(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】折返判定装置
(51)【国際特許分類】
G01S 7/40 20060101AFI20221220BHJP
G01S 13/931 20200101ALI20221220BHJP
G08G 1/16 20060101ALI20221220BHJP
B60W 50/04 20060101ALI20221220BHJP
【FI】
G01S7/40 126
G01S13/931
G08G1/16 C
B60W50/04
(21)【出願番号】P 2019162006
(22)【出願日】2019-09-05
【審査請求日】2022-02-03
(73)【特許権者】
【識別番号】000004695
【氏名又は名称】株式会社SOKEN
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】近藤 勝彦
(72)【発明者】
【氏名】▲高▼山 卓也
【審査官】渡辺 慶人
(56)【参考文献】
【文献】特開2014-002053(JP,A)
【文献】特開2016-075524(JP,A)
【文献】特開2016-085125(JP,A)
【文献】特開2017-227510(JP,A)
【文献】米国特許第03935574(US,A)
【文献】米国特許出願公開第2017/0212205(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 3/00 - 3/74
7/00 - 7/42
13/00 - 13/95
(57)【特許請求の範囲】
【請求項1】
車両に搭載されるレーダ装置から、あらかじめ設定された検知範囲内に存在する物体について、水平方向および垂直方向のうち少なくとも一方を指定方向として、前記指定方向の方位についての観測値である観測方位を含んだ観測点情報を繰り返し取得するように構成された情報取得部(6:S110)と、
前記レーダ装置が基準位置に搭載されたときの前記レーダ装置の向きを搭載基準方向とし、前記レーダ装置の実際の向きを搭載実方向として、前記搭載基準方向に対する前前記搭載実方向の前記指定方向への軸ずれ量を取得するように構成された軸ずれ取得部(6:S120)と、
前記観測点情報に含まれる前記観測方位に位相折返しがあるとした場合に推定される方位である折返方位を算出するように構成された折返算出部(6:S190)と、
前記観測方位および該観測方位に対応づけられる前記折返方位のうち、前記軸ずれ量および前記搭載実方向から推定される前記搭載基準方向により近い方を、実際の方位であると判定するように構成された瞬時判定部(6:S210~S220)と、
を備える折返判定装置。
【請求項2】
請求項1に記載の折返判定装置であって、
前記瞬時判定部での判定結果に従った処理を実行するように構成された処理実行部(6:S230~S240)を更に備え、
前記処理実行部は、前記判定結果を報知する報知処理または前記判定結果に従って前記観測方位を補正する補正処理のうち少なくとも一方を実行する
折返判定装置。
【請求項3】
請求項1または請求項2に記載の折返判定装置であって、
前記観測方位の時系列に、同一方向とみなすことができない複数の前記観測方位が含まれる場合、受信電力または前記
観測点情報により示される物体との相対速度のうち少なくとも一方が最大となる前記観測点情報が検出される前記観測方位を基準方位に設定するように構成された基準方位設定部(6:S202)と、
前記情報取得部で取得された前記観測点情報に含まれる前記観測方位が前記基準方位設定部で設定された前記基準方位と同一方向であるとみなせる場合は、前記観測方位を、実際の方位であると判定するように構成された系列判定部(6:S204)と、
を更に備える折返判定装置。
【請求項4】
請求項1から請求項3までのいずれか1項に記載の折返判定装置であって、
前記観測点情報により示される物体が移動体であるか否かを判定するように構成された移動判定部(6:S180)を更に備え、
前記瞬時判定部は、前記観測点情報により示される物体が移動体であると判定された場合に判定を実施する
折返判定装置。
【請求項5】
請求項1から請求項4までのいずれか1項に記載の折返判定装置であって、
前記観測点情報により示される物体が前記レーダ装置の放射パターンにおいて予め設定された閾値以上のゲインが得られる指向範囲内に位置するか否かを判定するように構成された指向性判定部(6:200)を更に備え、
前記瞬時判定部は、前記折返方位が指向範囲内に位置する場合に判定を実施する
折返判定装置。
【請求項6】
請求項1から請求項5までのいずれか1項に記載の折返判定装置であって、
前記
車両が直線走行中であるか否かを判定するように構成された走行判定部(6:S150)を更に備え、
前記瞬時判定部は、前記
車両が直線走行中である場合に判定を実施する
折返判定装置。
【請求項7】
請求項1から請求項6までのいずれか1項に記載の折返判定装置であって、
前記
車両の前記搭載基準方向に物標が存在するか否かを判定するように構成された物標判定部(6:S160)を更に備え、
前記瞬時判定部は、前記
車両の前記搭載基準方向に物標が存在する場合に判定を実施する
折返判定装置。
【請求項8】
請求項1から請求項7までのいずれか1項に記載の折返判定装置であって、
前記観測点情報から前記レーダ装置の前記軸ずれ量を検出するように構成された軸ずれ検出部(61)を更に備え、
前記軸ずれ取得部は、前記軸ずれ検出部から前記軸ずれ量を取得し、
前記軸ずれ検出部は、前記瞬時判定部での判定結果に従って前記観測方位が補正された前記観測点情報を用いて前記軸ずれ量を検出する
折返判定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レーダ装置により観測された方位の位相折返しを判定する技術に関する。
【背景技術】
【0002】
レーダ波を反射した物標からの反射波をアレーアンテナで受信し、各アンテナからの受信信号間に生じる位相差Δθを利用して、物標の方位を検出するレーダ装置では、位相の周期性からΔθ=θ0と、Δθ=θ0±2nπとを区別することができない。なお、|θ0|<π、n=1,2,…とする。
【0003】
つまり、例えば、位相差Δθが-π<Δθ≦+π[rad]となる範囲に対応する方位角度領域(以下、測角範囲)内に物標が存在すれば、その方位を正しく検出することができる。しかし、測角範囲外、即ち、位相差Δθが、Δθ≦-πまたはΔθ>πとなる範囲に物標が存在する場合に、いわゆる位相折返しによって、物標の方位を、測角範囲内にあるものとして誤検出してしまう。
【0004】
特許文献1には、履歴接続の有無によって物体を追跡する技術を利用し、予測値が測角範囲から外れる場合に、折返し補正された予測値との履歴接続がある観測値を抽出し、その抽出された観測値を折返し補正することで、正しい方位を得る技術が提案されている。なお、予測値とは、前回の処理サイクルでの検出結果から予測される値であり、観測値とは今回の処理サイクルで実際に観測された値である。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、発明者の詳細な検討の結果、特許文献1に記載の従来技術では、以下の課題が見出された。すなわち、レーダ装置に軸ずれがある場合に、軸ずれがない場合の本来の測角範囲内にある物体が、折返し方位で検知されてしまう。このような物体が、追跡履歴がない状態でいきなり検出されると、折返し方位がその物体の正しい方位であるとして検出され続け、補正ができないというという課題が見出された。
【0007】
本開示の1つの局面は、レーダ装置に軸ずれがあっても、追跡履歴がない状態で検出される物標の方位を正しく検出する技術を提供することにある。
【課題を解決するための手段】
【0008】
本開示の一態様は、折返判定装置であって、情報取得部(6:S110)と、軸ずれ取得部(6:S120)と、折返算出部(6:S190)と、瞬時判定部(6:S210~S220)と、を備える。
【0009】
情報取得部は、車両に搭載されるレーダ装置から、指定方向の方位についての観測値である観測方位を含んだ観測点情報を繰り返し取得する。指定方向は、水平方向および垂直方向のうち少なくとも一方である。軸ずれ取得部は、レーダ装置が基準位置に搭載されたときのレーダ装置の向きを搭載基準方向とし、レーダ装置の実際の向きを搭載実方向として、搭載基準方向に対する搭載実方向の指定方向への軸ずれ量を取得する。折返算出部は、観測点情報に含まれる観測方位に位相折返しがあるとした場合に推定される方位である折返方位を算出する。瞬時判定部は、観測方位および観測方位に対応づけられる折返方位のうち、軸ずれ量および搭載実方向から推定される搭載基準方向により近い方を、実際の方位であると判定する。
【0010】
このような構成によれば、観測方位と折返方位とのうち、搭載基準方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、観測方位についての履歴を用いることなく位相折返しの有無を判定することで、搭載基準方向を中心とした本来の検知範囲内に存在する観測点の方位の検出精度を向上させることができる。
【図面の簡単な説明】
【0011】
【
図1】折返判定システムの構成を示すブロック図である。
【
図3】第1実施形態における折返判定処理のフローチャートである。
【
図4】水平方向の折返判定処理で使用するパラメータ等に関する説明図である。
【
図5】水平方向の折返判定処理において、正面に物標があるか否かの判定に関する説明図である。
【
図6】水平方向におけるレーダ装置の指向性および軸ずれ量に関する説明図である。
【
図7】水平方向の折返判定処理において、測角範囲と観測方位および折返方位との関係等を示す説明図である。
【
図8】折返判定の判定結果に基づく観測方位の補正を行わない場合、および観測方位の補正を行う場合のそれぞれについて、観測方位から軸ずれ量を算出した結果を示す説明図である。
【
図9】垂直方向の折返判定処理で使用するパラメータ等に関する説明図である。
【
図10】垂直方向の折返判定処理において、正面に物標があるか否かの判定に関する説明図である。
【
図11】垂直方向におけるレーダ装置の指向性等に関する説明図である。
【
図12】垂直方向の折返判定処理において、測角範囲と観測方位および折返方位との関係等を示す説明図である。
【
図13】第2実施形態における折返判定処理のフローチャートである。
【発明を実施するための形態】
【0012】
以下、図面を参照しながら、本開示の実施形態を説明する。
[1.第1実施形態]
[1-1.構成]
本実施形態の折返判定システム1は、車両に搭載され、
図1に示すように、レーダ装置2と、カメラ3と、調整装置4と、車内通信装置5と、制御装置6とを備える。
【0013】
レーダ装置2は、
図2に示すように、折返判定システム1を搭載した車両VHの前端部に設置される。そしてレーダ装置2は、レーダ波を車両VHの前方に向けて送信し、反射したレーダ波を受信することにより、車両VHの前方の検知範囲Rf内に存在する物体を検出する。
【0014】
レーダ装置2は、例えば、FMCW方式を採用しており、上り変調区間のレーダ波と下り変調区間のレーダ波を予め設定された変調周期で交互に送信し、反射したレーダ波を受信する。FMCWは、Frequency Modulated Continuous Waveの略である。これにより、レーダ装置2は、変調周期毎に、受信したレーダ波の受信電力Pと、レーダ波を反射した物体上の点(以下、観測点)までの距離Rと、観測点との相対速度Vrと、観測点の水平方位角φxとを検出する。またレーダ装置2は、検出した受信電力P、距離R、相対速度Vrおよび水平方位角φxを示す観測点情報を制御装置6へ出力する。なお、観測点の水平方位角φxは、レーダ装置2が有する複数の受信アンテナが受信する受信信号間の位相差を利用して検出される。レーダ装置2にて位相折返しが発生しない方位角度の領域を測角範囲として、検知範囲Rfは、少なくとも測角範囲より狭い角度範囲に設定される。
【0015】
カメラ3は、車両VHの前端部またはバックミラー付近等に取り付けられ、検知範囲Rfを含む車両VHの前方の状況を連続して撮影する。
調整装置4は、モータと、レーダ装置2に取り付けられた歯車とを備える。調整装置4は、制御装置6から出力される駆動信号に従ってモータを回転させることにより、この回転力が歯車に伝達され、車両VHの車高方向に沿った軸を中心にレーダ装置2を回転させる。これにより、調整装置4は、レーダ装置2の搭載角を調整する。
【0016】
車内通信装置5は、車両に搭載された様々な装置を相互に接続する車載LANを介した通信を実行する。LANは、ローカルエリアネットワークである。車内通信装置5は、車載LANを介して、車両の挙動を検出する様々なセンサからの検出信号を取得する。検出対象となる車両の挙動としては、少なくとも速度Vsおよび操舵角θが含まれる。
【0017】
制御装置6は、CPU6aと、例えば、RAMまたはROM等の半導体メモリ(以下、メモリ6b)と、を有するマイクロコンピュータを備える。制御装置6の各機能は、CPU6aが非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ6bが、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムが実行されることで、プログラムに対応する方法が実行される。
【0018】
制御装置6がプログラムを実行することで実現される機能として、軸ずれ検出部61、画像解析部62、折返判定部63および軸ずれ調整部64を少なくとも実行する。
軸ずれ検出部61は、レーダ装置2にて検出される観測点の情報を基づいて、搭載基準方向に対する搭載実方向の指定方向への軸ずれ量γを検出する。搭載基準方向とは、レーダ装置2が本来取り付けられるべき位置である基準位置に搭載されたときのレーダ装置2の向きである。搭載実方向とは、車両に搭載されたレーダ装置2の実際の向きである。ここでは、レーダ装置2の正面方向をレーダ装置2の向きとし、車両の正面方向を搭載基準方向とする。つまり、軸ずれ量γは、
図4に示すように、車両の正面方向を基準として、レーダ装置2の正面方向がなす角度をいう。
【0019】
画像解析部62は、カメラ3から得られる前方画像を解析することで、検知範囲Rf内の状況を検出する。具体的には、解析結果として、道路に描かれた車線の位置、および自車両と同一車線を走行する前方車両の有無等の情報が少なくとも含まれる。
【0020】
折返判定部63は、レーダ装置2にて検出される観測点の方位情報が、位相折返しされた情報であるか否かを判定し、方位情報を補正する。その詳細については後述する。なお、補正された方位情報は、軸ずれ検出部61の処理にも用いられる。
【0021】
軸ずれ調整部64は、軸ずれ検出部61での検出結果に従って、調整装置4を駆動することでレーダ装置2の取り付け角度を調整する。
なお、軸ずれ検出部61、画像解析部62、および軸ずれ調整部64の詳細について、ここでの説明は省略する。
【0022】
メモリ6bには、レーダ装置2が有するアンテナの指向性を表す情報、すなわち、方位とその方位でのゲインとを対応づけた情報(以下、指向性情報)が少なくとも記憶される。
【0023】
[1-2.処理]
折返判定部63としての機能を実現するために、制御装置6が実行する折返判定処理を、
図3に示すフローチャートを用いて説明する。
折返判定処理は、折返判定システム1が起動すると繰り返し実行される。
【0024】
S110では、制御装置6は、レーダ装置2から観測点情報を取得する。
続くS120では、制御装置6は、軸ずれ角算出処理での処理結果である軸ずれ量γを取得する。
【0025】
続くS130では、制御装置6は、車内通信装置5を介して、自車状態を取得する。取得する自車状態には、自車速Vsおよび操舵角θが少なくとも含まれる。
続くS140では、制御装置6は、画像解析処理での解析結果を取得する。取得する解析結果には、自車両と同一車線上に存在する物標の情報が少なくとも含まれる。
【0026】
続くS150では、制御装置6は、自車両が直線走行中であるか否かを判定し、直線走行中であると判定した場合は、処理をS160に移行し、直線走行中でないと判定した場合は、処理をS260に移行する。なお、直線走行中であるか否かの判定は、例えば、S130にて取得される自車状態の操舵角θに基づいて行われてもよいし、S140にて取得した解析結果に白線の形状が含まれている場合には、これに基づいて行われてもよい。
【0027】
S160では、制御装置6は、正面に物標が存在するか否かを判定し、存在すると判定した場合は、処理をS170に移行し、存在しないと判定した場合は、処理をS260に移行する。なお、正面に物標が存在するか否かの判定は、例えば、S140にて取得した前方画像の解析結果に基づいて行ってもよい。つまり、
図5に示すように、解析結果により、自車線上に先行車両が存在するか否かによって判定してもよい。
【0028】
S170では、制御装置6は、S110にて取得した観測点情報の一つを選択する。この観測点情報に対応する観測点をMiで識別するものとし、観測点情報に含まれる観測点の方位(以下、観測方位)αiとする。観測方位αiは、レーダ装置2の正面方向を基準(すなわち0°)として、正面方向から右回りをプラス、左回りをマイナスとする角度で表す。
【0029】
続くS180では、制御装置6は、S170で選択された観測点Miが移動体であるか否かを判定し、移動体であると判定した場合は処理をS190に移行し、移動体ではないと判定した場合は処理をS240に移行する。なお、移動体であるか否かは、選択された観測点Miの観測点情報に示された相対速度(以下、観測速度)Vriと、S130で取得した自車速Vsとの差の絶対値が閾値以上である場合に移動体であると判定する。
【0030】
S190では、制御装置6は、観測方位αiに位相折返しが生じていると仮定した場合に、観測点Miが存在すると推定される方位である折返方位βiを算出する。具体的には、
図4に示すように、レーダ装置2の測角範囲全体の方位角度幅をFOVとして、(1)(2)式を用いて算出する。
【0031】
βi=αi-FOV (αi≧0の場合) (1)
βi=αi+FOV (αi<0の場合) (2)
続くS200では、制御装置6は、レーダ装置2の指向性を表す放射パターンに基づき、ゲインが閾値以上となる範囲(以下、指向範囲)内に折返方位βiが含まれるか否かを判定する。制御装置6は、折返方位βiが指向範囲内にあると判定した場合は、位相折返しが発生している可能性があるとして、処理をS210に移行し、指向範囲外にあると判定した場合は、位相折り返しが発生している可能性は低いとして、処理をS240に移行する。例えば、
図6に示すように、放射パターンにメインローブとサイドローブとが存在する場合、折返方位βiがサイドローブ内にあれば、実際の観測点Miは、その折返方位βiに存在する可能性がある。折返方位βiがメインローブとサイドローブとの間の方位にあれば、実際の観測点Miが折返方位βiに存在する可能性が低く、観測方位αiが正しい方位であると判定できる。
【0032】
S210では、制御装置6は、観測方位αiおよび折返方位βiのそれぞれについて、車両の正面方向(すなわち、搭載基準方向)に対する差分である正面差分値dαi,dβiを、(3)(4)式を用いて算出する。つまり、このステップでは、
図4に示すように、レーダ装置2の正面方向を基準とする角度で表現されるαi,βiを、軸ずれ量γを用いて車両の正面方向を基準とする角度の絶対値に変換する処理を行う。
図4において、γは負の値をとるものとする。
【0033】
dαi=|αi-γ| (3)
dβi=|βi-γ| (4)
続くS220では、制御装置6は、観測方位αiおよび折返方位βiのうちいずれが正面方向に近いかを判定する。具体的には、S210で算出された差分値dαi,dβiに基づき、dαi>dβiであるか否かを判定する。制御装置6は、dαi>dβiである場合、すなわち、折返方位βiの方が観測方位αiより車両の正面方向に近いと判定した場合、処理をS230に移行する。また、制御装置6は、dαi≦dβiである場合、すなわち、観測方位αiの方が折返方位βiより車両の正面方向に近いと判定した場合、処理をS240に移行する。
【0034】
S230では、制御装置6は、観測点Miの観測方位αiは位相折返しがあるとして、折返方位βiを観測点Miの確定方位ψiに設定して、処理をS250に進める。
S240では、制御装置6は、観測点Miの観測方位αiは位相折返しがないとして、観測方位αiを観測点Miの確定方位ψiに設定して、処理をS250に進める。
【0035】
S250では、制御装置6は、S110で取得した全ての観測点情報について、S170~S240の処理を実行済みであるか否かを判定する。制御装置6は、未処理の観測点情報があると判定した場合、処理をS170に戻し、全ての観測点情報について処理済みであると判定した場合、当該折返判定処理を終了する。
【0036】
S260では、制御装置6は、S110で取得した全ての観測点情報について、位相折返しの有無を判定することなく、観測方位αを観測点Mの確定方位ψに設定して、当該折返判定処理を終了する。
【0037】
観測点Mの確定方位ψは、軸ずれ量γと共に、後段の処理に供給される。
また、確定方位ψ、特に、S230およびS240で設定された確定方位ψは、軸ずれ量算出処理にも使用される。
【0038】
なお、S110が情報取得部に相当し、S120が軸ずれ取得部に相当し、S150が走行判定部に相当し、S160が物標判定部に相当し、S180が移動判定部に相当し、S190が折返算出部に相当する。また、S200が指向性判定部に相当し、S210~S220が瞬時判定部に相当し、S230~S240が処理実行部に相当する。また、折返判定処理を実行する制御装置6が折返判定装置に相当する。
【0039】
[1-3.効果]
以上詳述した第1実施形態によれば、以下の効果を奏する。
(1a)折返判定システム1では、自車両が直線走行中かつ自車両の正面に物標が存在する場合に、観測方位αiの折返判定を実行する。つまり、
図7に示すように、自車両の正面に物標が存在していることを利用し、観測方位αiと折返方位βiとのうち、車両の正面方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、折返判定システム1によれば、観測点Miの方位についての観測履歴を用いることなく位相折返しの有無を判定して、観測点Miの正しい方位を得ることができる。
【0040】
(1b)折返判定システム1では、レーダ装置2のアンテナの指向性を示す放射パターンを用いて、折返方位βiが放射パターン内で閾値以上のゲインが得られる指向範囲内に存在する場合に、位相折返しの可能性があるとして、折返判定を実行する。つまり、指向範囲外の物標のからの反射波の受信電力は非常に小さく検知される可能性は低いため、折返方位βiが指向範囲外にある場合、位相折返しはないと判定できる。
【0041】
(1c)折返判定システム1では、観測点Miが移動体である場合に、折返し判定を行う。つまり、路側物等の静止物は、自車両の正面に位置していない可能性が高いため、静止物を除くことによって、折返判定の精度を向上させることができる。
【0042】
(1d)折返判定システム1では、軸ずれ量算出処理において、折返判定処理によって得られる確定方位ψが用いられるため、軸ずれ量γの算出精度を向上させることができる。例えば、角度φのプラス方向に軸ずれしている場合を考える。この場合、位相折返しを考慮することなく、観測点方位αiをそのまま用いて軸ずれ量γを推定すると、
図8の上段に示すように、本来プラス方向で検出されるべき観測点Miが、位相折返しによってマイナス方向で検出される。このような観測点Miを用いて軸ずれ量γを推定すると、車両の正面方向を示す真値よりマイナス側にシフトした軸ずれ量γが算出される。これに対して、折返判定により位相折返しがあると判定された観測点Miの確定方位ψiとして折返方位βiを採用することによって、
図8の下段に示すように、確定方位ψiは、真値のプラス側およびマイナス側にほぼ均等に分布する。その結果、より真値に近い軸ずれ量γが算出される。
【0043】
[1-4.変形例]
上記実施形態では、水平方向の方位について折返判定を実施する例を示したが、
図9に示すように、垂直方向の方位について折返判定を実施してもよい。この場合、S160の正面に物標があるか否かの判定は、
図10に示すように、垂直方向で自車両の同じ高さに存在するか否かによって判定する。また、指向性についても、
図11に示すように垂直方向の指向性を考慮して判定を実行する。
【0044】
この場合、水平方位と同様に、
図12に示すように、自車両の正面に物標が存在していることを利用し、観測方位αiと折返方位βiとのうち、車両の正面方向により近い方を正しい方位とすることで、位相折返しの有無を判定する。従って、折返判定システム1によれば、観測点Miの方位についての観測履歴を用いることなく位相折返しの有無を判定して、観測点Miの正しい垂直方位を得ることができる。更には、レーダ装置2の垂直方向への軸ずれ量γの検出精度を向上させることができる。
【0045】
[2.第2実施形態]
[2-1.第1実施形態との相違点]
第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
【0046】
第2実施形態では、折返判定処理において履歴情報を用いる点で、第1実施形態と相違する。
[2-2.処理]
次に、第2実施形態の制御装置6が、
図3に示した第1実施形態の折返判定処理に代えて実行する折返判定処理について、
図13のフローチャートを用いて説明する。なお、S202、S204、S255が追加されている以外は、第1実施形態と同様であるため、この相違点について説明する。
【0047】
なお、レーダ装置2の検知範囲の境界付近に物標が存在する場合に、処理サイクル毎に、位相折返しによって、検知範囲の境界の両側にて、同一物標に基づく観測点Miが検出される場合がある。第2実施形態では、このような場合にも対処する。
【0048】
S200にて肯定判定された場合に移行するS202では、制御装置6は、基準更新処理を実行する。
基準更新処理の詳細を、
図14のフローチャートを用いて説明する。
【0049】
S310では、制御装置6は、選択した観測点Miの受信電力Piが、その時点で記憶されている最大電力maxPi以上であるか否かを判定する。制御装置6は、Pi≧maxPiであると判定した場合、処理をS320に移行し、Pi<maxPiであると判定した場合、処理をS400に移行する。
【0050】
S320では、制御装置6は、最大電力maxPiを、受信電力Piで更新する。
続くS330では、制御装置6は、観測方位αiと基準方位fαiとが同一方位にあるとみなせるか否かを判定する。具体的には、αiとfαiの差分の絶対値が、閾値THα以下であれば同一方位にあるとみなす。制御装置6は、同一方位にあると判定した場合は、処理をS340に移行し、同一方位にはないと判定した場合は、処理をS360に移行する。
【0051】
S340では、制御装置6は、基準方位fαiを観測方位αiで更新する。
続くS350では、制御装置6は、カウント値Ciをカウントアップして処理を終了する。
【0052】
S360では、制御装置6は、カウント値Ciが第1閾値TH1c以下であるか否かを判定し、Ci≦TH1cであれば、処理をS370に移行し、Ci>TH1cであれば、処理をS390に移行する。TH1cは、例えば、2~5程度の比較的小さな値に設定される。
【0053】
S370では、制御装置6は、基準方位fαiを観測方位αiで更新する。
続くS380では、制御装置6は、カウント値Ciを1に初期化して処理を終了する。
S390では、制御装置6は、カウント値Ciをカウントダウンして処理を終了する。
【0054】
S400では、制御装置6は、S330と同様に、観測方位αiと基準方位fαiとが同一方位にあるとみなせるか否かを判定する。制御装置6は、同一方位にあるとみなせると判定した場合は、処理をS410に移行し、同一方位にはないと判定した場合は、処理をS420に移行する。
【0055】
S410では、制御装置6は、カウント値Ciをカウントアップして処理を終了する。
S420では、制御装置6は、カウント値Ciが第2閾値TH2c以上であるか否かを判定し、Ci≧TH2cであれば、処理をS430に移行し、Ci<TH2cであれば、処理をS440に移行する。第2閾値TH2cは、第1閾値TH1cと同じ値でもよいし異なる値でもよい。
【0056】
S430では、制御装置6は、カウント値Ciをカウントダウンして処理を終了する。
S440では、制御装置6は、当該基準更新処理で用いるパラメータCi、fαi、maxPiを初期化して処理を終了する。
【0057】
つまり、観測点Miの受信電力Piが最大電力maxPi以上の場合には、基準方位fαiおよびカウント値Ciをいずれも操作する。具体的には、S330~S390では、受信電力Piが最大となる観測点Miの観測方位αiが、現在の基準方位fαiと同じとみなせる場合は、その観測方位αiによって基準方位fαiを更新すると共に、カウント値Ciをカウントアップする。また、観測方位αiが、現在の基準方位fαiと異なる場合は、カウント値Ciが第1閾値THc1より大きければ、基準方位fαiを更新せずに、カウント値Ciをカウントダウンする。また、カウント値Ciが第1閾値THc1以下であれば、基準方位fαiを更新して、カウント値Ciを1に初期化する。
【0058】
また、観測点Miの受信電力Piが最大電力maxPiより小さい場合には、基準方位fαiを更新せず、カウント値Ciのみ操作する。具体的には、S400~S440では、観測方位αiが、現在の基準方位fαiと同じとみなせる場合は、カウント値Ciをカウントアップする。また、観測方位αiが、現時点の基準方位fαiと異なる場合は、カウント値Ciが第2閾値TH2c以上である場合、カウント値Ciをカウントダウンする。また、カウント値Ciが第2閾値TH2cより小さい場合、最大電力maxPiが検出された方位での観測点Miの検出頻度が低下していることを意味するため、観測を最初からやり直すためにパラメータCi、fαi、maxPiを初期化する。具体的には、例えば、Ciを1、fαiおよびmaxPiを0に設定する。
【0059】
このように、基準更新処理では、観測点の時系列を処理する。そして、基準更新処理の結果、受信電力が最大となる観測点Miが検出された方位が基準方位fαiとされ、カウント値Ciは、基準方位fαiと同じとみなせる方向で観測点Miが検出される頻度が高いほど大きな値となる。
【0060】
図13に戻り、S202に続くS204では、制御装置6は、S202での処理結果に基づき、カウント値Ciが閾値THc以上であり、且つ観測方位αiが基準方位fαiと同じとみなせるか否かを判定する。なお、閾値THcは、1以上かつ第2閾値TH2cより小さな値に設定される。制御装置6は、肯定判定した場合は、処理をS240に移行し、否定判定した場合は、処理をS210に移行する。
【0061】
つまり、観測方位αiが基準方位fαiと同一方向であるとみなせ、かつ、基準方位fαiにて観測点Miが検出される頻度がある程度大きい場合は、位相折返しがないものとして、観測方位αiを確定方位ψiとする。それ以外の場合は、正面差分dαi,dβiによる折返判定を実施する。
【0062】
S150またはS160のいずれかで否定判定された場合に実施されるS255では、制御装置6は、基準更新処理で用いる全てのパラメータfαi,maxPi,Ciを初期化して、処理をS260に移行する。
【0063】
なお、S202が基準方位設定部に相当し、S204が系列判定部に相当する。
[2-3.効果]
以上詳述した第2実施形態によれば、上述した第1実施形態の効果(1a)を奏し、さらに、以下の効果を奏する。
【0064】
(2a)第2実施形態では、複数の処理サイクルに渡って検出される一連の観測点Miについて受信電力Piを利用して折返判定を行うため、判定精度を向上させることができる。つまり、位相折返しが生じている場合、放射パターンの中心から外れた検知範囲の境界部分に物標が存在する。位相折返しがある場合に検出される観測点Miの受信電力Piは、位相折返しがない場合に、同じ場所で検出される受信電力Piより小さくなる。この事実を利用することで判定精度を向上させることができる。
【0065】
[2-4.変形例]
第2実施形態では、基準更新処理において、観測点Miの受信電力Piと観測方位αiを用いてカウント値Ciを増減しているが、受信電力Piの代わりに観測点Miの相対速度Vriを用いてもよい。つまり、観測点Miについて検出される相対速度は、観測点Miの速度のレンジ方向の成分であるため、観測点Miが一定の速度であっても、自車の正面に位置する場合に最大値となり、自車の正面からの角度が大きくなるほど、小さくなる。位相折返しがある場合に検出される観測点Miの相対速度Vriは、位相折返しがない場合に、同じ場所で検出される相対速度Vriより小さくなる。この事実を利用することで判定精度を向上させることができる。
【0066】
[3.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
【0067】
(3a)本開示では、レーダ装置2がレーダ波を車両VHの前方に向けて送信する形態を示したが、レーダ波の送信方向は車両VHの前方に限定されるものではない。例えば、レーダ装置2は、第1実施形態の場合は、車両VHの前方、右前方、左前方、後方、右後方、左後方、右側方および左側方の少なくとも一方に向けてレーダ波を送信するようにしてもよい。第2実施形態の場合は、車両VHの前方および後方の少なくとも一方に向けてレーダ波を送信するようにしてもよい。
【0068】
(3b)本開示では、レーダ装置2がFMCW方式を採用している形態を示したが、レーダ装置2のレーダ方式は、FMCWに限定されるものではなく、例えば、2周波CW、FCMまたはパルスを採用するようにしてもよい。FCMは、Fast-Chirp Modulationの略である。
【0069】
(3c)本開示では、制御装置6が実行する軸ずれ量算出処理によって、レーダ装置2の取り付け状態に基づく定常的な軸ずれ量γを算出しているが、本開示はこれに限定されるものではない。例えば、傾斜センサ等によって、車体のピッチングやロールに基づく一時的な車体の傾斜を、軸ずれ量γに含ませるようにしてもよい。
【0070】
(3d)本開示では、処理実行部に相当するS230およびS240にて、位相折返しの有無の判定結果に従って観測方位を補正する補正処理を行っているが、本開示はこれに限定されるものではない。例えば、補正処理に代えて、または補正処理と共に、判定結果を報知する報知処理を行ってもよい。
【0071】
(3e)本開示に記載の制御装置6およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御装置6およびその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御装置6およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。制御装置6に含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。
【0072】
(3f)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。
【0073】
(3g)上述した折返判定装置の他、当該折返判定装置を構成要素とするシステム、当該折返判定装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、折返判定方法など、種々の形態で本開示を実現することもできる。
【符号の説明】
【0074】
1…折返判定システム、2…レーダ装置、3…カメラ、4…調整装置、5…車内通信装置、6…制御装置、6a…CPU、6b…メモリ、61…軸ずれ検出部、62…画像解析部、63…折返判定部、64…軸ずれ調整部。