(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】レンズユニット及びレンズユニットの製造方法
(51)【国際特許分類】
G02B 7/02 20210101AFI20221220BHJP
【FI】
G02B7/02 B
G02B7/02 A
(21)【出願番号】P 2018247242
(22)【出願日】2018-12-28
【審査請求日】2021-11-10
(73)【特許権者】
【識別番号】000113263
【氏名又は名称】HOYA株式会社
(74)【代理人】
【識別番号】100121083
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100166408
【氏名又は名称】三浦 邦陽
(72)【発明者】
【氏名】遠藤 賢
(72)【発明者】
【氏名】猪狩 隆
【審査官】登丸 久寿
(56)【参考文献】
【文献】国際公開第2016/051619(WO,A1)
【文献】特開2003-023201(JP,A)
【文献】特表2012-506836(JP,A)
【文献】特開2007-133197(JP,A)
【文献】特開2017-223829(JP,A)
【文献】特開平11-174282(JP,A)
【文献】特開平03-265529(JP,A)
【文献】国際公開第2014/045850(WO,A1)
【文献】韓国公開特許第10-2016-0088003(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 7/02
(57)【特許請求の範囲】
【請求項1】
筒状のレンズ枠の内部にレンズを保持したレンズユニットであって、
レンズは、入射面と出射面の少なくとも一方を凸面とし、光源からの光を所定の位置に集光する正のパワーを有し、
レンズ枠の内部に内径側へ突出する突部を備え、前記突部が前記レンズの外周部分に嵌合して前記レンズを保持し、
前記突部の内周部分に、前記レンズの光軸方向に位置を異ならせて、光軸方向の入射側に位置する第1面と、光軸方向の出射側に位置する第2面と、前記第1面及び前記第2面の間に位置する第3面とを備え、前記第1面と前記第2面と前記第3面がそれぞれ光軸方向に進むにつれて前記レンズ枠の内径を変化させる傾斜を有するテーパ面であ
り、
前記第1面は、入射側から出射側に進むにつれて内径を小さくし、
前記第2面は、出射側から入射側に進むにつれて内径を小さくし、
前記第3面は、入射側から出射側に進むにつれて内径を小さくし、光軸方向に対する傾斜の大きさが前記第1面とは異なることを特徴とするレンズユニット。
【請求項2】
筒状のレンズ枠の内部にレンズを保持したレンズユニットであって、
レンズは、入射面と出射面の少なくとも一方を凸面とし、光源からの光を所定の位置に集光する正のパワーを有し、
レンズ枠の内部に内径側へ突出する突部を備え、前記突部が前記レンズの外周部分に嵌合して前記レンズを保持し、
前記突部の内周部分に、前記レンズの光軸方向に位置を異ならせて、光軸方向の入射側に位置する第1面と、光軸方向の出射側に位置する第2面と、前記第1面及び前記第2面の間に位置する第3面とを備え、前記第1面と前記第2面と前記第3面がそれぞれ光軸方向に進むにつれて前記レンズ枠の内径を変化させる傾斜を有するテーパ面であり、
前記第1面は、入射側から出射側に進むにつれて内径を小さくし、
前記第2面は、出射側から入射側に進むにつれて内径を小さくし、
前記第3面は、出射側から入射側に進むにつれて内径を小さくし、光軸方向に対する傾斜の大きさが前記第2面とは異なることを特徴とするレンズユニット。
【請求項3】
前記入射面から入射して前記第3面で反射した光は、前記出射面で全反射する請求項1記載のレンズユニット。
【請求項4】
前記第3面は、前記入射面と前記出射面のうち凸の曲率が大きい面側に進むにつれて内径を小さくする請求項1または2記載のレンズユニット。
【請求項5】
前記レンズ枠は、前記光源と前記レンズの間の光軸方向位置の内面に、反射光を前記突部に向けて進行させる反射制御部を備える請求項1から
4のいずれか1項記載のレンズユニット。
【請求項6】
前記第3面の内径が小さくなる側を下方に向けて前記レンズ枠を成形装置に配置し、前記第3面に成形前のガラス材料を載置し、
前記成形装置の上型と下型によって前記ガラス材料を上下からプレスして前記レンズを成形する、請求項1から
5のいずれか1項記載のレンズユニットを製造するレンズユニットの製造方法。
【請求項7】
前記レンズの前記入射面と前記出射面のうち凸の曲率が大きい一方の面を成形する成形面を前記下型に設け、他方の面を成形する成形面を前記上型に設ける請求項
6記載のレンズユニットの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズユニットとその製造方法に関する。
【背景技術】
【0002】
光通信装置やプロジェクタなどの光学機器で、光源からの光を配光する部位に、筒状のレンズ枠の内部にレンズを固定的に保持したレンズユニットが用いられる。レンズユニットは光源に対して所定の位置関係で取り付けられ、光源から発した光(発散光)をレンズユニットのレンズによって所定の位置に集光させる。
【0003】
この種のレンズユニットでは、レンズ枠の内部でレンズを高精度かつ強固に保持することが求められる。また、光源とレンズの間を不活性ガスなどで満たす場合には、レンズとレンズ枠の間の気密性の確保も求められる。その対策として、レンズ枠の内部に設けた突部をレンズの外周部分に嵌合させて、レンズの保持性を高めた構成が知られている。
【0004】
また、レンズユニットでは、レンズの入射面と出射面のそれぞれの有効径内を適正に通る有効光線のみを配光することが求められる。有効光線以外の周辺光、反射光、迷光などはゴーストなどの原因になるため、このような有害な光を、レンズ枠の一部を用いて遮蔽する技術が提案されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2010-156905号公報
【文献】特開2001-350075号公報
【文献】特許第2729702号公報
【文献】国際公開第2016/051619号
【発明の概要】
【発明が解決しようとする課題】
【0006】
近年ではレンズユニットの小型化や光学性能向上への要求が強まっている。具体的には、レンズ枠とレンズの間の位置精度や結合強度の向上、有害光の抑制などが求められる。また、レンズユニットの生産性向上も求められている。
【0007】
本発明はかかる問題点に鑑みてなされたものであり、レンズ枠とレンズの間の位置精度や結合強度に優れたレンズユニットを提供することを目的とする。本発明はまた、有害光を防いで光学性能に優れるレンズユニットを提供することを目的とする。本発明はさらに、生産性に優れるレンズユニットの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、筒状のレンズ枠の内部にレンズを保持したレンズユニットに関するものである。レンズは、入射面と出射面の少なくとも一方を凸面とし、光源からの光を所定の位置に集光する正のパワーを有している。レンズ枠の内部に内径側へ突出する突部を備え、突部がレンズの外周部分に嵌合してレンズを保持する。突部の内周部分に、レンズの光軸方向に位置を異ならせて、光軸方向の入射側に位置する第1面と、光軸方向の出射側に位置する第2面と、第1面及び第2面の間に位置する第3面とを備え、第1面と第2面と第3面がそれぞれ光軸方向に進むにつれてレンズ枠の内径を変化させる傾斜を有するテーパ面である。
【0009】
この本発明のレンズユニットによれば、レンズ枠内の突部が、光軸方向に対して傾斜する第1面から第3面を有するので、突部を介して保持されるレンズに対する保持の精度や強度を向上させることができる。また、レンズ枠内の突部によってレンズの有効径外を通る光を遮蔽して、光学性能を向上させることができる。
【0010】
レンズ枠内の突部を構成するテーパ面の向きや形状の設定によって、さらなる光学性能の向上を図ることができる。例えば、レンズの入射面から入射して突部の第3面で反射した光が、出射面で全反射するように、第3面と出射面の相対位置及び形状を設定することが好ましい。これにより、単に突部が有害な周辺光を遮るだけでなく、突部自体によって生じる反射光がレンズから出射されることを防止できる。
【0011】
突部の第3面は、入射面と出射面のうち凸の曲率が大きい面側に進むにつれて内径を小さくすることが好ましい。
【0012】
レンズ枠の突部の一態様として、第1面は、入射側から出射側に進むにつれて内径を小さくし、第2面は、出射側から入射側に進むにつれて内径を小さくし、第3面は、入射側から出射側に進むにつれて内径を小さくして光軸方向に対する傾斜の大きさが第1面とは異なる。レンズ枠の突部の別の態様として、第1面は、入射側から出射側に進むにつれて内径を小さくし、第2面は、出射側から入射側に進むにつれて内径を小さくし、第3面は、出射側から入射側に進むにつれて内径を小さくして光軸方向に対する傾斜の大きさが第2面とは異なる。
【0013】
レンズ枠は、光源とレンズの間の光軸方向位置の内面に、反射光を突部に向けて進行させる反射制御部を備えてもよい。これにより、レンズに入射する前にレンズ枠の内面で反射される反射光についても適切に遮蔽することができ、レンズユニットの光学性能をさらに向上させることができる。
【0014】
以上のレンズユニットを製造する方法として、突部の第3面の内径が小さくなる側を下方に向けてレンズ枠を成形装置に配置し、この第3面に成形前のガラス材料を載置し、成形装置の上型と下型によってガラス材料を上下からプレスしてレンズを成形することが好ましい。下方に向けて内径が小さくなる第3面によって成形前のガラス材料を支持するので、プレス加工の準備段階からプレス加工中にかけて、ガラス材料とレンズ枠の相対位置を高精度に定めることができる。
【0015】
このレンズユニットの製造方法では、レンズの入射面と出射面のうち凸の曲率が大きい一方の面を成形する成形面を下型に設け、他方の面を成形する成形面を上型に設けることが好ましい。凸の曲率が大きい側の面を成形するための成形面を下型に設けることで、上型と下型によってプレス加工を実行する際に、ガラス材料の位置精度や安定性を向上させることができる。
【発明の効果】
【0016】
以上のように、本発明のレンズユニットによれば、レンズ枠とレンズの間での位置精度や結合強度を向上させることができる。また、本発明のレンズユニットによれば、簡単な構成によって有害光の通過を防いで光学性能を向上させることができる。
【0017】
また、本発明の製造方法によれば、レンズ枠内にレンズを保持したレンズユニットの生産性を向上させることができる。
【図面の簡単な説明】
【0018】
【
図1】第1実施形態のレンズユニットを備えた光学装置の斜視図である。
【
図2】第1実施形態のレンズユニットを備えた光学装置を光軸に沿って断面視した斜視図である。
【
図3】第1実施形態のレンズユニットを備えた光学装置の要部の断面図である。
【
図4】第1実施形態のレンズユニットにおける有効光線を示した断面図である。
【
図5】第1実施形態のレンズユニットによる周辺光線の遮蔽を示した断面図である。
【
図7】第1実施形態のレンズユニットで、レンズ枠の突部で反射された光がレンズの出射面で全反射される関係を示した断面図である。
【
図8】第1の比較例のレンズユニットを備えた光学装置の要部の断面図である。
【
図9】第1の比較例のレンズユニットを通る光線の状態を示した断面図である。
【
図10】第1の比較例のレンズユニットでレンズ枠の内面による反射光の状態を示した断面図である。
【
図11】第2の比較例のレンズユニットを備えた光学装置の要部の断面図である。
【
図12】第3の比較例のレンズユニットを備えた光学装置の要部の断面図である。
【
図13】第1実施形態のレンズユニットを製造する成形装置で、レンズのプレス準備完了状態の断面図である。
【
図14】第1実施形態のレンズユニットを製造する成形装置で、レンズをプレス成形している途中の状態の断面図である。
【
図15】第1実施形態のレンズユニットを製造する成形装置で、レンズのプレス成形が完了した状態の断面図である。
【
図18】第2実施形態のレンズユニットを備えた光学装置の要部の断面図である。
【
図19】第3実施形態のレンズユニットを備えた光学装置の要部の断面図である。
【
図20】第3実施形態の
レンズユニットを製造する成形装置で、レンズのプレス準備完了状態の断面図である。
【
図21】第3実施形態のレンズユニットを製造する成形装置で、レンズのプレス成形が完了した状態の断面図である。
【
図22】第4実施形態のレンズユニットを備えた光学装置の要部の断面図である。
【
図23】第4実施形態の
レンズユニットを製造する成形装置で、レンズのプレス準備完了状態の断面図である。
【
図24】第4実施形態のレンズユニットを製造する成形装置で、レンズのプレス成形が完了した状態の断面図である。
【発明を実施するための形態】
【0019】
図1から
図7を参照して、第1実施形態のレンズユニット2について説明する。レンズユニット2は、光源ユニット3と組み合わされて光学装置1を構成する。光学装置1は、プロジェクタ、光学式情報読取装置、光通信装置などの光学機器における配光部分に用いられる。
【0020】
レンズユニット2は、レンズ10とレンズ枠20によって構成されている。レンズ10は正のパワーを有しており、光源ユニット3の光源30で発した光を所定の位置に集光させる集光光学系を構成している。
【0021】
レンズ10はガラス製の単レンズであり、光軸10xを中心とする回転対称の形状である。以下、光軸10xに沿う方向を光軸方向とする。光軸方向のうち、光源30に向く側を入射側、光源30とは反対に向く側を出射側とする。また、光軸10xを中心とする径方向のうち、光軸10xに向く方向を内径側、光軸10xとは反対に向く方向を外径側とする。
【0022】
レンズ10は、入射側に配した入射面11と、出射側に配した出射面12を有する。入射面11は、光軸10xに対して垂直な平面である。出射面12は、出射側に向けて突出する凸面である。つまり、レンズ10は平凸レンズである。出射面12の周囲の環状の領域には出射周縁面13が形成されている。出射周縁面13は、光軸10xに対して概ね垂直な面である。
【0023】
レンズ10では、
図5に示す有効光線ELが通る領域が、入射側と出射側のそれぞれの有効径となる。出射側の有効径は、出射面12が形成されている範囲である。出射周縁面13は、後述するレンズ10の成形の際に必要な部分であり、有効なレンズ面としては機能しない。入射面11の有効径よりも出射面12の有効径の方が大きい。
【0024】
レンズ10の径方向の外周部分には、内径側に向けて凹んだ形状の外周凹部14が設けられている。後述するレンズ10の成形の際に、レンズ枠20の一部である突部26(詳細は後述する)によって外周凹部14が形成される。
【0025】
レンズ枠20は、光軸方向に軸線が向く金属製の筒状体であり、入射側を向く入射側端部21と出射側を向く出射側端部22を有している。入射側端部21と出射側端部22はいずれも、光軸10xに対して垂直な平面である。レンズ枠20の内部には、入射側端部21から出射側端部22までを光軸方向に貫通する貫通孔23が形成されている。
【0026】
レンズ枠20の外周面は平滑な円筒形状であるが、貫通孔23に臨む内周側の形状の違いによって、レンズ枠20は、光軸方向で3つの部分に区分けされる。具体的には、
図3に示すように、入射側端部21寄りに位置する入射側部分20A、出射側端部22寄りに位置する出射側部分20B、入射側部分20Aと出射側部分20Bの間に位置する中間部分20Cを有する。
【0027】
入射側部分20Aは、貫通孔23に臨む内面が、光軸方向に一様な形状(一定径)の円筒面24で構成されている。円筒面24の内径は、レンズ10の入射面11の外径よりも僅かに大きい。
【0028】
出射側部分20Bは、貫通孔23に臨む内面が、光軸方向に一様な形状(一定径)の円筒面25で構成されている。円筒面25の内径は、レンズ10の出射周縁面13の外径よりも僅かに大きい。
【0029】
中間部分20Cは、円筒面24及び円筒面25に対して内径方向に突出する突部26を備えている。突部26はレンズ枠20の周方向の全体に亘って連続して(途切れずに)設けられており、周方向のいずれの箇所でも、
図2から
図7に示す断面形状を有する。突部26は、円筒面24の出射側の端部に連続する第1テーパ面(第1面)26a、円筒面25の入射側の端部に連続する第2テーパ面(第2面)26b、第1テーパ面26aと第2テーパ面26bを接続する第3テーパ面(第3面)26cを有している。
【0030】
第1テーパ面26a、第2テーパ面26b、第3テーパ面26cはそれぞれ、光軸10xを中心とする円錐形状(円錐面の一部)であり、光軸方向に進むにつれてレンズ枠20の内径を変化させる傾斜を有する。より詳しくは、第1テーパ面26aは、円筒面24(入射側)から出射側に進むにつれて内径を小さくする面である。第2テーパ面26bは、円筒面25(出射側)から入射側に進むにつれて内径を小さくする面である。第3テーパ面26cは、第1テーパ面26a(入射側)から第2テーパ面26b(出射側)に進むにつれて内径を小さくする面である。すなわち、第1テーパ面26aと第3テーパ面26cは、出射側へ向けて徐々に内径が小さくなるテーパ面であり、第2テーパ面26bは、入射側へ向けて徐々に内径が小さくなるテーパ面である。
【0031】
第3テーパ面26cよりも第1テーパ面26aの方が、光軸10xに対する傾斜角が大きい。また、傾斜方向が正逆であることを除外すれば、第1テーパ面26aよりも第2テーパ面26bの方が、光軸10xに対する傾斜角が大きい。光軸方向に占める範囲については、
図3に示すように、第2テーパ面26bの形成範囲K2が最も狭く、第3テーパ面26cの形成範囲K3が最も広く、第1テーパ面26aの形成範囲K1がその中間の広さである。突部26のうち最も内径側に突出している最突出部26dは、第2テーパ面26bと第3テーパ面26cの境界に位置している。この最突出部26dの位置は、光軸方向における中間部分20Cの中央よりも出射側寄りである。
【0032】
レンズ10は、貫通孔23の内側に収容されてレンズ枠20と一体化されており、外周凹部14に対して突部26が嵌合固定されている。外周凹部14は、突部26を構成する3つのテーパ面26a、26b、26cに対応した3つのテーパ面を含む内面形状を有しており、外周凹部14に突部26が嵌合してレンズ10とレンズ枠20が一体化される。このような結合構造は、レンズ枠20内に組み込んだ状態でレンズ10を成形することによって得られるものである。
【0033】
レンズ10の出射周縁面13は、光軸方向で出射側部分20Bと中間部分20Cの境界付近に位置している。レンズ枠20における出射側部分20Bの光軸方向の長さは、レンズ10における出射周縁面13からの出射面12の突出量よりも大きく設定されている。つまり、レンズ10の出射面12よりもレンズ枠20の出射側端部22の方が出射側に位置する。また、レンズ10の入射面11は、光軸方向で入射側部分20Aと中間部分20Cの境界付近に位置している。従って、光軸方向でレンズ10の全体が貫通孔23内に収まっている。レンズ枠20の入射側部分20Aは、レンズ10の入射面11と光源30の光軸方向距離を設定するスペーサとしても機能する。
【0034】
光源ユニット3は、光源30を内部に収容する内部筐体31を有する。内部筐体31には開口部32が形成されており、開口部32の内側が透光性のあるカバーガラス33で覆われている。内部筐体31の外側には、レンズ枠20よりも大径である外部筐体34が設けられている。外部筐体34に設けた収容部35内に内部筐体31が固定されている。
【0035】
外部筐体34は、収容部35から外面に向けて開口径が徐々に大きくなるすり鉢状の光源周縁面36を有している。光源周縁面36の周囲で、レンズ枠20の入射側端部21を外部筐体34に当接させて、レンズユニット2と光源ユニット3が組み合わされる。レンズユニット2と光源ユニット3は、レンズ10と光源30が所定の位置関係になるように位置合わせされて、互いに固定される。レンズユニット2と光源ユニット3を組み合わせた状態で、レンズ枠20の内部(レンズ10よりも入射側の内部空間)に不活性ガスが充填される。
【0036】
レンズユニット2において、レンズ枠20の突部26の3つのテーパ面26a、26b、26cで接してレンズ10を保持する構造は、レンズ枠20に対するレンズ10の結合強度、位置精度、耐荷重性、気密性などの点で優れている。3つのテーパ面26a、26b、26cはいずれも光軸10xに対して非平行かつ非直交の面なので、光軸方向と径方向の両方の位置基準として機能することができると共に、光軸方向と径方向の両方に作用する荷重を受けることができる。また、それぞれ傾斜を異ならせた複合的なテーパ面26a、26b、26cがレンズ10に接することで、突部26と外周凹部14の間の気密性を高めることができる。特に、円筒面24、25に隣接して突部26の突出形状を形づくる第1テーパ面26aや第2テーパ面26bだけでなく、その中間に位置する第3テーパ面26cについても、光軸10xに対する傾きを持たせたことで、突部26の全体で上記の各効果を得ることができる。
【0037】
以上のようにして光学装置1が構成される。光源30で発した光は発散してレンズ10に向かい、正のパワーを持つレンズ10によって所定の集光位置に集光される。光源30の発光点LPから進む光線を、
図4から
図7に示した。発光点LPを起点とする光線のうち、レンズ枠20による反射などを受けずに、入射面11と出射面12の有効径内を通る有効光線ELを
図4から
図6に示している。有効光線ELのうち、光軸10xから最も遠い位置で入射面11及び出射面12を通過する光線を、最外有効光線ELzとする。光軸10xから最外有効光線ELzまでの径方向の距離が、入射面11や出射面12の有効半径である。
【0038】
図4から
図6に示すように、最外有効光線ELzは、レンズ枠20のうち最も内径側に突出している最突出部26dの至近を通る。突部26は、最外有効光線ELzを遮らず、最外有効光線ELzよりも外径側を通る光が出射側に進まないように遮蔽する遮光部として機能する。
【0039】
入射面11の有効径の外側からレンズ10に入射して、有効光線ELの最外有効光線ELzよりも外径側を通る周辺光線OLを、
図5と
図6に示した。周辺光線OLは突部26によって進行が遮られ、レンズ10から出射されない。例えば、
図6に示す周辺光線OL1は、入射面11の有効径の外側から入射して出射面12と出射周縁面13の境界部分に向かう光線である。周辺光線OL2は、入射面11の有効径の外側から入射して出射周縁面13に向かう光線である。周辺光線OL3は、入射面11有効径の外側から入射して出射周縁面13の最外周部分に向かう光線である。これらの周辺光線OL1、OL2、OL3の延長上には、突部26の第3テーパ面26cが位置しており、突部26によって周辺光線OL1、OL2、OL3の進行が遮られる。また、入射面11の有効径の外側から入射して出射周縁面13よりも外径側に向かう周辺光線OL4の延長上には、突部26の第1テーパ面26aが位置しており、突部26によって周辺光線OL4の進行が遮られる。
【0040】
このように、レンズ枠20に設けた突部26は、出射面12よりも外径側に進もうとする周辺光線OLの進路上に位置して当該光線を遮蔽する。突部26では、それぞれが光軸10xに対して傾斜する第2テーパ面26bと第3テーパ面26cの境界として最突出部26dを設定し、通過させる光線(最外有効光線ELz)と遮蔽する光線(周辺光線OL)を、最突出部26dの位置によって管理している。最突出部26dのような特定のポイントで遮光の境界を設定することで、突部26による遮光効果の精度管理を行いやすくなり、高い精度での遮光を実現できる。
【0041】
レンズユニット2はさらに、レンズ10を保持する突部26で反射されて出射面12に向かう反射光が有害光になることを防ぐ機能を有する。
図7に、入射面11から入射して突部26の第3テーパ面26cで反射されて出射面12へ向かう反射光線RL1と反射光線RL2を示した。第3テーパ面26cは、反射光線RL1、RL2が出射面12の箇所で全反射するような条件を満たす面として形成されている。
【0042】
具体的には、出射面12に対する反射光線RL1の入射角αや反射光線RL2の入射角βが、全反射の臨界角よりも大きくなるように、第3テーパ面26cの角度が設定されている。これにより、屈折率の大きい媒質であるレンズ10と屈折率の小さい媒質である空気の境界である出射面12において、反射光線RL1や反射光線RL2の屈折角が90°よりも大きくなって全反射が起きる。なお、
図7では特定の反射光線RL1、RL2を示しているが、発光点LPを始点として入射面11での屈折のみを経て第3テーパ面26cに到達する光線はいずれも、出射面12と空気の境界で全反射される条件を満たす。
【0043】
突部26のうち、第3テーパ面26cよりも入射側に位置する第1テーパ面26aは、第3テーパ面26cよりも光軸10xに対する傾斜が大きく、第1テーパ面26aで反射した光線は出射面12に向けて進行しない。また、第3テーパ面26cよりも出射側に位置する第2テーパ面26bは、出射側に進むにつれて内径を大きくする面(第3テーパ面26cとは逆方向に傾斜する面)であり、入射面11を通って突部26に向かう光線は、第1テーパ面26aや第3テーパ面26cで遮られるか反射されるかして、第2テーパ面26bには直接到達しない。従って、上記の全反射の条件を満たすように第3テーパ面26cの形状を設定すれば、レンズ10の外周凹部14に接している突部26の全体で、有害な反射光を防ぐ効果が得られる。
【0044】
以上から、レンズユニット2では、有効光線ELを確実に通過させると共に、有効光線EL以外の有害な光線(周辺光線OLや反射光線RL1、RL2など)が出射面12を通過して射出されることを防いでいる。特に、レンズ枠20の内径側に突出する突部26によって、有害な光線を効果的に遮蔽できる。さらに、第3テーパ面26cで反射する光線が全反射して出射面12から出射しないように設定したことで、レンズ10の外周部分(外周凹部14と突部26が接している箇所)での光線反射による光学性能の悪化も適切に防止できる。これにより、レンズ10の集光位置で、光学設計上の所定範囲外に光が拡散してゴーストが発生することを防止でき、光学装置1における光学性能の向上を図れる。
【0045】
突部26は、レンズ枠20の内径側に突出してレンズ10を保持すると共に上記の遮光機能を有するので、遮光用の構造を別途設ける必要がなく、レンズユニット2をシンプルな構成で高機能化させることができる。また、テーパ面26a、26b、26cの組み合わせによって構成される突部26は、製造しやすい。より詳しくは、第1テーパ面26aと第3テーパ面26cは、レンズ枠20の入射側からの成形や切削を行いやすい形状であり、第2テーパ面26bは、レンズ枠20の出射側からの成形や切削を行いやすい形状である。
【0046】
図8から
図12を参照して、上記の第1実施形態とは異なる比較例を説明する。各比較例において、第1実施形態と同じ構成については、第1実施形態と同じ符号で示して説明を省略する。
【0047】
図8から
図10に示す第1の比較例は、レンズユニット2を構成するレンズ枠20のうち、中間部分20Cの内面形状が第1実施形態の突部26とは異なっている。第1の比較例の中間部分20Cの内面には、入射側部分20Aの円筒面24及び出射側部分20Bの円筒面25に対して内径方向に僅かに突出する突部90が形成されている。内径側への突部90の突出量は、上記の突部26の突出量よりも小さい。突部90が嵌合する形状の外周凹部91がレンズ10の外周部分に形成されている。
【0048】
より詳しくは、突部90は、入射側に位置する第1テーパ面90a、出射側に位置する第2テーパ面90b、第1テーパ面90aと第2テーパ面90bを接続する接続面90cを有している。第1テーパ面90aは入射側から出射側へ進むにつれて内径を小さくする円錐面の一部であり、第2テーパ面90bは出射側から入射側へ進むにつれて内径を小さくする円錐面の一部である。第1テーパ面90aと第2テーパ面90bはいずれも、第1実施形態の第1テーパ面26aと第2テーパ面26bよりも内径側への突出量が小さい。接続面90cは、一定の内径で光軸方向に延びる円筒面である。突部90のうち最も内径側に位置する部分は接続面90cである。接続面90cは、第1実施形態の突部26の第3テーパ面26cよりも外径側に位置している。
【0049】
図9に示すように、内径側への突出量が小さく、しかも接続面90cが光軸10xに対して傾斜していない突部90は、有効光線ELよりも外径側を通る周辺光線OL’を遮らずに、レンズ10の出射面12と出射周縁面13の境界位置や、出射周縁面13の位置まで到達させてしまう。また、
図10に示すように、出射周縁面13を通過してレンズ枠20の円筒面25で反射する反射光線RL1’や、円筒面25で反射してから出射周縁面13を通過する反射光線RL2’や、突部90で反射してレンズ10(出射周縁面13あるいは出射面12)から出射する反射光線RL3’、RL4’が生じてしまう。このような周辺光や反射光がゴーストの発生原因になってしまう。
【0050】
また、突部90の接続面90cが光軸10xに対して平行な面であるため、光軸方向の荷重を接続面90cで受けることや、接続面90cを光軸方向の位置基準として用いることができない。
【0051】
図11に示す第2の比較例は、第1の比較例の構成に加えて、光源30とレンズ10の間に絞り92を配置したものである。絞り92は、光源ユニット3における外部筐体34の光源周縁面36を覆うように設けられており、絞り92の中央部分に円形の孔92aが形成されている。孔92aは、有効光線ELのみを通過させる大きさに設定されている。有効光線ELよりも外径側を通る光は、孔92aの周囲で絞り92の板面によって遮蔽される。そのため、有害な周辺光がレンズ10に到達せず、中間部分20Cの内面に設ける突部90の突出量が小さい場合でも、ゴーストの発生を防止できる。
【0052】
しかしながら、第2の比較例では、レンズ枠20とは別に独自の遮光用部材である絞り92を用いるので、部品点数や製造コストの増大を招いてしまう。また、絞り92がレンズ枠20とは別体であるため、有効光線ELを遮らずに有害な光線のみを遮蔽するように、レンズユニット2及び光源ユニット3に対する絞り92の位置設定と調整を行う必要があり、精度管理や製造が煩雑になってしまう。
【0053】
図12に示す第3の比較例は、レンズ枠20の中間部分20Cの内面に形成した突部93の形状が、第1実施形態の突部26の形状と異なっている。より詳しくは、突部93は、円筒面24の出射側の端部に連続する第1テーパ面93a、円筒面25の入射側の端部に連続する第2テーパ面93b、第1テーパ面93aと第2テーパ面93bを接続する接続面93cを有している。突部93が嵌合する外周凹部94がレンズ10の外周部分に形成されている。
【0054】
第2テーパ面93bは、第1実施形態の第2テーパ面26bと同形状の面(第2テーパ面26bと同じ傾斜角であり、円筒面25から内径側への突出量も第2テーパ面26bと同じ)である。第1テーパ面93aは、第1実施形態の第1テーパ面26aと同じ傾斜角であり、円筒面24から内径側への突出量が第1テーパ面26aよりも大きい。接続面93cは、一定の内径で光軸方向に延びる円筒面であり、光軸10xと平行である。突部93のうち最も内径側に位置する部分は接続面93cである。接続面93cは、径方向において第1実施形態の最突出部26dと同じ位置にある。
【0055】
有効光線ELよりも外径側を通る周辺光の遮蔽については、突部93は第1実施形態の突部26と同様の効果を得ることができる。一方、
図12に示すように、接続面93cで反射する反射光線RL5’が、全反射の臨界角よりも小さい入射角で出射面12に達する関係であるため、接続面93cで反射した光の一部が出射面12を通過して(全反射せず)、ゴーストを発生させる可能性がある。
【0056】
また、突部93の接続面93cが光軸10xに対して平行な面であるため、光軸方向の荷重を接続面93cで受けることや、接続面93cを光軸方向の位置基準として用いることができない。
【0057】
これらの比較例とは異なり、上記の第1実施形態では、レンズ枠20に設けられてレンズ10を保持する突部26によって、有効光線以外の光の通過を起因とする配光不良(ゴースト等)を防ぐので、少ない部品点数によって優れた光学性能を得ることができる。
【0058】
また、上記の第1実施形態では、それぞれが光軸10xに対して傾斜するテーパ面26a、26b、26cによって突部26の内面を構成したことにより、レンズ枠20に対するレンズ10の結合強度、位置精度、耐荷重性、気密性などにおいて、各比較例に対して有利である。
【0059】
続いて、第1実施形態のレンズユニット2におけるレンズ10の製造について説明する。レンズ10は、
図13から
図15に示す成形装置40によるプレス加工で製造される。
図16と
図17は、
図13と
図14の一部を拡大したものである。
【0060】
成形装置40でレンズ10を製造する際には、レンズ10の材料となる球状のガラスプリフォームGP1をレンズ枠20内に配置し、レンズ枠20と一体的にレンズ10を成形する。レンズ枠20については、成形装置40に設置する前の段階で、上述した突部26を含む最終形状に仕上げられている。
【0061】
成形装置40は、上型41、下型42、胴型43、胴型44を有している。
図13から
図15の上下方向が成形装置40における上下方向に対応している。成形装置40の基準軸40xは、上下方向に延びる仮想の軸線であり、上型41と下型42と胴型43と胴型44のそれぞれの中心線が基準軸40x上に位置する。また、成形装置40によって成形されるレンズ10の光軸10xの位置が、基準軸40xと一致するように設計されている。
【0062】
上型41と下型42は、図示しない昇降機構によって個別に上下方向へ移動させることができる。上型41は胴型43によって上下方向への移動が案内され、下型42は胴型44によって上下方向への移動が案内される。
【0063】
胴型44は、レンズ枠20の外径側に位置する筒状部44aと、筒状部44aの下端から内径方向に突出する突出部44bを有している。筒状部44aの内周部分には円形断面の収容孔44cが形成され、突出部44bの内周部分には、円形断面のガイド孔44dが形成されている。収容孔44cとガイド孔44dの内周面はいずれも、基準軸40xを中心とする円筒面であり、ガイド孔44dの内径よりも収容孔44cの内径の方が大きい。収容孔44cとガイド孔44dは上下方向に貫通しており、収容孔44cが胴型44の上端部分に開口し、ガイド孔44dが胴型44の下端部分に開口している。収容孔44cの下端には、突出部44bの上面によって、上向きの環状の規制面44eが形成されている。規制面44eは、基準軸40xに対して垂直な平面である。
【0064】
胴型44の上端面44fは、収容孔44cの上端開口部分の周囲に形成された上向きの環状の面である。胴型44の下端面44gは、ガイド孔44dの下端開口部分の周囲に形成された下向きの環状の面であり、下端面44gの一部が突出部44bの下面を構成している。上端面44fと下端面44gはいずれも、基準軸40xに対して垂直な平面である。
【0065】
胴型43は、胴型44の筒状部44aの外径側を囲む筒状であり、上下方向に貫通する円形断面のガイド孔43aが内周部分に形成されている。ガイド孔43aの内面は、基準軸40xを中心とする円筒面である。なお、胴型43と胴型44を一体的に構成してもよい。
【0066】
上型41は、上下方向に延びる軸部41aと、軸部41aの上部に位置する大径部41bを有する。軸部41aと大径部41bはそれぞれ、基準軸40xを中心とする円柱状であり、大径部41bの方が軸部41aよりも径が大きい。軸部41aと大径部41bの境界部分には、環状で下向きの規制面41cが形成されている。規制面41cは、基準軸40xに対して垂直な平面である。軸部41aの先端(下端)には、成形面41dが形成されている。成形面41dは、レンズ10の入射面11に対応する形状の平面である。
【0067】
下型42は、上下方向に延びる軸部42aと、軸部42aの下部に位置する大径部42bを有する。軸部42aと大径部42bはそれぞれ、基準軸40xを中心とする円柱状であり、大径部42bの方が軸部42aよりも径が大きい。軸部42aと大径部42bの境界部分には、環状で上向きの規制面42cが形成されている。規制面42cは、基準軸40xに対して垂直な平面である。軸部42aの先端(上端)には、成形面42dが形成されている。成形面42dは、レンズ10の出射面12に対応する形状の凹面である。成形面42dの周囲には、レンズ10の出射周縁面13に対応する形状の環状面42eが形成されている。
【0068】
上型41と下型42は、高温下でのプレス加工における破損や劣化が生じにくいように、耐熱性及び耐久性に優れる材質で形成されている。具体的には、炭化ケイ素(SiC)や窒化ケイ素(Si3N4)のようなセラミックス、あるいは超硬合金のような金属で形成されている。胴型43と胴型44についても、上型41や下型42同様に、耐熱性及び耐久性に優れる材質で形成されている。
【0069】
図13及び
図16に示すように、レンズ枠20は、出射側端部22を下方に向けて胴型44の収容孔44c内に設置される。筒状部44a(収容孔44c)の内周面によって、径方向におけるレンズ枠20の位置が定まる。出射側端部22が規制面44eに当接することによって、上下方向におけるレンズ枠20の位置が定まる。入射側端部21から出射側端部22までのレンズ枠20の長さは、収容孔44cの深さ(規制面44eから上端面44fまでの距離)よりも短い。そのため、収容孔44c内にレンズ枠20を挿入した状態で、上向きの入射側端部21は上端面44fよりも下方に位置する。
【0070】
出射側端部22を下方に向けて設置することによって、レンズ枠20内の突部26は、下方から順に、第2テーパ面26b、第3テーパ面26c、第1テーパ面26aが位置する状態になる。そして、第1テーパ面26aと第3テーパ面26cはそれぞれ、上下方向で下方に進むにつれて内径を小さくする傾斜になる。一方、第2テーパ面26bは、上下方向で下方に進むにつれて内径を大きくするテーパ面になる。別言すれば、レンズ枠20は、突部26の第3テーパ面26cの内径が小さくなる側を下方に向けて、成形装置40に配置される。
【0071】
このように成形装置40内に設置したレンズ枠20の貫通孔23内に、球形のガラスプリフォームGP1を上方から挿入する。あるいは、ガラスプリフォームGP1を予め貫通孔23内に挿入したレンズ枠20を、成形装置40に設置してもよい。
図16に示すように、ガラスプリフォームGP1の直径は、レンズ枠20の円筒面24及び円筒面25の内径よりも小さく、突部26の内径よりも大きい。より詳しくは、ガラスプリフォームGP1の外面が上下方向で第3テーパ面26cの途中位置に接触するように寸法関係が定められている。第3テーパ面26cに載置されたガラスプリフォームGP1の中心(球心)は、基準軸40x上に位置する。
【0072】
レンズ枠20とガラスプリフォームGP1を胴型44内に配置する際に、上型41は
図13に示す位置よりも上方に退避している。レンズ枠20及びガラスプリフォームGP1を配置したら、上型41を下方に移動させる。
【0073】
上型41は、胴型43のガイド孔43aに対して上方から挿入される(
図13参照)。大径部41bの外径がガイド孔43aの内径に対応しており、ガイド孔43aの内周面に対して大径部41bの外周面を摺接させて、上下方向への上型41の移動が案内される。大径部41bとガイド孔43aの間の径方向のクリアランスは極めて小さく設定されており、胴型43によって上型41の径方向位置と角度(基準軸40xとの平行度)が精密に決められる。
【0074】
上型41がある程度下方に移動すると、軸部41aがレンズ枠20の貫通孔23に上方から進入する(
図13及び
図16参照)。軸部41aは、入射側端部21側の開口から貫通孔23に入る。軸部41aの外径は貫通孔23の円筒面24の内径に対応しているが、軸部41aと円筒面24の間のクリアランスは、大径部41bとガイド孔43aの間のクリアランスよりも僅かに大きい。そのため、上型41は、胴型43のガイド孔43aによって高精度に案内されながら、レンズ枠20(入射側部分20A)によって妨げられずに上下方向に移動できる。
【0075】
下型42は、胴型44のガイド孔44dに対して下方から挿入される(
図13及び
図16参照)。軸部42aの外径がガイド孔44dの内径に対応しており、ガイド孔44dの内周面に対して軸部42aの外周面を摺接させて、上下方向への下型42の移動が案内される。軸部42aとガイド孔44dの間の径方向のクリアランスは極めて小さく設定されており、胴型44によって下型42の径方向位置と角度(基準軸40xとの平行度)が精密に決められる。
【0076】
図13と
図16は、成形装置40へのレンズ枠20及びガラスプリフォームGP1の設置が完了し、各胴型43、44に対して上型41と下型42を所定位置まで挿入したプレス準備完了状態である。この状態で、上型41と下型42は同軸上に位置しており、成形面41dと成形面42dがガラスプリフォームGP1を間にして上下方向に対向する。
【0077】
ヒーター(不図示)によって成形装置40の内部を加熱し、ガラスプリフォームGP1のガラス転移点よりも高い温度にする。これによりガラスプリフォームGP1が軟化してプレス成形可能になる。
【0078】
加熱によりガラスプリフォームGP1が軟化した状態で、上型41と下型42を接近させる。
図14及び
図17に示すように、胴型44に対して下型42は、規制面42cが下端面44gに当接する位置まで挿入することができ、当該位置よりも上方への下型42の移動は規制される。この状態では、下型42の軸部42aが、レンズ枠20の貫通孔23に対して下方から(出射側端部22側の開口から)進入している。軸部42aの外径は貫通孔23の円筒面25の内径に対応しているが、軸部42aと円筒面25の間のクリアランスは、軸部42aと胴型44のガイド孔44dの間のクリアランスよりも僅かに大きい。そのため、下型42は、胴型44のガイド孔44dによって高精度に案内されながら、レンズ枠20(出射側部分20B)によって妨げられずに上下方向に移動できる。
【0079】
なお、加熱すると、上型41や下型42の材質とレンズ枠20の材質との熱膨張率の差によって、互いの寸法関係が僅かに変化する。しかし、上述した円筒面24、25と軸部41a、42aとの間のクリアランスによって、この寸法関係の変化を吸収して、レンズ枠20に対して上型41と下型42が可動である状態を維持できる。
【0080】
規制面42cが下端面44gに当接する規制位置まで下型42が挿入されると、成形面42dがガラスプリフォームGP1の下部に接触する。このときの成形面42dの位置を
図16に仮想線(一点鎖線)で示した。凹面である成形面42dの曲率よりもガラスプリフォームGP1(
図13及び
図16に示す球形の状態)の外面の曲率の方が大きいので、成形面42dに対するガラスプリフォームGP1の接触は、基準軸40x上での点接触として生じる。
【0081】
また、下降する上型41の成形面41dが、ガラスプリフォームGP1の上部を下方へ押し込む。平面である成形面41dに対するガラスプリフォームGP1の接触は、基準軸40x上での点接触として生じる。そして、下型42に下部が接触した状態のガラスプリフォームGP1を、上型41によって下方に押し込むと、ガラスプリフォームGP1が上下方向に圧縮されていく(
図14及び
図17)。
【0082】
図14及び
図17の状態では、上型41が下方へ押し切られていないため、ガラスプリフォームGP1の下部と成形面42dとの間には部分的に隙間があり、最終的な出射面12や出射周縁面13の形状にはなっていない。
【0083】
図14及び
図17の状態からさらに上型41を下方に移動させると、
図15に示すように、規制面41cが胴型44の上端面44fに当接する。当該位置よりも下方への上型41の移動は規制され、上型41が下方へ押し切られたプレス完了状態となる。この段階で、成形面41dと成形面42dと環状面42eの形状がそれぞれレンズ枠20内のガラスプリフォームGP1に転写されて、入射面11と出射面12と出射周縁面13を有するレンズ10の形状になる。また、レンズ枠20の突部26によって、レンズ10の外周部分に外周凹部14が形成される。
【0084】
プレス完了状態から冷却してレンズ10を硬化させることで、レンズ10とレンズ枠20が一体化されたレンズユニット2が完成する。上型41と下型42を上下方向に離間させて、貫通孔23内から軸部41aを上方に引き抜き、軸部42aを下方に引き抜く。そして、胴型44の収容孔44c内から完成したレンズユニット2を取り外す。
【0085】
以上のレンズユニット2の製造において、成形装置40内に設置したレンズ枠20の第3テーパ面26cは、下方に進むにつれて内径を小さくする形状であるため、成形前のガラスプリフォームGP1は、第3テーパ面26cに接触して支持される位置(
図13及び
図16)よりも下方への移動が規制される。従って、下型42などによって下方からガラスプリフォームGP1を支えなくても、ガラスプリフォームGP1が脱落せず、成形装置40内へのガラスプリフォームGP1の設置が容易である。
【0086】
また、
図13や
図16に示すように、レンズ枠20の第3テーパ面26cの傾斜は、第3テーパ面26cに載置したガラスプリフォームGP1に対して下方へ向けて作用する荷重によって、レンズ枠20を下方に押す力を生じさせるものである。具体的には、下方へ向けて作用する荷重は、上型41がガラスプリフォームGP1を下方に押し込むプレス荷重や、ガラスプリフォームGP1や上型41の重さである。そして、こうした下方への荷重によって、胴型44内に配置したレンズ枠20が、プレス成形の際に上方へ浮き上がってしまうことを防止できる。仮に、レンズ枠20が浮き上がった状態でレンズ10をプレス成形すると、レンズ10とレンズ枠20の光軸方向の位置関係が設計からずれてしまい、光学装置1を構成したときに光源30とレンズ10の位置関係が不適切になる。
【0087】
レンズ10の成形に際しては、上型41と下型42の両方で適切に成形できる位置にガラスプリフォームGP1を配置する必要がある。例えば、レンズ枠20が
図13及び
図16に示す位置よりも上方でガラスプリフォームGP1を保持する構造であると、下型42を最も上方の規制位置(
図14、
図15及び
図17)まで移動させたときに、成形面42dがガラスプリフォームGP1に接触しなくなる。従って、下型42を規制位置まで移動させたときに、ガラスプリフォームGP1の下部に成形面42dが当接するように、第3テーパ面26cによるガラスプリフォームGP1の保持位置を設定している。
【0088】
より詳しくは、
図16に示すように、下型42の規制位置での基準軸40x上の成形面42dの中心位置T1を設定する。ガラスプリフォームGP1の半径R1(
図16)は、後述する体積に関する条件によって所定の値に決められている。そして、半径R1のガラスプリフォームGP1を成形面42dの中心位置T1で支持した場合に、中心位置T1よりも上方の接触位置T2(
図16)で第3テーパ面26cがガラスプリフォームGP1に接触するように、第3テーパ面26cと下型42とガラスプリフォームGP1の位置関係を設定している。本実施形態では、接触位置T2からガラスプリフォームGP1の中心に向かう直線(
図16では半径R1として表されている)が、水平方向に対して若干上向きに傾斜するように、接触位置T2が設定されている。そして、第3テーパ面26cは、接触位置T2を通り、かつ上述した出射面12での全反射(
図7参照)の条件を満たす傾斜の面として形成されている。
【0089】
レンズユニット2では、レンズ10における表裏のレンズ面(入射面11と出射面12)だけでなく、レンズ枠20による保持を受ける外周凹部14についても、成形装置40のプレス加工で形成する。言い換えれば、レンズ10は、多めのガラス材料を用いてレンズ面をプレス成形した後で、径方向などに膨出した余分な部分を除去するという形態での製造が難しい。そのため、成形後のレンズ10の体積に対応するように、ガラスプリフォームGP1の体積を精密に設定する必要がある。ガラスプリフォームGP1を球形にすることで、体積を精密に管理しやすくなる。特に、レンズ10が小型であるほど、ガラス材料の使用量の誤差管理が難しくなるので、球形のガラスプリフォームGP1を用いることの有効性が高い。
【0090】
上型41と下型42を上下方向で最も接近させたプレス完了状態(
図15)で、上型41の成形面41dと、下型42の成形面42d及び環状面42eと、レンズ枠20の突部26とにより囲まれる空間の容積が、成形後のレンズ10の体積になる。ガラスプリフォームGP1は、当該空間の容積を満たす量のガラスで形成されている。
【0091】
球形のガラスプリフォームGP1は、体積の管理に優れる反面で転動しやすいので、成形時の安定性確保に留意する必要がある。例えば、ガラスプリフォームGP1に対して下方から当接する面(以下、下方面と呼ぶ)が凸面であると、球形のガラスプリフォームGP1を安定させることができない。また、下方面が平面であっても、上方からの負荷などに応じて球形のガラスプリフォームGP1が転がってしまう可能性があるので、安定させることが難しい。従って、ガラスプリフォームGP1の安定性と位置精度を高めるべく、下方面は、下方に進むにつれて内径を小さくする形状(凹面など)であることが好ましく、基準軸40xに対する傾斜が大きい(凹面の場合は曲率が大きい)ことがより好ましい。
【0092】
図16に示すように、レンズ枠20においてガラスプリフォームGP1に接する第3テーパ面26cは、下方面に関する上記条件を満たすものである。特に、第3テーパ面26cは基準軸40xを中心とする円錐形状であるため、ガラスプリフォームGP1を、プレス加工前の段階から自重によって光軸方向と径方向の両方に位置決めすることができ、高い位置精度での安定した保持を実現できる。また、ガラスプリフォームGP1に対して上型41からのプレス荷重が加わったときに、第3テーパ面26cを介してレンズ枠20が押し付けられることで、レンズ枠20の浮き上がりを抑えて高精度な成形を実現できる。
【0093】
また、ガラスプリフォームGP1の下方に位置する下型42の成形面42dは、レンズ10の凸状の出射面12に対応する凹面であり、下方面に関する上記条件を満たすものである。これに対し、ガラスプリフォームGP1の上方に位置する上型41の成形面41dは、レンズ10の平面状の入射面11に対応する平面である。上型41と下型42を接近させてガラスプリフォームGP1からレンズ10を成形する際に、平面である成形面41dではなく凹面である成形面42dを下方に位置させることで、下方への荷重に応じて、ガラスプリフォームGP1の光軸方向位置及び径方向位置を安定させる作用を得ることができる。
【0094】
つまり、正のパワーを有するレンズ10の入射面11と出射面12のうち、凸の曲率が大きい(曲率半径が小さい)レンズ面(本実施形態では出射面12)を形成する成形面(本実施形態では成形面42d)が下型42にあるようにセッティングしてレンズ10を成形することで、ガラスプリフォームGP1の位置ずれを抑制して成形の精度を向上させることができる。
【0095】
また、第3テーパ面26cの内径が小さくなる側を下方に向けてレンズ枠20を成形装置40に設置し、第3テーパ面26cにガラスプリフォームGP1を載置することで、プレス加工前からプレス加工時にかけてガラスプリフォームGP1の安定した保持を実現できる。
【0096】
さらに、内径が小さくなる側を下方に向けて設置されるレンズ枠20の第1テーパ面26aや第3テーパ面26cは、プレス加工時にガラスプリフォームGP1の変形を適切にコントロールする機能を有する。
【0097】
図16及び
図17に示すように、プレス加工の初期段階から終盤に至るまで、ガラスプリフォームGP1で上型41からのプレス力を直接に受ける位置は、基準軸40x上の接触箇所である。しかし、基準軸40xから径方向に離れているガラスプリフォームGP1の周縁部分でも、下方へのプレス力を第1テーパ面26aや第3テーパ面26cで受けることにより圧縮荷重が生じる。これにより、プレス時の面圧を確保して、外周凹部14を含むレンズ10の周縁部分まで高精度に形成させることができる。さらに、2段階に傾斜する第1テーパ面26a及び第3テーパ面26cと、これらとは反対方向に傾斜する第2テーパ面26bとに沿って、軟化したガラスプリフォームGP1を突部26の下部まで確実に回り込ませることができる。従って、レンズ枠20の突部26によって、基準軸40xに対するガラスプリフォームGP1の傾きや偏心を抑制しながら、効率よくプレス加工を進行させることができる。
【0098】
以上のように、成形装置40によって、レンズ10を高精度に効率よく成形することができ、レンズユニット2の生産における歩留まりが向上する。
【0099】
レンズユニット2の第2実施形態を
図18に示す。上記の第1実施形態のレンズユニット2は、レンズ枠20における入射側部分20Aの内面が、光軸方向に一様な平滑形状の円筒面24である。第2実施形態のレンズユニット2は、入射側部分20Aの内面に反射光対策を施している点が異なる。入射側部分20Aの内面以外は、第1実施形態のレンズユニット2と同じ構成である。
【0100】
図18に示すように、第2実施形態の入射側部分20Aの内面は、内径や傾斜が異なる複数の部分で構成された複合内面(反射制御部)27になっている。複合内面27は、入射側から順に、第1円筒面27a、第1テーパ面27b、第2テーパ面27c、第2円筒面27dを有している。
【0101】
第2円筒面27dは、第1実施形態の円筒面24とほぼ同じ内径の円筒面である。第1円筒面27aは、第2円筒面27dよりも内径が小さい円筒面である。第1テーパ面27bは、第1円筒面27aとの境界部分の内径が最も小さく、光軸方向で第2テーパ面27c側(出射側)へ進むにつれて内径を大きくする円錐形状(円錐面の一部)である。第2テーパ面27cは、第1テーパ面27bとの境界部分の内径が最も大きく、光軸方向で第2円筒面27d側(出射側)へ進むにつれて内径を小さくする円錐形状(円錐面の一部)である。
【0102】
光源30から発して第1テーパ面27bにより反射される反射光線RL3、RL4を
図18に示した。反射光線RL3は、第1テーパ面27bのうち第1円筒面27a寄り(入射側)の位置で反射される光を示したものであり、反射光線RL4は、第1テーパ面27bのうち第2テーパ面27c寄り(出射側)の位置での反射光を示したものである。反射光線RL3は、突部26によって出射側への進行が遮られる。反射光線RL4は、第1テーパ面27bに隣接する第2テーパ面27cによって出射側への進行が遮られる。
【0103】
このように、第2実施形態のレンズ枠20では、入射側部分20Aでの内面反射光がレンズ10を通って出射することを防ぐため、さらに優れた光学性能(ゴースト抑制効果)を得ることができる。なお、レンズ枠20の内面での反射抑制は、
図18に示す構成に限られるものではない。例えば、微細な凹凸が光軸方向に繰り返し現れる遮光線構造などを用いることも可能である。
【0104】
レンズユニット2とその製造方法(製造装置)に係る第3実施形態を
図19から
図21に示す。第3実施形態のレンズユニット2では、正のパワーを有するレンズとして、両凸レンズであるレンズ50を用いている。すなわち、レンズ50は、入射側に突出する凸面である入射面51と、出射側に突出する凸面である出射面52を有する。入射面51の方が出射面52よりも曲率が大きい。入射面51の周囲の環状の領域には入射周縁面53が形成されている。入射周縁面53は、レンズ50の光軸50xに対して概ね垂直な平面である。
【0105】
レンズ枠20の中間部分20Cの内部には、上記第1実施形態の突部26に代えて、突部28が形成されている。突部28は、レンズ枠20の周方向の全体に亘って連続して設けられている。突部28は、突部26を光軸方向で反転させたような形状を有している。具体的には、突部28は、円筒面24の出射側の端部に連続する第1テーパ面28a、円筒面25の入射側の端部に連続する第2テーパ面28b、第1テーパ面28aと第2テーパ面28bを接続する第3テーパ面28cを有している。
【0106】
第1テーパ面28a、第2テーパ面28b、第3テーパ面28cはそれぞれ、光軸方向に進むにつれてレンズ枠20の内径を変化させる傾斜を有する。より詳しくは、第1テーパ面28aは、円筒面24(入射側)から出射側に進むにつれて内径を小さくする面である。第2テーパ面28bは、円筒面25(出射側)から入射側に進むにつれて内径を小さくする面である。第3テーパ面28cは、第2テーパ面28b(出射側)から第1テーパ面28a(入射側)に進むにつれて内径を小さくする面である。
【0107】
すなわち、レンズ50の光軸50xに対する第3テーパ面28cの傾斜方向が、第1実施形態での光軸10xに対する第3テーパ面26cの傾斜方向とは逆である。そして、第3テーパ面28cで反射して出射面52に向かう反射光が、出射面52の箇所で全反射されない点において、第1実施形態とは異なる。
【0108】
レンズ50の外周部分には、突部28の形状に対応する外周凹部54が形成されている。突部28が外周凹部54に嵌合して、レンズ枠20内にレンズ50が固定されている。
【0109】
第1実施形態の突部26と同様に、突部28は、入射面51の有効径内を通り出射面52の有効径内から出射する有効光線を遮蔽せず、有効光線よりも外径側を通る有害な周辺光を遮蔽する機能を有する。また、3つのテーパ面28a、28b、28cを介した保持によって、レンズ枠20に対するレンズ50の結合強度、位置精度、耐荷重性、気密性などが向上している。
【0110】
第3実施形態のレンズ50を成形する成形装置60を、
図20及び
図21に示した。成形装置60の上型61、下型62、胴型63、胴型64はそれぞれ、光軸方向の寸法関係などに相違があるが、基本的な構造は先に説明した成形装置40の上型41、下型42、胴型43、胴型44と共通している。従って、成形装置60の各部において成形装置40と同様に機能する部分については、
図20及び
図21で、成形装置40の対応する部分の符号の先頭に「1」を付した上で、説明を省略する。
【0111】
第1実施形態のレンズ10の成形と同様に、レンズ50の成形に際しては、凸の曲率が大きい(曲率半径が小さい)レンズ面を形成する成形面が下型62に設けられるようにセッティングする。両凸レンズであるレンズ50では、入射面51の方が出射面52よりも曲率が大きい凸面であるので、入射面51を形成する成形面66が下型62に設けられる。そして、凸面としての曲率が小さい出射面52を形成する成形面65が上型61に設けられる。入射面51と出射面52の曲率の違いに対応して、上型61の成形面65よりも、下型62の成形面66の方が、曲率の大きい凹面となる。
【0112】
成形装置60に設置するレンズ枠20の向きは、第1実施形態とは逆になり、入射側端部21を下方に向けて胴型64の収容孔144cに挿入する。そして、入射側端部21が胴型64の規制面144eに当接して、上下方向におけるレンズ枠20の位置が決まる。
【0113】
収容孔144c内にレンズ枠20を挿入した状態で、上向きの出射側端部22は上端面144fよりも下方に位置する。また、成形装置60の基準軸60xに対する、突部28の第1テーパ面28a、第2テーパ面28b、第3テーパ面28cの傾斜方向や傾斜角度はそれぞれ、
図13から
図17に示す第1実施形態の突部26の第2テーパ面26b、第1テーパ面26a、第3テーパ面26cの傾斜方向や傾斜角度とほぼ同じになる。
【0114】
このようにして成形装置60内に設置したレンズ枠20の貫通孔23内に、球形のガラスプリフォームGP2を上方(出射側端部22の側)から挿入する。あるいは、ガラスプリフォームGP2を予め貫通孔23内に挿入したレンズ枠20を、成形装置60に設置してもよい。
図20に示すように、ガラスプリフォームGP2は、レンズ枠20内の突部28の第3テーパ面28cに載置される。下方に進むにつれて内径を小さくする第3テーパ面28cは、ガラスプリフォームGP2を安定して高精度に保持することができる。また、ガラスプリフォームGP2に対する上型61のプレス荷重や、ガラスプリフォームGP2の重さなどによって、胴型64内でのレンズ枠20の浮き上がりを抑えることができる。
【0115】
胴型63によって上下方向への移動が案内される上型61は、軸部141aの先端(下端)に、成形面65を有する。上述のように、成形面65は、レンズ50の出射面52に対応する形状の凹面である。
【0116】
胴型64によって上下方向への移動が案内される下型62は、軸部142aの先端(上端)に、成形面66を有する。上述のように、成形面66は、レンズ50の入射面51に対応する形状の凹面である。また、成形面66の周囲には、レンズ50の入射周縁面53に対応する形状の環状面67が形成されている。
【0117】
成形装置60の内部を加熱してガラスプリフォームGP2を軟化させ、
図20に示すプレス準備完了状態から、上型61と下型62を上下方向で接近させる。下型62の軸部142aがレンズ枠20の貫通孔23内を上方に移動して、成形面66がガラスプリフォームGP2の下部に接触する。上型61の軸部141aがレンズ枠20の貫通孔23内を下方に移動して、成形面65がガラスプリフォームGP2の上部に接触する。そして、成形面65と成形面66に挟まれたガラスプリフォームGP2が押圧されて変形する。
【0118】
成形面65よりも曲率の大きい凹面である成形面66が下方に位置することで、プレス加工でガラスプリフォームGP2が下方へ押圧されたときに、ガラスプリフォームGP2の位置ずれを抑制して成形の精度を向上させることができる。
【0119】
規制面142cが胴型64の下端面144gに当接して移動規制を受け、規制面141cが胴型64の上端面144fに当接して移動規制を受けるまで、上型61と下型62を接近させると、
図21に示すプレス完了状態になり、成形された形状のレンズ50が得られる。
【0120】
レンズユニット2とその製造方法(製造装置)に係る第4実施形態を
図22から
図24に示す。第4実施形態のレンズユニット2では、正のパワーを有するレンズとして、両凸レンズであるレンズ70を用いている。第3実施形態のレンズ50との相違点として、レンズ70では、出射側に突出する凸面である出射面72の方が、入射側に突出する凸面である入射面71よりも曲率が大きい(曲率半径が小さい)。出射面72の周囲の環状の領域には出射周縁面73が形成されている。出射周縁面73は、レンズ70の光軸70xに対して概ね垂直な平面である。
【0121】
レンズ枠20の構成は第3実施形態と同じであり、中間部分20Cの内部には突部28が形成されている。突部28がレンズ70の外周凹部74に嵌合して、レンズ枠20内にレンズ70が固定されている。
【0122】
第4実施形態のレンズ70を成形する成形装置80を、
図23及び
図24に示した。成形装置80は、第3実施形態における成形装置60とほぼ同じ構成であり、共通する部分については、成形装置60と同じ符号で示して説明を省略する。
【0123】
成形装置80では、レンズ70の入射面71を形成する成形面84が下型82に形成され、出射面72を形成する成形面83が上型81に形成されている。また、レンズ70の出射周縁面73を形成する環状面85は、上型81に形成されている。つまり、下型82に設けられているのが、凸の曲率が大きい出射面72を形成する成形面83ではなく、凸の曲率が小さい入射面71を形成する成形面84であるという点で、第1実施形態の成形装置40や第3実施形態の成形装置60とは異なる。
【0124】
図23に示すように、成形装置80の胴型64の収容孔144cに対して、レンズ枠20は入射側端部21を下向きにして挿入される。これにより、突部28の第3テーパ面28cは、内径が小さくなる側を下方に向けた状態になる。そして、球形のガラスプリフォームGP3が第3テーパ面28cに載置される。下方に進むにつれて内径を小さくする第3テーパ面28cは、ガラスプリフォームGP3を安定して高精度に保持することができる。また、ガラスプリフォームGP3に対する上型81のプレス荷重や、ガラスプリフォームGP3の重さなどによって、胴型64内でのレンズ枠20の浮き上がりを抑えることができる。
【0125】
成形装置80の内部を加熱してガラスプリフォームGP3を軟化させ、
図23に示すプレス準備完了状態から、上型81と下型82を上下方向で接近させる。下型82の成形面84がガラスプリフォームGP3の下部に接触し、上型81の成形面83がガラスプリフォームGP3の上部に接触する。そして、成形面83と成形面84に挟まれたガラスプリフォームGP3が押圧されて変形する。
【0126】
成形時にガラスプリフォームGP3の下方に位置する下方面が、成形面83よりも曲率の小さい凹面である成形面84である。但し、成形面84が凹面であるため、下方面が凸面や平面である場合に比して、ガラスプリフォームGP3を安定させる所定の効果を得ることができる。
【0127】
規制面142cが胴型64の下端面144gに当接して移動規制を受け、規制面141cが胴型64の上端面144fに当接して移動規制を受けるまで、上型81と下型82を接近させると、
図24に示すプレス完了状態になり、成形された形状のレンズ70が得られる。
【0128】
以上のように、本発明を適用した各実施形態のレンズユニット2では、レンズ枠20とレンズ10、50、70の間の位置精度、結合強度、耐荷重性、気密性などを向上させることができる。また、レンズ枠20の突部26、28を用いた簡単な構造で、有害光を防いで光学性能を向上させることができる。
【0129】
また、レンズ枠20の突部26、28に設けた第3テーパ面26c、28cによって、成形装置40、60、80での成形時に、レンズ枠20とガラスプリフォームGP1、GP2、GP3の保持精度を高めて生産性を向上させることができる。
【0130】
さらに、成形装置40、60のように、上型の成形面に比して下型の成形面を曲率の大きい凹面にすることで、より一層の生産性向上を実現できる。
【0131】
但し、本発明は上記の各実施形態に限定されるものではなく、発明の要旨内において様々な変更を行うことが可能である。
【0132】
上記実施形態では、レンズユニット2のレンズが平凸レンズまたは両凸レンズであるが、レンズの形状はこれに限定されるものではない。例えば、正のパワーを有するメニスカスレンズも適用可能である。この場合、メニスカスレンズの凸面を形成する成形面を、成形装置の下型に設けることが好ましい。
【0133】
上記実施形態のレンズ枠20における突部26、28は、レンズ10、50、70の光軸10x、50x、70xを中心とする周方向の全体に連続して設けられている。この構造は、強度や遮光性や気密性の確保において有利である。但し、レンズ枠の突部が、周方向の全体ではなく部分的に存在する形態を選択することも可能である。
【0134】
上記実施形態のレンズ枠20における突部26、28は、光軸方向に位置を異ならせて3つのテーパ面を備えている。つまり、突部26、28のうち光軸方向の中間部分には、傾斜角が一定の第3テーパ面26c、28cのみを備えている。この構成は形状がシンプルであり、レンズ枠20を製造しやすく、精度的にも有利である。しかし、レンズ枠の突部のうち光軸方向の中間部分(第3テーパ面26c、28cに相当する部分)で、傾斜角や傾斜方向が異なる2つ以上のテーパ面が光軸方向に連続するように構成することも可能である。すなわち、本発明における突部は、光軸方向に沿って4つ以上のテーパ面を有するものとしてもよい。
【符号の説明】
【0135】
1 :光学装置
2 :レンズユニット
3 :光源ユニット
10 :レンズ
11 :入射面
12 :出射面
14 :外周凹部
20 :レンズ枠
20A :入射側部分
20B :出射側部分
20C :中間部分
21 :入射側端部
22 :出射側端部
23 :貫通孔
24 :円筒面
25 :円筒面
26 :突部
26a :第1テーパ面(第1面)
26b :第2テーパ面(第2面)
26c :第3テーパ面(第3面)
26d :最突出部
27 :複合内面(反射制御部)
27a :第1円筒面
27b :第1テーパ面
27c :第2テーパ面
27d :第2円筒面
28 :突部
28a :第1テーパ面(第1面)
28b :第2テーパ面(第2面)
28c :第3テーパ面(第3面)
30 :光源
40 :成形装置
41 :上型
41d :成形面
42 :下型
42d :成形面
43 :胴型
44 :胴型
50 :レンズ
51 :入射面
52 :出射面
54 :外周凹部
60 :成形装置
61 :上型
62 :下型
63 :胴型
64 :胴型
65 :成形面
66 :成形面
70 :レンズ
71 :入射面
72 :出射面
74 :外周凹部
80 :成形装置
81 :上型
82 :下型
83 :成形面
84 :成形面
EL :有効光線
ELz :最外有効光線
GP1 :ガラスプリフォーム(成形前のガラス材料)
GP2 :ガラスプリフォーム(成形前のガラス材料)
GP3 :ガラスプリフォーム(成形前のガラス材料)
LP :発光点
OL :周辺光線
RL1 :反射光線
RL2 :反射光線
RL3 :反射光線
RL4 :反射光線