不適領域判定部22と、区画線検出部23と、除外判定部24と、駐車枠検出部25と、駐車枠管理部26と、停車位置決定部27とを備える。
【0027】
制御部2は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、入出力ポートなどを有するコンピュータや各種の回路を含む。
【0028】
コンピュータのCPUは、例えば、ROMに記憶されたプログラムを読み出して実行することによって、制御部2の線分抽出部21、不適領域判定部22、区画線検出部23、除外判定部24、駐車枠検出部25、駐車枠管理部26および停車位置決定部27として機能する。
【0029】
また、制御部2の線分抽出部21、不適領域判定部22、区画線検出部23、除外判定部24、駐車枠検出部25、駐車枠管理部26および停車位置決定部27の少なくともいずれか一部または全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。
【0030】
また、記憶部3は、例えば、RAMやHDDに対応する。RAMやHDDは、各種情報や各種プログラムの情報を記憶することができる。なお、画像処理装置1は、有線や無線のネットワークで接続された他のコンピュータや可搬型記録媒体を介して上記したプログラムや各種情報を取得することとしてもよい。
【0031】
制御部2は、例えば、車両Cが駐車場を走行していると想定される場合(例えば、車速30Km/h以内)に、後述する駐車枠の検出処理を行うことにしてもよいし、あるいは、車両Cが走行している全ての期間でかかる検出処理を行うことにしてもよい。
【0032】
線分抽出部21は、車載カメラ10から入力される画像データから各画素の輝度に基づくエッジ点を繋いだエッジ線を検出する。具体的には、線分抽出部21は、車載カメラ10から入力される画像データをグレースケール化することでグレースケール画像へ変換する。グレースケール画像とは、画像データにおける各画素を輝度に応じて白から黒までの各階調(例えば256階調)で表現するように変換する処理である。
【0033】
続いて、線分抽出部21は、車両Cに対する車載カメラ10の取付位置および取付角度に基づき、グレースケール画像を路面などの射影面に射影する。これにより、線分抽出部21は、グレースケール画像の平面画像を得る。その後、線分抽出部21は、平面画像に対して例えば、ソベルフィルタを適用することで、各画素のエッジ強度および輝度勾配を求めることができる。
【0034】
続いて、線分抽出部21は、エッジ強度が所定値を超える画素を抽出することで、上記のエッジ点を抽出し、隣接するエッジ点を繋ぐことで、エッジ線を抽出することができる。線分抽出部21は、抽出したエッジ点およびエッジ線に関するエッジ情報を不適領域判定部22へ通知する。
【0035】
不適領域判定部22は、線分抽出部21によって抽出されたエッジ点およびエッジ線に基づき、駐車枠を構築する区画線の検出が困難となる不適領域の有無を判定する。例えば、不適領域判定部22は、舗装された路面に比べて、エッジ点が多く抽出される舗装されていない路面領域(例えば、砂利)や、グレーチング領域を不適領域として判定することができる。
【0036】
具体的には、不適領域判定部22は、各エッジ点の密度が所定値以上であり、各エッジ点の輝度勾配が不均一である領域について、不適領域として判定することができる。不適領域判定部22は、判定した不適領域に基づいて上記のエッジ情報から不適領域に関するエッジ情報を除去して後段の処理へ回す。
【0037】
区画線検出部23は、線分抽出部21によって抽出されたエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補を検出する。具体的には、区画線検出部23は、互いに略平行であり、その間隔が区画線の幅に応じた所定範囲に収まるエッジ線同士を区画線候補として検出する。
【0038】
すなわち、区画線検出部23は、各区画線の幅方向の左右両端に対応するエッジ線を区画線候補として検出する。区画線検出部23は、検出した区画線候補に関する区画線情報を生成し、除外判定部24へ通知する。
【0039】
上述のように、区画線検出部23は、検出した区画線候補Lcを所定の統合条件に基づいて統合して統合区画線候補Liを生成したり、区画線候補Lcおよび統合区画線候補Liを時系列的に管理したりすることも可能である。
【0040】
また、区画線検出部23は、不適領域判定部22によって検出された不適領域を除いて、区画線候補の検出処理を行うことができる。言い換えれば、区画線検出部23は、不適領域について区画線候補の検出処理を行わない。これにより、制御部2の処理負荷の抑えることが可能となる。なお、区画線検出部23の具体例については、図3を用いて後述する。
【0041】
除外判定部24は、区画線検出部23によって検出された区画線候補に基づいて車両Cの駐車が認められていない駐車不可領域の有無を判定する。例えば、除外判定部24は、駐車不可領域として、ゼブラゾーン(導流帯)などの駐車不可領域の有無を判定する。
【0042】
具体的には、ゼブラゾーンが、互いに略平行な区画線候補を区画線(支持区画線と記載する)と仮定した場合に、支持区画線に対して傾斜した区画線候補が所定の間隔をあけて3本以上存在する場合に、支持区画線に挟まれた領域を駐車不可領域と判定する。
【0043】
また、除外判定部24は、路面標識等の駐車枠の検出に不要な区画線候補の有無を判定することも可能である。例えば、除外判定部24は、区画線検出部23によって検出された区画線候補と、各路面標識のテンプレートモデルとのマッチング処理を行うことで画像データに含まれる各路面標識を検出することができる。
【0044】
除外判定部24は、区画線情報から不要な区画線候補を除去するとともに、区画線情報に駐車不可領域に関する情報を付与して、駐車枠検出部25へ通知する。
【0045】
駐車枠検出部25は、区画線検出部23によって検出された区画線候補に基づき、駐車枠を検出する。具体的には、駐車枠検出部25は、所定間隔をあけて平行配置される区画線候補について駐車枠として検出する。
【0046】
ここで、所定間隔とは、駐車場に関する法令等で規定される一般公共用の標準的な駐車領域の幅である。また、このとき、駐車枠検出部25は、除外判定部24によって駐車不可領域として判定された領域を避けて、駐車枠を検出することができる。
【0047】
すなわち、ゼブラゾーン等を避けて駐車枠を検出することができる。駐車枠検出部25は、駐車枠を検出すると、駐車枠に関する駐車枠情報を駐車枠管理部26へ通知する。なお、以下では、駐車枠検出部25によって駐車枠として検出された区画線候補について、区画線と記載する。また、駐車枠情報には、車両Cを基準とする各区画線の頂点座標が含まれる。
【0048】
駐車枠管理部26は、駐車枠検出部25によって検出された駐車枠を時系列で管理する。駐車枠管理部26は、センサ群Scから入力されるセンサ値に基づいて車両Cの移動量を推定し、かかる移動量に基づいて過去の駐車枠情報に基づく実際の各区画線の頂点座標を推定することができる。
【0049】
また、駐車枠管理部26は、新たに入力される駐車枠情報に基づいて、過去の駐車枠情報における区画線の座標情報を更新することも可能である。すなわち、駐車枠管理部26は、車両Cと駐車枠との相対的な位置関係を車両Cの移動に伴って随時更新する。
【0050】
また、駐車枠管理部26は、複数の駐車枠がそれぞれ連続して配置されると仮定して、駐車枠の検出範囲を設定することも可能である。例えば、駐車枠管理部26は、駐車枠検出部25によって検出された1つの駐車枠を基準とし、かかる駐車枠と連続して複数の駐車枠が存在すると仮定する。
【0051】
そして、駐車枠管理部26は、仮定した駐車枠の位置を検出範囲として設定する。これにより、上記の線分抽出部21は、駐車枠管理部26によって設定された検出範囲においてのみ、エッジ線の検出処理を行えばよいので、制御部2の処理負荷を抑えることが可能となる。
【0052】
停車位置決定部27は、線分抽出部21によって検出されたエッジ線に基づき、車両Cが駐車枠へ駐車する際の停車位置を決定する。例えば、停車位置決定部27は、線分抽出部21によって検出されたエッジ線に基づき、輪留めや縁石、壁、車幅方向に延びる白線などを検出することで、車両Cの停車位置を決定する。すなわち、停車位置決定部27は、車両Cから見て、駐車枠PSの奥側の車両Cの車幅方向に伸びる区画線PSまたは輪留めに基づいて停車位置を決定する。
【0053】
停車位置決定部27は、輪留めを検出した場合、車両Cの後輪が輪留めの手前に来るように停車位置を決定し、輪留めに代えて、白線や壁等を検出した場合、白線の手前に車両Cの後端(例えば、リアバンパの先端)がくるように停車位置を決定する。
【0054】
次に、図3を用いて区画線検出部23の構成例について説明する。図3は、区画線検出部23のブロック図である。図3に示すように、区画線検出部23は、検出部231と、生成部232と、消去部233と、更新部234とを備える。また、区画線検出部23が区画線候補Lcの検出を行うに当たり、記憶部3は、区画線情報31と、統合条件情報32とを記憶する。
【0055】
区画線情報31は、後述する検出部231によって検出された区画線候補Lcに関する情報であり、区画線候補毎の座標情報などが含まれる。図4は、区画線情報31の一例を示す図である。
【0056】
図4に示すように、区画線情報31は、「区画線ID」、「頂点座標」、「長さ」、「更新状態」および「相対輝度」などが互いに関連付けられた情報である。「区画線ID」は、区画線候補Lcを識別するための識別子である。
【0057】
「頂点座標」は、区画線候補Lcの各頂点の座標に関する情報である。例えば、頂点座標に用いる座標は、車両Cを基準とする座標系であるが、ワールド座標系であってもよい。「長さ」は、区画線候補Lcの全長を示す。また、「更新状態」は、時系列区画線候補の更新状態を示す。なお、「更新状態」の具体例については、図5を用いて後述する。
【0058】
また、「相対輝度」は、区画線候補Lcとその周囲との相対的な輝度を示す。例えば、区画線候補Lcの輝度が周囲の輝度に比べて相対的に明るい場合、相対輝度が「明」となり、区画線候補Lcの輝度が周囲の輝度に比べて相対的に暗い場合、相対輝度が「暗」となる。
【0059】
続いて、図5を用いて図4に示す「更新状態」について説明する。図5は、更新状態の一例を示す図である。図5に示すように、更新状態は、新規状態st1、観測更新状態st2、予測更新状態st3および削除候補状態st4の4つの状態に大別される。
【0060】
新規状態st1は、観測区画線候補がどの時系列区画線候補とも統合できなかった場合、すなわち、観測区画線候補が時系列区画線候補と独立して存在している状態を示す。言い換えれば、新規状態st1にある区画線候補は、他の時系列区画線候補と時系列的に連続性がない状態である。また、新規状態st1にある区画線候補Lcは、その後、観測更新状態st2または予測更新状態st3へ移行する。
【0061】
観測更新状態st2は、時系列区画線候補が観測区画線候補と統合された状態である。すなわち、観測更新状態st2は、時系列区画線候補が観測区画線候補によって更新された状態である。例えば、新規状態st1や予測更新状態st3にある区画線候補が、観測区画線候補と統合された場合に、観測更新状態st2となる。
【0062】
予測更新状態st3は、時系列区画線候補が観測区画線候補によって更新されなかった場合に、車両Cの移動量に基づいて時系列区画線候補が更新された状態である。すなわち、予測更新状態st3は、車両Cの移動量に基づく外挿処理によって更新された状態である。
【0063】
新規状態st1にある時系列区画線候補が、次のフレーム処理において、統合されなかった場合や、観測更新状態st2の時系列区画線候補が、次のフレーム処理において、観測更新状態st2を維持できなかった場合、予測更新状態st3となる。
【0064】
予測更新状態st3にある時系列区画線候補は、複数フレーム内の処理において、他の時系列区画線候補または観測区画線候補と統合された場合、観測更新状態st2へ移行する。また、予測更新状態st3にある時系列区画線候補は、複数フレーム内に観測更新状態st2へ移行できなかった場合、削除候補状態st4へ移行する。
【0065】
削除候補状態st4にある区画線候補Lcは、その後、複数フレーム後に記憶部3から削除される。すなわち、削除候補状態st4は、区画線の検出に用いられないものの、内部的にデータが保持された状態である。
【0066】
図3の説明に戻り、統合条件情報32について説明する。統合条件情報32は、区画線候補の統合条件に関する情報である。統合条件は、下記(1)~(6)に示される条件である。
【0067】
(1)同一の車載カメラ10で撮像された画像データIから検出された区画線候補Lcであること。(2)区画線候補Lc同士の相対輝度(図4参照)が同じであること。(3)区画線候補Lc同士の角度差が所定値以下(10deg以下)であること。(4)区画線候補Lc同士の距離が閾値以下(例えば1900mm以下)であること。
【0068】
(5)区画線候補Lc同士の幅方向におけるズレが所定値以下(例えば200mm以下)であること。(6)統合する区画線候補Lcのうち、長さが長い方の区画線候補Lcと統合区画線候補Liとのなす角が所定値以下(10deg以下)となること。
【0069】
後述の生成部232は、上記(1)~(6)の条件を全て満たす区画線候補Lc同士を統合して統合区画線候補Liを生成することとなる。また、統合条件情報32には、統合区画線候補Liに用いる区画線候補Lcの優先順位に関する情報が含まれる。なお、この優先順位の具体例については、後述する。
【0070】
続いて、検出部231について説明する。検出部231は、図2に示した線分抽出部21によって抽出されたエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補Lcを検出する。検出部231は、実際の区画線と路面との境界に対応するエッジ線のペアを区画線候補Lcとして検出する。
【0071】
例えば、区画線が白線であり、周囲の路面に比べて相対的に(輝度が明るい場合を想定する。この場合、白線と路面との境界において、輝度差が大きくなるため、白線の幅方向の左端と右端に沿って略平行な2本のエッジ線が抽出される。このため、検出部231は、互いに略平行であり、かつ、所定間隔を隔てて配置されたエッジ線のペアを区画線候補として検出する。
【0072】
図6は、区画線候補の具体例を示す図である。なお、ここでは、エッジ線Le1およびエッジ線Le2がそれぞれ直線である場合について説明するが、エッジ線Le1およびエッジ線Le2は、湾曲していてもよい。
【0073】
図6に示すように、検出部231は、エッジ線Le1およびエッジ線Le2が略平行であり、かつ、エッジ線Le1およびエッジ線Le2の距離dが所定範囲に収まる場合に、エッジ線Le1およびエッジ線Le2から区画線候補Lcを検出する。
【0074】
ここで、所定範囲とは、実際の区画線のライン幅に応じた範囲であり、例えば、5cm~10cmまでの範囲である。また、検出部231は、図6に示すように、エッジ線Le1およびエッジ線Le2が重複する領域を区画線候補Lcとして検出し、距離dが区画線候補Lcの幅となる。
【0075】
言い換えれば、検出部231は、エッジ線Le1およびエッジ線Le2が重複しない領域については、区画線候補Lcとして検出しないことになる。これは、上述のように、区画線であれば、区画線の幅方向の左右両端にそれぞれ対応する1対のエッジ線Leで構成されるためである。
【0076】
すなわち、エッジ線Le1およびエッジ線Le2が重複しない領域については、ノイズであることも想定される。このため、検出部231は、エッジ線Le1およびエッジ線Le2が重複しない領域について区画線候補Lcとして検出しないことで、確度の高い区画線候補Lcのみを検出することができる。これにより、駐車枠の誤検出を抑制することが可能となる。
【0077】
また、検出部231は、上記のエッジ線Leの配置条件に加え、各エッジ線Leの輝度勾配に基づく検出条件に基づいて区画線候補Lcを検出する。具体的には、区画線が白線である場合、白線に向かって輝度が明るくなることが想定される。したがって、この場合、エッジ線Le1およびエッジ線Le2の輝度勾配は、互いに逆向き(白線の中央に向けて輝度が明るくなる向き)となる。
【0078】
このため、検出部231は、互いに輝度勾配が逆向きとなるエッジ線Leのペアを区画線候補Lcとして検出することで、区画線候補Lcの検出精度を向上させることができる。なお、実際の区画線が周囲よりも輝度が暗い場合も想定される。このため、輝度勾配が互いに外側に向けて輝度が明るくなる向きのエッジ線Leのペアを区画線候補Lcとして検出することにしてもよい。
【0079】
図3の説明に戻り、生成部232について説明する。生成部232は、検出部231によって検出された区画線候補Lcを所定の統合条件に基づいて統合し、統合区画線候補Liを生成する。
【0080】
図7は、統合区画線候補Liの具体例を示す図である。なお、ここでは、区画線候補Lc1と区画線候補Lc1よりも長さが短い区画線候補Lc2を統合し、統合区画線候補Liを生成する場合について説明する。また、ここでは、説明を簡単にするため、区画線候補Lc1および区画線候補Lc2をそれぞれ直線として示す。
【0081】
図7に示すように、2つの区画線候補Lc1および区画線候補Lc2間で始点および終点を結んだ線分のうち最も長い線分Lの長さが統合区画線候補Liの長さとなる。言い換えれば、2つの区画線候補Lc1および区画線候補Lc2の端点のうち、最も離れた端点間の距離が統合区画線候補Liの長さとなる。
【0082】
つまり、生成部232は、区画線候補Lc1よりも統合区画線候補Liの長さが長くなるように統合区画線候補Liの長さを設定する。続いて、2つの区画線候補Lc1および区画線候補Lc2のうち、長い区画線候補Lc1と線分Lとのなす角θを2つの区画線候補Lc1、Lc2の長さに応じて案分した角度を統合区画線候補Liの向きとする。
【0083】
例えば、区画線候補Lc1の長さをl1とし、区画線候補Lc2の長さをl2とした場合、区画線候補Lc1と統合区画線候補Liとのなす角θ1および線分Lと統合区画線候補Liとのなす角θ2は、式(1)「θ1=θ×l2/(l1+l2)」、式(2)「θ2=θ×l1/(l1+l2)」で表される。
【0084】
すなわち、例えば、l1とl2との比率が2対1である場合、θ1=θ×1/3となり、統合区画線候補Liは、区画線候補Lc2に比べて区画線候補Lc1側に傾斜して配置される。
【0085】
このように、生成部232は、統合する区画線候補Lcよりも長く、統合する区画線候補Lcの長さの比に応じた向きで統合区画線候補Liを生成する。これにより、統合区画線候補Liを適切な向きに設定することができる。
【0086】
続いて、生成部232が、統合区画線候補Liを生成する際の優先順位について説明する。まず、生成部232は、検出部231によって観測区画線候補同士で上記の統合条件を満たすか否かを判定し、統合区画線候補Liを生成する。すなわち、生成部232は、現在のフレームにおける区画線候補Lcを用いて統合区画線候補Liを生成する。
【0087】
このとき、生成部232は、長い区画線候補Lcから順次、統合条件を満たすか否かを判定していく。これにより、長い区画線候補Lcを短い区画線候補Lcに優先して統合することが可能となる。
【0088】
言い換えれば、相対的に短い区画線候補Lcを統合区画線候補Liに反映しにくくすることが可能となる。つまり、長い区画線候補Lcを優先的に統合させることで、信頼性の高い統合区画線候補Liを生成することが可能となる。
【0089】
また、生成部232は、新たに統合区画線候補Liを生成した場合、生成した統合区画線候補Liと他の観測区画線候補とが統合条件を満たすか否かを判定していく。その後、生成部232は、観測区画線候補同士の統合処理を終えると、観測区画線候補に時系列区画線候補を加えて統合条件を判定し、統合区画線候補Liを生成する。
【0090】
すなわち、生成部232は、現在のフレームにおける区画線候補Lcに加えて、過去のフレームにおける区画線候補Lcを用いて統合区画線候補Liを生成する。まず、生成部232は、統合条件を満たさなかった観測区画線候補同士が時系列区画線候補を介在させることで、統合条件を満たすか否かを判定する。
【0091】
図8は、統合区画線候補の具体例を示す図(その2)である。なお、ここでは、図8に示す区画線候補Lc1および区画線候補Lc2がそれぞれ観測区画線候補であり、区画線候補Lc3が時系列区画線候補であるものとする。
【0092】
図8に示す、統合条件を満たさない区画線候補Lc1および区画線候補Lc2が存在する場合を想定する。生成部232は、区画線候補Lc1および区画線候補Lc2に対して、時系列区画線候補である区画線候補Lc3を介在させた場合において、統合条件を満たすか否かを判定する。
【0093】
図8に示す例では、区画線候補Lc1と、区画線候補Lc3が同一直線状に存在する場合を示し、区画線候補Lc1の長さが疑似的に長くなる場合を示す。生成部232は、区画線候補Lc1および区画線候補Lc3を1つの区画線候補Lcと見做し、区画線候補Lc2と統合条件を満たす否かを判定する。
【0094】
そして、生成部232は、統合条件を満たすと判定した場合に、区画線候補Lc1および区画線候補Lc2を用いて、統合区画線候補Liを生成する。すなわち、生成部232は、実際の統合区画線候補Liには反映させずに、時系列区画線候補を統合条件の判定に用いる。
【0095】
このように、生成部232は、観測区画線候補を時系列区画線候補で補間した場合に、観測区画線候補が統合条件を満たす場合、観測区画線候補を用いて統合区画線候補Liを生成する。言い換えれば、時系列区画線候補を補助的に用いることで、より多くの観測区画線候補同士を統合することが可能となる。
【0096】
その後、生成部232は、時系列区画線候補を用いた観測区画線同士を統合する処理をすべて終えると、時系列区画線候補に対して観測区画線候補が上記の統合条件を満たすか否かを判定し、統合区画線候補Liを生成する。
【0097】
すなわち、時系列区画線候補を観測区画線候補に基づいて更新する。これにより、時系列区画線候補を適切に更新することが可能となる。また、生成部232は、新たに生成した統合区画線候補Liに対して他の観測区画線候補が上記の統合条件を満たす場合、双方の区画線候補Lcを用いて統合区画線候補Liを生成する。
【0098】
言い換えれば、生成部232は、時系列区画線候補に対して統合条件を満たす観測区画線候補がなくなるまで、上記の処理を繰り返し行う。また、生成部232は、例えば、1つの時系列区画線候補に対して統合条件を満たす複数の観測区画線候補が存在する場合、優先条件に基づいて観測区画線候補を用いて統合区画線候補Liを生成する。なお、かかる優先条件の具体例については、図9を用いて後述する。
【0099】
続いて、生成部232は、観測区画線候補に対して、統合条件を満たす時系列区画線候補の有無を判定し、統合区画線候補Liを生成する。ここで生成される統合区画線候補Liについてもその更新状態は、観測更新状態st2となる。
【0100】
その後、生成部232は、時系列区画線候補同士で統合条件を満たすか否かを判定し、統合区画線候補Liを生成する。なお、時系列区画線候補同士から統合区画線候補Liが生成された場合、その更新状態についても観測更新状態st2となる。
【0101】
次に、図9を用いて上記の優先条件について説明する。図9は、優先条件の一例を示す図である。なお、ここでは、図9に示す区画線候補Lc1に対して、区画線候補Lc2および区画線候補Lc3が統合条件を満たす場合について説明する。
【0102】
この場合、図9に示すように、区画線候補Lc1の延長線に対して、区画線候補Lc2および区画線候補Lc3から垂線lp2および垂線lp3を引いた場合に、垂線距離が短い方の区画線候補Lcと統合させる。
【0103】
図9に示す例では、区画線候補Lc2の垂線lp2の方が区画線候補Lc3の垂線よりも短い。このため、生成部232は、区画線候補Lc1と区画線候補Lc2とを統合して統合区画線候補Liを生成する。
【0104】
その後、生成部232は、統合区画線候補Liと区画線候補Lc3とが統合条件を満たす場合、統合区画線候補Liおよび区画線候補Lc3を用いて、統合区画線候補Liを生成することとなる。
【0105】
このように、生成部232は、優先順位が高い区画線候補Lcを用いて統合区画線候補Liを生成することで、適切な統合区画線候補Liを生成することが可能となる。なお、上記の優先順位は、一例であり、例えば、区画線候補Lc1と距離が近い方の区画線候補Lcを優先することにしてもよいし、あるいは、区画線候補Lc1と角度が近い区画線候補Lcを優先するなど、優先条件を適宜変更することにしてもよい。
【0106】
図3の説明に戻り、消去部233について説明する。消去部233は、所定の消去条件に基づいて不要な区画線候補を消去する。図10は、消去条件の具体例を示す図である。図10に示すように、消去部233は、区画線候補Lc1に対して幅方向に所定間隔wを隔てた所定範囲内に始点および終点が収まる区画線候補Lc2が存在する場合、区画線候補Lc2を消去する。
【0107】
つまり、消去部233は、任意の区画線候補Lcの近傍にかかる区画線候補Lcよりも短い区画線候補Lcが存在する場合に、かかる区画線候補Lcを消去する。すなわち、消去部233は、上記の統合条件を満たさず、相対的に長い区画線候補Lcに近接して短い区画線候補Lcが存在する場合、短い方の区画線候補Lcを消去する。
【0108】
これにより、区画線候補Lcの近傍に位置する路面のざらつきなどに基づくノイズを除去することができる。したがって、確度の高い区画線候補Lcのみを残すことができるので、区画線の検出精度を向上させることができる。また、不要な区画線候補Lcを除去した分だけ、後段の処理負荷を抑えることが可能となる。
【0109】
なお、消去部233によって消去されなかった観測区画線候補の更新状態は、新規状態st1となる。
【0110】
図3の説明に戻り、更新部234について説明する。更新部234は、各区画線候補Lcの更新状態(図4参照)を更新する。具体的には、更新部234は、上記のように、消去部233によって消去されなかった観測区画線候補を新規状態st1として、区画線情報31に登録する。
【0111】
また、更新部234は、観測区画線候補によって更新された時系列区画線候補の更新状態を観測更新状態st2へ更新する。また、更新部234は、新規状態st1および観測更新状態st2でない区画線候補Lcについて、更新状態を予測更新状態st3へ更新する。
【0112】
このとき、更新部234は、予測更新状態st3の区画線候補Lcについて、車両Cとの相対位置を車両Cの移動量に基づいて更新することもできる。また、更新部234は、区画線候補Lcの更新状態が予測更新状態st3となった場合に、予測更新状態st3が所定回数続いた場合、削除候補状態st4へ更新する。
【0113】
このように、更新部234は、各区画線候補Lcの更新状態を更新することで、各区画線候補Lcを適切に管理することが可能となる。また、更新部234は、車両Cの移動に伴い、車載カメラ10の撮像領域Rから区画線候補Lcが逸脱する場合、区画線候補Lcに対する逸脱前の更新状態へ保持しておく。
【0114】
そして、更新部234は、車両Cが移動し、区画線候補Lcが撮像領域Rに再び含まれる場合に、かかる区画線候補Lcに対する更新状態の更新を再開する。これにより、区画線候補Lcを継続的に管理することが可能となる。
【0115】
また、更新部234は、車両Cの移動に伴い、予測更新状態st3となる区画線候補Lcを更新することもできる。これにより、区画線候補Lcの連続性を適切に保つことが可能となる。
【0116】
次に、図11を用いて実施形態に係る画像処理装置1が実行する処理手順について説明する。図11は、画像処理装置1が実行する処理手順を示すフローチャートである。なお、かかる処理手順は、例えば、車両Cの車速が所定値以下(例えば、30Km/h)である場合に、制御部2によって繰り返し実行される。
【0117】
図11に示すように、画像処理装置1は、まず、グレースケール画像からエッジ点およびエッジ線を抽出するエッジ線抽出処理を行い(ステップS101)、エッジ線抽出処理の処理結果に基づいて不適領域判定処理を行う(ステップS102)。
【0118】
続いて、画像処理装置1は、ステップS101にて抽出したエッジ線から区画線候補を検出する区画線検出処理を行う(ステップS103)。なお、この区画線検出処理の処理手順については、図12を用いて後述する。
【0119】
その後、画像処理装置1は、ステップS103までの処理結果に基づき、駐車不可領域などの有無を判定する除外判定処理を行い(ステップS104)、駐車枠を検出する駐車枠検出処理を行う(ステップS105)。
【0120】
その後、画像処理装置1は、ステップS105において検出した駐車枠を管理する駐車枠管理を行い(ステップS106)、車両Cの駐車枠内において停車させる停車位置を決定する停車位置決定処理を行い(ステップS107)、処理を終了する。
【0121】
次に、図12を用いて図11に示したステップS103の区画線検出処理における処理手順について説明する。図12は、図11に示す区画線検出処理の処理手順を示すフローチャートである。なお、かかる処理手順は、区画線検出部23によって実行される。
【0122】
図12に示すように、区画線検出部23は、線分抽出部21によって抽出されたエッジ線に基づき、区画線候補Lcの検出処理を行う(ステップS111)。続いて、区画線検出部23は、ステップS111にて検出した区画線候補Lcに基づいて観測区画線候補同士を用いて統合処理を行う(ステップS112)。
【0123】
続いて、区画線検出部23は、観測区画線候補に加え、時系列区画線候補を含めて統合処理を行う(ステップS113)。なお、ステップS113の統合処理において、区画線検出部23は、まず、統合区画線候補同士を時系列区画線候補で補間することで、統合区画線同士が統合条件を満たす場合に、統合区画線同士を用いて統合区画線候補を生成する。
【0124】
その後、区画線検出部23は、時系列区画線候補と観測区画線候補とが統合条件を満たす場合に、時系列区画線候補と観測区画線候補を用いて統合区画線候補を生成する。続いて、区画線検出部23は、不要な観測区画線候補および時系列区画線候補を削除する削除処理を行う(ステップS114)。
【0125】
続いて、区画線検出部23は、区画線情報31を更新して(ステップS115)、処理を終了する。
【0126】
上述したように、実施形態に係る画像処理装置1は、検出部231と、生成部232とを備える。検出部231は、車両Cの周囲が撮像された画像データIから各画素の輝度に基づくエッジ線に基づいて駐車枠を区画する区画線の候補となる区画線候補を検出する。
【0127】
生成部232は、検出部231によって検出された区画線候補を所定の統合条件に基づいて統合した統合区画線を生成する。したがって、実施形態に係る画像処理装置1によれば、駐車枠の検出精度を向上させることができる。
【0128】
ところで、上述した実施形態では、画像処理装置1が、センサ群Sc(図2参照)から車両Cの走行状態に関する情報を取得する場合について説明したが、これに限定されるものではない。すなわち、画像処理装置1は、画像データIからオプティカルフローを抽出し、オプティカルフローに基づいて車両Cの走行状態を推定することにしてもよい。
【0129】
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
【符号の説明】
【0130】
1 画像処理装置
21 線分抽出部
22 不適領域判定部
23 区画線検出部
24 除外判定部
25 駐車枠検出部
26 駐車枠管理部
27 停車位置決定部
31 区画線情報
32 統合条件情報
231 検出部
232 生成部
233 消去部
234 更新部
Lc 区画線候補
Li 統合区画線候補
図1A
図1B
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12