IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日揮触媒化成株式会社の特許一覧

<>
  • 特許-シリカ粒子の分散液及びその製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-15
(45)【発行日】2022-12-23
(54)【発明の名称】シリカ粒子の分散液及びその製造方法
(51)【国際特許分類】
   C01B 33/141 20060101AFI20221216BHJP
   C09K 3/14 20060101ALI20221216BHJP
   C09K 23/54 20220101ALI20221216BHJP
   C09G 1/02 20060101ALI20221216BHJP
【FI】
C01B33/141
C09K3/14 550Z
C09K3/14 550D
C09K23/54
C09G1/02
【請求項の数】 7
(21)【出願番号】P 2019554269
(86)(22)【出願日】2018-11-15
(86)【国際出願番号】 JP2018042209
(87)【国際公開番号】W WO2019098257
(87)【国際公開日】2019-05-23
【審査請求日】2021-09-01
(31)【優先権主張番号】P 2017221356
(32)【優先日】2017-11-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000190024
【氏名又は名称】日揮触媒化成株式会社
(74)【代理人】
【識別番号】100120086
【弁理士】
【氏名又は名称】▲高▼津 一也
(72)【発明者】
【氏名】江上 美紀
(72)【発明者】
【氏名】熊澤 光章
(72)【発明者】
【氏名】荒金 宏忠
(72)【発明者】
【氏名】村口 良
(72)【発明者】
【氏名】平井 俊晴
【審査官】若土 雅之
(56)【参考文献】
【文献】特開2014-198649(JP,A)
【文献】国際公開第2014/199904(WO,A1)
【文献】特開2017-043531(JP,A)
【文献】特開2012-162426(JP,A)
【文献】国際公開第2008/093422(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 33/00-33/193
C09K 23/00-23/56
(57)【特許請求の範囲】
【請求項1】
電子顕微鏡写真から求めた平均粒子径が5~300nm、前記平均粒子径と窒素吸着によるBET法による比表面積から求めた密度が1.20g/cm以上1.60g/cm 未満で、アルコキシ基に由来する炭素量が0.005質量%以上0.50質量%未満であるシリカ粒子を含み、pHが8未満、シリカ濃度が12~40質量%、シリカ濃度20質量%換算粘度が40mPa・s以下、前記シリカ粒子以外の珪素を含む化合物の量が200ppm以下であることを特徴とする研磨用シリカ粒子の分散液。
【請求項2】
前記分散液中の下記元素の量が、前記シリカ粒子あたり、
(1)アルカリ金属、アルカリ土類金属、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々が0.1ppm未満、
(2)Cu、Ni、Crの各々が1ppb未満、
(3)U、Thの各々が0.3ppb未満、
であることを特徴とする請求項1に記載の研磨用シリカ粒子の分散液。
【請求項3】
アンモニアを含有し、シリカ濃度20質量%におけるアンモニアの含有量が100ppm未満であることを特徴とする請求項1に記載の研磨用シリカ粒子の分散液。
【請求項4】
前記シリカ粒子中の 29 Si-NMR解析によるケミカルシフトが-73.0~-120.0ppmに現れるQ0~Q4構造を表す各々のピークの面積の合計に対する、ケミカルシフトが-100.0~-120.0ppmに現れるQ4構造を表すピークの面積の割合が70~90%であることを特徴とする請求項1記載の研磨用シリカ粒子分散液。
【請求項5】
アルコキシシランを、水、有機溶媒、及び触媒の存在下で加水分解して、シリカ粒子を含む分散液を調製する分散液調製工程と、
前記分散液を、電子顕微鏡写真から求めた平均粒子径と窒素吸着によるBET法による比表面積から求めたシリカ粒子の密度が1.20g/cm以上1.60g/cm 未満となるように、アルカリの存在下で加熱する熟成工程と、
前記熟成工程で得られた分散液からアルカリを除去して、分散液のシリカ濃度20質量%換算粘度を一旦60mPa・s以上まで上昇させた後、更にアルカリを除去して分散液のpHを8未満にするアルカリ除去工程と、
を有し、前記分散液調製工程における前記水の量を、アルコキシシランを構成するSi-OR基1モル当たり1~5モル、前記触媒の量を、アルコキシシラン1モル当たり0.005~1モルとすることを特徴とする研磨用シリカ粒子分散液の製造方法。
【請求項6】
前記分散液調製工程と前記熟成工程の間に、分散液の有機溶媒を水に置換する水置換工程を有することを特徴とする請求項に記載の研磨用シリカ粒子分散液の製造方法。
【請求項7】
前記熟成工程がpH8以上で行われることを特徴とする請求項に記載の研磨用シリカ粒子分散液の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリカ粒子の分散液及びその製造方法に関する。
【背景技術】
【0002】
シリコンウエハー等の研磨に用いられるシリカ粒子分散液には、金属イオン等の不純分含有量が少ないことが求められている。例えば特許文献1~3には、テトラメトキシシランを加水分解して得られた、ナトリウム等の金属不純物の含有量が少ない高純度のシリカ粒子分散液が開示されている。高純度シリカ粒子分散液を得る場合、一般的に、アンモニア等のアルカリ触媒を用いてアルコキシシランの加水分解を行い、溶媒や副生成物であるアルコールを除去して水へ置換する方法が用いられている。ただし、特許文献3では、アンモニアやアミン類は揮発性が高く、所望する粒径の中性コロイダルシリカが得られないため、第4級アンモニウム類、アミノアルコール類、モルホリン類及びピペラジン類を使用している。この特許文献3には、液相置換法(ピクノメーター法)による粒子密度が高いコロイダルシリカの製造方法が開示されている。また、特許文献4には、高い研磨レートとスクラッチ抑制の両立を図るために、Heガスピクノメーター法により測定した粒子密度が2.24g/cm以上のヒュームドシリカを砥粒として使用することが開示されている。
【0003】
更に、シリコンウエハーの表面の平滑化や欠陥の低減などの品質の向上のために、砥粒以外にも研磨用組成物に関する技術が種々提案されている。例えば、特許文献5では、溶解度パラメーター(SP値)が異なる水溶性ポリマーと、真比重が1.5以上のシリカ粒子でpH8以上の砥粒分散液とを含む研磨用組成物を使用することで、ヘイズが低くかつ付着パーティクル(LPD)数の少ない研磨面が得られることが開示されている。また、特許文献6には、砥粒と炭素数6以上の有機基を有するリン酸エステル化合物を含む化学機械研磨用水系分散体が開示されている。更に、特許文献7には、砥粒と炭素数3~8のヒドロキシアルキル基と酸化剤とを含む化学機械研磨用水系分散体が開示されている。これら特許文献6及び7には、水溶性高分子によって化学機械研磨用水系分散体の粘度が調整可能であることが開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2005-060217号公報
【文献】特開2005-060219号公報
【文献】特開2007-153732号公報
【文献】再表2015-012118号公報
【文献】再表2014-148399号公報
【文献】特開2015-019058号公報
【文献】特開2015-074737号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1及び2の方法で得られるシリカ粒子分散液は、高純度であるものの、シリカ粒子の緻密化が十分に進んでおらず、また、シリカ粒子分散液の粘度が比較的高いため、シリカ粒子の分散性が低く、研磨性能も不十分という問題がある。上記特許文献3の方法で得られるシリカ粒子分散液は、安定性が低く、粒子が沈降してしまう問題がある。上記特許文献4のシリカ粒子は、粒子密度が高く硬すぎるために研磨面にスクラッチが発生する問題がある。上記特許文献5のシリカ粒子は、研磨材の材料として、塩基性化合物を含む好ましくはpH8以上の塩基性砥粒分散液としないと分散安定性が低いという問題がある。上記特許文献6及び7のシリカ粒子は、所望する高純度で低粘度のシリカ粒子分散液が得られない問題がある。
【0006】
本発明者らは、緻密化された高純度シリカ粒子を高濃度で含む分散液を調製できることは知見していたが、この分散液は、粒子が凝集しやすく、高粘度(非ニュートン性)であり、粒子が凝集していない低粘度(ニュートン性)の分散液は得られなかった。金属元素(不純分)含有量が少ない、すなわち高純度なシリカ粒子分散液であるほど、また、高濃度であるほど、粒子は凝集し易かった。
このように、研磨性能と安定性に優れた、(1)適度に緻密化された高純度シリカ粒子を、(2)高濃度で含む、(3)粒子が凝集していない低粘度のシリカ粒子分散液を得ることは困難であった。
【課題を解決するための手段】
【0007】
上述した課題を解決するために研究を進めた結果、電子顕微鏡写真から求めた平均粒子径が5~300nm、この平均粒子径と窒素吸着によるBET法による比表面積から求めた密度が1.20g/cm以上のシリカ粒子を含み、pHが8未満、シリカ濃度が12~40質量%、シリカ濃度20質量%換算粘度が40mPa・s以下である、シリカ粒子の分散液を見出した。
【0008】
また、本発明の製造方法は、アルコキシシランを原料としてシリカ粒子を含む分散液を調製する分散液調製工程と、この分散液を、電子顕微鏡写真から求めた平均粒子径と窒素吸着によるBET法による比表面積から求めたシリカ粒子の密度が1.20g/cm以上となるように、アルカリの存在下で加熱する熟成工程と、この熟成工程で得られた分散液からアルカリを除去して、分散液のシリカ濃度20質量%換算粘度を一旦60mPa・s以上まで上昇させた後、更にアルカリを除去して分散液のpHを8未満にするアルカリ除去工程と、を有する。
また、他の観点からみた本発明の製造方法は、アルコキシシランを原料としてシリカ粒子分散液を調製する分散液調製工程と、このシリカ粒子分散液を、アルカリの存在下で加熱してシリカ粒子を熟成させる熟成工程と、この熟成したシリカ粒子分散液からアルカリを除去するアルカリ除去工程とを有し、密度1.20g/cm以上のシリカ粒子を含み、シリカ濃度が12質量%以上、シリカ濃度20質量%換算粘度が40mPa・s以下のシリカ粒子分散液を製造する方法である。
【0009】
アルカリ側で調製したシリカ粒子分散液は、pHが9より低くなると、pHの低下に伴ってシリカ粒子が緩やかに凝集し始め、徐々に粘度が上昇する(この傾向は金属不純分を多く含まない高純度であるほど顕著である)。更に所定のpHまで低下すると急激に粘度が上昇する。ところが、十分に粘度を上昇させた後で、このpHよりも更にpHを低下させると、意外にも、粘度が急激に低下し、低粘度のニュートン性のシリカ粒子分散液が得られる。しかも、これに含まれるシリカ粒子は十分緻密な粒子である。
【発明の効果】
【0010】
本発明によれば、(1)緻密化された高純度シリカ粒子を(2)高濃度で含む、(3)粒子が凝集していない低粘度のシリカ粒子分散液を提供することができる。このシリカ粒子分散液を研磨材(研磨組成物)として使用した場合、十分な研磨速度を得ることができる。特に適度に緻密化された高純度シリカを用いた場合には、研磨速度に加えて、平滑な研磨面を得ることができる。
【図面の簡単な説明】
【0011】
図1】(A)~(D)は、シリカ粒子のアスペクト比の算出方法を説明する図である。
【発明を実施するための形態】
【0012】
本発明のシリカ粒子の分散液は、平均粒子径が5~300nm、密度が1.20g/cm以上のシリカ粒子を含み、pHが8未満、シリカ濃度が12~40質量%、粘度が40mPa・s以下である。
【0013】
平均粒子径が5nm未満だと、分散液の安定性が不十分となる。また、粒子径が小さすぎるために、研磨材として用いた場合に十分な研磨速度が得られない。逆に、平均粒子径が300nmを超える場合は、傷(スクラッチ)が発生しやすく十分な平滑性が得られない。平均粒子径は、5~100nmが好ましい。
【0014】
密度が1.20g/cm未満の粒子は多孔質であり脆い。このため、研磨材として用いた場合、所望の研磨速度が得られない。密度は、1.25g/cm以上が好ましく、1.30g/cm以上がより好ましく、1.40g/cm以上が更に好ましい。
ところで、密度が1.60g/cm以上の粒子(すなわち、より緻密化された粒子)を研磨材として用いた場合は、研磨速度は速いものの、粒子が緻密で硬いため、用途によっては、研磨面に傷(スクラッチ)が発生し、平滑な研磨面が得られない場合がある。このように、十分な研磨速度と平滑性を得るために、研磨砥粒として、硬すぎず、適度に緻密化されたシリカ粒子を用いることが好ましい。密度は、1.60g/cm未満が好ましく、1.55g/cm未満がより好ましく、1.50g/cm未満が更に好ましい。
【0015】
シリカ粒子の密度ρ[g/cm]は、平均粒子径d及び比表面積から次のように算出する。
ここで、シリカ粒子の平均粒子径は、電子顕微鏡写真から求めた。すなわち、シリカ粒子の電子顕微鏡写真を撮影し、任意の100個の粒子のそれぞれの面積を求め、その面積から円相当径を求める。この円相当径の平均値をシリカ粒子の平均粒子径dとする。比表面積は、窒素吸着によるBET法によって求める。具体的には、マウンテック社製のMacsorb-1200を用いて測定した。測定用の試料には、分散液を105℃で乾燥させ、粉末状にしたものを用いた。
粒子1個あたりの表面積(S[nm/個])は、4π(d/2)、すなわち、πdと表される。また、粒子1個あたりの体積(V[nm/個])は、(4/3) π(d/2)、すなわち、(πd)/6と表される。
比表面積SA[m/g]=1000・S/(ρV)=(1000/ρ)・(6/d)=6000/(ρd)
となるため、
シリカ粒子の密度ρ[g/cm]=6000/(SA・d)
となる。
【0016】
分散液のpHは、8未満である。pHがこの範囲にあると、研磨材への加工の際に、分散液の粘度が低い状態(ニュートン性液体)であるため、取り扱いが容易である。このpHは、7.6以下が好ましく、7.4未満がより好ましく、7.0未満が更に好ましく、6.7以下が特に好ましい。その下限は、6.0であることが好ましい。pHが6.0未満になっても、分散液の粘度は劇的に低下することはない。
【0017】
分散液のシリカ濃度は、12質量%以上である。この濃度の上限は、特に制限されないが、例えば40質量%である。その下限は、15質量%以上が好ましく、20質量%以上がより好ましい。
【0018】
分散液は、シリカ濃度20質量%に換算した際の粘度が40mPa・s以下である。一般に、高純度、高濃度であるほど分散液の粘度は高くなる。ところが、この分散液は、高純度であるにもかかわらず、20質量%の高濃度においても低粘度であって、ニュートン性を示す。低粘度であると、分散液を用いて研磨材を作製する際にもシリカ粒子は容易に分散する。また、一般に、濃度を下げると粘度も低下するが、この分散液は濃度が高いので、運送コストも抑えられる。更に、この分散液は、未反応物をほとんど含まず、また、十分緻密なシリカ粒子を含んでいる。このため、シリコンウエハー等の研磨に好適に使用される。分散液の粘度は、35mPa・s以下が好ましく、30mPa・s以下がより好ましく、20mPa・s以下が更に好ましい。
【0019】
シリカ粒子分散液中の下記元素の量は、シリカ粒子あたり、以下の範囲が好ましい。
(1)アルカリ金属、アルカリ土類金属、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々が0.1ppm未満、
(2)Cu、Ni、Crの各々が1ppb未満、
(3)U、Thの各々が0.3ppb未満。
なお、これらの金属元素は、不純分であり、分散液中に含まれないほど好ましい。
これらの元素を上述の範囲より多く含んだ分散液を用いた研磨材では、基板に元素が残存してしまう場合がある。すると、この元素が基板に形成された回路の絶縁不良を起こしたり回路を短絡させたりして、絶縁用に設けた膜(絶縁膜)の誘電率が上昇する。すると、金属配線のインピーダンスが増大し、応答速度の遅れ、消費電力の増大等が起きることがある。また、この元素イオンが移動(拡散)し、過酷な使用条件下や長期にわたる使用の場合に、上述のような不具合を生じることがある。特に、U、Thは放射線を発生するため、微量でも残存すると半導体の誤作動を引き起こす。なお、アルカリ金属とは、Li、Na、K、Rb、Cs、Frの各々の元素を表す。アルカリ土類金属とは、Be、Mg、Ca、Sr、Ba、Raの各々の元素を表す。
【0020】
分散液中に存在するシリカ粒子以外の「珪素を含む化合物」の量は、少ないほど好ましい。この「珪素を含む化合物」が200ppm以下の分散液を用いた研磨材を使用することにより、基板への付着物を抑制できる。また、研磨材に添加される各種薬品が、「珪素を含む化合物」に吸着したり、反応したりすることが抑制され、各種薬品の効果が発揮できる。
【0021】
なお、「珪素を含む化合物」には、製造目的とするシリカ粒子まで反応が進んでいないものも含んでおり、未反応の原料アルコキシシランや、その低分子加水分解物(オリゴマー)等が例示できる。
【0022】
シリカ粒子は、アルコキシ基に由来する炭素を0.005質量%以上0.50質量%未満含むことが好ましい。炭素含有量がこの範囲にあると、この分散液を用いた研磨材を使用することにより、粒子付着が少なく、粒子が洗い流されやすい(シリカ成分の「後残り」が少ない)基板が得られる。
【0023】
このメカニズムは特定されていないが、従来、基板へのシリカ成分の「後残り」が多いのは、研磨材の調製時に、酸やアルカリの添加によって、シリカ粒子の過剰なアルコキシ残基が加水分解して、活性なOH基が多く生成されるためと推察される。これに対して、シリカ粒子中の炭素含有量が上述の範囲にある場合は、研磨材を調製した段階で、アルコキシ残基の加水分解による活性なOH基の生成量が微少なため、基板との相互作用が低くなり、粒子付着量の少ない(シリカ成分の「後残り」が少ない)基板が得られると考えられる。
【0024】
また、炭素含有量が0.50質量%以上の場合は、アルコキシ残基が多く、粒子内部に未架橋部分が多い。このため、十分な研磨速度が得られず、研磨後の粒子付着も多くなる。逆に、炭素含有量が0.005質量%未満の場合は、アルコキシ残基が少なく、シロキサン結合が進行している状態なので、粒子密度が高くなり、粒子が非常に硬くなる。このため、研磨速度は速いものの、粒子が硬すぎて、他の条件を調整してもスクラッチが発生するおそれがある。また、分散液と他材料との混合安定性が低くなるため、研磨材の調製時に凝集を引き起こし、研磨時にスクラッチが発生するおそれもある。この炭素含有量は、0.01質量%以上0.30質量%未満がより好ましく、0.01質量%以上0.20質量%未満が更に好ましい。
【0025】
更に、分散液には、アンモニア、アミン等の金属元素を含まないアルカリが存在していることが好ましい。その含有量は、シリカ濃度20質量%において100ppm未満が好ましい。含有量がこの範囲にあると、研磨材として使用する場合、基板の平滑性等の研磨性能が向上する。この理由は解明されていないが、研磨時にシリカ粒子に荷重が掛かった際、粒子内部や粒子表面に吸着したアンモニアやアミン等といった金属元素を含まないアルカリが基板と接触して、部分的にアルカリ性となることで、研磨されやすい状態となると考えている。
【0026】
ここで、含有量がこの範囲よりも多く存在すると、分散液のpHや粘度が高くなり、分散安定性が低下するおそれがある。
ところで、研磨材にはシリカ粒子以外に添加剤が含まれている。例えば、添加剤としてヒドロキシエチルセルロース等の水溶性高分子を使用する場合、この添加剤は、シリカ粒子表面のOH基と相互作用してシリカ粒子を凝集させる。これによって、砥粒としてのシリカ粒子の径が大きくなり、研磨レートが高くなる効果が得られる。このため、含有量が上記範囲よりも多いと、粒子内部や粒子表面に吸着するアンモニアやアミン等のアルカリの量が増え過ぎるため、研磨材に加工する際に、アルカリの有機基の種類によっては、その有機基が粒子表面のOH基を被覆して、粒子と添加剤との相互作用が起こりにくくなるおそれがある。また、過剰なアルカリにより研磨面がエッチングされるおそれもある。
これらの化合物の含有量の下限は、上述のような研磨効果が得られれば特に制限されないが、上述のアルカリ除去工程における粘度とpHの関係、及び製造コストの観点から、例えば10ppm程度である。これよりもこの含有量を減らしたとしても過剰な処理となるし、上述のような研磨効果が望めないおそれがある。
【0027】
金属元素を含まないアルカリの中でも、特にアンモニアは、シリカ粒子分散液を製造する上でpH等の調整や管理が容易であり、その残存量の調整も容易にできる。また、有機基をもたないため、研磨材とした場合も添加剤と十分な相互作用をする。更に、研磨時に、上述のような研磨効果だけでなく、洗浄されやすく基板面に残りにくい特性があるため、特に好ましい。
なお、最終的に得られたシリカ粒子分散液に、界面活性剤などの分散剤やpH調整剤(酸、アルカリ)等の各種添加剤を添加してもよい。
【0028】
シリカ粒子の形状は、アスペクト比が1.00~1.20の真球状でも、1.20を超え5.00以下の異形状でもよい。この異形状の粒子は、粒子表面に凸な部分が存在するため、研磨時に応力が集中して、基板の研磨速度を向上できる。
【0029】
シリカ粒子中の珪素原子は、29Si-NMR解析において、珪素原子のまわりの酸素を共有する珪素の数により、Q0、Q1、Q2、Q3、Q4の5種類に分けられる。具体的には、29Si-NMR解析において、Q0構造のケミカルシフトは-73.0~-73.5ppm、Q1構造のケミカルシフトは-73.5~-78.0ppm、Q2構造のケミカルシフトは-78.0~-82.0ppm、Q3構造のケミカルシフトは-82.0~-100.0ppm、Q4構造のケミカルシフトは-100.0~-120.0ppmに、各々現れる。
【0030】
シリカ粒子は、29Si-NMR解析によるQ4構造(すなわち、ケミカルシフトが-100.0~-120.0ppmに現れるピークの面積)が、Q0~Q4構造(すなわち、ケミカルシフトが-73.0~-120.0ppmに現れるピークの面積)に対して、70%以上存在することが好ましい。
ここで、Q4構造の存在比(面積比)がこの範囲にあると、不安定なOH基が少なく、珪素同士の結合割合が多くなるため、粒子密度が大きく、緻密性及び安定性の高いシリカ粒子となる。このため、これを研磨材として用いた場合、研磨速度の向上が図れる。
もし、Q0~Q2構造の割合が高いと、これらはQ3構造及びQ4構造に比べてOH基の数が多い(シロキサン結合が少ない)ため、これを研磨材として用いた場合、望むべく研磨速度が得られないおそれがある。このため、Q0~Q2構造のQ0~Q4構造に対する存在比は、Q0~Q2構造の合計で10%未満が好ましく、5%未満がより好ましい。なお、Q3構造の存在比は、Q4構造とQ0~Q2構造の残部である。このQ4構造の存在比は75%以上がより好ましく、78%以上が更に好ましい。
ところで、シリカ粒子の粒子密度が緻密すぎると、用途によっては、スクラッチが発生し、平滑な研磨面が得られない問題が生じる場合がある。このため、Q4構造の存在比の上限は、上述の粒子密度の範囲を越えなければ特に制限されないが、例えば90%であることが好ましい。
【0031】
シリカ粒子の29Si-NMRによる構造解析は、例えば、次のように行う。
分散液を専用のジルコニア試料管に入れ、NMR装置(Agilent製 VNMRS-600)の固体用6mmφ試料管用プローブにて、試料回転をせず、シングルパルスノンデカップリング法にて測定する。二次標準としてポリジメチルシロキサンを用い、ケミカルシフトを-34.44ppmとする。得られたスペクトルは、解析ソフトOriginにて波形分離を行い、各ピークの面積を算出する。ここで、ケミカルシフトが-73.0~-73.5ppmのQ0構造のピーク面積をS、ケミカルシフトが-73.5~-78.0ppmのQ1構造のピーク面積をS、ケミカルシフトが-78.0~-82.0ppmのQ2構造のピーク面積をS、ケミカルシフトが-82.0~-100.0ppmのQ3構造のピーク面積をS、ケミカルシフトが-100.0~-120.0ppmのQ4構造のピーク面積をSとする。各構造の比率は、各構造のピークの面積比(S/S)×100[%](ただし、iは0、1、2、3、4から選ばれる数である。Sは、S=S+S+S+S+Sで表される各構造のピーク面積の合計である。)により計算する。
【0032】
上述のように、本発明のシリカ粒子の分散液は、緻密化された高純度シリカ粒子を高濃度で含み、かつ中性付近のpHであるにもかかわらず、十分な安定性を有している。この理由は明確には解明されていないが、この分散液に含まれるシリカ粒子の凝集が少なく、分散液の粘度も低いためだと考えている。このため、この分散液を使用した研磨材も十分な安定性を有している。
[シリカ粒子分散液の製造方法]
【0033】
次に、シリカ粒子の分散液の製造方法を説明する。はじめに、アルコキシシランを原料としてシリカ粒子を含む分散液を調製する(分散液調製工程)。この分散液を、シリカ粒子の密度が1.20g/cm以上となるように、アルカリの存在下で加熱する(熟成工程)。次に、この分散液からアルカリを除去して、分散液の粘度を一旦60mPa・s以上まで上昇させた後、更にアルカリを除去して、分散液のpHを8未満にする(アルカリ除去工程)。
シリカ粒子を熟成させると共に、分散液中のアルカリを十分に除去することにより、緻密化された高純度シリカ粒子を高濃度で含む、粒子が凝集していない低粘度のシリカ粒子の分散液が実現できる。また、上述の工程の他に、濃縮工程、水置換工程等を設けてもよい。なお、特に断りがない限り、pHは25℃に換算した時の値である。
【0034】
以下に、上述の各工程を詳細に説明する。
分散液調製工程では、原料であるアルコキシシランを加水分解して形成されたシリカ粒子を含む分散液を調製する。アルコキシシランの加水分解は、水、有機溶媒及び触媒の存在下で行われる。分散液のシリカ濃度は、10質量%未満が好ましく、8質量%未満がより好ましく、5質量%未満が更に好ましい。ここで、アルコキシシランは、1種類でも2種類以上でもよい。また、テトラメトキシシラン(TMOS)やテトラエトキシシラン(TEOS)といった、アルキル鎖が短いものが好ましい。これは、加水分解速度が速く、緻密化が進みやすいため、炭素含有量の少ないシリカ粒子が得られる傾向にあるからである。
【0035】
アルコキシシランの加水分解によりシリカ粒子の分散液を調製する方法として、次の2つが例示できる。
(方法I)水、有機溶媒及び触媒を含む敷液に対して、アルコキシシラン及び有機溶媒の混合溶液を添加する方法。
(方法II)実質的に有機溶媒からなる敷液に対して、アルコキシシランを含有する液Aと、触媒及び水を含有する液Bとを同時に添加する方法。液Aが有機溶媒を含んでいてもよい。「実質的に有機溶媒からなる」とは、有機溶媒の製造過程から不可避的に含まれる不純物等は含まれ得るが、それ以外は含まないことを意味する。例えば、有機溶媒が99質量%以上である。99.5質量%以上が好ましい。このような敷液に対して、液Aと、液Bとを同時に添加する。そのため、製造目的とするシリカ粒子に成長していないオリゴマー等の未反応物の生成が抑制される。特に、アルコキシシランの加水分解に大きな影響を与える水及びアルカリ触媒の量を、反応期間中アルコキシシランに対して一定とすることで、逐次添加されるアルコキシシランが常に同じ条件で加水分解される。これにより、未反応物の生成が抑制される。すなわち、液A及び液Bの添加を開始してから終了するまでの期間の、反応系におけるアルコキシシランに対するアルカリ触媒のモル比の初期値に対する変化率を0.90~1.10とし、液A及び液Bの添加を開始してから終了するまでの期間の、反応系におけるアルコキシシランに対する水のモル比の初期値に対する変化率を0.90~1.10とすることが好ましい。
なお、両方法とも、敷液中に予め準備したシード粒子を加えておく、いわゆるシード法を採用することもできる。
【0036】
有機溶媒としては、アルコール類、ケトン類、エーテル類、エステル類などが挙げられる。より具体的には、例えばメタノール、エタノール、プロパノール、ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノプロピルエーテルなどのグリコールエーテル類、エチレングリコール、プロピレングリコール、ヘキシレングリコールなどのグリコール類、酢酸メチル、酢酸エチル、乳酸メチル、乳酸エチルなどのエステル類が用いられる。これらの中でも、メタノール又はエタノールがより好ましく、メタノールが特に好ましい。これらの有機溶媒は、単独で用いてもよく、2種以上を混合して用いてもよい。
【0037】
触媒としては、アンモニア、アミン、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、第4級アンモニウム化合物、アミン系カップリング剤など、塩基性を示す化合物(アルカリ)を用いることができる。これらは、単独あるいは組み合わせて使用できる。その使用条件や使用量等にもよるが、アンモニアが特に好ましい。
【0038】
これは、アンモニアはその構造に有機基を含まないため、上述のように、研磨材に加工する際に、有機基が粒子表面のOH基を被覆して、粒子と添加剤との相互作用を妨げることがないからである。また、製造上の取り扱いが容易であり、余剰なアンモニアを加熱等により系外に容易に排出できる。このため、分散液中のアンモニア残存量も調整しやすい。
【0039】
加水分解に用いる触媒の量は、アルコキシシラン1モル当たり、0.005~1モルが好ましい。ここで、0.005モル未満であると加水分解が生じにくく、粒子の粒度分布が広くなるおそれがある。逆に、1モルを超えると、加水分解スピードが著しく速くなるため、粒子になり難く、ゲル状物となるおそれがある。この触媒を、アルコキシシラン1モル当たり、0.01~0.8モル添加することがより好ましい。
【0040】
加水分解に用いる水の量は、アルコキシシランを構成するSi-OR基1モル当たり0.5~10モルが好ましく、1~5モルがより好ましい。
【0041】
アルコキシシランの加水分解は、通常、常圧下で、使用する溶媒の沸点以下の温度で行われる。また、オートクレーブなどの耐熱耐圧容器を用いる場合には、この温度よりも更に高い温度で行うこともできる。
【0042】
上述の条件で加水分解すると、アルコキシシランの重縮合が三次元的に進行し、平均粒子径が5~300nmのシリカ粒子の分散液が得られる。また、この分散液に再びアルコキシシランを添加して加水分解することにより、より大きな、あるいは粒子径分布の均一なシリカ粒子の分散液を得ることができる。分散液に含まれるシリカ粒子は、アスペクト比が1.00~1.20の真球状でも、1.20を超え5.00以下の異形状でもよい。
【0043】
ここで、分散液のシリカ濃度が12質量%未満の場合、シリカ濃度が12質量%以上となるように、分散液を濃縮する(濃縮工程)。必要に応じて濃縮工程を複数回設けることにより、所望の濃度の分散液を得ることができる。
【0044】
濃縮方法は、分散液のシリカ濃度を高めることができる方法であれば特に制限されない。例えば、加熱濃縮法、減圧濃縮法、膜濃縮法等が挙げられる。ここで、濃縮工程の後に、加熱水置換法による水置換工程を行う場合には、連続して処理を行えるので、加熱濃縮法を用いることが好ましい。この加熱濃縮法とは、例えば、分散液を加熱して、有機溶媒及び水を蒸発させると共に、シリカ粒子分散液を添加して濃縮する方法である。
【0045】
次に、(必要に応じて)水置換工程で、分散液に含まれる有機溶媒を水(純水)に置換する。有機溶媒を水に置換できる方法であれば特に制限されない。例えば、加熱置換法、減圧置換法、膜置換法等が挙げられる。中でも、加熱置換法は、熟成工程を連続して行えるので好ましい。例えば、分散液を常圧で加熱して有機溶媒を蒸発させると共に、水の添加により液量を一定として水に置換する。なお、液量を一定とせずに濃縮を同時に行うことも可能である。水置換の完了は、例えば、常圧で加熱する場合には、液温が実質的に水の沸点(100℃)になることにより確認できる。ここでは、この水置換完了時点までを水置換工程とする。この工程は、分散液調製工程後の適当な段階で実施できる。中でも、分散液調製工程と熟成工程の間に実施することが好ましい。なお、この工程において、アンモニアやアミン等の金属元素を含まないアルカリを使用する場合、水の蒸発と共にアルカリが系外に排出され、それに伴いpHが低下し、粘度が上昇する場合がある。
【0046】
次に、熟成工程で、分散液をアルカリの存在下で加熱して、シリカ粒子を熟成(緻密化)させる。この工程では、シリカ粒子の密度が、1.20g/cm以上となるよう粒子を緻密化する。これによって、最終製品としての分散液のシリカ粒子の密度が1.20g/cm以上となる。例えば、実施例では、最終製品の粒子の密度を測定しているが、通常、熟成工程以外では密度の変化は起こらないので、この測定された密度が、熟成工程終了時の粒子の密度とみなすことができる。熟成温度は、シリカ粒子が緻密化できる温度であればよい。例えば、常圧下では、80℃以上が好ましい。このような温度で熟成することで、シリカ粒子中の珪素原子のシロキサン結合を増やして、粒子の密度を大きくし、緻密性や安定性を向上させることができる。熟成温度は、100℃がより好ましく、それ以上の温度であってもよい。ただし、温度が300℃以上だとシリカ粒子が結晶化するおそれがあるため、温度の上限は250℃である。
【0047】
熟成工程で使用するアルカリは、上述の分散液調製工程で例示した触媒が用いられる。中でもアンモニアは、系内の温度、pH、工程時間等の調整及び管理が容易にでき、反応系内のアンモニアの残存量を調整しやすい点で、特に好ましい。この熟成工程におけるシリカ粒子分散液のpHは8以上が好ましい。このpHを所定時間(少なくとも1時間以上)保持して加熱することにより、緻密なシリカ粒子が得られる。この熟成工程のpHは8.5以上がより好ましく、9以上が更に好ましい。ただし、pHが13以上であるとシリカが溶解し、粒子として存在しないおそれがある。なお、熟成工程において、アルカリは、処理開始前又は処理中に別途添加してもよいし、すでに所定pHである場合には添加しなくてもよい。
【0048】
熟成工程は、密閉系で行ってもよいし、開放系で行ってもよい。密閉系で行う場合、アルカリの系外への排出を防ぎ、系内のpHを維持したまま熟成できる。一方、開放系で行う場合には、アンモニアやアミン等の金属元素を含まないアルカリを使用する場合、加熱による溶媒の蒸発と共にアルカリも系外に排出される。この時、pHを保持するためにアルカリを加える場合と、加えない場合とがある。後者の場合、加熱を続けることによって、アルカリ分は系外に除かれ、pHは徐々に低下する。この操作を進め、分散液の粘度を上昇させ、更にpHを低下させる場合は、後述するアルカリ除去工程も兼ねることになる。
【0049】
次に、アルカリ除去工程で、熟成工程後の分散液からアルカリを除去する。アルカリの除去方法としては、加熱によりアルカリを系外に排出する方法や、イオン交換法等が挙げられる。例えば、上述の熟成工程と同様に、アンモニアやアミン等の金属元素を含まないアルカリを使用して、開放系にてpHを保持するのに十分なアルカリを加えずに加熱を続けた場合、アルカリが系外に排出されるのに伴い、pHは徐々に低下し、粘度は緩やかに上昇する。そして、あるpHに到達すると、粘度が急激に上昇する。このため、従来は、取扱いが容易な分散液を得るために、このような粘度が急激に上昇するpHよりも高いpHで反応を止めていた。しかしながら、このpHよりも更にpHを低下させることによって、低粘度のニュートン性の分散液が得られる。
このアルカリ除去工程では、分散液の粘度を60mPa・s以上まで一旦上昇させる。更にアルカリを除去することにより粘度を低下させる。この時の分散液のpHを8未満とする。このように、粘度が一旦上昇した後に低下させたシリカ粒子分散液は、高pH側で熟成を行った後に系内からアルカリを除去する工程において、粘度変化が起こる過程で粒子の表面同士が相互作用して緻密化が進行するためか、十分緻密で、未反応物の量が少ない、あるいは含まないものとなりやすい。このアルカリ除去後のシリカ粒子分散液のpHは、7.6以下が好ましく、7.4未満がより好ましく、7.0未満が更に好ましく、6.7以下が特に好ましい。pHを6.0まで低下させても分散液の粘度の低下は小さいため、過剰な処理となる。
【0050】
ところで、上述のような不純分の金属元素の含有量が少ない高純度シリカ粒子を得るには、粒子を調製する際の装置のライニング等の材質を、これらの元素を含まず、かつ耐薬品性が高い(溶出しにくい)ものにすることが好ましい。具体的には、テフロン(登録商標)、FRP、カーボンファイバー等のプラスチック、無アルカリガラス等が好ましい。
また、使用する原料については、蒸留、イオン交換、フィルター除去等で精製することが好ましい。特にアルコキシドの加水分解時に使用するアルコールは、タンク等からの金属不純分や合成時の触媒が残存するおそれがあり、特に精度の高い精製を必要とする場合がある。
【0051】
高純度シリカ粒子を得る方法としては、上述のように、予め不純分の少ない原料を準備したり、粒子調製用の装置からの混入を抑えたりする方法がある。これ以外にも、そのような対策を十分にとらずに調製された粒子を得た後に不純分を低減することは可能である。しかしながら、このような方法では不純分がシリカ粒子内に取り込まれていたりするので、イオン交換やフィルター除去で精製することは効率が悪く、高コストになるおそれがある。このため、このような方法で、不純分の含有量が少ないシリカ粒子を得るのは現実的でない。
【0052】
なお、この製造方法により製造されるシリカ粒子分散液は、上述のシリカ粒子分散液及びシリカ粒子と同様の特性を有する。
【0053】
シリカ粒子分散液は、適宜、添加剤を添加して研磨材として用いることができる。
研磨材中のシリカ粒子の濃度は0.1~50質量%が好ましい。ここで、濃度が0.1質量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて、研磨速度が遅く、生産性が問題となることがある。逆に、シリカ粒子の濃度が50質量%を越えると研磨材の安定性が不十分となるおそれがある。また、研磨速度や研磨効率が更に向上することもない。更に、研磨処理のために分散液を供給する工程で、乾燥物が生成して付着することがあり、スクラッチ発生の原因となることがある。この研磨材中のシリカ粒子の濃度は、5~30質量%がより好ましい。
【実施例
【0054】
以下、本発明の実施例を説明する。
【0055】
[実施例1]
(分散液調製工程)
テトラメトキシシラン(多摩化学工業(株)製(以下同じ))540.0gとメタノ-ル180.0gを混合し、原料溶液を調製した。反応槽に予めメタノ-ル、水、アンモニアを混合した溶媒5,400gを仕込んだ。この混合溶媒中の水の濃度は15質量%、アンモニアは1質量%であった。反応溶媒の温度が20℃に保持できるように液温を調節しながら、原料溶液を25分間、均等速度で反応槽に滴下し、シリカ濃度3.5質量%の分散液を得た。このようにして得られた分散液のシリカ濃度を表1に示す。
【0056】
(濃縮工程)
次に、この分散液(シリカ濃度3.5質量%)を加熱濃縮法により、濃縮した。具体的には、分散液を常圧で加熱して有機溶媒及び水を蒸発させると共に、予め調製しておいたシリカ粒子の分散液(シリカ濃度3.5質量%)を系内の液量が一定となるように添加し、分散液を濃縮した。
濃縮工程終了時の分散液のシリカ濃度、pH、粘度を表1に示す。なお、粘度測定時の分散液のシリカ濃度は、他の工程と比較できるように20質量%に揃えて測定した。
【0057】
(水置換工程)
濃縮工程後、分散液に水を添加しながら、常圧にて加熱置換法により水置換を行った。液温が100℃に到達した時点で、水置換工程を終了した。
水置換工程終了時の分散液のシリカ濃度、pH、粘度を表1に示す。
【0058】
(熟成工程・アルカリ除去工程)
水置換工程後、分散液にアンモニア水を加えてpHを9.5に調整した。その後、液温を100℃に保った(加熱処理)。加熱処理中も系内のシリカ濃度が一定になるように水を添加した。ここで、pH9以上の状態を2時間保ち、熟成を行った(熟成工程)。それ以降も加熱を続けアルカリを除去した(アルカリ除去工程)。
【0059】
熟成工程開始時の分散液のpH、アルカリ除去工程終了時の分散液のシリカ濃度、pH、粘度、未反応物量、及びシリカ粒子の比表面積、密度、平均粒子径、炭素含有量、NH含有量、粒子形状を表1に示す。
【0060】
このようにして得られたシリカ粒子の分散液及びシリカ粒子について、以下の方法で各種パラメータを測定した。
【0061】
《シリカ濃度の測定》
サンプル5gを150℃で1時間乾燥させ、乾燥後の質量から、シリカ濃度を算出した。
【0062】
《分散液の粘度》
レオメーター(HAAKE社製 RS3000)を用いて、温度25℃、ずり速度100s-1の条件で、測定した。なお、シリカ濃度20質量%換算粘度とは、あるシリカ濃度の分散液のpHを変化させることなくシリカ濃度を20質量%に調整して測定したときの粘度をいう。
【0063】
《分散液中の金属元素量》
分散液中のアルカリ金属、アルカリ土類金属、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各元素量、Cu、Ni、Crの各元素量、及びU、Thの各元素量について、シリカ粒子をフッ酸で溶解し、加熱してフッ酸を除去した後、必要に応じて純水を加え、得られた溶液についてICP-MS誘導結合プラズマ質量分析装置(Agilent社製 7900s)を用いて測定し、シリカ粒子に対する値として求めた。
【0064】
《シリカ粒子のアルコキシ基の有無》
分散液を150℃で乾燥させ、フーリエ変換型赤外分光装置(日本分光株式会社製 FT/IR-6100)を使用して測定し、アルコキシ基(-OR)の有無を確認した。
【0065】
《シリカ粒子の炭素含有量》
シリカ粒子の炭素含有量は、分散液を150℃で乾燥させ、炭素硫黄分析装置(HORIBA製 EMIA-320V)を用いて測定した。
【0066】
《分散液中のアンモニア量》
分散液に20質量%NaOH水溶液を加えて、シリカ粒子を溶かしながら蒸留した。出てきたアンモニアを0.05モル/Lの硫酸で捕集し、0.1NのNaOHで滴定して、消費された硫酸量を求め、液中に含まれる全アンモニア量を求めた。
【0067】
《分散液中の未反応物量》
小型超遠心機(日立工機株式会社製 CS150GXL)を用いて、分散液を設定温度10℃、1,370,000rpm(1,000,000G)で30分遠心処理した。この処理液の上澄み中に存在するシリカ粒子以外の「珪素を含む化合物」(未反応物)を、ICP発光分析装置(株式会社島津製作所製 ICPS-8100)でSiとして測定した。この測定値から、分散液中のSiO濃度に換算した。
【0068】
《シリカ粒子のアスペクト比》
図1(A)~(D)を用いて、シリカ粒子のアスペクト比の算出方法を説明する。図1(A)は、走査型電子顕微鏡で観察された1個の粒子を示しており、その粒子に接する長方形で囲んだ状態を表している。図1(B)~(D)は、複数の粒子が接合した粒子群を模式的に示しており、その粒子群を面積が最小になるような長方形で囲んだ状態を表す。図のように、長辺をb、短辺をaとする。この短辺aと長辺bの比(b/a;ただしb≧a)を100個の粒子(群)について求め、その平均値をアスペクト比とした。ここで、黒塗り部は粒子間の接合部を表し、接合部には空間が存在していてもよい。
【0069】
表1における粘度及び緻密度の判定は、以下の基準により行った。
《粘度判定法》
◎:30mPa・s以下
〇:30mPa・s超40mPa・s以下
×:40mPa・s超
【0070】
《緻密度判定法》
◎:1.40g/cm以上
○:1.20g/cm以上1.40g/cm未満
×:1.20g/cm未満
【0071】
〈研磨材(研磨組成物)〉
実施例1で製造したシリカ粒子分散液をシリカ粒子として3.0質量%、ヒドロキシエチルセルロース(HEC)を175ppm、アンモニアを225ppm含有する研磨材を製造した。下記の研磨材の性能評価結果を表1に示す。
【0072】
<研磨材の性能評価>
《研磨材の安定性試験》
研磨材の安定性は、研磨材を容器に密閉して、25℃で6ヶ月間保管した後の研磨材の白濁の有無で評価した。
○:白濁なし
×:白濁あり
【0073】
1.研磨速度
研磨用基板(結晶構造が1.0.0である単結晶シリコンウエハー)を用いて、研磨装置(ナノファクター(株)製 NF300)にセットし、研磨パッドポリテックスP103、研磨荷重0.05MPa、テーブル回転速度50rpm、スピンドル速度50rpmで、研磨材を100ml/分の速度で研磨用基板の研磨を5分間行った。その後、純水にて洗浄し風乾した。
【0074】
《研磨速度判定法》
〇:研磨速度25nm/分超
△:研磨速度20~25nm/分
×:研磨速度20nm/分未満
【0075】
2.研磨面の状態
得られた研磨基板の研磨表面を、走査型白色干渉計(Zygo New View 7300)を用いて観察し、表面の平滑性を以下の基準(うねり)で評価した。
【0076】
《平滑性判定法》
○:うねりが0.5nm未満
△:うねりが0.5nm以上1.0nm未満
×:うねりが1.0nm以上
【0077】
レーザー顕微鏡(株式会社キーエンス製 VK-X250)を用いて、スクラッチ等のディフェクトの程度を確認し、下記の評価基準で研磨基板に生じたディフェクトを評価した。
【0078】
《ディフェクト判定法》
〇:ディフェクトはほとんど認められない
△:ディフェクトが僅かに認められる
×:ディフェクトが広範囲に認められる
【0079】
研磨基板上の粒子(シリカ成分)の「後残り」は、レーザー顕微鏡(株式会社キーエンス製 VK-X250)を用いて粒子の数を数え、下記の評価基準で評価した。
◎ :粒子の「後残り」0個
○ :粒子の「後残り」1~10個
△ :粒子の「後残り」11~50個
× :粒子の「後残り」51~100個
××:粒子の「後残り」101個以上
【0080】
以下の実施例や比較例でも、実施例1と同様にして、各特性の評価を行った。
[実施例2]~[実施例3]
熟成工程までは実施例1と同様にして、アルカリ除去工程の加熱時間を変化させた。実施例1の加熱時間を基準とし、実施例2では0.7倍、実施例3では0.4倍の加熱時間でアルカリ除去工程を行った。
【0081】
[実施例4]
熟成工程において、水置換した分散液にアンモニア水を加えてpHを8に調整した後、pH8の状態を2時間保ち熟成を行った。これ以外は実施例1と同様にしてシリカ粒子分散液を製造した。
【0082】
[実施例5]
(分散液調製工程)
メタノール(敷液)410.0gを40℃に保持し、この敷液に対して、テトラメトキシシラン976.3gとメタノール2460gとを混合したメタノール溶液(液A)3436.3gと、3.9質量%アンモニア水(液B)1684.0gとを同時に10時間かけて添加した。添加終了後、更にこの温度で3時間熟成してシリカ濃度7質量%の分散液を得た。
【0083】
液A及び前記液Bの添加を開始してから終了するまでの期間の、反応系におけるシランアルコキシドに対するアルカリ触媒のモル比(アルカリ触媒/シランアルコキシド)の初期値に対する変化率は1.0であり、液A及び前記液Bの添加を開始してから終了するまでの期間の反応系におけるシランアルコキシドに対する水のモル比(水/シランアルコキシド)の初期値に対する変化率は、1.0であった。
なお、アルカリ触媒/シランアルコキシド、水/シランアルコキシドの各モル比は、添加重量実測値を基に、シランアルコキシドの加水分解及び重縮合の反応は瞬時に起こるもの、アルカリ触媒は系外への放出はないものと仮定して算出した。液A及び液Bの添加開始10分後から、10分毎の反応系内のモル比を算出した。液A及び液Bの添加直後のモル比(理論値)を初期値として、かかる初期値で除した数値で、系内の各物質モル比の変化を比較した。
【0084】
Si(OR)+4HO → Si(OH)+4ROH
(加水分解時に4モル消費)
Si(OH) → SiO + 2H
(重縮合時に2モル放出)
【0085】
(濃縮工程~アルカリ除去工程)
濃縮工程以降は、実施例1と同様に処理を行い、20質量%シリカ粒子分散液を得た。
【0086】
[実施例6]
分散液調製工程までは、実施例1と同様にして、その後、限外膜を用い、濃縮と水置換を行った。水置換工程終了後、そのまま、80℃を保ちながら加熱処理を行った。この工程で留去する液量と同量の水を添加し、系内のシリカ濃度を一定に保ったまま加熱を続けた。なお、pH9以上の状態を1時間保ち、熟成を行った(熟成工程)。熟成工程終了後、イオン交換樹脂を用いてアルカリを除去した(アルカリ除去工程)。最終的にロータリーエバポレーターで減圧濃縮を行い(濃縮工程)、20質量%のシリカ粒子分散液を得た。
【0087】
[実施例7]
熟成工程において、液温100℃、加熱時間を2時間とした以外は、実施例6と同様にして、20質量%のシリカ粒子分散液を得た。
【0088】
[実施例8]
熟成工程において、水置換した分散液にアンモニア水を加えてpHを8に調整した後、pH8の状態を保ち、80℃で1時間熟成を行った。これ以外は実施例1と同様にしてシリカ粒子分散液を製造した。
【0089】
[実施例9]
熟成工程において、水置換した分散液にアンモニア水を加えてpHを9に調整した後、オートクレーブに入れ、150℃で10時間熟成を行った。これ以外は実施例1と同様にしてシリカ粒子分散液を製造した。
【0090】
[実施例10]
熟成工程において、水置換した分散液にアンモニア水を加えてpHを9に調整した後、オートクレーブに入れ、200℃で10時間熟成を行った。これ以外は実施例1と同様にしてシリカ粒子分散液を製造した。
【0091】
[実施例11]
テトラメトキシシラン540.0gとメタノ-ル180.0gを混合し、原料溶液を調製した。反応槽に予めメタノ-ル、水、アンモニアを混合した溶媒3565.7gを仕込んだ。この混合溶媒中の水の濃度は19質量%、アンモニアは1.5質量%であった。反応溶媒の温度が20℃に保持できるように液温を調節しながら、原料溶液を25分間、均等速度で反応槽に滴下し、シリカ濃度5.0質量%のシリカ粒子分散液を得た。
【0092】
なお、いずれの実施例においても、シリカ粒子分散液中のアルカリ金属、アルカリ土類金属、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々の元素の量は、シリカ粒子あたり0.1ppm未満、Cu、Ni、Crの各々の元素の量は、シリカ粒子あたり1ppb未満、U、Thの各々の元素の量は、シリカ粒子あたり0.3ppb未満であった。
【0093】
[比較例1]
水置換工程までは実施例1と同様に処理を行い、水置換された分散液を得た。その液に、アンモニア水を加えてpHを8.5に調整した後、液温100℃を保ちながら加熱処理を行った。この工程でも留去する液量と同量の水を添加し、系内のシリカ濃度を一定に保ったまま加熱を続けた。なお、pH8以上の状態を2時間保ち、熟成を行った(熟成工程)。その後、アルカリ除去工程は行わなかった。
【0094】
[比較例2]
濃縮工程までは実施例1と同様にして、濃縮された分散液を得た。その液に水を添加しながら常圧にて加熱置換法により水置換を行った。留去する液量と同量の水を添加し、系内のシリカ濃度を一定に保ったまま加熱を続けた。液温が100℃に到達した時点で、水置換工程を終了した。
その後、熟成工程、アルカリ除去工程は行わず、最後に液を加熱濃縮し、20質量%のシリカ粒子分散液を得た。
【0095】
[比較例3]
水置換工程までは実施例6と同様にして、その後、熟成工程、アルカリ除去工程は行わず、最後に減圧濃縮のみを行い、20質量%のシリカ粒子分散液を得た。
【0096】
なお、いずれの比較例においても、シリカ粒子分散液中のアルカリ金属、アルカリ土類金属、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々の元素の量は、シリカ粒子あたり0.1ppm未満、Cu、Ni、Crの各々の元素の量は、シリカ粒子あたり1ppb未満、U、Thの各々の元素の量は、シリカ粒子あたり0.3ppb未満であった。
【0097】
【表1】
【0098】
表1に示すように、比較例1~3では、アルカリ除去工程におけるアルカリ除去が行われず粘度が高いのに対して、実施例1~11は、粘度が低下していることがわかる。また、実施例1~11は、密度が高く、十分にシリカ粒子の緻密化が図られていることがわかる。すなわち、本実施例で製造されたシリカ粒子分散液は、(1)緻密化された高純度シリカ粒子を(2)高濃度で含む、(3)粒子が凝集していない粘度の低いニュートン性の分散液である。

図1