(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-16
(45)【発行日】2022-12-26
(54)【発明の名称】セラミックス基材用インクジェットインク
(51)【国際特許分類】
C09D 11/38 20140101AFI20221219BHJP
C09D 11/101 20140101ALI20221219BHJP
C09D 11/322 20140101ALI20221219BHJP
B41M 5/00 20060101ALI20221219BHJP
C04B 41/86 20060101ALI20221219BHJP
C04B 41/87 20060101ALI20221219BHJP
【FI】
C09D11/38
C09D11/101
C09D11/322
B41M5/00 116
B41M5/00 120
B41M5/00 100
C04B41/86 Z
C04B41/87 W
(21)【出願番号】P 2019539140
(86)(22)【出願日】2018-08-07
(86)【国際出願番号】 JP2018029665
(87)【国際公開番号】W WO2019044429
(87)【国際公開日】2019-03-07
【審査請求日】2021-07-15
(31)【優先権主張番号】P 2017167654
(32)【優先日】2017-08-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004293
【氏名又は名称】株式会社ノリタケカンパニーリミテド
(74)【代理人】
【識別番号】100117606
【氏名又は名称】安部 誠
(72)【発明者】
【氏名】林 博道
(72)【発明者】
【氏名】熊澤 知志
【審査官】井上 明子
(56)【参考文献】
【文献】国際公開第2015/115600(WO,A1)
【文献】特開2001-081363(JP,A)
【文献】特開2001-039008(JP,A)
【文献】特開2017-075251(JP,A)
【文献】特開2016-176084(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09D 11/00
B41J 2/01
B41M 5/00
C04B 41/85
(57)【特許請求の範囲】
【請求項1】
焼成を伴うセラミックス基材に使用され
、当該セラミックス基材と共に焼成されるインクジェットインクであって、
無機顔料およびガラスを含む無機固形分と、光硬化性を有するモノマー成分と、窒素原子を含有するN‐ビニル化合物とを含み、
前記モノマー成分は、分子内に一個の官能基を有する一官能モノマーを含み、
前記モノマー成分における前記一官能モノマーの割合が90質量%以上であり、
前記インクジェットインクの総体積に対する前記無機固形分の体積比率が10体積%~20体積%であり、
前記インクジェットインクにおける前記N‐ビニル化合物および前記モノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)が、質量基準で0.05~0.8である、セラミックス基材用インクジェットインク。
【請求項2】
前記無機固形分における前記ガラスの割合が20質量%以上である、
請求項1に記載のセラミックス基材用インクジェットインク。
【請求項3】
前記無機固形分における前記ガラスの割合が50質量%以上である、
請求項1または2に記載のセラミックス基材用インクジェットインク。
【請求項4】
前記一官能モノマーにおける前記官能基は、(メタ)アクリロイル基である、
請求項1~3の何れか一つに記載のセラミックス基材用インクジェットインク。
【請求項5】
前記一官能モノマーの分子量が100~300である、
請求項1~4の何れか一つに記載のセラミックス基材用インクジェットインク。
【請求項6】
装飾部を有するセラミックス製品の製造方法であって、
請求項1~5の何れか一つに記載のインクジェットインクの硬化物をセラミックス基材の表面に堆積する工程と、
前記堆積した硬化物を500℃~1200℃の範囲内で最高焼成温度が設定される条件で焼成する工程と
を包含する、セラミックス製品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、焼成を伴うセラミックス基材に使用されるインクジェットインクに関する。なお、本国際出願は2017年8月31日に出願された日本国特許出願第2017-167654号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
【背景技術】
【0002】
模様や文字などの所望の画像を印刷対象に描画する印刷方法の一つとして、従来からインクジェット印刷が用いられている。かかるインクジェット印刷は、簡素かつ安価な装置で高い精度の画像を描画することができるため種々の分野で用いられている。近年では、陶磁器やセラミックタイルなどの無機基材に画像を描画する際に、上記したインクジェット印刷を用いることが検討されている。具体的には、かかるセラミックス基材の分野において模様や文字などを描画する際には、従来から手書きや有版印刷などが実施されていた。しかし、手書きのような熟練した職人的技術を必要とせず、かつ、有版印刷と異なり、オンデマンドで早期に印刷が可能である点からインクジェット印刷が注目されている。
【0003】
しかし、紙や布などを対象とする他分野におけるインクジェット印刷の技術を陶磁器やセラミックタイルなどの無機基材の分野にそのまま転用することは困難であり、当該無機基材の分野におけるインクジェット印刷には改良の余地が多く残されている。例えば、セラミックス基材の分野では、画像を描画した後の無機基材に500℃以上(例えば500℃~1200℃)の焼成処理が行われることがある。このときに、紙や布などに使用されているインクジェットインク(以下、単に「インク」ともいう)を用いていると、焼成処理中に顔料が変色(又は消色)してしまう虞がある。このため、無機基材の分野においては、耐熱性に優れた顔料を含むインクが提案されている。この種の従来技術を開示する文献として、特許文献1~4が挙げられる。
【先行技術文献】
【特許文献】
【0004】
【文献】日本国公表特許公報第2011-515250号
【文献】日本国特許出願公開第2015-9387号
【文献】日本国公表特許公報第2010-519154号
【文献】国際公開第2007/020779号
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1には、ガラス又はセラミックの基体を装飾する工程において、UV硬化可能なモノマーと無機顔料とを含む組成物を基体にインクジェットプリントして硬化させた後、プリントされた組成物を焼成することが記載されている。同文献には、かかる構成によって、ガラス又はセラミックの基体に上記組成物が良好に付着して該基体を装飾可能とすることが記載されている。しかし、本発明者の知見によれば、無機固形分とUV硬化性モノマーとを含むインクを用いて印刷を行うと、焼成の初期段階で印刷層が剥がれてしまい、加飾自体が困難になる場合があり得る。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その主な目的は、焼成を伴うセラミックス基材に使用されるインクジェットインクにおいて、焼成後における印刷層(装飾部)の剥がれを抑制してセラミックス基材上に所望の画像をより良く定着させ得るセラミックス基材用インクジェットインクを提供することである。また、そのような装飾部を有するセラミックス製品を安定して(品質安定性よく)製造できる、セラミックス製品の製造方法を提供することを他の目的とする。
【課題を解決するための手段】
【0007】
本発明者は、焼成の初期段階で印刷層に剥がれが生じる原因が、光照射によって印刷層が収縮し、硬化後の印刷層に残留応力が存在していることにあると推定し、残留応力を低減させ得るインクを探索した。その結果、インク組成物中の無機固形分を特定の体積比率に設定し、かつ、一官能モノマーを主体として構成された光硬化性モノマーとN‐ビニル化合物とを特定の質量比率で組み合わせて使用することにより、焼成後における印刷層の剥がれを抑制してセラミックス基材上に所望の画像をより良く定着させ得ることを見出し、本発明を完成するに至った。
【0008】
すなわち、この明細書によると、焼成を伴うセラミックス基材に使用されるインクジェットインクが提供される。このインクは、無機固形分と、光硬化性を有するモノマー成分と、窒素原子を含有するN‐ビニル化合物とを含む。前記モノマー成分は、分子内に一個の官能基を有する一官能モノマーを含む。前記モノマー成分における前記一官能モノマーの割合が90質量%以上である。前記インクジェットインクの総体積に対する前記無機固形分の体積比率が10体積%~20体積%である。そして、前記インクジェットインクにおける前記N‐ビニル化合物および前記モノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)が、質量基準で0.05~0.8である。このように、インク組成物中の無機固形分を特定の体積比率に設定し、かつ、一官能モノマーを主体として構成された光硬化性モノマーとN‐ビニル化合物とを特定の質量比率で組み合わせて用いることにより、焼成後における印刷層の剥がれを抑制して所望の画像がより良く定着したセラミックス製品を提供することができる。
【0009】
ここに開示されるインクジェットインクの好ましい一態様では、前記無機固形分は、無機顔料およびガラスを含む。インクジェットインクにガラスを含有させることにより、焼成後における印刷層の剥離抑制効果がより好適に発揮され得る。また、セラミックス基材の表面に光沢のある色鮮やかな装飾部を形成することができる。
【0010】
ここに開示されるインクジェットインクの好ましい一態様では、前記無機固形分における前記ガラスの割合が20質量%以上である。このような無機固形分におけるガラスの割合であると、上述した性能向上効果(剥離抑制効果および光沢向上効果)がより好適に発揮され得る。
【0011】
ここに開示されるインクジェットインクの好ましい一態様では、前記無機固形分における前記ガラスの割合が50質量%以上である。このような無機固形分におけるガラスの割合であると、上述した性能向上効果(剥離抑制効果および光沢向上効果)がより好適に発揮され得る。
【0012】
ここに開示されるインクジェットインクの好ましい一態様では、前記一官能モノマーにおける前記官能基は、(メタ)アクリロイル基である。(メタ)アクリロイル基を有する一官能モノマーは、印刷層の剥離抑制に効果的に寄与し得る。
【0013】
ここに開示されるインクジェットインクの好ましい一態様では、前記一官能モノマーの分子量が100~300である。このような一官能モノマーの分子量の範囲内であると、インクの粘度上昇を抑えつつ(ひいては印刷性を良好に維持しつつ)セラミックス基材上に所望の画像をより効果的に定着させることができる。
【0014】
また、本発明によると、装飾部を有するセラミックス製品の製造方法が提供される。その製造方法は、ここに開示されるいずれかのセラミックス基材用インクジェットインクの硬化物をセラミックス基材の表面に堆積する工程と、前記堆積した硬化物を500℃~1200℃の範囲内で最高焼成温度が設定される条件で焼成する工程と、を包含する。かかる製造方法によると、耐久性に優れた装飾部を有するセラミックス製品を安定して(製造安定性よく)製造することができる。
【図面の簡単な説明】
【0015】
【
図1】
図1は、セラミックス基材用インクジェットインクの製造に用いられる撹拌粉砕機を模式的に示す断面図である。
【
図2】
図2は、インクジェット装置の一例を模式的に示す全体図である。
【
図3】
図3は、
図2中のインクジェット装置のインクジェットヘッドを模式的に示す断面図である。
【
図4】
図4は、試験例のインクを用いて画像を印刷した陶磁器の焼成後の写真である。
【
図5】
図5は、試験例のインクを用いて画像を印刷した陶磁器の焼成後の写真である。
【発明を実施するための形態】
【0016】
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「セラミックス」とは、無機物をいう。
【0017】
<セラミックス基材用インクジェットインク>
ここに開示されるインクジェットインクは、焼成を伴うセラミックス基材に使用されるインクジェットインクである。このインクジェットインクは、無機固形分と、光硬化性を有するモノマー成分と、窒素原子を含有するN‐ビニル化合物とを含む。
【0018】
<無機固形分>
(無機顔料)
無機固形分は、焼成後における印刷層(装飾部)の母材を構成する成分であり、無機顔料(典型的には粒子状)を含み得る。無機顔料は、例えば金属化合物を含むものであり得る。かかる無機顔料は、耐熱性に優れているため、セラミックス基材上に付着させた後、500℃以上(例えば500℃~1200℃)の焼成処理を行った際に変色(または消色)することを防止することができる。かかる無機顔料の具体例としては、Zr、Ti、Pr、Cr、Sb、Ni、Co、Al、Cdからなる群のうち、少なくとも一つ以上の金属元素を含む複合金属化合物が挙げられる。これらの中でも、耐熱性の観点からZrを主として含むZr系複合金属酸化物(例えば、ZrSiO4)を特に好ましく用いることができる。例えば、一般的なインクジェット印刷では、シアン、イエロー、マゼンダの3色のインクを組み合わせて所望の色の画像を描画する。上記したZr系複合金属酸化物を無機顔料として使用する場合には、当該Zr系複合金属酸化物に所定の金属元素をドープすることによって、上記した3色の無機顔料を得ることができる。例えば、シアンのZr系複合金属酸化物としてはZrSiO4-V(バナジウム)、イエローのZr系複合金属酸化物としてはZrSiO4-Pr(プラセオジウム)、マゼンダのZr系複合金属酸化物としてはZrSiO4-Feが挙げられる。また、インクジェット装置によっては、上記した3色以外にブラックのインクが用いられることがある。かかるブラックのインクに用いられる無機顔料としては、例えば、FeCr系の複合金属化合物(例えばスピネルブラック)が好ましく用いられる。なお、本実施形態における無機顔料には、従来から使用されている無機顔料を特に制限なく使用することができ、上記したZr系複合金属酸化物に限定されない。
【0019】
無機顔料の粒子径は、後述するインクジェット装置の吐出口の直径を考慮して適宜調整すると好ましい。無機顔料の粒子径が大きすぎると無機顔料が吐出口に詰まってインクの吐出性が低下する虞がある。一般的なインクジェット装置の吐出口の直径は15μm~60μm(例えば25μm)程度であるため、粒径が小さい側から累積100個数%に相当するD100粒径が5μm以下(好ましくは1μm以下)となるように無機顔料を微粒子化すると好ましい。上記D100粒径は、動的光散乱法による粒度分布測定に基づいて測定される値が採用され得る。
【0020】
無機顔料は、後述するガラス中に混在分散した無機粒子であってもよい。かかる無機粒子は、例えばナノ金属粒子であり得る。ナノ金属粒子としては、例えば、ナノ金粒子、ナノ銀粒子、ナノ銅粒子、ナノ白金粒子、ナノチタン粒子、ナノパラジウム粒子などが挙げられる。ナノ金属粒子は、表面プラズモン共鳴(SPR:surface plasmon resonance)に起因して、紫外~可視領域にそれぞれ固有の光学的特徴(例えば強い光吸収帯)を有する。例えばナノ金(Au)粒子は、530nm付近の波長の光(緑色~水色光)を吸収して、「マロン」と呼ばれる青みがかった赤色(赤紫色)の発色を呈する。したがって、例えば赤色や紫色の絵具を調製する場合には、ナノ金属粒子として、ナノ金粒子を好適に用いることができる。また、例えばナノ銀(Ag)粒子は、420nm付近の波長の光(青色光)を吸収して、黄色の発色を呈する。したがって、例えば橙色や黄色の絵具を調製する場合は、ナノ金属粒子として、ナノ銀粒子を好適に用いることができる。
好適な一態様では、ナノ金属粒子のD50粒径が、5nm以上、典型的には10nm以上、例えば15nm以上である。好適な他の一態様では、ナノ金属粒子のD50粒径が、概ね80nm以下、典型的には50nm以下、例えば30nm以下である。D50粒径を上記範囲とすることで、ナノ金属粒子の特定波長の吸光度が増大して、少量の添加で良好な発色を実現することができる。また、色ムラの少ない、緻密な着色部を実現することができる。
【0021】
(ガラス)
無機固形分は、上述した無機顔料の他、ガラス成分を含み得る。インクジェットインクにガラスを含有させることにより、焼成後における印刷層の接着性(ひいては耐久性)が向上するとともに、セラミックス基材の表面に光沢のある色鮮やかな装飾部を形成することができる。
【0022】
このような性状を有し得るガラスとしては、例えば、SiO2-B2O3系ガラス、SiO2-RO(ROは第2族元素の酸化物、例えばMgO、CaO、SrO、BaOを表す。以下同じ。)系ガラス、SiO2-RO-R2O(R2Oはアルカリ金属元素の酸化物、例えばLi2O、Na2O、K2O、Rb2O、Cs2O、Fr2Oを表す。特にはLi2O。以下同じ。)系ガラス、SiO2-B2O3-R2O系ガラス、SiO2-RO-ZnO系ガラス、SiO2-RO-ZrO2系ガラス、SiO2-RO-Al2O3系ガラス、SiO2-RO-Bi2O3系ガラス、SiO2-R2O系ガラス、SiO2-ZnO系ガラス、SiO2-ZrO2系ガラス、SiO2-Al2O3系ガラス、RO-R2O系ガラス、RO-ZnO系ガラスなどが挙げられる。なお、これらのガラスは、上記呼称に現れている主たる構成成分の他に1つまたは2つ以上の成分を含んでもよい。また、ガラスは、一般的な非晶質ガラスの他、結晶を含んだ結晶化ガラスであってもよい。
【0023】
好適な一態様では、ガラス全体を100mol%としたときに、SiO2が半数(50mol%)以上を占めている。SiO2の割合は概ね80mol%以下であり得る。また、ガラスの溶融性を向上する観点からは、ROやR2O、B2O3などの成分を添加してもよい。好適な一態様では、ガラス全体を100mol%としたときに、ROが0~35mol%を占めている。好適な他の一態様では、ガラス全体を100mol%としたときに、R2Oが0~10mol%を占めている。好適な他の一態様では、ガラス全体を100mol%としたときに、B2O3が0~30mol%を占めている。
【0024】
また好適な一態様では、ガラスが4成分以上の(例えば5成分以上の)多成分系で構成されている。これにより、物理的安定性が向上する。例えば、Al2O3やZnO、CaO、ZrO2などの成分を、例えば1mol%以上の割合で添加してもよい。これにより、装飾部の化学的耐久性や耐摩耗性を向上することができる。好適な一態様では、ガラス全体を100mol%としたときに、Al2O3が0~10mol%を占めている。好適な一態様では、ガラス全体を100mol%としたときに、ZrO2が0~10mol%を占めている。
【0025】
上記ガラスの線熱膨張係数(熱機械分析装置を用いて25℃から500℃までの温度領域において測定した平均線膨張係数。以下同じ。)は特に限定されないが、例えば4.0×10-6K-1~8.0×10-6K-1であり得る。これにより、画付焼成時における被装飾物(セラミック)との収縮率の差が小さくなり、装飾した部位に剥離やひびなどが生じ難くなる。また、ガラスの屈伏点は特に限定されないが、例えば400℃~700℃であり得る。また、ガラスのガラス転移点(示差走査熱量分析に基づくTg値。以下同じ。)は特に限定されないが、例えば400℃~700℃であり得る。
【0026】
ここに開示されるガラスの好適例として、ガラス全体を100mol%としたときに、酸化物換算のモル比で以下の組成:
SiO2 40~70mol%(例えば50~60mol%);
B2O3 10~40mol%(例えば20~30mol%);
R2O(Li2O、Na2O、K2O、Rb2Oのうち少なくとも1つ) 3~20mol%(例えば5~10mol%);
Al2O3 0~20mol%(例えば5~10mol%);
ZrO2 0~10mol%(例えば3~6mol%);
から構成されているホウケイ酸ガラスAが挙げられる。ホウケイ酸ガラスAのガラスマトリックス全体に占めるSiO2の割合は、例えば40mol%以上であって、典型的には70mol%以下、例えば65mol%以下であってもよい。ガラスマトリックス全体に占めるB2O3の割合は、典型的には10mol%以上、例えば15mol%以上であって、典型的には40mol%以下、例えば35mol%以下であってもよい。ガラスマトリックス全体に占めるR2Oの割合は、典型的には3mol%以上、例えば6mol%以上であって、典型的には20mol%以下、例えば15mol%以下であってもよい。好ましい一態様では、ホウケイ酸ガラスAは、R2Oとして、Li2O、Na2OおよびK2Oを含む。ガラスマトリックス全体に占めるLi2Oの割合は、例えば3mol%以上6mol%以下であり得る。ガラスマトリックス全体に占めるK2Oの割合は、例えば0.5mol%以上3mol%以下であり得る。ガラスマトリックス全体に占めるNa2Oの割合は、例えば0.5mol%以上3mol%以下であり得る。ガラスマトリックス全体に占めるAl2O3の割合は、典型的には3mol%以上であって、典型的には20mol%以下、例えば15mol%以下であってもよい。ガラスマトリックス全体に占めるZrO2の割合は、典型的には1mol%以上であって、典型的には10mol%以下、例えば8mol%以下であってもよい。
また、ホウケイ酸ガラスAは、上記以外の付加的な成分を含んでいてもよい。かかる付加的な成分としては、例えば、酸化物の形態で、BeO、MgO、CaO、SrO、BaO、ZnO、Ag2O、TiO2、V2O5、FeO、Fe2O3、Fe3O4、CuO、Cu2O、Nb2O5、P2O5、La2O3、CeO2、Bi2O3、Pb2O3等が挙げられる。付加的な成分は、ガラスマトリックス全体を100mol%としたときに、目安として合計10mol%以下の割合で含んでいてもよい。
【0027】
ここに開示される技術は、上記ホウケイ酸ガラスA中に前述したナノ金属粒子等の無機顔料が混在分散していない態様で好ましく実施され得る。
【0028】
ここに開示されるガラスの他の好適例として、ガラス全体を100mol%としたときに、90mol%以上が酸化物換算のモル比で以下の組成:
SiO2 45~70mol%(例えば50~60mol%);
SnO2 0.1~6mol%(例えば1~5mol%);
ZnO 1~15mol%(例えば4~10mol%);
RO(BeO、MgO、CaO、SrO、BaOのうち少なくとも1つ) 15~35mol%(例えば20~30mol%);
R2O(Li2O、Na2O、K2O、Rb2Oのうち少なくとも1つ) 0~5mol%(例えば1~5mol%);
B2O3 0~3mol%(例えば0~1mol%);
から構成されているガラスBが挙げられる。
ガラスBのガラスマトリックス全体に占めるSiO2の割合は、例えば50mol%以上であって、典型的には65mol%以下、例えば60mol%以下であってもよい。ガラスマトリックス全体に占めるSnO2の割合は、典型的には0.5mol%以上、例えば1mol%以上であって、典型的には5.5mol%以下、例えば5mol%以下であってもよい。ガラスマトリックス全体に占めるZnOの割合は、典型的には2mol%以上、例えば4mol%以上であって、典型的には12mol%以下、例えば10mol%以下であってもよい。ガラスマトリックス全体に占めるROの割合は、典型的には18mol%以上、例えば20mol%以上であって、典型的には32mol%以下、例えば30mol%以下であってもよい。ガラスマトリックス全体に占めるR2Oの割合は、概ね0.1mol%以上、例えば1mol%以上であって、例えば3mol%以下であってもよい。ガラスマトリックス全体に占めるB2O3の割合は、典型的には1mol%以下、例えば0.1mol%以下であってもよい。
また、上記ガラスBは、上記以外の付加的な成分を含んでいてもよい。かかる付加的な成分としては、例えば、酸化物の形態で、Ag2O、A12O3、ZrO2、TiO2、V2O5、FeO、Fe2O3、Fe3O4、CuO、Cu2O、Nb2O5、P2O5、La2O3、CeO2、Bi2O3等が挙げられる。付加的な成分は、ガラスマトリックス全体を100mol%としたときに、目安として合計10mol%以下の割合で含んでいてもよい。
【0029】
ここに開示される技術は、上記ガラスBのガラスマトリックス中に前述したナノ金属粒子が混在している態様で好ましく実施され得る。ガラスBに含まれる着色剤の割合は特に限定されないが、ガラスBと着色剤との総体積を100体積%としたときに、概ね1体積%以下、典型的には0.8体積%以下、例えば0.7体積%以下であるとよい。これにより、鮮やかな色みの着色部を安定的に実現することができる。
【0030】
上記ガラスBは、さらに保護剤を含んでいてもよい。ガラスBに保護剤を含むことで、画付焼成時に着色剤成分(ナノ金属粒子)とガラス成分とが接触し難くなり、着色剤がガラスの構成成分として取り込まれることをより良く抑制することができる。したがって、より一層発色性に優れ、はっきりした色調の着色部を実現することができる。保護剤は、典型的には着色剤と共にガラスマトリックス中に混在している。
【0031】
保護剤としては特に限定されないが、例えば、ナノメートルサイズ(1~100nm)のナノセラミック粒子、具体的には、ナノシリカ粒子、ナノジルコニア粒子、ナノアルミナ粒子、ナノチタニア粒子などを用いることができる。なかでもシリカは、焼結すると透明性が高まる性質を有するため、着色部の発色性を引き立たせたり、鏡面光沢度を高めて艶感を増したりする効果がある。したがって、保護剤としてナノシリカ粒子を特に好ましく用いることができる。
【0032】
ここに開示される無機固形分におけるガラスの割合(すなわち無機固形分の全量のうちガラスが占める割合)は特に限定されないが、典型的には20質量%以上であり、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましい。ガラスの割合の増大によって、焼成後における印刷層の剥離をより効果的に抑制することができる。また、セラミックス基材の表面に光沢のある色鮮やかな装飾部を形成することができる。上記ガラスの割合は、例えば60質量%以上であってもよく、典型的には75質量%以上であってもよい。また、装飾部を安定的に実現する等の観点から、通常は、上記ガラスの割合は、99質量%以下が適当であり、好ましくは98質量%以下、より好ましくは96質量%以下である。ここに開示される技術は、無機固形分におけるガラスの割合が20質量%以上99質量%以下(さらには50質量%以上96質量%以下)である態様で好ましく実施され得る。
【0033】
インクジェットインクの総体積に対する無機固形分の体積比率は、概ね10体積%以上である。無機固形分の体積比率の増大によって、印刷層の耐久性(特に焼成時の熱収縮に対する耐久性)が向上し、焼成後における印刷層(装飾部)の剥離をより効果的に抑制することができる。また、色鮮やかな画像形成を実現することができる。これらの観点から、上記体積比率は、好ましくは12体積%以上、より好ましくは13体積%以上である。また、インクの粘度上昇を抑制して良好な印刷性(例えば吐出口からのインク吐出性)を維持する等の観点から、通常は、上記無機固形分の体積比率は、20質量%以下が適当であり、好ましくは18質量%以下である。印刷層の剥離抑制と印刷性とを両立する観点から、上記体積比率が10質量%以上20質量%以下(さらには14質量%以上18質量%以下)であるインクが特に好ましい。
【0034】
<光硬化性を有するモノマー成分>
ここに開示されるインクジェットインクは、N‐ビニル化合物以外のモノマーであって光硬化性を有するモノマー成分(以下、光硬化性モノマーとも称する。)を含有する。かかる光硬化性モノマーは、典型的には液状であり、光(例えば紫外線)照射時に重合(又は架橋)して硬化する樹脂の単量体である。かかるモノマー成分を含む光硬化性インクを使用することによって、吸水性に乏しいセラミックス基材を対象とした場合であっても、十分な厚みのインクを滲むことなく定着させることができる。
【0035】
(一官能モノマー)
上記モノマー成分は、一官能モノマーを含んでいる。一官能モノマーは、一個の官能基(典型的には重合性官能基)と、当該官能基を除く残基とから構成されており、当該官能基が重合することによって光硬化性樹脂が硬化する。一官能モノマーの残基の構造は、特に限定されず、直鎖構造であってもよいし、環状構造であってもよい。但し、一官能モノマーの残基の炭素数が増加するに伴ってインクの粘度が高くなるため、印刷性(例えば吐出口からの吐出性)等を考慮して一官能モノマーの残基の炭素数を決定すると好ましい。例えば、一官能モノマーの残基の炭素数を3~11にすると好ましい。
【0036】
一官能モノマーは、例えば、分子内に1個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物であり得る。ここでいう「(メタ)アクリロイル基」とは、メタクリロイル基(CH2=CCH3COO‐)およびアクリロイル基(CH2=CHCOO‐)の一方または両方を包含する概念である。このような(メタ)アクリレート化合物を用いることによって、焼成後における印刷層の剥がれを効果的に抑制することができる。かかる(メタ)アクリレート化合物は、無機顔料の分散性や光硬化性の点からも好適である。
【0037】
分子内に1個の(メタ)アクリロイル基を有する一官能モノマーの具体例としては、例えば、イソボルニルアクリレート、ベンジルアクリレート、環状トリメチロールプロパンホルマールアクリレート、フェノキシエチルアクリレート、テトラヒドロフルフリルアクリレート、メトキシエチルアクリレート、シクロヘキシルアクリレート、エチルカルビトールアクリレート、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、メチル(メタ)アクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ペンチルアクリレート、n-ステアリルアクリレート、ブトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、イソアミルアクリレート、ラウリル(メタ)アクリレート、オクチルアクリレート、イソオクチル(メタ)アクリレート、イソノニルアクリレート、デシルアクリレート、イソデシルアクリレート、トリデシル(メタ)アクリレート、イソミリスチルアクリレート、イソステアリルアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシル-ジグリコールアクリレート、4-ヒドロキシブチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、エトキシジエチレングリコールアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、2-エチルヘキシルカルビトールアクリレート、フェノキシエトキシエチルアクリレートなどが挙げられる。上述した(メタ)アクリレート化合物は1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、イソボルニルアクリレート、ベンジルアクリレート、環状トリメチロールプロパンホルマールアクリレート、フェノキシエチルアクリレート、テトラヒドロフルフリルアクリレート、メトキシエチルアクリレート、シクロヘキシルアクリレート、エチルカルビトールアクリレート、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレートが好ましく、イソボルニルアクリレート、ベンジルアクリレート、環状トリメチロールプロパンホルマールアクリレート、フェノキシエチルアクリレートが特に好ましい。
【0038】
一官能モノマーは、(メタ)アクリレート化合物以外のモノマーであってもよい。例えば、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル等のビニルエーテル基を有する一官能モノマー;フェニルアリルエーテル等のアリルエーテル基を有する一官能モノマー;酢酸ビニル等のアセチルビニル基を有する一官能モノマー;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド基を有する一官能モノマー;等が挙げられる。
【0039】
上記一官能モノマーの分子量は特に限定されないが、インクの粘度上昇を抑制する等の観点から、典型的には300以下、好ましくは280以下、より好ましくは260以下、さらに好ましくは240以下である。好ましい一態様において、一官能モノマーの分子量は、例えば220以下であってもよく、典型的には200以下(200未満)であってもよい。また、一官能モノマーの分子量は、典型的には100以上であり、印刷層の剥離抑制等の観点から、好ましくは110以上、より好ましくは120以上、さらに好ましくは130以上である。一官能モノマーの分子量は、例えば140以上であってもよく、典型的には150以上であってもよい。このような一官能モノマーの分子量の範囲内であると、インクの粘度上昇を抑えつつセラミックス基材上に所望の画像をより効果的に定着させることができる。
【0040】
(他のモノマー成分)
ここで開示されるモノマー成分は、上述した一官能モノマー以外の樹脂材料(例えば、二官能モノマー、三官能モノマー、四~六官能モノマー、オリゴマーなど)を含み得る。
【0041】
二官能モノマーとしては、分子内に2個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物が挙げられる。分子内に2個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物としては、例えば、1,9-ノナンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサン-1,4-ジメタノールジ(メタ)アクリレート、シクロヘキサン-1,3-ジメタノールジ(メタ)アクリレート、1,4-シクロヘキサンジオールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAEO3.8モル付加物ジアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物等が例示される。
【0042】
三官能モノマーとしては、分子内に3個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物が挙げられる。分子内に3個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート等が例示される。
【0043】
四~六官能モノマーとしては、分子内に4~6個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物が挙げられる。分子内に4~6個の(メタ)アクリロイル基を有する(メタ)アクリレート化合物としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロキシテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート等が例示される。
【0044】
ここに開示される技術は、上述した光硬化性モノマーの全量のうち一官能モノマーの割合(2種類以上の一官能モノマーを含むインクでは、それらの合計割合)が90質量%以上である態様で実施される。硬化時におけるポリマーの収縮率は、モノマーの官能基数が小さいほど小さくなる傾向があると考えられる。そのため、光硬化性モノマーにおける一官能モノマーの割合を増やすことによって、硬化収縮を小さくして印刷層の残留応力を減らすことができる。結果、残留応力に起因する印刷層の剥がれ(例えば残留応力に起因して印刷層の端部が反り変形してセラミックス基材から剥がれる事象)を抑制することができる。印刷層の残留応力を低減する等の観点から、上記一官能モノマーの割合は、好ましくは92質量%以上、より好ましくは94質量%以上、さらに好ましくは96質量%以上、特に好ましくは96質量%以上である。上記一官能モノマーの割合は、例えば98質量%以上、典型的には99質量%以上であってもよい。なかでも、インクジェットインクに含まれる光硬化性モノマー成分の100質量%が一官能モノマーであるインクジェットインクが好ましい。
【0045】
インクジェットインクにおける光硬化性モノマーの含有量は、N‐ビニル化合物および光硬化性モノマーの含有量の比が後述する範囲を満たす限りにおいて特に制限されないが、通常は10質量%以上60質量%以下にすることが適当である。上記光硬化性モノマーの含有量は、好ましくは15質量%以上55質量%以下、より好ましくは18質量%以上52質量%以下、さらに好ましくは20質量%以上50質量%以下である。ここに開示される技術は、インクジェットインクにおける光硬化性モノマーの含有量が25質量%以上45質量%以下である態様で好ましく実施され得る。
【0046】
<N‐ビニル化合物>
ここに開示されるインクジェットインクは、上述した光硬化性モノマー成分のほか、窒素原子を含有するN‐ビニル化合物を含む。N‐ビニル化合物は、窒素含有化合物の窒素(N)原子に不飽和エチレン基(例えばビニル基)が結合した構造のものであれば特に限定されない。ここに開示されるN‐ビニル化合物の一例として、例えば、下記一般式(1)で表されるN‐ビニル化合物が挙げられる。
【0047】
CH2=CR1-NR2R3 (1)
上記一般式(1)中、R1は水素原子、炭素原子数1~4のアルキル基、フェニル基、ベンジル基またはハロゲン基である。なかでも、水素原子、炭素原子数1~4のアルキル基が好ましく、水素原子が特に好ましい。炭素原子数が1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基が挙げられる。R2,R3は、水素原子、置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基(CH3CO-)および芳香族基から選択される基であり得る。なかでも、置換基を有してよいアルキル基、アセチル基が好ましい。R2,R3は同じであってもよく異なっていてもよい。置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基における炭素原子の総数は1~20であり得る。上記総数は、好ましくは1~10、より好ましくは1~6、さらに好ましくは1~4である。上記置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基は鎖状または環状であり得るが、鎖状であることが好ましい。ここで鎖状とは直鎖状または分岐状をいう。芳香族基は、置換基を有してよいアリール基である。上記芳香族基における炭素原子の総数は6~36である。上記総数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~12である。上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基が有し得る置換基は、例えば、水酸基、フッ素原子、塩素原子等のハロゲン原子を包含する。
【0048】
上記一般式(1)中、R2とR3とは互いに結合して環状構造を形成していてもよい。すなわち、-NR2R3は、R2とR3とが窒素原子を介して連結した環状構造(-R2NR3-)であってもよい。ここでいう環状構造とは、例えば脂肪族複素環構造または芳香族複素環構造であり得る。脂肪族複素環構造および芳香族複素環構造は、単環構造、縮環構造のいずれであってもよい。脂肪族複素環構造および芳香族複素環構造における環を構成する原子の総数は3~20、好ましくは3~15、より好ましくは3~12、さらに好ましくは3~10であり得る。脂肪族複素環構造および芳香族複素環構造は、環を構成する原子として2つ以上の窒素原子を含んでもよい。また、脂肪族複素環構造および芳香族複素環構造は、環を構成する原子として炭素原子および窒素原子以外に、酸素原子や硫黄原子を含んでもよい。環状構造が脂肪族複素環構造の場合、-R2NR3-は-CH2C(=O)N(CH2)n-であり得る。この場合、nは1~10の整数であることが好ましい。上記nは2~6であることがさらに好ましく、2~4であることが特に好ましい。
【0049】
上記N‐ビニル化合物の一好適例としては、R1が水素原子またはメチル基であり、R2,R3が互いに結合して環状構造を形成しているものが挙げられる。そのようなN‐ビニル化合物の具体例として、N‐ビニル‐2‐カプロラクタム、N‐ビニル‐2‐ピロリドン、N‐ビニル‐3‐モルホリノン、N‐ビニルピペリジン、N‐ビニルピロリジン、N‐ビニルアジリジン、N‐ビニルアゼチジン、N‐ビニルイミダゾール、N‐ビニルモルホリン、N‐ビニルピラゾール、N‐ビニルバレロラクタム、N-ビニルカルバゾール、N‐ビニルフタルイミド等が挙げられる。なかでも、N‐ビニル‐2‐カプロラクタムが好ましい。
【0050】
上記N‐ビニル化合物の他の例としては、R1が水素原子またはメチル基であり、かつ、R2,R3がアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基から選択される基であるものが挙げられる。そのようなN‐ビニル化合物の具体例として、N‐ビニルホルムアミド、N‐ビニルアセトアミド、N‐メチル‐N-ビニルホルムアミド、N‐メチル‐N-ビニルアセトアミド等が挙げられる。上述のN‐ビニル化合物は1種を単独でまたは2種以上を組み合わせて用いることができる。
【0051】
上記N‐ビニル化合物は、前述した光硬化性モノマーと特定の比率で組み合わせて使用することにより、焼成後における印刷層の剥離抑制に効果的に寄与し得る。このような効果が得られる理由としては特に限定解釈されるものではないが、例えば以下のように考えられる。すなわち、上記光硬化性モノマーの主成分を構成する一官能モノマーは、硬化時における収縮を小さくして印刷層(硬化膜)の残留応力を低減する作用を示す一方で、重合したポリマーが3次元構造をとり難いため、硬化膜強度が弱くなりがちである。これに対し、上記N‐ビニル化合物は、生成したラジカルと上記一官能モノマーとの反応性が高く、硬化収縮に悪影響を与えることなくポリマーの硬化を促進する。また、N‐ビニル化合物自体が硬い骨格をもつため、架橋密度を上げることなく、ポリマーの弾性率が向上する。そのため、一官能モノマーによる残留応力低減効果と相俟って、焼成時に印刷層が変形(典型的には反り変形)しにくくなる。このことが印刷層の剥離抑制に寄与するものと考えられる。
【0052】
N‐ビニル化合物と前記モノマー成分とを併用することによる効果をよりよく発揮させる観点から、インクジェットインクにおけるN‐ビニル化合物およびモノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)は、質量基準で0.05~0.8であることが適当である。上記含有量の比は、例えば0.1~0.7であってもよく、典型的には0.1~0.5(例えば0.15~0.4)であってもよく、0.1~0.25(例えば0.15~0.25)であってもよい。
【0053】
インクジェットインクにおけるN‐ビニル化合物の含有量は、N‐ビニル化合物およびモノマー成分の含有量の比が上記範囲を満たす限りにおいて特に制限されないが、通常は1.5質量%以上22質量%以下にすることが適当である。上記モノマー成分の含有量は、例えば2質量%以上20質量%以下であってもよく、典型的には5質量%以上15質量%以下であってもよい。
【0054】
<その他の成分>
ここに開示されるインクジェットインクは、本発明の効果を損なわない範囲で、光重合開始剤、分散剤、バインダ、粘度調整剤等の、インクジェットインク(典型的には焼成を伴うセラミックス基材に使用されるインクジェットインク)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
【0055】
(光重合開始剤)
ここに開示されるインクジェットインクは、光重合開始剤を含んでもよい。光重合開始剤は、従来から使用されている光重合開始剤を適宜選択し得る。かかる光重合開始剤としては、例えば、アルキルフェノン系光重合開始剤やアシルフォスフィンオキサイド系光重合開始剤などのラジカル系光重合開始剤が挙げられる。かかるアルキルフェノン系光重合開始剤としては、例えば、α-アミノアルキルフェノン系光重合開始剤(例えば、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンなど)が好ましく用いられる。また、アルキルフェノン系光重合開始剤の他の例として、α-ヒドロキシアルキルフェノン系光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンなど)を用いることができる。
上記した種々の光重合開始剤の中でも、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンなどのα-アミノアルキルフェノン系光重合開始剤は、高い反応性を発揮してインクの硬化速度を向上させることができ、薄膜硬化性や表面硬化性に優れているため、特に好ましく用いることができる。
【0056】
(分散剤)
ここに開示されるインクジェットインクは、分散剤を含んでもよい。分散剤としては、例えばカチオン系分散剤が用いられる。かかるカチオン系分散剤は、酸塩基反応によって無機顔料の表面に効率良く付着するため、リン酸系分散剤などの他の分散剤と異なり、上記した無機顔料の凝集を抑制して好適に分散させることができる。かかるカチオン系分散剤の一例としてアミン系分散剤が挙げられる。かかるアミン系分散剤は、立体障害により無機顔料が凝集することを防止すると共に、当該無機顔料を安定化させることができる。また、無機顔料の粒子に同一の電荷を付与することができるため、この点においても、無機顔料の凝集を好適に防止することができる。このため、インクの粘度を好適に低下させて印刷性を大きく向上させることができる。かかるアミン系分散剤の例としては、脂肪酸アミン系分散剤、ポリエステルアミン系分散剤などが挙げられ、例えば、ビックケミー・ジャパン株式会社製のDISPERBYK-2013など好ましく用いることができる。
【0057】
また、本実施形態に係るセラミックス基材用インクジェットインクには、上記した材料以外に種々の添加物を添加することができる。かかる添加物としては、例えば、焼成処理において無機顔料とセラミックス基材とを付着させるためのガラスバインダや粘度調整用に微量添加される有機溶媒などが挙げられる。
【0058】
<インクジェットインクの調製>
セラミックス基材用インクジェットインクは、上記した各材料を所定の割合で混合することによって調製(製造)され得る。
図1はセラミックス基材用インクジェットインクの製造に用いられる撹拌粉砕機を模式的に示す断面図である。なお、以下の説明は、ここで開示されるセラミックス基材用インクジェットインクを限定することを意図したものではない。
【0059】
本実施形態に係るセラミックス基材用インクジェットインクを製造するに際には、先ず、上述した各々の材料を秤量して混合し、当該インクの前駆物質であるスラリーを調製する。
次に、
図1に示すような撹拌粉砕機100を用いて、スラリーの撹拌と当該スラリー中の無機固形分の粉砕を行う。具体的には、上記したスラリーに粉砕用ビーズ(例えば、直径0.5mmのジルコニアビーズ)を添加した後に、供給口110から撹拌容器120内にスラリーを供給する。この撹拌容器120内には、複数の撹拌羽132を有したシャフト134が収容されている。かかるシャフト134の一端はモータ(図示省略)に取り付けられており、当該モータを稼働させてシャフト134を回転させることによって複数の撹拌羽132でスラリーを送液方向Aの下流側に送り出しながら撹拌する。このとき、スラリーに添加されている粉砕用ビーズによって無機固形分が粉砕され、微粒化した無機固形分を分散させることができる。
【0060】
そして、送液方向Aの下流側まで送り出されたスラリーは、フィルター140を通過する。これによって、粉砕用ビーズや微粒化されなかった無機固形分がフィルター140によって捕集され、無機固形分が微粒化された状態で好適に分散されたセラミックス基材用インクジェットインクが排出口150から排出される。
【0061】
<印刷方法>
次に、本実施形態に係るセラミックス基材用インクジェットインクを用いて、セラミックス基材に画像を描画する手順を説明する。
図2はインクジェット装置の一例を模式的に示す全体図である。
図3は
図2中のインクジェット装置のインクジェットヘッドを模式的に示す断面図である。
【0062】
本実施形態に係るセラミックス基材用インクジェットインクは、
図2に示すインクジェット装置1のインクジェットヘッド10内に貯蔵される。かかるインクジェット装置1は、4個のインクジェットヘッド10を備えており、各々のインクジェットヘッド10には、ブラック(K)、シアン(C)、イエロー(Y)、マゼンダ(M)の異なる4色のセラミックス基材用インクジェットインクが貯蔵される。そして、各々のインクジェットヘッド10は、印刷カートリッジ40の内部に収容されている。かかる印刷カートリッジ40は、ガイド軸20に挿通されており、当該ガイド軸20の軸方向Xに沿って往復動するように構成されている。また、図示は省略するが、このインクジェット装置1は、ガイド軸20を軸方向の垂直方向Yに移動させる移動手段を備えている。これによって、セラミックス基材Wの所望の位置に向けてインクジェットヘッド10からインクを吐出することができる。
【0063】
また、
図2中のインクジェットヘッド10には、例えば、
図3に示すようなピエゾ型のインクジェットヘッドが用いられる。かかるピエゾ型のインクジェットヘッド10には、ケース12内にインクを貯蔵する貯蔵部13が設けられており、当該貯蔵部13が送液経路15を介して吐出部16と連通している。この吐出部16には、ケース12外に開放された吐出口17が設けられていると共に、当該吐出口17に対向するようにピエゾ素子18が配置されている。そして、かかるインクジェットヘッド10では、ピエゾ素子18を振動させることによって、吐出部16内のインクを吐出口17からセラミックス基材W(
図2参照)に向けて吐出する。
【0064】
そして、
図2に示すインクジェット装置1のガイド軸20には、UV照射手段30が取り付けられている。かかるUV照射手段30は、印刷カートリッジ40に隣接するように配置されており、印刷カートリッジ40の往復動に伴って移動し、セラミックス基材Wに紫外線を照射する。これによって、セラミックス基材Wに付着させた直後にインクを硬化させることができるため、吸水性に乏しいセラミックス基材Wを対象とした場合であっても、十分な厚みのインクを滲むことなくセラミックス基材W上に定着させることができる。このようにして、インクジェットインクの硬化物(印刷層)をセラミックス基材の表面に堆積する。
【0065】
そして、上記硬化物(印刷層)が堆積したセラミックス基材Wを、500℃~1200℃(好ましくは500℃~1000℃、より好ましくは600℃~900℃)の範囲内で最高焼成温度が設定される条件で焼成する。このとき、本実施形態に係るセラミックス基材用インクジェットインクでは、耐熱性に優れた無機顔料が顔料として使用されているため、かかる焼成処理によって顔料が変色(又は消色)することを防止できる。また、光硬化性モノマーにおける一官能モノマーの割合が90質量%以上であり、インクジェットインクの総体積に対する無機固形分の体積比率が10体積%~20体積%であり、かつ、インクジェットインクにおけるN‐ビニル化合物および光硬化性モノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)が、質量基準で0.05~0.8であるので、焼成の初期段階において印刷層が剥がれる事象が解消または緩和され、セラミックス基材を所望の画像で確実に加飾することができる。
【0066】
なお、上述した印刷方法に関する説明では、ここで開示されるセラミックス基材用インクジェットインクの用途を制限するものではない。
具体的には、上記の説明では、印刷方法の一例として、セラミックス基材の表面に直接インクを付着させて印刷層(硬化物)を堆積する方法を挙げている。しかし、ここで開示されるセラミックス基材用インクジェットインクを用いて印刷層を形成するに際しては、必ずしもセラミックス基材の表面に直接吐出しなくてもよい。例えば、所定の転写紙にインクを付着させて画像を描画した後に、当該転写紙に描画された画像をセラミックス基材に転写してもよい。このように、転写紙を使用してセラミックス基材を加飾する場合でも、ここで開示されるインクを用いることによって、十分な厚みのインクを滲むことなくセラミックス基材上に定着させ、所望の画像を精密に印刷することができる。
【0067】
<セラミックス製品の製造方法>
ここに開示される技術には、例えば、装飾部を有するセラミックス製品の製造方法の提供が含まれ得る。すなわち、ここに開示される技術によると、ここに開示されるいずれかのインクジェットインクの硬化物をセラミックス基材の表面に堆積する工程と、堆積した硬化物を500℃~1200℃の範囲内で最高焼成温度が設定される条件で焼成する工程と、を包含する、セラミックス製品の製造方法が提供される。上記製造方法は、ここに開示されるいずれかの印刷方法の内容を好ましく適用することにより実施され得る。上記製造方法によると、耐久性に優れた装飾部を有するセラミックス製品が安定して(製造安定性よく)提供され得る。
【0068】
以下、本発明に関する試験例を説明するが、かかる試験例は本発明を限定することを意図したものではない。
【0069】
<インクジェットインク>
光硬化性モノマーとN-ビニル化合物と無機固形分と分散剤と光重合開始剤とを混合して例1~27のインクジェットインクを調製した。各例に係るインクジェットインクについて、使用した光硬化性モノマー成分の種類および含有量(質量%)、N-ビニル化合物の種類および含有量(質量%)、無機固形分の種類および含有量(質量%)、分散剤の種類および含有量(質量%)、光重合開始剤の種類および含有量(質量%)を表1、表2に纏めて示す。ここでは組成の合計を100質量%とした場合の割合で示している。また、モノマー成分における1官能モノマーの割合(質量%)、インクジェットインクの総体積に対する無機固形分の体積比率(体積%)、無機固形分におけるガラスの割合(質量%)を表1、表2に纏めて示す。
【0070】
なお、表1、表2中の「IBXA」はイソボルニルアクリレート(大阪有機化学工業株式会社製)であり、「BAZ」はベンジルアクリレート(大阪有機化学工業株式会社製)であり、「CTFA」は環状トリメチロールプロパンホルマールアクリレート(大阪有機化学工業株式会社製)であり、「PHEA」はフェノキシエチルアクリレート(大阪有機化学工業株式会社製)であり、何れも一官能モノマーである。「1,9‐NDDA」は1,9‐ノナンジオールジアクリレート(大阪有機化学工業株式会社製)であり、二官能モノマーである。「TMP3A」はトリメチロールプロパントリアクリレートであり、三官能モノマーである。「NVC」はN‐ビニルカプロラクタムである。「ガラスA」は、ガラス全体を100mol%としたときに、酸化物換算のモル比で以下の組成:SiO2 54.8mol%;B2O3 24.1mol%;Li2O 4.7mol%;K2O 1.5mol%;Na2O 1.9mol%;Al2O3 8.1mol%;ZrO2 4.9mol%;から構成されているホウケイ酸ガラス(熱膨張係数6.1××10-6K-1、屈伏点555℃)である。「マゼンタ」は、ガラス中にAuナノ粒子(着色剤)を分散させた材料であり、材料組成中、95質量%以上がガラスである。「スピネル黒」は無機顔料のブラックであり、ここではスピネルブラックを使用した。「ジルコンイエロー」は、無機顔料のイエローであり、ここではジルコンプラセオジウムを使用した。「ジルコンバナジウム」は、無機顔料のシアンである。「BYK2013」はアミン系分散剤(ビックケミー・ジャパン株式会社製:DISPERBYK-2013)である。「IQ907」はα-アミノアルキルフェノン系光重合開始剤である2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(豊通ケミプラス株式会社製:IIRGACURE907)である。なお、インクジェットインクの総体積に対する無機固形分の体積比率(体積%)は、各材料の比重を用いて各材料の含有量を体積に換算して求めたものである。
【0071】
<評価試験>
上記した各例のインクを、インクジェット装置(富士フィルム株式会社製:マテリアルプリンター DMP-2831)を使用して転写紙に模様を描画した後、当該転写紙に描画された画像を、主成分が骨灰、カオリン、長石などからなる陶磁器の表面に転写した。次いで、陶磁器を850℃の温度で焼成した。例1のインクを用いて画像を印刷した陶磁器の焼成後の写真を
図4に示し、例8のインクを用いて模様を印刷した陶磁器の焼成後の写真を
図5に示す。
そして、陶磁器に印刷された画像の剥がれの有無、光沢度および接着性を評価した。結果を表1、表2に示す。表1、表2中の「画像剥がれ」は、インクジェットヘッドからインクが吐出されず、画像が印刷できなかったものを「××」、焼成後に画像が剥がれて画像崩れが認められたものを「×」、焼成後に上記画像崩れが認められなかったものを「◎」と評価した。「光沢」は、焼成後の画像に光沢がないものを「×」、焼成後の画像に若干の光沢があるものを「○」、焼成後の画像に光沢があるものを「◎」と評価した。「接着性」は、焼成後の画像が手で軽く触れて完全に剥がれたものを「×」、焼成後の画像が手で触れても完全には剥がれないが、部分的に剥がれたものを「△」、焼成後の画像が手で触れても容易に剥がれなかったものを「○」、焼成後の画像が手で触れて強くこすっても剥がれなかったものを「◎」と評価した。なお、表1の「ガラス/無機固形分の体積比率」欄における「0.95≦」は0.95以上を意味している。
【0072】
【0073】
【0074】
表1および表2に示すように、光硬化性モノマーにおける一官能モノマーの割合が90質量%以上であり、インクジェットインクの総体積に対する無機固形分の体積比率が10体積%~20体積%であり、かつ、インクジェットインクにおけるN‐ビニル化合物およびモノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)が質量基準で0.05~0.8である例8、9、11~14、17、19~27は、焼成後においても画像崩れが認められず、画像剥がれで良好な結果が得られた。この結果から、光硬化性モノマーにおける一官能モノマーの割合を90質量%以上とし、インクジェットインクの総体積に対する無機固形分の体積比率を10体積%~20体積%とし、かつ、インクジェットインクにおけるN‐ビニル化合物およびモノマー成分の含有量の比(N‐ビニル化合物/モノマー成分)を0.05~0.8とすることによって、焼成後における印刷層(装飾部)の剥がれを抑制してセラミックス基材上に所望の画像をより良く定着させ得ることが確認できた。なお、無機固形分におけるガラスの割合を20質量%以上とした例8、9、11~14、17、19~25は、例26、27に比べて、光沢度および接着性で良好な結果が得られた。また、無機固形分におけるガラスの割合を50質量%以上とした例8、9、11~14、17、19、20、22、23は、例21、24、25に比べて、光沢度および接着性でさらに良好な結果が得られた。
【0075】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【産業上の利用可能性】
【0076】
本発明によれば、焼成後における印刷層の剥がれを抑制してセラミックス基材上に所望の画像をより良く定着させ得るセラミックス基材用インクジェットインクを提供することができる。