(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-15
(45)【発行日】2022-12-23
(54)【発明の名称】測定プロセスを実行するための方法
(51)【国際特許分類】
G01S 7/4865 20200101AFI20221216BHJP
H04N 5/369 20110101ALI20221216BHJP
【FI】
G01S7/4865
H04N5/369 600
(21)【出願番号】P 2020554418
(86)(22)【出願日】2019-04-03
(86)【国際出願番号】 EP2019058395
(87)【国際公開番号】W WO2019197243
(87)【国際公開日】2019-10-17
【審査請求日】2020-10-20
(31)【優先権主張番号】102018205376.6
(32)【優先日】2018-04-10
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】520208100
【氏名又は名称】イベオ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】Ibeo Automotive Systems GmbH
【住所又は居所原語表記】Merkurring 60-62, 22143 Hamburg, Germany
(74)【代理人】
【識別番号】100083116
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】ラルフ ボイシェル
(72)【発明者】
【氏名】ライナー キーゼル
【審査官】渡辺 慶人
(56)【参考文献】
【文献】特開2017-125682(JP,A)
【文献】特開平07-191144(JP,A)
【文献】特開平07-167955(JP,A)
【文献】米国特許出願公開第2016/0209498(US,A1)
【文献】欧州特許出願公開第03070494(EP,A1)
【文献】中国特許出願公開第103675793(CN,A)
【文献】独国特許出願公開第102014207599(DE,A1)
【文献】特開2007-203519(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
17/00 - 17/95
(57)【特許請求の範囲】
【請求項1】
LIDAR測定システム(10)のための測定プロセスを実行するための方法であって、
前記測定プロセス中に、複数の本質的に同様の測定サイクル(60、62、64)であって、長さが等しい複数の測定サイクルが実行され、
新しい測定サイクル(62)が、前の測定サイクル(60)及び待ち時間(Δt
1、Δt
2)の終了後にのみ開始し、
連続した測定サイクル(60、62)の前記待ち時間(Δt
1、Δt
2)が異な
り、
前記待ち時間(Δt
1
、Δt
2
)が、事前定義された時間セグメント内に存在し、
前記時間セグメントは、測定サイクル数にビンの期間を掛けた数よりも小さくなるように選択される、
方法。
【請求項2】
測定サイクルの前記待ち時間(Δt
1
、Δt
2
)が、ランダムに選択されることを特徴とする、請求項1に記載の方法。
【請求項3】
測定プロセスで既に使用された待ち時間(Δt
1
、Δt
2
)が、後続の測定サイクルのために使い切られることを特徴とする、請求項1または2に記載の方法。
【請求項4】
待ち時間(Δt
1
、Δt
2
)が、複数回の使用のために利用可能であることを特徴とする、請求項3に記載の方法。
【請求項5】
測定サイクルの前記待ち時間(Δt
1
、Δt
2
)が、決定論的に選択されることを特徴とする、請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、LIDAR測定システムのセンサ素子を制御するための方法に関する。
【背景技術】
【0002】
LIDAR測定システムは、国際公開第2017081294号で説明されている。これは、静的に設計されており、複数のエミッタ素子を備えた送信機ユニットと、複数のセンサ素子を備えた受信機ユニットと、を含む。エミッタ素子及びセンサ素子は、焦点面アレイ構成で実装され、それぞれ送信レンズ及び受信レンズの焦点に配置される。受信機ユニット及び送信機ユニットに関して、センサ素子と対応するエミッタ素子とは、特定の立体角に割り当てられる。従って、センサ素子は、特定のエミッタ素子に割り当てられる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明の目的は、規定された測定範囲の外側に位置する高反射オブジェクトの検出が防止される方法を提供することである。
【課題を解決するための手段】
【0004】
この目的は、この特許請求の範囲の請求項1に係る方法によって達成される。特許請求の範囲の従属請求項は、方法の有利な実施形態の説明を包含する。
【0005】
上記の方法は、TCSPC法(時間相関単一光子計数:Time Correlated Single Photon Counting)に従って動作するLIDAR測定システムに特に適している。このTCSPC法は、以下の本文、特に図の説明で、より詳細に解説される。特に、方法は、自動車で使用されるLIDAR測定システムについて想定される。
【0006】
この目的に適したLIDAR測定システムは、センサ素子及びエミッタ素子を含む。エミッタ素子は、レーザ光を放射し、例えば、VCSEL(垂直共振器面発光レーザ:Vertical Cavity Surface Emitting Laser)によって実装される。放射されたレーザ光は、例えば、SPAD、即ち、単一光子アバランシェ・ダイオード(single photon avalanche diode)によって形成されるセンサ素子によって検出することができる。LIDAR測定システムからのオブジェクトの距離は、レーザ光又はレーザ・パルスの飛行時間から決定される。
【0007】
エミッタ素子は、送信機ユニットの送信機チップに実装されることが好ましい。センサ素子は、受信機ユニットの受信機チップに実装されることが好ましい。送信機ユニット及び受信機ユニットは、それぞれ送信レンズと受信レンズに割り当てられる。エミッタ素子によって放射された光は、送信レンズによって立体角に割り当てられる。同様に、センサ素子は、受信レンズを介して同じ立体角を常に観察する。従って、一つのセンサ素子は、一つのエミッタ素子に割り当てられ、即ち、両方が同じ立体角に割り当てられる。放射されたレーザ光は、遠視野で反射した後に、常に同じセンサ素子に当たる。
【0008】
センサ素子及びエミッタ素子は、焦点面アレイ構成(FPA:focal plane array)で具体化されることが有利である。そういった配置では、特定のユニットの素子は、面内に、例えば、センサチップの面上にセンサ素子が配置される。この面は、それぞれのレンズの焦点面に配置され、及び/又は、素子は、それぞれのレンズの焦点に配置される。
【0009】
FPA構成は、LIDAR測定システム並びにその送信機ユニット及び受信機ユニットの静的設計を可能にし、従って、システムは、いかなる可動部品も含まない。特に、LIDAR測定システムは、自動車に静的に配置される。
【0010】
エミッタ素子は、複数のセンサ素子が割り当てられることが好都合であり、複数のセンサ素子から構成されるマクロ・セルを共に形成する。このマクロ・セル又はマクロ・セルの全てのセンサ素子は、エミッタ素子に割り当てられる。これは、視差効果又はレンズに起因する撮像誤差などの撮像効果又は撮像誤差を補償することを可能にする。
【0011】
測定は、オブジェクトを検出し、それらの離れた距離を決定するために、LIDAR測定システム上で実行される。測定プロセスは、各エミッタ素子/センサ素子のペアについて実行される。
【0012】
測定プロセスは、複数の測定サイクルを含む。測定サイクル中、エミッタ素子は、レーザ・パルスを放射し、そのパルスは、オブジェクトでの反射後に一つ又は複数のセンサ素子によって再度検出され得る。測定期間は、少なくとも、レーザ・パルスが、測定システムの最大範囲まで往復し得る十分な長さである。
【0013】
そのような測定サイクルでは、例えば、異なった測定範囲を通過する。この目的のために、例えば、センサ素子又はセンサ・グループは、最適な検出を達成するために、異なった時間に、作動及び停止され得る。測定プロセスの測定サイクルは、同一のシーケンスを有することを必要としない。特に、センサ素子又はセンサ・グループが作動及び停止される様々な時間は、測定サイクルから測定サイクルへの一定の時間オフセットの影響を受け得る。測定サイクルは、従って、同様の性質のものが好ましく、従って、必ずしも互いに同一である必要はない。
【0014】
ヒストグラムは、測定プロセスの結果である。測定サイクルは、少なくとも、レーザ光が最大測定距離のオブジェクトまでを往復するために必要とされる期間を有する。ヒストグラムは、測定サイクルの測定期間を、ビンとも呼ばれる時間セグメントに分割する。ビンは、測定期間全体の内の一定の期間に相当する。
【0015】
センサ素子が入来する光子によってトリガされる場合、レーザ・パルスの放射から開始する、関連する飛行時間に対応するビンは、値1だけインクリメントされる。センサ素子又はセンサ・グループは、TDC(時間デジタル変換器:time to digital converter)によって読み取られ、例えばメモリ素子や短期メモリによって形成されるヒストグラムに光子によるセンサ素子のトリガを記憶する。この検出は、検出の時間に対応するビンにおいてヒストグラムに追加される。
【0016】
センサ素子は、光子を検出できるのみで、それが反射レーザ・パルスによるのか又は背景放射によるのかを区別できない。測定プロセスごとに多数の測定サイクルを実行することによって、ヒストグラムは、何度も満たされ、背景ノイズは、統計的に分散されたノイズ・ベースラインを与えるが、反射レーザ・パルスは、常に同時に到達する。オブジェクトは、このようにヒストグラムのピークとして背景ノイズから突出し、このように評価することができる。これが、本質的なTCSPC法である。評価は、例えば、立ち上がり端又は極大を検出することによって実行される。
【0017】
測定プロセスでは、測定サイクルは、全ての連続的な測定サイクルで同一であるタイミング計画に従って、実行することができる。この場合には、最大測定距離の外側に位置する高反射率オブジェクトが、前の測定サイクルのレーザ・パルスを反射し、これがその後にセンサ素子によって検出される、ということが起こり得る。その結果、測定範囲内に無いオブジェクトが、後続の測定サイクルで検出されることがある。例えば、オブジェクトは、実際には遠く離れて位置するにもかかわらず、近距離で検出される。
【0018】
従って、各測定サイクルの後に待ち時間の経過が許容される。この待ち時間は、測定サイクルごとに異なる。その結果、遠くの高反射オブジェクトの反射レーザ・パルスは、後続の測定サイクルの別の時点で検出される。連続する待ち時間は、従って、それらの期間が異ならなければならない。これは、高反射オブジェクトが測定サイクル全体に亘ってヒストグラムの幅においてスミアとなることを引き起こす。ヒストグラムの評価では、遠方のオブジェクトは、もはや検出されない。
【0019】
従って、第1の測定サイクルは、第1の待ち時間を有し、第2の測定サイクルは、第2の待ち時間を有し、第1の待ち時間及び第2の待ち時間は、異なる。
【0020】
測定プロセスの測定サイクルの待ち時間は、少なくとも高反射オブジェクトがヒストグラムにおいて十分にスミアとなる程度まで、異なることが好ましい。
【0021】
例えば、待ち時間は、各測定プロセス後に1ビンずつ変化する。測定回数Xに関して、高反射オブジェクトは、オブジェクトのXビンに亘って分布し、一種のノイズ背景の増加として検出される。
【0022】
以下では、方法の有利な設計の変形例を説明する。
【0023】
待ち時間を事前定義された時間セグメント内とすることを提案する。
【0024】
測定期間をできるだけ短く保持する目的で、待ち時間は、事前に定義される場合がある。従って、待ち時間を選ぶことは、時間セグメント内に存在する値にだけ対応することがある。例えば、測定サイクル数Xが与えられた場合、この時間セグメントは、例えば、Xビン幅であり得る。
【0025】
有利な実施形態では、測定サイクルの待ち時間は、ランダムに選ばれる。
【0026】
これは、統計的成分の導入を可能にする。例えば、待ち時間の直線的な増加によって、オブジェクトが適切な速度で現在移動している可能性があり、従って、スミアの影響を除去することが可能となる。ランダム選択は、事前定義された時間セグメントと組み合わされることが有利である。一方では、これは、統計的成分が測定プロセスの短い期間と組み合わされることを可能にする。
【0027】
測定プロセスで既に使用された待ち時間は、後続の測定サイクルのために使い切られることが有利である。
【0028】
各待ち時間は、従って1度だけ存在する。所定の時間セグメントの場合には、各待ち時間が使用される。しかしながら、時間期間は、より長い場合もあり、従って、測定に必要とされるものよりも利用可能な待ちセグメントがより多く存在する。適切な時間セグメントを選択することによって、測定プロセス全体とその測定期間全体は、可能な限り短く保持することができる。
【0029】
待ち期間が複数回の使用のために利用可能にできるということを更に提案する。
【0030】
例えば、全ての待ち時間が重複する場合、時間間隔の幅は、半分にすることができる。オブジェクトのスミアは、まだ十分であり、測定プロセスの測定期間は、最小に保持することができる。
【0031】
更なる変形例では、待ち時間は、決定論的に指定される。
【0032】
例えば、これは、測定サイクルの待ち時間の選択である場合があり、異なった測定サイクルの待ち時間の少なくとも一部は、互いに異なり、特に、その理由は、決定論的な選択が、正確にゴースト・オブジェクトが検出されないように行われるからである。これらの事前定義された待ち時間は、測定サイクル数のカウントも保持して、対応する値を選択する、例えば、モジュロ・カウンタによって選択される場合がある。
【0033】
例えば、短い待ち時間と長い待ち時間が、交互であり、長い待ち時間と短い待ち時間も、互いに異なる。
【0034】
特に、待ち時間は、測定プロセス全体に亘って複数回繰り返される場合があり、連続する待ち時間は、異なることが好ましい。特に、連続した待ち時間も、同一であることがあり、その条件は、この繰り返しが単に数回起こることである。
【0035】
以下では、方法を、幾つかの図を使用して再度詳細に説明する。
【図面の簡単な説明】
【0036】
【
図2】
図1からのLIDAR測定システムの送信機ユニット及び受信機ユニットの正面図である。
【
図3】測定サイクルのタイミング・チャート及び対応するヒストグラムを示す図である。
【
図4】複数の測定サイクルを備えた測定プロセスの図である。
【
図5】複数の測定サイクルを備えた別の測定プロセスの図である。
【発明を実施するための形態】
【0037】
図1は、概略的な形式でLIDAR測定システム10の構造を示す。このような測定システム10は、自動車での使用を意図される。特に、測定システム10は、自動車に静的に配置され、それに加えて、それ自体静的に設計されるのが好都合である。これは、測定システム10並びにそれの構成要素及びモジュールが互いに対して一切相対運動できないか、又は相対運動しない、ということを意味する。
【0038】
測定システム10は、LIDAR送信機ユニット12、LIDAR受信機ユニット14、送信レンズ16、受信レンズ18及び電子機器ユニット20を備える。
【0039】
送信機ユニット12は、送信機チップ22を形成する。この送信機チップ22は、複数のエミッタ素子24を有し、それらは、表現の明瞭さのために、四角形として概略的に示される。反対側では、受信機ユニット14は、受信機チップ26によって形成される。受信機チップ26は、複数のセンサ素子28を含む。センサ素子28は、三角形によって概略的に示される。しかしながら、エミッタ素子24及びセンサ素子28の実際の形状は、概略図とは異なる場合がある。エミッタ素子24は、VCSEL(垂直共振器面発光レーザ)によって形成することが好ましい。センサ素子28は、SPAD(単一光子アバランシェダイオード)によって形成することが好ましい。
【0040】
送信機ユニット12及び受信機ユニット14は、FPA構成(焦点面アレイ)で設計される。これが意味することは、チップ及びそれに関連する素子が面上、特に、平らな面上に配置される、ということである。それぞれの面は、同様に光学素子16、18の焦点又は焦点面に配置される。同様に、エミッタ素子24は、送信機チップ22の面上に配置され、送信レンズ16の焦点面内において測定システム10に位置する。受信レンズ18に対する受信機チップ26のセンサ素子28も同様である。
【0041】
送信レンズ16は、送信機ユニット12に割り当てられ、受信レンズ18は、受信機ユニット14に割り当てられる。エミッタ素子24によって放射されたレーザ光又はセンサ素子28に入射する光は、それぞれの光学素子16、18を通過する。送信レンズ16は、特定の立体角を各エミッタ素子24に割り当てる。同様に、受信レンズ18は、特定の立体角を各センサ素子28に割り当てる。
図1は概略図を示すので、
図1の立体角は、正しく示されていない。特に、測定システムからオブジェクトまでの距離は、測定システム自体の寸法よりも何倍も長い。
【0042】
それぞれのエミッタ素子24によって放射されたレーザ光は、送信レンズ16によって同じ立体角内に常に放射される。受信レンズ18によって、センサ素子28は、同様に同じ立体角を常に観察する。従って、センサ素子28は、常に同じエミッタ素子24に割り当てられる。特に、センサ素子28及びエミッタ素子24は、同じ立体角を観察する。このLIDAR測定システム10では、複数のセンサ素子28が、単一のエミッタ素子24に割り当てられる。共通のエミッタ素子24に割り当てられるセンサ素子28は、マクロ・セル36の一部であり、マクロ・セル36は、エミッタ素子24に割り当てられる。
【0043】
エミッタ素子28は、測定サイクルの開始時にレーザ・パルス30の形態のレーザ光30を放射する。このレーザ・パルス30は、送信レンズ16を通過し、エミッタ素子24に割り当てられた立体角に放射される。オブジェクト32がこの立体角内に位置する場合、レーザ光30の少なくとも一部は、それから反射される。対応する立体角から到来する反射されたレーザ・パルス30は、受信レンズ18を通して、関連するセンサ素子28に、又は、マクロ・セル36に属するセンサ素子28に、向けられる。センサ素子28は、入射レーザ・パルス30を検出し、センサ素子28のトリガは、TDC38(時間デジタル変換器)によって読み取られ、ヒストグラムに書き込まれる。飛行時間法を使用して、オブジェクト32から測定システム10までの距離は、レーザ・パルス30の通過時間から決定することができる。オブジェクト32及びそれらの距離は、TCSPC法(時間相関単一光子計数法)を使用して、決定されることが有利である。TCSPC法は、以下でより詳細に説明される。
【0044】
このような測定サイクルのシーケンスは、少なくともセンサ素子28を読み取ることのできる電子機器20によって制御される。電子機器20は、特にデータ交換のために、接続部34を介して、自動車の他の電子構成要素にも接続されているか又は接続される場合がある。ここでの電子機器20は、概略的な構成ブロックとして示される。しかしながら、これについての更なる詳細な説明は、行わない。電子機器20が、測定システム10の複数の構成要素又は組立体にわたって分散される場合があることに留意されたい。この場合には、例えば、電子機器20の一部は、受信機ユニット14に実装される。
【0045】
図2は、送信機チップ22及び受信機チップ26を概略的に正面図で示す。部分的な詳細だけが示され、追加のエリアは、示されているものと本質的に同じである。送信機チップ22は、行及び列に配置される上述のエミッタ素子24を含む。しかしながら、この行及び列の配置は、単に例として選択される。列は、大文字のローマ数字で示され、行は、大文字のラテン文字で示される。
【0046】
受信機チップ26は、複数のセンサ素子28を含む。センサ素子28の数は、エミッタ素子24の数よりも多い。センサ素子28もまた、行及び列の配置で実装される。この行及び列の配置も、単に一例として選択される。列は、小文字のローマ数字で番号付けされ、行は、小文字のラテン文字で番号付けされる。しかしながら、受信機チップ26の行又は列は、個々のセンサ素子28ではなく、複数のセンサ素子28を有するマクロ・セル36に関係する。マクロ・セル36は、より良い表現のために破線によって互いに分離される。マクロ・セル36のセンサ素子28は、単一のエミッタ素子24に全て割り当てられる。例えば、マクロ・セルi、aは、エミッタ素子I、Aに割り当てられる。センサ素子24によって放射されたレーザ光30は、関連するマクロ・セル36のセンサ素子28の少なくとも一部を撮像する。
【0047】
センサ素子28は、個々に又は少なくともグループで、作動及び停止される場合があることが有利である。その結果、マクロ・セル36の関連するセンサ素子28が作動される場合があり、関連しないものが停止される場合がある。これは、撮像誤差の補償を可能にする。このような撮像誤差は、例えば、光学素子16、18の撮像誤差などの静的誤差、又は視差誤差である場合があり、それの例は、次のセクションで説明される。
【0048】
視差に起因して、近距離、例えば、即ち、オブジェクト32から僅かな距離で、放射されたレーザ光30は、
図2の上部に配置されたマクロ・セル36のセンサ素子28上に撮像される。しかしながら、オブジェクトが測定システム10から更に離れている場合、反射されたレーザ光30は、マクロ・セル36の下側領域、従って、下側センサ素子28に当たるであろう。視差に起因した入射レーザ光のずれは、ユニットの配置及び測定システム10の物理的設計に特に依存する。
【0049】
マクロ・セル36のセンサ素子28は、このように測定サイクル中に作動及び停止され、従って、照射されないセンサ素子は、停止される。作動中の各センサ素子が周囲放射を背景ノイズとして検出するという理由で、照射されないセンサ素子を無効化することは、測定の背景ノイズを最小に保持する。一例として、三つのセンサ・グループが、
図2の受信機チップ26に描かれている。
【0050】
例として、方法の説明のみの意図で、センサ・グループα、β、γが、ここに示されており。原則として、センサ・グループは、別に選択される場合もある。センサ・グループαは、単一のセンサ素子28を含み、それによって、近距離は、測定サイクルの開始時に検出されることになる。センサ・グループβは、中間の測定距離において作動する複数のセンサ素子28を含む。センサ・グループγは、遠距離において作動する幾つかのセンサ素子28を含む。センサ・グループβのセンサ素子28の数が最大であり、その後にセンサ・グループγが続く。
【0051】
センサ・グループα、β及びγのためのセンサ素子28の選択は、純粋に一例として選ばれ、用例においては示されたものと異なる場合もあり、センサ素子28の設計及びエミッタ素子24に関する配置も同様である。
【0052】
近距離では、少数のセンサ素子28だけが、通常作動する。例えば、これらのセンサ素子28は、近距離のための特定の要求に対処するために、他のセンサ素子28とは設計が異なる場合もある。
【0053】
センサ・グループγは、センサ・グループβの部分的なセクションであるが、センサ・グループγ専用の二つのセンサ素子28も含む。例えば、異なったセンサ・グループは、完全に重複する、即ち、幾つかの共通のセンサ素子28を有する場合もある。しかしながら、全てのセンサ素子28は、このセンサ・グループ専用に割り当てられる場合もあるセンサ素子28の一部だけが、一つのセンサ・グループ専用であり、残りのセンサ素子28が、二つ以上のセンサ・グループの一部である、という場合もあり得る。
【0054】
第1の測定範囲から第2の測定範囲、例えば、中距離から遠距離への移行時に、先に作動していたセンサ・グループのセンサ素子のうちの幾つかだけが停止され、センサ素子のうちの幾つかが作動されたままであり、更に幾つかのセンサ素子28が作動されることがある。
【0055】
センサ素子28は、TDC38(時間デジタル変換器)に接続される。このTDC38は、電子機器20の一部である。TDC38は、各マクロ・セル36の受信ユニットに実装され、マクロ・セル36の全てのセンサ素子28に接続される。しかしながら、TDC38に関するこの実施形態は、単なる一例である。
【0056】
同時に作動するSPADとして実装されたセンサ素子28は、入射光子によってトリガされる場合がある。このトリガは、TDC38によって読み取られる。TDC38は、次いで、この検出を測定プロセスのヒストグラムに入力する。このヒストグラムは、次においてより詳細に解説される。検出後、必要なバイアス電圧が、最初にSPADで再確立されなければならない。この期間中、SPADは、ブラインドとなり、入射光子によってトリガすることはできない。この充電に必要な時間は、デッドタイムとしても知られている。この文脈において、作動していないSPADが動作電圧を構築するために或る程度の時間がかかる、ということにも留意されたい。
【0057】
測定システム10のエミッタ素子24は、光パルスを、例えば、ラインごと又は行ごとに逐次放射する。これは、エミッタ素子24の行又は列が、マクロ・セル36の隣接する行又は列のセンサ素子28をトリガするのを防ぐ。特に、マクロ・セル36の作動中のセンサ素子28のみに対して、対応するエミッタ素子24がレーザ光30を放射している。
【0058】
上述したように、TCSPC法は、オブジェクトの距離を決定するために提供される。これは、
図3に基づいて解説される。TCSPCでは、測定プロセスは、任意のオブジェクトの存在と、測定システム10からのそれらの距離とを決定するために実行される。測定プロセスは、複数の本質的に類似した測定サイクルを含み、ヒストグラムを作成するために同じように繰り返される。
【0059】
このヒストグラムは、次いで、任意のオブジェクトとそれらの距離とを特定するために評価される。
図3は、幾つかのサブ図a、b、c、d、e、f、gを含む。各図は、それ自体のY軸を有するが、時間がプロットされる共通のX軸を共有する。
図3aから
図3fは、単一の測定サイクルを示し、
図3gは、測定プロセス全体の結果を示す。測定プロセスは、時間t
startで開始し、時間t
endeで終了する。
【0060】
図3aは、測定サイクルの経過に亘るエミッタ素子46の活動を示す。エミッタ素子は、時間t
2において作動され、その後直ぐの時間t
2*において停止され、レーザ・パルスが放射させる。
【0061】
図b、c及びdは、測定サイクルにおけるセンサ・グループα、β及びγのセンサ素子28の活動段階を示す。センサ・グループαのセンサ素子は、レーザ・パルスの放射前に時間t0において既に充電されており、時間t1において既に作動している。時間t1及び時間t2は、時間的に一致するか又は互いに対してオフセットされる場合がある。センサ・グループαは、従って、遅くとも、レーザ・パルス30が放射されるときには、作動されている。これは、近距離に対応する。
【0062】
センサ・グループβのセンサ素子は、センサ・グループαが時間t3において停止される直前に、充電され、また、時間t4において、センサ・グループαが停止されるときに、作動中である。中距離をカバーするセンサ・グループβは、遠距離への移行時にオフに切り替えられるまで、より長い時間の間、作動中のままである。
【0063】
センサ・グループγのセンサ素子28の活動は、
図3dに示される。センサ・グループγが部分的にβのサブグループであるという理由で、重複するセンサ素子28は、時間t
7において作動中のままにされ、その一方、センサ・グループβの他のセンサ素子28は、停止される。センサ・グループγの残りのセンサ素子28は、既に時間t
6において事前充電されている。センサ・グループγは、時間t
8において停止されるまで、より長い期間の間、同じく作動中のままである。時間t
8は、時間t
endeの測定サイクルの終了にも対応する。しかしながら、他の例示的な実施形態では、測定サイクルの終了は、最後の作動中センサ・グループの停止と正確に同じである必要はない。測定サイクル42の開始は、時間t
startによって定義され、測定サイクル44の終了は、時間t
endeによって定義される。
【0064】
従って、測定サイクルは、レーザ・パルス46の放射と、センサ・グループ間の切替と、近距離48、中距離50、及び、遠距離52の入射光の検出と、を含む。
【0065】
図3eは、中距離に位置するオブジェクト32の一例を示す。グラフは、オブジェクト32の反射面に対応する。オブジェクト32で反射されたレーザ・パルス30は、時間t
5においてセンサ・グループβの作動中センサ素子28によって検出される場合がある。
【0066】
図3fは、複数の測定サイクルの例示的な充填を表現するヒストグラム54を示す。ヒストグラムは、測定サイクル全体を個々の時間セグメントに分割する。ヒストグラム54のこのような時間間隔は、ビン56とも呼ばれる。ヒストグラム54を埋めるTDC38は、センサ素子28を読み取る。作動中のセンサ素子28だけが、検出をTDC38に送信できる。SPADが光子によってトリガされる場合、TDC38は、デジタル1又は検出58をヒストグラムに入力し、それは、例えば、メモリによって表現される。TDCは、この検出58を現在の時間と関連付けて、ヒストグラム54の対応するビン56をデジタル値で満たす。
【0067】
単一のオブジェクト32だけが中距離に存在するという理由で、この一つのオブジェクト32だけを、検出することができる。それにもかかわらず、ヒストグラムは、測定サイクル全体に亘って検出58で満たされる。これらの検出58は、背景放射によって生成される。背景光線の光子は、SPADをトリガする場合がある。結果として生じる背景ノイズのレベルは、従って、作動中のSPADの数、即ち、センサ・グループのセンサ素子28の数に依存する。
【0068】
近距離48では、二つのビン56だけが、それぞれ一つの検出58で満たされ、その一方で、第3のビンが空のままである、ということが理解され得る。これは、検出された背景放射に対応する。検出の数は、単一のSPADだけが作動中であるので、非常に少ない。
【0069】
それに続く中距離50では、センサ・グループβがアクティブであり、複数の作動中のセンサ素子28を有する。従って、検出された背景放射も大きくなり、従って、ビンは、平均して三つの検出58で、時には、四つ又は二つの検出58で、満たされる。オブジェクト32の反射面が測定サイクルの時間t5において位置する領域32では、検出58の数は、著しく多い。この場合には、7個又は8個の検出58が、ヒストグラム54に記録される。
【0070】
遠距離52で検出され得るオブジェクトは、存在しない。ここでは、背景放射だけが表現され、ビンあたり平均一つ又は二つの検出58がある。ノイズ背景の平均値は、従って、SPADSの数も少ないので、中距離50よりも低い。しかしながら、検出58の平均値は、近距離48よりも高く、その理由は、センサ・グループαを有する近距離48が、センサ・グループγのセンサ素子28の数より僅かな数しか示さないからである。
【0071】
上述したように、示されたヒストグラムは、例示的な方法だけで満たされている。ビンの数及びそれらの充填レベルは、実際の測定サイクルで著しく異なる場合がある。通常、オブジェクト32は、依然として単一の測定サイクルから検出することができない。従って、TCSPC法では、複数の測定サイクルが連続して実行される。各測定サイクルは、同じヒストグラムを埋める。複数の測定サイクルによって満たされたこのようなヒストグラムは、
図3gに示される。
【0072】
図3gのヒストグラムは、同様にデジタルで満たされたビンによって形成される。しかし、より明瞭な画像を提供するために、各ビンの描写は、この図では省略されており、ビンの充填レベルに対応する単一の線によって置き換えられている。
【0073】
低いノイズ背景が、近距離48で得られ、最も高いノイズ背景は、中距離50で得られ、その理由は、そこでは殆どのセンサ素子も作動中であるからである。遠距離52では、決定されたノイズ背景は、近距離48のそれと遠距離50のそれとの間にある。更に、中距離50のオブジェクト32によって反射されたレーザ光30の検出は、ピーク33の形式で見られる場合がある。検出された背景放射は、統計的に均一に分布するため、作動中のセンサ素子の数に応じて実質的に直線を提供する。しかしながら、オブジェクト及びその反射面は、常に同じ場所にあり、測定サイクルの合計に亘って、ピーク33は、背景のノイズ・レベルよりも突出する。
【0074】
ピーク33は、最大又は急な立ち上がり端を介して検出される場合があり、オブジェクト32及びオブジェクト32までの距離は、ヒストグラム内のその位置から決定される場合がある。
【0075】
図3gに係るヒストグラムの決定では、
図3の測定サイクルは、何度も同様に反復された。特に、全ての説明されたアクションは、同じ時間t
0からt
8まで常に実行される。
【0076】
検出を改善するために、測定サイクルは、同一ではなく、本質的に単に類似するように設計する場合もある。これを行うために、センサ・グループの作動及び停止は、測定サイクルから測定サイクルへと僅かに時間シフトされる。これは、急な立ち上がり端及び立ち下がり端が測定範囲間の接合部で平坦にすることを可能にする。しかしながら、更なる説明のために、
図3gの使用は、十分すぎるほどである。
【0077】
図4は、複数の測定サイクル60、62及び64を含む測定プロセスを示す。第1の測定サイクル60、第2の測定サイクル62及び第3の測定サイクル64に関して、それぞれの時間軸が描かれており、測定サイクルの測定期間t
messを超えて延びる。
【0078】
測定期間t
messは、オブジェクト32を含み、それは示された時間にセンサ素子28によって検出される。
図3fに係るヒストグラムにおいてピーク33を生成するのは、このオブジェクト32である。
【0079】
加えて、オブジェクト66が示される。このオブジェクト66は、LIDAR測定システム10の定義された最大測定範囲の外側に位置する。更に、オブジェクトは、反射率を有し、それは後続の測定サイクルでセンサ素子28による検出を引き起こす。第1の測定サイクル60の開始時に放射されてオブジェクト66で反射されたレーザ・パルス30は、第2の測定サイクル62で検出される。第2の測定サイクルでの検出は、時間Tgにおいて起こる。
【0080】
簡単のために、オブジェクトは、測定プロセスの測定期間に亘って、LIDAR測定システムに対して移動しない。加えて、測定プロセスの次の測定サイクルは、測定サイクルの終了時に直ぐに開始される。従って、第3の測定サイクル64において、第2の測定サイクル62のレーザ・パルスは、同じく時間Tgにおいて検出される。
【0081】
ピーク67が、ヒストグラムに形成される。このピーク67は、オブジェクト66は実際には最大測定範囲の外側に位置するが、短距離においてゴースト・オブジェクトとして検出される。
【0082】
このようなゴースト・オブジェクトは、
図5の参照によって説明される方法によって無視される場合がある。
【0083】
図5は、同様に測定プロセスの複数の測定サイクルのうちの三つの測定サイクル60、62及び64を示す。オブジェクト32及び66は、
図4で解説された方法と同じように挙動する。
【0084】
第1の測定サイクル60の終了と、第2の測定サイクル62の開始との間で、第1の待ち時間Δt1の経過が許容される。その結果、オブジェクト66で反射されたレーザ・パルスは、時間T1において検出される。第2の測定サイクル62の終了と、第3の測定サイクル64の開始との間で、第2の待ち時間Δt2の経過が許容される。第1の待ち時間Δt1と第2の待ち時間Δt2とは、異なる。その結果、オブジェクト66で反射されたレーザ光は、時間T2において検出される。他の待ち時間も、同じような様式で相互に異なる。
【0085】
従って、ピーク67は、スミアとなり、スミア・ピーク68となる。ヒストグラムを評価する際、ゴースト・オブジェクトは、検出されなくなる。
【0086】
待ち時間は、直線的に増加する場合がある、即ち、測定サイクルごとに一定の値だけ延長される場合がある。ここでは、しかしながら、最大測定範囲の外側のオブジェクトは、待ち時間の変化を取り消す動きを行うことがある。
【0087】
従って、待ち時間の期間が測定サイクルごとにランダムに選択される、ということが提案されている。オブジェクトが測定システムに対してそのような相対運動を現在行っている確率は、殆どゼロである。それにもかかわらず、測定プロセスの測定期間を短く保持する目的で、時間範囲は、指定される場合があり、それに待ち時間は、含まれる。このような時間範囲は、複数のビンを含むことが有利である。
【0088】
均一なスミアを達成する目的で、既に使用された待ち時間は、後続の測定サイクルのために再度使用されることもある。このことによって、時間範囲内の各待ち時間が1度だけ又は限られた頻度で使用される、ということが保証される。加えて、時間範囲は、測定サイクルの数にビンの期間を掛けたものよりも小さく選択される場合がある。特に、これによって、ゴースト・オブジェクトのピークがスミアとなる形状を非常に正確に定義することが可能となる。
【0089】
待ち時間のランダム選択の代わりに、待ち時間の決定論的選択を使用することもできる。この場合には、待ち時間は、事前に定義済みであり、連続した測定サイクルのために使用される。決定論的な選択は、ゴースト・オブジェクトが検出されないように待ち時間を提供する。例えば、待ち時間は、時間範囲内で同じく選択され、待ち時間は、互いから離れている最小距離である。特に、長い待ち時間及び短い待ち時間が、交互に選ばれる。
【0090】
最小距離は、ヒストグラムにおいて最適であるように遠方のオブジェクトの検出を分散する目的で、統計的分布に対しても可能である。
【0091】
原則的に、待ち時間の統計的選択に対するコメントは、必要な変更を加えて、待機時間の決定論的選択に適用でき、その逆も同様である。
【0092】
時間制御ユニットは、この方法を実行するための測定システムの電子機器20に実装される。この電子機器は、測定プロセスのタイミング・シーケンス、特に、個々の測定サイクル、及び、測定システムの個々の素子の時間的作動及び停止を制御する。例えば、この時間制御ユニットは、タイミング・コントローラを有する。従って、時間制御ユニットは、測定サイクル間の待ち時間の正確な遵守を制御する。
【符号の説明】
【0093】
10 LIDAR測定システム
12 LIDAR送信機ユニット
14 LIDAR受信機ユニット
16 送信レンズ
18 受信レンズ
20 電子機器
22 送信機チップ
24 エミッタ素子
26 受信機チップ
28 センサ素子
30 レーザ光/レーザ・パルス
32 オブジェクト
33 ピーク
34 接続部
36 マクロ・セル
38 TDC
40 X軸(時間)
42 測定サイクルの開始
44 測定サイクルの終了
46 レーザ・パルスの放射
48 近距離の検出
50 中距離の検出
52 遠距離の検出
54 ヒストグラム
56 ビン
58 検出
60 第1の測定サイクル
62 第2の測定サイクル
64 第3の測定サイクル
66 オブジェクト
67 ピーク
68 スミア・ピーク
α、β、γ センサ・グループ
I、II、... 送信機チップの列
i、ii、... 受信機チップの列
A、B、... 送信機チップの行
a、b、... 受信機チップの行
tstart 時間
tende 時間
t0 時間
t1 時間
t2 時間
t2* 時間
t3 時間
t4 時間
t5 時間
t6 時間
t7 時間
t8 時間
Tg 時間
T1 時間
T2 時間
ΔT1 待ち時間
ΔT2 待ち時間