(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】低レイテンシ動作計画更新を有するインテリジェントLADARシステム
(51)【国際特許分類】
G01S 7/484 20060101AFI20221220BHJP
G01S 17/10 20200101ALI20221220BHJP
G01S 17/86 20200101ALI20221220BHJP
G01S 17/931 20200101ALI20221220BHJP
G08G 1/16 20060101ALI20221220BHJP
【FI】
G01S7/484
G01S17/10
G01S17/86
G01S17/931
G08G1/16 C
(21)【出願番号】P 2020515068
(86)(22)【出願日】2018-08-21
(86)【国際出願番号】 US2018047199
(87)【国際公開番号】W WO2019216937
(87)【国際公開日】2019-11-14
【審査請求日】2021-08-16
(32)【優先日】2017-09-15
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-07-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517052242
【氏名又は名称】エイアイ インコーポレイテッド
【氏名又は名称原語表記】AEYE, Inc.
【住所又は居所原語表記】8 Executive Dr., Suite 120, Fairview Heights, IL 62208, United States of America
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ルイス カルロス ダッサン
(72)【発明者】
【氏名】アラン スタインハート
(72)【発明者】
【氏名】ジョエル デイヴィッド ベンスコーター
(72)【発明者】
【氏名】ジョーダン スペンサー グリーン
【審査官】梶田 真也
(56)【参考文献】
【文献】国際公開第2016/025908(WO,A2)
【文献】国際公開第2017/034689(WO,A1)
【文献】特開2016-169001(JP,A)
【文献】米国特許出願公開第2008/0029701(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
G01S 17/00 - 17/95
G01B 11/00 - 11/30
G01C 3/00 - 3/32
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
LADAR送信機と、プロセッサと、を備える装置であって、
前記LADAR送信機は、視野内の複数の測距点に向けて、複数のLADARフレームに対応する複数のLADARパルスを送信するように構成されており、
前記プロセッサは、(1)前記視野に関するデータを処理
するプロセスと、(2)前記処理されたデータに基づいて、複数の規定されたショットリストフレームの中から前記LADAR送信機の規定されたショットリストフレームを選択する
プロセスと、を実施するように構成されており、前記規定されたショットリストフレームは、所定のLADARフレーム内の前記LADARパルスによる目標設定のための前記視野内の複数の座標を識別し、
前記LADAR送信機は、前記選択されたショットリストフレームに応じて、前記所定のLADARフレームの前記LADARパルスを送信する
プロセスを実施するようにさらに構成されている、
装置。
【請求項2】
前記プロセッサは、前記
処理するプロセス
、前記選択するプロセスおよび前記送信するプロセスをフレームごとに
繰り返し実施するようにさらに構成されている、
請求項1に記載の装置。
【請求項3】
前記プロセッサは、前記
処理するプロセス
、前記選択するプロセスおよび前記送信するプロセスをフレームごとに
繰り返し実施するように
さらに構成され、これにより複数の異なる規定されたショットリストフレームは、複数の異なるLADARフレームに対して選択される、
請求項2に記載の装置。
【請求項4】
前記処理されたデータは、前記視野の複数の特性を表す
特性データを含む、
請求項1~3のいずれか1項に記載の装置。
【請求項5】
前記特性データは、前記視野内の物体を表すデータを含む、
請求項4に記載の装置。
【請求項6】
前記装置は、前記送信されたLADARパルスの反射を受信するように構成されたLADAR受信機をさらに備え、
前記プロセッサは、前記受信された反射に基づいて前記視野に関する射程情報を計算するようにさらに構成され、前記処理されたデータは、前記計算された射程情報を含む、
請求項1~5のいずれか1項に記載の装置。
【請求項7】
前記装置は、前記視野に対応する画像データを生成するように構成されたカメラをさらに備え、
前記処理されたデータは、前記生成された画像データを含む、
請求項6に記載の装置。
【請求項8】
前記カメラは、前記生成された画像データが前記LADAR受信機の前記視野に対応するように、前記LADAR受信機と共に照準されている、
請求項7に記載の装置。
【請求項9】
前記生成された画像データは、複数の画像フレームを含み、前記プロセッサは、
前記カメラおよびLADARフレームによって生成された画像フレームを空間的に整列させることと、
前記画像フレームおよび前記LADARフレーム上でエッジ検出を実施して、前記画像フレームおよび前記LADARフレーム内の物体を検出することと、
前記エッジ検出および前記画像フレームと前記LADARフレームとの前記空間的
な整列に基づいて、前記物体に関する動きデータを生成することと、
を行うようにさらに構成されている、
請求項7または8のいずれかに記載の装置。
【請求項10】
前記LADAR送信機は、
複数の走査可能なミラーと、
前記走査可能なミラーに対する制御を介して前記測距点に向けて、前記LADAR送信機を照準させるように構成されたビームスキャナコントローラと、
を含む、
請求項1~9のいずれか1項に記載の装置。
【請求項11】
複数の前記規定されたショットリストフレームの各々は、これらの規定されたショットリストフレームを前記所定の
LADARフレームに対してパラメータ化することを可能にする複数の変数を含む、
請求項1~10のいずれか1項に記載の装置。
【請求項12】
前記変数は、前記ショットリストフレームのLADARパルス間の間隔、前記ショットリストフレームの前記LADARパルスによって規定されるパターン、および/または、前記ショットリストフレームのLADARパルスによる目標設定のための特定の座標のうちの少なくとも1つを制御する、
請求項11に記載の装置。
【請求項13】
前記規定されたショットリストフレームは、ラスタエミュレーションショットリストフレームを含む、
請求項1~12のいずれか1項に記載の装置。
【請求項14】
前記規定されたショットリストフレームは、フォビエーションショットリストフレームを含む、
請求項1~13のいずれか1項に記載の装置。
【請求項15】
前記フォビエーションショットリストフレームは、仰角フォビエーションショットリストフレームを含む、
請求項14に記載の装置。
【請求項16】
前記フォビエーションショットリストフレームは、方位角フォビエーションショットリストフレームを含む、
請求項14または15のいずれかに記載の装置。
【請求項17】
前記フォビエーションショットリストフレームは、重心フォビエーションショットリストフレームを含む、
請求項14~16のいずれか1項に記載の装置。
【請求項18】
前記規定されたショットリストフレームは、ランダムサンプリングショットリストフレームを含む、
請求項1~17のいずれか1項に記載の装置。
【請求項19】
前記規定されたショットリストフレームは、関心領域ショットリストフレームを含む、
請求項1~18のいずれか1項に記載の装置。
【請求項20】
前記関心領域ショットリストフレームは、少なくとも1つの境界ボックスを含む、
請求項19に記載の装置。
【請求項21】
前記規定されたショットリストフレームは、画像で喚起されるショットリストフレームを含む、
請求項1~20のいずれか1項に記載の装置。
【請求項22】
前記画像で喚起されるショットリストフレームは、前記視野内のエッジに基づいている、
請求項21に記載の装置。
【請求項23】
前記画像で喚起されるショットリストフレームは、前記視野内の影に基づいている、
請求項21に記載の装置。
【請求項24】
前記規定されたショットリストフレームは、マップで喚起されるショットリストフレームを含む、
請求項1~23のいずれか1項に記載の装置。
【請求項25】
前記装置は、LADAR受信機をさらに含み、
前記LADAR送信機は、視野内の目標に向けてLADARフレーム内のLADARパルスのクラスタを送信するように
さらに構成されており、前記クラスタ内の複数の前記LADARパルスの各々は、離間されているが、前記視野内の指定された距離で前記クラスタ内の他のLADARパルスのうちの少なくとも1つと重複しており、
前記LADAR受信機は、前記送信されたLADARパルスのクラスタの反射を受信するように構成されており、
前記プロセッサは、(1)前記受信された反射を表すデータを処理し、(2)前記処理されたデータに基づいて、前記目標のフレーム内の動きデータを計算するようにさらに構成されており、前記規定されたショットリストフレームを選択するために使用される前記処理されたデータは、前記計算されたフレーム内の動きデータを含む、
請求項1~24のいずれか1項に記載の装置。
【請求項26】
プロセッサが、LADARシステムの視野に関するデータを処理することと、
プロセッサが、前記処理されたデータに基づいて、複数の規定されたショットリストフレームの中から規定されたショットリストフレームを選択することであって、前記規定されたショットリストフレームが、所定のLADARフレーム内の複数のLADARパルスによる目標設定のための前記視野内の複数の座標を識別することと、
前記選択されたショットリストフレームに従って、前記視野内の複数の測距点に向けて、前記所定のLADARフレームの複数のLADARパルスを送信することと、
を含む方法。
【請求項27】
前記方法は、前記処理する
こと、
前記選択する
ことおよび
前記送信する
ことをフレームごとに繰り返し実施することをさらに含む、
請求項26に記載の方法。
【請求項28】
前記方法は、複数の異なる規定されたショットリストフレームが複数の異なるLADARフレームに対して選択されるように、前記処理する
こと、前記選択する
ことおよび
前記送信する
ことをフレームごとに繰り返し実施することをさらに含む、
請求項27に記載の方法。
【請求項29】
前記処理されたデータは、前記視野の複数の特性を表す
特性データを含む、
請求項26~28のいずれか1項に記載の方法。
【請求項30】
前記特性データは、前記視野内の物体を表すデータを含む、
請求項29に記載の方法。
【請求項31】
前記方法は、
前記送信されたLADARパルスの反射を受信することと、
プロセッサが、前記受信された反射に基づいて、前記視野に関する射程情報を計算することと、
をさらに含み、
前記処理されたデータは、前記計算された射程情報を含む、
請求項26~30のいずれか1項に記載の方法。
【請求項32】
前記方法は、カメラが、前記視野に対応する画像データを生成することをさらに含み、
前記処理されたデータは、前記生成された画像データを含む、
請求項31に記載の方法。
【請求項33】
前記カメラは、前記生成された画像データが、前記
受信することを実施するLADAR受信機の前記視野に対応するように、前記LADAR受信機と共に照準されている、
請求項32に記載の方法。
【請求項34】
前記生成された画像データは、複数の画像フレームを含み、前記方法は、
プロセッサが、前記カメラおよびLADARフレームによって生成された画像フレームを空間的に整列させることと、
プロセッサが、前記画像フレームおよび前記LADARフレーム上でエッジ検出を実施して、前記画像フレームおよび前記LADARフレーム内の物体を検出することと、
プロセッサが、前記エッジ検出および前記画像フレームと前記LADARフレームとの前記空間的な整列に基づいて、前記物体に関する動きデータを生成することと、
をさらに含む、
請求項32または33のいずれかに記載の方法。
【請求項35】
前記送信する
ことは、LADAR送信機によって実施され、前記LADAR送信機は、
複数の走査可能なミラーと、
前記走査可能なミラーに対する制御を介して前記測距点に向けて、前記LADAR送信機を照準させるように構成されたビームスキャナコントローラと、
を含む、
請求項26~34のいずれか1項に記載の方法。
【請求項36】
複数の前記規定されたショットリストフレームの各々は、これらの規定されたショットリストフレームを前記所定の
LADARフレームに対してパラメータ化することを可能にする複数の変数を含む、
請求項26~35のいずれか1項に記載の方法。
【請求項37】
前記変数は、前記ショットリストフレームのLADARパルス間の間隔、前記ショットリストフレームの前記LADARパルスによって規定されるパターン、および/または、前記ショットリストフレームのLADARパルスによる目標設定のための特定の座標のうちの少なくとも1つを制御する、
請求項36に記載の方法。
【請求項38】
前記規定されたショットリストフレームは、ラスタエミュレーションショットリストフレームを含む、
請求項26~37のいずれか1項に記載の方法。
【請求項39】
前記規定されたショットリストフレームは、フォビエーションショットリストフレームを含む、
請求項26~38のいずれか1項に記載の方法。
【請求項40】
前記フォビエーションショットリストフレームは、仰角フォビエーションショットリストフレームを含む、
請求項39に記載の方法。
【請求項41】
前記フォビエーションショットリストフレームは、方位角フォビエーションショットリストフレームを含む、
請求項39または40のいずれかに記載の方法。
【請求項42】
前記フォビエーションショットリストフレームは、重心フォビエーションショットリストフレームを含む、
請求項39~41のいずれか1項に記載の方法。
【請求項43】
前記規定されたショットリストフレームは、ランダムサンプリングショットリストフレームを含む、
請求項26~42のいずれか1項に記載の方法。
【請求項44】
前記規定されたショットリストフレームは、関心領域ショットリストフレームを含む、
請求項26~43のいずれか1項に記載の方法。
【請求項45】
前記関心領域ショットリストフレームは、少なくとも1つの境界ボックスを含む、
請求項44に記載の方法。
【請求項46】
前記規定されたショットリストフレームは、画像で喚起されるショットリストフレームを含む、
請求項26~45のいずれか1項に記載の方法。
【請求項47】
前記画像で喚起されるショットリストフレームは、前記視野内のエッジに基づいている、
請求項46に記載の方法。
【請求項48】
前記画像で喚起されるショットリストフレームは、前記視野内の影に基づいている、
請求項46に記載の方法。
【請求項49】
前記規定されたショットリストフレームは、マップで喚起されるショットリストフレームを含む、
請求項26~48のいずれか1項に記載の方法。
【請求項50】
前記送信する
ことは、視野内の目標に向けてLADARフレーム内のLADARパルスのクラスタを送信することをさらに含み、前記クラスタ内の複数の前記LADARパルスの各々は、離間されているが、前記視野内の指定された距離で前記クラスタ内の他のLADARパルスのうちの少なくとも1つと重複しており、前記方法は、
LADAR受信機が、前記送信されたLADARパルスのクラスタの反射を受信することと、
プロセッサが、前記受信された反射を表すデータを処理することと、
プロセッサが、前記処理されたデータに基づいて、前記目標のフレーム内の動きデータを計算することであって、前記選択する
ことによって使用される前記処理されたデータが、前記計算されたフレーム内の動きデータを含むことと、
を含む、
請求項26~49のいずれか1項に記載の方法。
【請求項51】
前記LADAR送信機は、圧縮センシングを使用する、
請求項1~25のいずれか1項に記載の装置。
【請求項52】
前記LADARシステムは、圧縮センシングを使用する、
請求項26~50のいずれか1項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連特許出願の相互参照および優先権主張
本特許出願は、2018年7月2日に出願された「Intelligent Ladar System with Low Latency Motion Planning Updates」と題する米国仮特許出願第62/693,078号に対する優先権を主張するものであり、この開示全体が参照により本明細書に組み込まれる。
【0002】
本特許出願はまた、2017年9月15日に出願された「Intelligent Ladar System with Low Latency Motion Planning Updates」と題する米国仮特許出願第62/558,937号に対する優先権を主張するものでもあり、この開示全体が参照により本明細書に組み込まれる。
【背景技術】
【0003】
導入
空中、地上、または海上を問わず、車両の安全な自律性は、動的障害物の迅速な精度、その特性評価、およびそれに対する迅速な対応に依存している。移動車両の自律障害物検出および動作計画に対する従来のアプローチを
図1で示す。車両と共に使用するシステム100は、センサ106のスイート104と組み合わせた動作計画システム102を含む。スイート104内のセンサ106は、障害物検出および動作計画プロセスで使用するためのセンサデータ120を有する動作計画システム102を提供する。動作計画システム102内のセンサデータ取り込みインターフェース108は、センサ106からセンサデータ120を受信し、センサデータ120をセンサデータリポジトリ130に記憶し、そこで処理を待つ。動作計画システム102内の動作計画インテリジェンス110は、読み出しまたは照会コマンド124をセンサデータリポジトリ130に発行し、要求されたセンサデータを照会124に対する応答126として受信する。次いで、インテリジェンス110は、この取得されたセンサデータを解析して、1つ以上の他の車両サブシステムに通信される車両の動きに関する決定128を行う。動作計画インテリジェンス110はまた、センサ106にタスク付与コマンド122を発行して、センサデータ取得の制御を行使することもできる。
【0004】
図1のシステム100は、動作計画システム102およびセンサスイート104をマスタースレーブ階層関係で効果的に編成しており、これにより、動作計画システム102に大きな負担がかかっている。これらの処理の負担は、動作計画システム102がセンサデータを取り込み、記憶し、取得し、かつ解析するのにかかる時間量から生じる動き意思決定の遅延をもたらす。
【発明の概要】
【課題を解決するための手段】
【0005】
本技術の技術的改善として、本発明者らは、センサ106のうちの1つ以上と動作計画システム102との間の意思決定のより協調的なモデルを開示し、これによって、物体および異常検出に関するインテリジェンスのいくつかは、センサ106のうちの1つ以上に移動する。インテリジェントセンサがセンサデータから関心のある物体を検出した場合、インテリジェントセンサは、優先メッセージングまたは他の「高速経路」通知を介して動作計画システム102に通知することができる。この優先メッセージングは、動作計画システム102を割り込むベクトル割り込みとして機能して、動作計画システム102がインテリジェントセンサによって発見された新たに検出された脅威に迅速に焦点を合わせることができる。このように、
図1で示すマスタースレーブ関係とは異なり、センサベースの動作計画への新しいより高速なアプローチの例示的な実施形態は、動作計画システムに優先メッセージ/割り込みを発行するための1つ以上のインテリジェントセンサの機能と相まって、異常検出のためのより多くのピアツーピアモデルを使用することができる。このモデルを使用すると、インテリジェントセンサによって検出された脅威を、動作計画システム102によって検討中のデータスタックの最上部にプッシュすることができる。
【0006】
本発明者らはまた、センサタスク付与のための「高速経路」も開示しており、ここでは、インテリジェントセンサによる脅威の検出は、動作計画システムによって要求されたセンサショットのパイプラインに新しいショット要求を挿入するように、インテリジェントセンサをトリガすることができる。これにより、インテリジェントセンサは、動作計画システムによって生成されるより低速な意思決定を待つ必要なく、新たに検出された脅威に関する追加のデータを迅速に得ることができる。
【0007】
さらに、例示的な実施形態では、本発明者らは、インテリジェントセンサが、圧縮センシングを使用してセンサデータのフレームを捕捉するために必要なLADARショットの数を減少するLADARシステムであり得ることを開示している。このようなLADARシステムを脅威検出用の協働/共有モデルと組み合わせると、LADARシステムが、考えられる脅威に関して動作計画システムに「高速経路」優先メッセージを発行できる場合、レイテンシはさらに低減される。本明細書で使用する場合、「LADAR」という用語は、レーザーレーダー、レーザー検出および測距、ならびに光検出および測距(「ライダー」)のいずれかを指し、これらを包含する。
【0008】
さらに、本発明者らは、カメラがLADAR受信機と共に照準され、LADARシステムの視野内の物体の低レイテンシ検出を提供する例示的な実施形態を開示する。周波数ベースのビームスプリッターを位置付けて、LADAR受信機およびカメラが同じ視野を共有することを容易にすることができる。
【0009】
さらに、本発明者らはまた、フレーム内に基づく物体の動きデータの計算を容易にするために、重複するLADARパルスショットの密接したクラスタが使用される例示的な実施形態も開示している。これにより、視野内の物体の堅牢な運動モデルを低遅延に基づいて開発することができる。
【0010】
さらに、本発明者らはまた、LADAR送信機による使用のための複数の定義されたショットリストフレームの中から規定されたショットリストフレームを選択するための技法も開示し、ここでは、LADARパルスは、所定のフレームに関して、どこに目標が設定されるかを識別する。これらの選択は、LADARシステムの視野の1つ以上の特性を表す処理されたデータに基づいて行うことができ、ショットリストフレームの選択は、フレームごとに異なる場合がある。
【0011】
本発明のこれらおよび他の特徴および利点は、当業者に対して、以下に説明される。
【図面の簡単な説明】
【0012】
【
図1】車両自律性のための従来の動作計画システムを開示する。
【
図2】インテリジェントなLADARシステムからの脅威検出に関する高速経路通知を含む例示的な実施形態による、車両自律性のための動作計画システムを開示する。
【
図3A】脅威検出に関する高速経路通知を提供できるインテリジェントLADARシステムの例示的な実施形態を開示する。
【
図3B】脅威検出に関する高速経路通知を提供できるインテリジェントLADARシステムの別の例示的な実施形態を開示する。
【
図4】
図3Aまたは
図3Bで示すものなどのインテリジェントLADARシステムでの使用のためのLADAR送信機サブシステムの例示的な実施形態を開示する。
【
図5A】
図3Aまたは
図3Bで示すものなどのインテリジェントLADARシステムでの使用のためのLADAR受信機サブシステムの例示的な実施形態を開示する。
【
図5B】
図3Aまたは
図3Bで示すものなどのインテリジェントLADARシステムでの使用のためのLADAR受信機サブシステムの別の例示的な実施形態を開示する。
【
図6A】「高速経路」LADARタスク付与の例を示す。
【
図6B】「高速経路」LADARタスク付与の例を示す。
【
図6C】「高速経路」LADARタスク付与の例を示す。
【
図7】例示的な実施形態の動作計画操作のシーケンスを、従来のシステムに対する比較タイミングの例と共に示す。
【
図8】様々な種類の脅威の協働検出のための例示的な処理フローを開示する。
【
図9】高エネルギー干渉源から保護するための例示的な保護回路を開示する。
【
図10A】共に照準されるカメラが、LADARデータを処理するためのレイテンシを改善するために、LADAR受信機を支援する例示的な実施形態を示す。
【
図10B】共に照準されるカメラが、LADARデータを処理するためのレイテンシを改善するために、LADAR受信機を支援する例示的な実施形態を示す。
【
図10C】共に照準されるカメラが、LADARデータを処理するためのレイテンシを改善するために、LADAR受信機を支援する例示的な実施形態を示す。
【
図10D】共に照準されるカメラが、LADARデータを処理するためのレイテンシを改善するために、LADAR受信機を支援する例示的な実施形態を示す。
【
図11A】LADARショットの緊密なクラスタが、目標のフレーム内の動きデータの計算を容易にするために使用される例示的な処理フローを示す。
【
図11B】LADARショットの緊密なクラスタが、目標のフレーム内の動きデータの計算を容易にするために使用される例示的な処理フローを示す。
【
図12A】フレーム内の動きの計算を容易にするためのLADARショットの例示的なクラスタパターンを示す。
【
図12B】ビームクラスタおよび速度推定の例示的なデータテーブルを示す。
【
図13A】LADARシステムのショットリストフレームのフレームごとの選択の例示的な処理フローを示す。
【
図13B】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13C】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13D】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13E】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13F】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13G】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13H】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図13I】
図13Aの処理フローによってサポートされ得る異なる種類のショットリストフレームの例を示す。
【
図14】低レイテンシ脅威検出が有利であり得る例示的なシナリオを示す。
【発明を実施するための形態】
【0013】
図2は、動作計画に関する車両自律性のための例示的なシステム200を開示している。この例では、動作計画システム202は、インテリジェントLADARシステム206が検出された脅威に関する高速経路通知を提供できるような方法で、インテリジェントLADARシステム206などのセンサとインタラクトする。従来の動作計画システムとセンサとの間のマスタースレーブ階層関係とは異なり、
図2の例示的な実施形態は、インテリジェントLADARシステム206と動作計画システム202との間のような協働意思決定モデルを使用し、それによって、物体および異常検出に関するインテリジェンスのいくつかがインテリジェントLADARシステム206に位置付けられている。また、システム200は、動作計画システム202に情報を提供するインテリジェントLADARシステム206以外のセンサ(例えば、1つ以上のカメラ、1つ以上のレーダー、1つ以上の音響センサ、1つ以上の車両テレマティクスセンサ(例えば、ロックされたブレーキを検出できるブレーキセンサ、パンクしたタイヤを検出できるタイヤセンサ)など)を含み得ることも理解されるべきであるが、説明を容易にするために、そのような他のセンサは
図2から省略されている。そのような他のセンサのうちの1つ以上はまた、任意に当業者が所望する場合には、本明細書に開示する協働意思決定技法も使用してもよいことが理解されるべきである。
【0014】
インテリジェントLADARシステム206は、動作計画システム202に障害物検出および動作計画プロセスで使用するためのLADARフレーム220を提供する。これらのLADARフレーム220は、LADARシステムが、目標に設定される測距点でLADARパルス260を発射し、次いで、反射されたLADARパルス262を受信および処理することに応じて生成される。インテリジェントLADARシステム206のLADAR送信および受信機能をサポートするために使用できるLADARシステムの例示的な実施形態は、米国特許出願番号第62/038,065(2014年8月15日出願)、ならびに米国特許出願第2016/0047895号、同第2016/0047896号、同第2016/0047897号、同第2016/0047898号、同第2016/0047899号、同第2016/0047903号、同第2016/0047900号、同第2017/0242108号、同第2017/0242105号、同第2017/0242106号、同第2017/0242103号、同第2017/0242104号、および同第2017/0307876号に記載されており、これらの各々の開示全体が参照により本明細書に組み込まれる。
【0015】
動作計画システム202内のセンサデータ取り込みインターフェース208は、インテリジェントLADARシステム206からLADARフレームデータ220を受信し、LADARフレームデータ220をセンサデータリポジトリ230に記憶し、そこで処理を待つ。動作計画システム202内の動作計画インテリジェンス210は、読み出しまたは照会コマンド224をセンサデータレポジトリ230に発行し、要求されたセンサデータを照会224に対する応答226として受信する。次いで、インテリジェンス210は、この取得されたセンサデータを解析して、1つ以上の他の車両サブシステム232に通信される車両の動きに関する決定228を行う。動作計画インテリジェンス210はまた、インテリジェントLADARシステム206にショットリストタスク付与コマンド222を発行して、LADARパルス260がいつどこで目標に設定されるかに対する制御を行使することもできる。
【0016】
従来の動作計画システムに対する改善として、インテリジェントLADARシステム206はまた、検出された脅威または他の異常について動作計画システム202に通知するセンサデータ取り込みインターフェース208への通知も提供する。この通知は、LADARフレームデータ220に付随する優先フラグ250の形態をとることができる。優先フラグ250およびLADARフレームデータ220は一緒に、動作計画インテリジェンス210のための「高速」経路通知252として機能することができる。これは、新しいLADARフレームデータ220がセンサデータリポジトリ230に取り込まれて記憶され、動作計画インテリジェンス210によって取得/処理された後にのみ、動作計画インテリジェンスが決定228を行う「低速」経路254とは対照的である。インテリジェントLADARシステム206内のインテリジェンスがLADARフレームデータ220内に脅威が存在する可能性があると決定した場合、インテリジェントLADARシステム206は、優先フラグ250を「高」などに設定することができ、それにより、動作計画システムは、その優先フラグ250に付随するLADARフレームデータ220が迅速に評価されるべきであると迅速に判定することができる。したがって、優先フラグ250は、動作計画インテリジェンス210の通常の処理キューを割り込むベクトル割り込みとして機能することができる。
【0017】
優先フラグ250は、多数の形態のいずれかをとることができる。例えば、優先フラグは、脅威がインテリジェントLADARシステム206によって検出されたときに「高」とアサートされ、脅威が検出されなかったときに「低」とアサートされる単純なビット値であり得る。「高」優先フラグ250は、「高」優先フラグ250に付随するLADARフレームデータ220が優先度に基づいて(例えば、考慮されるべき次のフレーム(複数可)として直ちに、など)、考慮されるべきであることを、センサデータ取り込みインターフェース208および動作計画インテリジェンス210に通知する。優先フラグ250は、LADARフレームデータ220と整合的にタイミング合わせされた別個の信号として動作計画システム202に提供されてもよく、またはLADARフレームデータ220自体の中に埋め込まれてもよい。例えば、インテリジェントLADARシステム206は、LADARフレームデータ220を動作計画システム202に通信するときに、LADARデータのフレームと共にヘッダーまたはラッパーを含むことができる。このヘッダー/ラッパーデータは、優先フラグ250を含むことができる。ヘッダー/ラッパーは、インテリジェントLADARシステム206と動作計画システム202との間で共有される通信プロトコルに従って構成されて、両者の間で効果的なデータ通信を可能にすることができる。
【0018】
さらにまた、実施者は、優先事象の存在以上のものを通信する優先フラグ250を実装することを選択してもよい。優先フラグ250はまた、あるタイプの優先事象を符号化するようにも構成されてもよい。例えば、インテリジェントLADARシステム206が異なるタイプの脅威/異常を検出して区別することができる場合、インテリジェントLADARシステム206は、検出された脅威/異常のタイプをマルチビットの優先フラグ250に符号化することができる。例えば、インテリジェントLADARシステム206が4種類の異なるタイプの脅威/異常を識別できる場合、優先フラグ250は2ビットで表すことができる。次いで、脅威/異常のタイプに関するこの情報を動作計画インテリジェンス210によって使用して、その意思決定をさらに強化および/または加速することができる。
【0019】
したがって、センサデータ取り込みインターフェース208は、(1)(リポジトリ230を現在の状態に保つために)「低速」経路254を介してセンサデータリポジトリ230にLADARフレーム220を記憶し、(2)「高速」経路252を介してLADARフレーム220を直接動作計画インテリジェンス210に渡すように(優先フラグ250によってそのように示された場合)構成することができる。これを達成するために、インターフェース208は、インテリジェントLADARシステム206から到来優先フラグ250を読み出す論理を含むことができる。優先フラグに適切なビット(複数可)が設定されている場合、センサデータ取り込みインターフェース208は、付随するLADARフレーム220を動作計画インテリジェンス210に渡す。優先フラグ250(または優先フラグ250から派生した信号)は、優先フラグ250が高である場合に、センサデータ取り込みインターフェース208によって動き計画インテリジェンス210に渡すこともできる。
【0020】
動作計画インテリジェンス210は、優先フラグ250がアサートされたときに、その処理を調整するための論理を含むことができる。例えば、動作計画インテリジェンス210は、処理状態を保持し、優先フラグ250の結果としてのベクトル割り込みに応じてコンテキストの切り替えを可能にするためのバッファを含むことができる。そのような処理を容易にするために、動作計画インテリジェンス210は、処理の異なるスレッド間の切り替え(または同時スレッド処理)を可能にするスレッドスタックマネージャを含み、動作計画インテリジェンス210が新たに検出された脅威または異常に迅速に集中することを可能にすることができる。
【0021】
図3Aは、インテリジェントLADARシステム206の例示的な実施形態を示す。インテリジェントLADARシステム206は、LADAR送信機302、LADAR受信機304、ならびにLADARシステムインターフェースおよび制御306を含むことができる。LADARシステム206はまた、カメラなどの環境検知システム320も含み得る。このアーキテクチャを有する好適なLADARシステムの例は、上記で参照されて組み込まれた特許出願に開示されている。
【0022】
LADAR送信機304は、複数のLADARパルス260を複数の測距点310(図示を容易にするために、単一のそのような測距点310が
図3Aに示されている)に向けて送信するように構成することができる。
【0023】
例示的な実施形態では、LADAR送信機302は、走査ミラーを含むLADAR送信機の形態をとることができる。さらに、例示的な実施形態では、LADAR送信機302は、測距点絞り込みアルゴリズムを使用して、事前走査圧縮(これは、本明細書では「圧縮センシング」と呼ぶことができる)をサポートする。そのような実施形態はまた、測距点絞り込みをサポートするために、LADAR送信機302に環境シーンデータを提供する環境検知システム320も含み得る(
図3Aに示す環境検知システム320の出力から来る破線を参照)。制御命令は、LADAR送信機302内のレーザー源をいつ発射するかを指示し、送信機ミラーをどこに指すかを指示する。このようなLADAR送信機の設計の例示的な実施形態は、上記で参照されて組み込まれた特許出願に見出すことができる。事前走査圧縮を使用することにより、そのようなLADAR送信機302は、インテリジェントな測距点目標設定選択を通じて帯域幅をより良好に管理することができる。さらに、この事前走査圧縮はまた、従来のLADARシステムと比較して脅威検出に関するレイテンシの低減にも寄与し、というのも、シーンの「ピクチャ」を作成するために目標に設定されて撮影される必要のある測距点がより少なくなるためであり、これは、その「ピクチャ」を作成し、それに応じて行動するために必要とされる時間量の短縮につながる。
【0024】
システムインターフェースおよび制御306内のLADARタスク付与インターフェース354は、動作計画システム202からショットリストタスク付与222を受信することができる。このショットリストタスク付与222は、LADAR送信機302による使用のためのショットリストを規定して、走査エリア内の複数の測距点310に向けてLADARパルス260を目標に設定することができる。また、動作計画インテリジェンス210(
図2を参照)は、障害物検出および動作計画プロセスで使用するために、1つ以上の車両サブシステム232からフィードバック234を受信することができる。インテリジェンス210は、このフィードバック234を使用して、照会224の形成を、センサデータリポジトリ230および/またはインテリジェントLADARシステム206のショットリストタスク付与222に案内するのに役立ち得る。さらに、車両サブシステム(複数可)232は、フェイルセーフショットリスト238を、インテリジェントLADARシステム206に渡すために、動作計画インテリジェンス210に提供することができる。これと共に、ショットリストタスク222およびフェイルセーフショットリスト238は、インテリジェントLADARシステム206のための「緊急」通知経路236として機能することができる。これは、動作計画インテリジェンス210が車両サブシステム232のデータをセンサデータリポジトリ230に送信して記憶する照会224とは対照的である。例として、フェイルセーフショットは、車両サブシステムの自己診断の失敗から生じることがある。例えば、車両のGPS読み出し値が誤っている場合、または走行距離計が誤動作している場合、LADARシステム206を使用して、車両を交通から安全に抽出できるまで、車両の速度および位置のプロビジョニングを再較正および/または想定することができる。フェイルセーフショットの別の例は、ショックアブソーバに大きなトルクが発生している場合である。ショットリストは、一時的な道路の陥没で発生したピッチヨーおよびロールの独立した評価を提供することができる。
【0025】
LADAR受信機304は、測距点310からこのLADARパルスの反射262を受信する。LADAR受信機304は、測距点の距離[深度]および強度情報の決定をサポートするために、反射LADARパルス262を受信して処理するように構成することができる。さらに、受信機304は、(i)送信パルスタイミングの事前知識、および(ii)到達角を決定するための複数の検出器の任意の組み合わせによって、空間位置情報[送信平面に対する水平配向および垂直配向]を判定することができる。LADAR受信機304の例示的な実施形態は、上記で参照されて組み込まれた特許出願に見出すことができる。
【0026】
LADAR受信機304によって生成された測距点データは、フレーム処理論理350に通信され得る。このフレーム処理論理350は、視野のサンプリングされた領域内の一連の測距点戻りからなど、測距点データからLADARフレーム220を構築するように構成することができる。過去の点群情報からのフレーム差分などの技法を使用することができる。この経路に沿って生成されたフレーム(複数可)は、脅威を検出することをその目的としているため、非常にまばらになる可能性がある。例えば、当面のタスクが交差点での赤信号に違反していないことを確認している場合(例えば、LADAR搭載車の前の交差点を移動する場合)、フレームは、交差点に至るまでの道路にわたって動きを検知するために設定された測距点のトリップワイヤーであってもよい。
【0027】
例として、
図3Aは、システムインターフェースおよび制御306内に存在するものとして示されているフレーム処理論理350を示す。しかしながら、このフレーム処理論理350は、LADAR受信機304自体内など、他の場所に配備できることを理解されるべきである。
【0028】
フレーム処理論理350はまた、潜在的な脅威/異常に関して動作計画システム202と協働するための十分なインテリジェンスをLADARシステム206に提供するために、脅威検出論理を含み得る。この脅威検出の一部として、フレーム処理論理350は、LADAR受信機304から受信された測距点データから点群352を構築することができる。点群352は、角度、射程、および強度の関数として示される空間内の点の集合であり得、これらは、フレーム化された関連するフィールド内でタイムスタンプが付され、履歴的に記憶され、追跡される。したがって、点群352は、以前の測距点戻りの幾何学的位置、強度、射程範囲、幅、および速度などの履歴データ、ならびにセンサデータ(およびそこから導出された物体データ)を含むことができる。点群352を使用して脅威を認識する例は、点群物体の時間履歴を確認することである。例えば、不規則に脱線している車両は、その車両を表す物体の周りの点群の「小刻みに動く」点を見ることによって最も明らかになる脅威である。点群352は、車両のLADAR視野が過去の収集データと交差する限り、さかのぼって照会することができる。したがって、点群352は、潜在的な脅威/異常を評価するために、LADARシステム206によって活用され得るセンサデータのためのローカルリポジトリとして機能することができる。さらに、点群352はまた、LADAR以外のセンサ(例えば、カメラ)から得られた情報を記憶することもできる。
【0029】
脅威検出インテリジェンスは、点群352および新しく入ってくる任意の測距点データ(および/または他のセンサデータ)を活用して、LADARシステム206(および/または他のセンサ(複数可))によって視野が任意の脅威または異常を含むかどうかを判定するように構成することができる。この処理を実施するために、脅威検出インテリジェンスは、シーン内の様々な物体を経時的に追跡するステートマシンを使用して、位置および外観(例えば、形状、色など)が経時的にどのように変化するかを評価することができる。そのような追跡に基づいて、脅威検出インテリジェンスは、優先フラグ250を「高」または「低」のどちらに設定すべきかに関する決定を行うことができる。このような脅威検出の様々なタイプの例を、以下の
図8に関連して記載する。
【0030】
図4は、LADAR送信機302の例示的な実施形態を示す。LADAR送信機302は、レーザー光学系404と光学的に整列したレーザー源402、ビームスキャナ406、および透過光学系408を含むことができる。これらの構成要素は、所望の用途で使用するのに適した形状の設置面積を提供するパッケージに収容することができる。例えば、レーザー源402がファイバレーザーまたはファイバ結合レーザーである実施形態の場合、レーザー光学系404、ビームスキャナ406、および任意の受信機構成要素は、レーザー源402を含まない第1のパッケージに一緒に収容することができる。レーザー源402は、第2のパッケージに収容することができ、ファイバを使用して、第1のパッケージを第2のパッケージに接続することができる。このような配置により、レーザー源402がないことに起因して、第1のパッケージをより小さくかつよりコンパクトにすることができる。さらに、レーザー源402は、ファイバ接続を介して第1のパッケージ化から離れて位置付けることができるので、そのような配置は、システムの設置面積に関してより大きな柔軟性を実施者に提供する。
【0031】
システム制御306から受信されたショットリスト400などの制御命令に基づいて、ビームスキャナコントローラ410は、ビームスキャナ406によって実施される走査の性質を制御すると共に、レーザー源402の発射を制御するように構成することができる。閉ループフィードバックシステム412をビームスキャナ406およびビームスキャナコントローラ410に関して使用することができ、これにより、上記で参照されて組み込まれた特許出願で説明されるように、ビームスキャナ406の走査位置を精緻に制御できるようにする。
【0032】
レーザー源402は、本明細書に記載されるように、LADARパルス送信に適した多数のレーザー種類のうちの任意のものであり得る。
【0033】
例えば、レーザー源402は、パルスファイバレーザーであり得る。パルスファイバレーザーは、約1~4ナノ秒のパルス持続時間、および約0.1~100μJ/パルスのエネルギー含有量を使用することができる。パルスファイバレーザーの反復率は、kHzの射程(例えば、約1~500kHz)であり得る。さらに、パルスファイバレーザーは、上記で参照されて組み込まれた特許出願に記載されるように、シングルパルス方式および/またはマルチパルス方式を使用することができる。しかしながら、これらのレーザー特性のために他の値を使用できることを理解すべきである。例えば、より低いまたはより高いエネルギーパルスが使用される場合がある。別の例として、反復率は、10のMHzの射程のように、より高くなり得る(ただし、そのような高い反復率は、現在の市場価格の下で比較的高価なレーザー源の使用を必要とすることが予想される)。
【0034】
別の例として、レーザー源402は、パルスIRダイオードレーザー(ファイバ結合の有無を問わない)であり得る。パルスIRダイオードレーザーは、約1~4ナノ秒のパルス持続時間および約0.01~10μJ/パルスのエネルギー量を使用することができる。パルスIRダイオードファイバの反復率は、kHzまたはMHzの射程(例えば、約1kHz~5MHz)であり得る。さらに、パルスIRダイオードレーザーは、上記で参照されて組み込まれた特許出願に記載されているように、シングルパルス方式および/またはマルチパルス方式を使用することができる。
【0035】
レーザー光学系404は、レーザー源402によって生成されたレーザービームをコリメートするように機能する望遠鏡を含むことができる。レーザー光学系は、所望のビーム発散およびビーム品質を提供するように構成することができる。例として、実施者の所望に応じて、ダイオードからミラーへの結合光学系、ダイオードからファイバへの結合光学系、およびファイバからミラーへの結合光学系を使用することができる。
【0036】
ビームスキャナ406は、LADARパルス260で所望の測距点を目標に設定することができるような走査機能をLADAR送信機302に提供する構成要素である。ビームスキャナ406は、レーザー源402から(レーザー光学系404を介して)到来するLADARパルスを受信し、このLADARパルスを可動ミラーからの反射を介して、所望のダウンレンジ位置(ショットリスト上の測距点など)に方向付ける。ミラーの移動は、ビームスキャナコントローラ410から受信された1つ以上の駆動電圧波形416によって制御することができる。ビームスキャナ406は、多数の構成のうちのいずれかを使用することができる。例えば、ビームスキャナは、デュアル微小電気機械システム(MEMS)ミラー、回転するポリゴンミラーと組み合わせたMEMSミラー、または他の構成を含むことができる。好適なMEMSミラーの例は、単一表面の先端/傾斜/ピストンMEMSミラーである。さらなる例として、例示的なデュアルMEMSミラーの実施形態では、単一表面先端MEMSミラーおよび単一表面傾斜MEMSミラーを使用することができる。しかしながら、これらのMEMSミラーのアレイを使用することもできることが理解されるべきである。また、デュアルMEMSミラーは、いくつかの周波数のいずれかで動作することができ、その例は上記で参照されて組み込まれた特許出願に記載されており、追加の例が以下で説明される。他の配置の別の例として、小型ガルバノミラーを高速軸走査ミラーとして使用することができる。別の例として、音響光学偏向ミラーを遅軸走査ミラーとして使用することができる。さらに、スパイラル動的走査パターンを使用する例示的な実施形態の場合、ミラーは、共振ガルバノミラーとすることができる。このような代替ミラーは、Electro-Optical Products Corporation of New Yorkなどの、多数の供給元のいずれかから入手することができる。別の例として、Vescent Photonics of Coloradoから入手可能なものなどの、フォトニックビームステアリングデバイスを、遅軸走査ミラーとして使用することができる。さらに別の例として、DARPA SWEEPERプログラムによって開発されているものなどのフェーズドアレイデバイスを、速軸および/または遅軸ミラーの代わりに使用することができる。最近では、Boulder Nonlinear Systems、Meadowlark、およびBeamcoによって提供されているような液晶空間光変調器(SLM)の使用を検討することができる。さらに、量子ドットSLMが最近提案されており(Technical University of Dresden、2011 IEEE Conference on Lasers and Electro-Opticsを参照)、これは、例示的な実施形態で使用される場合に、より速いスイッチング時間を確保する。
【0037】
また、ビームスキャナ406がデュアルミラーを含む例示的な実施形態では、ビームスキャナ406は、第1のミラーと第2のミラーとの間にリレー結像光学系を含むことができ、これにより、2つの小さな速軸ミラーを使用する(例えば、1つの小さな高速ミラーと1つの長い低速ミラーとは対照的に、2つの小さな高速ミラーを使用する)ことが可能になる。
【0038】
送信光学系408は、ビームスキャナ406によって目標に設定されるように、LADARパルスを、開口部を通して所望の位置に送信するように構成されている。透過光学系408は、実施者の要望に応じて、いくつかの構成のいずれかを有することができる。例えば、環境検知システム320および送信機302は、送信光学系408の一部としてダイクロイックビームスプリッタを使用して、1つの経路に光学的に結合することができる。別の例として、透過光学系は、上記で参照されて組み込まれた特許出願またはデスコーピング[例えば、広角]光学系に記載されている拡大光学系を含むことができる。さらに、整列ピックオフビームスプリッタを透過光学系408の一部として含めることができる。
【0039】
図5Aは、LADAR受信機304の例示的な実施形態を示す。LADAR受信機304内の読み出し回路は、検出器アレイ500内のどのセンサ502が信号処理回路506に渡されるかを選択するためにマルチプレクサ504を使用することができる。例示的な実施形態では、センサ502は、前置増幅器に結合された光検出器を含み得る。例示的な実施形態では、光検出器は、PINフォトダイオードであり得、関連する前置増幅器は、トランスインピーダンス増幅器(TIA)であり得る。
図5Aによって示される例示的な実施形態では、複数の個別にアドレス指定可能な光センサ502を含む検出器アレイ500は、LADARパルス反射262を検知するために使用される。各光センサ502は、アレイ500の画素として特徴付けることができ、各光センサ502は、入射光に応じてそれ自体のセンサ信号510を生成する。したがって、アレイ500は、複数の光検出器画素を含む検出領域を有する光検出器を含むことができる。
図5Aの実施形態は、所定の時間に信号処理回路506に渡される、到来センサ信号510を分離するマルチプレクサ504を使用する。そうすることで、
図5Aの実施形態は、センサ読み出しを選択的に分離するための機能が開示されていない、米国特許第8,081,301号によって開示されるものなどのLADAR受信機設計と比較して、特に周囲受動光に対してより良好なSNRの受信を提供する。したがって、信号処理回路506は、一度に単一の到来センサ信号510(または到来センサ信号510のいくつかのサブセット)で動作することができる。
【0040】
マルチプレクサ504は、反射されたLADARパルスを検出する必要を満たすために十分に高いスイッチングレートを提供する任意のマルチプレクサチップまたは回路であり得る。例示的な実施形態では、マルチプレクサ504は、検出器アレイ500のセンサ502によって生成された光電流信号を多重化する。しかしながら、マルチプレクサ504が検出器アレイ500のセンサ502によって生成された結果として生じる電圧信号を多重化する他の実施形態が使用されてもよいことが理解されるべきである。さらに、
図5AのLADAR受信機304が、事前走査圧縮センシングを使用する走査LADAR送信機302と対になっている例示的な実施形態(上述され、上記で参照されて組み込まれた特許出願に記載されている測距点絞り込みを使用する例示的な実施形態など)では、LADAR送信機302によって提供される測距点の選択的な目標設定は、受信機304がSNRを改善するために関心のある画素に検出器の読み出しを分離できるように、マルチプレクサ504によって提供される選択的読み出しと良好に対になっている。
【0041】
制御回路508は、到来センサ信号510のうちのどれが信号処理回路506に渡されるかを管理する制御信号512を生成するように構成することができる。LADAR受信機304が、走査パターンに従って事前走査圧縮センシングを使用する走査LADAR送信機302と対になっている例示的な実施形態では、制御信号512は、マルチプレクサ504に、送信機のショットリスト(そのような送信機302によって使用され得るショットリストの例は、上記で参照されて組み込まれた特許出願に記載されている)に従うパターンで、個別の光センサ502に選択的に接続させることができる。制御信号512は、ショットリストを介した測距点の目標設定に従うパターンで、アレイ500内のセンサ502を選択することができる。したがって、送信機302がLADARパルス260で走査エリアの画素x、yを目標に設定にしている場合、マルチプレクサ504は、検出器アレイ500からの画素x、yの読み出しを引き起こす制御信号512を生成することができる。
【0042】
制御信号512は、一度に単一のセンサ502を選択するのに有効であり得るか、または一度に複数のセンサ502を選択するのに有効であり得るが、その場合、マルチプレクサ504は、信号処理回路506によるさらなる処理のために、到来センサ信号510のサブセットを選択することが理解されるべきである。このような複数のセンサは、複合画素(またはスーパー画素)と呼ばれ得る。例えば、アレイ500は、複合画素のJxKグリッドに分割されてもよく、各複合画素は、X個の個別のセンサ502から構成される。加算器回路は、検出器アレイ500とマルチプレクサ504との間に位置付けることができ、各加算器回路は、単一の複合画素に対応し、対応する複合画素を構成する画素からの読み出し値(センサ信号510)を合計するように構成されている。
【0043】
また実施者が所望する場合、検出器アレイ500とマルチプレクサ504との間にいくつかの前置増幅回路を含めることを選択し得ることも理解されるべきである。
【0044】
実施者が所望する場合、上述された脅威検出インテリジェンスおよび点群352は、信号処理回路506の一部として含めることができる。そのような場合、信号処理回路506は、フレームデータ220および対応する優先フラグ250を生成することができる。
【0045】
図5Bの例では、信号処理回路506は、選択されたセンサ信号(複数可)を増幅する増幅器550、増幅された信号を複数のデジタルサンプルに変換するアナログ/デジタル変換器(ADC)552、および処理された信号データを生成するためにデジタルサンプルに対して多数の処理動作を実施するように構成されたフィールドプログラマブルゲートアレイ(FPGA)554を含む。信号処理回路506は必ずしもFPGA554を含む必要はなく、信号処理回路506の処理能力は、中央処理装置(CPU)、マイクロコントローラ装置(MCU)、グラフィックス処理装置(GPU)、デジタル信号プロセッサ(DSP)、および/または特定用途向け集積回路(ASIC)などの、本明細書に記載された動作を実施するのに適した任意のプロセッサに配備することができることが理解されるべきである。しかしながら、本発明者らは、FPGA554が、低レイテンシ脅威検出に有益に寄与する好適な高性能および低処理遅延レイテンシを提供することが期待されることに留意している。
【0046】
増幅器550は、低ノイズRF増幅器または低ノイズオペアンプのような低雑音増幅器の形態をとることができる。ADC552は、NチャネルADCの形態をとることができる。
【0047】
FPGA554は、デジタルサンプルを処理し、最終的には反射LADARパルスに基づいて測距点に関する射程および/または強度に関する情報を返すように構成されたハードウェア論理を含む。例示的な実施形態では、FPGA554は、ADC552によって生成されたデジタルサンプル上でピーク検出を実施するように構成することができる。例示的な実施形態では、そのようなピーク検出は、±10cm以内の射程情報を計算するのに有効であり得る。FPGA554は、検出されたピークが曲線上のどこに適合するかをより正確に識別する補間をサポートするために、サンプルが多項式上に曲線適合されるデジタルサンプル上で、補間を実施するように構成することもできる。例示的な実施形態では、そのような補間は、±5mm以内の射程情報を計算するのに有効であり得る。
【0048】
さらに、FPGA554は、信号処理回路506がフレームデータ220および優先フラグ250を動作計画システム202に提供できるように、上述された脅威検出インテリジェンスを実装することもできる。
【0049】
図5Bによって示されるものなどの信号処理回路506を使用する受信機304が、上述され、上記で参照されて組み込まれた特許出願に記載されたような圧縮センシングを使用するLADAR送信機302と対になっている場合、LADAR送信機は、従来の送信機よりも少ないLADARパルスをフレームごとに空気中に入れるので、受信機304は、検出されたパルスに対して信号処理を実施する時間をより多く有し、これにより、信号処理回路506に課せられる処理負担が軽減される。さらに、処理性能をさらに向上させるために、FPGA554は、検出された信号の異なる部分がFPGAの異なるハードウェア論理リソースによって同時に処理されるように、FPGAの並列ハードウェア論理リソースを活用するように設計することができ、それによって、各測距点の正確な射程および/または強度情報を計算するのに必要な時間をさらに短縮する。
【0050】
さらに、
図5Bの信号処理回路は、検出を最大化するためにFPGA554が信号データにもたらすことができる信号処理に起因して、低いSNRを示す到来信号で動作することができる。SNRは、送信時のパルス持続時間を変化させることによって、さらに向上させることができる。例えば、信号処理回路が測距点で通常よりも高いクラッタ(または他のレーザー干渉器の存在)を明らかにした場合、この情報を、送信機が次にその測距点を検査するときに送信機にフィードバックすることができる。一定のピークパワーを有するパルスは、Gの倍数によって拡張され、G倍のエネルギーを有する。同時にそれは、帯域幅がG分の1になる。したがって、ローパスフィルタをデジタル的に行うと、SNRはG
1/2だけ増加することが予想され、固定反射率の検出射程はG
1/4だけ増加することが予想される。この改善は、熱流ノイズ(ジョンソンノイズとも呼ばれる)、暗電流、背景などの目標外部ノイズ源のすべてに当てはまると考えられ、というのも、これらはすべて
【数1】
として変化するためである。上記の説明では、広帯域化された伝送パルスを前提としている。パルスは、環境の影響に起因して伸張されることがある。例えば、ビームの回折限界内に射程が投影されている目標は、戻りパルスを伸張する。デジタルローパスフィルタリングは、送信パルスを修正することなく、ここでのSNRを
【数2】
だけ改善することが期待される。また、環境からのパルス伸張を低減するために、送信パルスの持続時間を短縮することもできる。パルスエネルギーを固定してパルスを短くしても、ピークパワーの増加が可能であれば、SNRは向上する。上記の解析ではホワイトノイズを想定しているが、実施者は、他のノイズスペクトルへの拡張も単純であることを認識する。
【0051】
LADAR送信機302およびLADAR受信機304の好適な設計の例は、上記で参照されて組み込まれた特許出願に開示されているが、本発明者らはさらに、実施者が所望であれば、インテリジェントLADARシステム206で使用するためのLADAR送信機およびLADAR受信機のための代替設計を選択することができることに留意している。
【0052】
図3Bは、インテリジェントLADARシステム206の別の例示的な実施形態を開示している。
図3Bの例では、LADARシステム206はまた、ショットリストタスク付与のための「高速」経路360も含む。上記で示されたように、脅威検出インテリジェンス350は、潜在的な脅威または異常に対応する視野内の領域を検出するように構成することができる。この関心のある領域からより多くの情報を得るために、LADAR送信機302をその領域に向けて目標に設定し、この領域に向けて追加のLADARパルス260を発射することが望ましい。しかしながら、動作計画システム202がLADAR送信機302をどこに向けるかついて決定を行うエンティティである場合、本発明者らは、動作計画システム202がLADAR送信機302によってどの領域(複数可)を目標に設定すべきかについて決定を行うことができる前に、LADAR送信機は情報が動作計画システム202に通信され、それによって取り込まれ、考慮されるのを待つ必要があるため、かなりの量のレイテンシがLADAR送信機302の目標設定に導入されることになることに留意している。さらに、LADAR送信機が動作計画システム202からのこれらの目標設定命令の送信を待つ間にレイテンシが追加される。
図3Bによって示される高速経路360は、このより長い意思決定経路を迂回する。
【0053】
図3Bでは、フレーム処理論理350内の脅威検出インテリジェンスが走査エリア/視野の関心エリアを検出したときに、脅威検出インテリジェンスは、高速経路360を介してLADARタスク付与インターフェース354への関心エリアを識別することによって、LADAR送信機302にタスク再付与を行うことができる。LADARタスク付与インターフェース354へのこの直接供給により、LADARタスク付与インターフェース354は、LADAR送信機302の目標設定を制御するために使用されるパイプライン化ショットリスト400に新しいショットを迅速に挿入することができる。新しい射程のショットがどのようにして得られるかの例は、次のとおりであり得る:車両の計画された経路に脅威となるのに十分に近い領域において、ビデオカメラからまたはLADAR点群から、動きが検知されたとする。次いで、新しいショットは、(i)検知された動きの幾何学的位置の近くにあり、(ii)車両の計画された軌道に沿っており、かつ(iii)検知された動きの性質が解決される可能性が高いボクセルのセットとして識別することができる。この最後の項目(iii)は、道路を横切る動物を検出するという文脈で(この動きは、葉または移動中の動物からであろうかと)考えるのが最適である。動物の動きと拡散性植生の動きとの両方の動作モデルを使用して、これらの仮説を分離するために最適なショット位置を評価することができる。
【0054】
システムがどのように新しいショットを割り当てるかの例としては、以下の2つが挙げられる:(1)350内の脅威検出が、一般的な関心エリアを目標に設定するようにタスク付与システムに指示し、プローブショットが、シーンを構築するためにタスク付与システムによって規定されること(例えば、レーダーからの曖昧なブロブ検出は、脅威を構築するためにプローブショットのリストをトリガし得る)、および(2)脅威インテリジェンスが、特定の測距点のセットを決定するために、脅威をより明確にする源から特定のデータセットを受信すること(例えば、カメラは、コントラスト情報を提供するか、またはエッジを検出し、ここで、高コントラストおよび/またはエッジ画素は、新しいショットのための特定の測距点に対応する)。
【0055】
図6A~
図6Cは、高速経路360を介してショットリスト400に新しいショットを挿入する方法の例を示している。
図6Aは、ショットリスト400が、スケジューラ600によって使用されて、走査ミラー602および604を介して測距点(目標に設定される測距点を表す
図6Aの星印を参照)の目標設定を制御する方法を示している。ショットリスト400は、LADAR送信機302によって発射されるショットのシーケンスを含む。ショットリスト上の各ショットは、目標に設定された測距点の走査エリア内の座標、またはどの測距点が目標に設定されるか(例えば、画像内で検出されるエッジ)をLADAR送信機に通知するための他の好適な機構によって識別することができる。例えば、知覚された非脅威的な状態で環境のシノプティックな知識を維持するための標準的な走査パターンがある場合があり、ショットリスト400は、これらのショットを表すことができる。例えば、ラスタ走査またはフォビエイテッドパターンを使用して、隠れた脅威を検出するためにシーンをプローブすることができる。ショットリスト400からショット1を目標に設定するために、レーザー源402は、LADARパルスがショット1の目標とされる測距点に向かって投影されるように、走査ミラー602および604が位置付けられたときに発射される。LADARパルスは、次いで、測距点に衝突し、(受信機レンズ610などを介して)検出器アレイ500に反射する。次いで、検出器アレイ500の1つ以上のセンサ502は、目標とされた測距点に関する情報を学習するために処理され得る信号510(例えば、読み出し電流)を生成する。
【0056】
図6Bは、この信号510が、高速経路360を介してLADAR送信機302のタスク再付与を制御するためにどのように活用され得るかを示している。
図6Bでは、ショットリスト400からのショット2は、LADAR送信機302の目標設定および発射を制御するために使用される。一方、脅威検出インテリジェンスが、潜在的な脅威/異常に関するより多くの情報を得るために新しいLADARショットが必要であると判定した場合、LADARタスク付与インターフェース354は、1つ以上のLADARショット挿入650を生成することができる。これらのショットリスト挿入650は、次いで、LADAR送信機302によって撮影されるショットの次のシーケンスとしてショットリスト400に挿入され得る(
図6Cを参照)。したがって、LADAR送信機302は、LADARシステム206の脅威検出インテリジェンスによって発見された関心領域を目標に設定するために、迅速にタスク再付与を行うことができる。動作計画部自体がLADARシステムに照会することも可能であり、これは、実施者が、LADARシステムによって自己生成された割り込みをオーバーライドすると規定することを選択してもよい。例えば、車両のピッチまたはヨーの変化は、決定された動きの方向に対応するフォビエイテッド走査の喚起となる可能性がある。
【0057】
図7は、例示的な実施形態の例示的な動作計画操作の例示的なシーケンスを、従来のシステムに対する比較タイミングの例と共に示す。
【0058】
現在の従来のLADARシステムはラスタ走査を使用しており、これは、バッチモードで点群を生成し、高レイテンシを被る(ビデオカメラを単体で使用する場合と同様)。
図7は、ラスタ走査LADARシステムから派生した従来の動作計画部が、寛大な想定を用いても、ブレーキ応答時間に関する米国運輸省のデータを使用すると、時速100キロメートル(kph)で移動する車両に対して、60フィート以上の閉鎖でシーンデータの解釈を遅延させるシナリオを示しているのに対し、本明細書に開示されたインテリジェントLADARおよび動作計画システムの例示的な実施形態は、位置レイテンシが1フィート未満であると予想される。言い換えれば、本明細書に記載される本発明の技術を使用する動作計画部は、従来の動作計画システムの場合のように60フィート以上移動する場合に対し、物体が車両に1フィートだけ近づいた場合に、潜在的な脅威のシーンにある物体に関する行動情報を得ることが期待される。
図7は、動作計画操作における様々なステップを開示しており、
図7の下部は、従来のラスタ走査LADARアプローチ(「旧」と標識されている)および本明細書に記載されている発明的技術(「新」と標識されている)について、シーケンスの各ステップに必要とされるレイテンシおよび距離に関する推定値(ここで、示されている数字は、累積時間および距離の観点からのものである)を開示している。したがって、
図7は、本発明の例示的な実施形態が、鹿の横断、交差点での赤信号停止標識で移動する違反者、および自動二輪車両の通過などの、まれではあるが潜在的に致命的である障害物の出現に対抗することができる自律車両の重要な機能である、運動計画のミリ秒応答時間更新に対応するマイクロ秒のプロービングおよび活用を提供することが期待される方法を開示している。事故を確実かつ実証的に回避する場合、これらの3つの障害物はいずれも、ミリ秒単位の時間スケールでの動作計画の更新が必要となる可能性があるかまたは必要となるであろう。
【0059】
最近のLuminarの進歩により、LADARが適切に設計されていれば、反射率10%の弱い目標に対しても、200m以上の射程で検出射程を達成できることが示されている。これは、応答時間の短縮および人命救助に役立つ。例えば、自動二輪車が200mで検出されることを考える。この検知の射程は有用であるが、適度な交通量であっても、自動二輪車が車両に接近するかまたは追い越す前に、ある程度の時間で遮蔽されてしまう可能性がある。例えば、200m先でバイクが見えた後、LADAR搭載車両との間で車に遮られたと仮定する。次に、自動二輪車が別の車両を追い越そうとしているときに、自動二輪車が100mの射程でLADAR搭載車両との衝突コース上にあることに気づかずに、自動二輪車が再び出現したと仮定する。自動二輪車とLADAR搭載車両とが両方とも時速 60mph(約100kph)で走行しているとすると、接近する速度は約50m/sである。200m地点で自動二輪車を検出することは、点群活用者は、自動二輪車が再出現したときにその存在を再確認することに役立つが、レイテンシはどうであるか。動作計画を更新して人命を救助するために2秒の衝突警告が必要な場合、ミリ秒ごとにカウントするための時間はない。
【0060】
検出を確認するために2回以上の走査を必要とし、100ミリ秒の速度で更新するLADARシステムは、検知、評価、および応答(動作計画の変更)を行うだけでなく、データを収集するのに1/5秒を必要とする。この箇所で、開示された本発明の例示的な実施形態は、当技術分野における重要な技術的進歩を提供することができる。例示的な実施形態を通じて、本発明者らは、「検知から計画修正」の段階を約10ミリ秒に短縮することを期待している(
図7を参照)。この改善の価値は、現在、LADAR搭載車両が、30~50mの射程で、不規則な行動、および観察していない車線追い越し者などの予測不可能な事象に対して、回避操作を実行するための1秒以上の時間で応答することができることである。従来のパイプライン化ラスタ走査システムでは一般的な1/2秒の応答時間で、この距離は50m~70mに伸び、というのも、目標が遠くに離れるほど遮られる可能性が高くなり、反射率が低いと、まったく検出されないためである。
【0061】
鹿、自転車、または車両がLADAR搭載車両の前の通りを警告なしに横断することによって、LADAR搭載車両に不意にぶつかる2つ目のシナリオを考える。200msごとに走査して確認するシステムでは、衝突回避のための動き更新に間に合うようにそれらを検出することはもちろんのこと、そのようなブラインドサイド事象を検出できない可能性がある。したがって、開示された本発明の例示的な実施形態によって提供される速度の利点は、線形ゲインよりもはるかに大きく、というのも、人間からであれ動物からであれ、警告時間が短くなるほどブラインドサイド衝突の可能性が増加するためである。
【0062】
したがって、本発明者らは、200ms以下(プロセッサの待ち時間を含む)で動作計画の更新を行うことができるシステムに対する技術的な必要が大いにあると考えており、本発明者らは、説明の目的で、「センサから動作計画更新」からの公称10ミリ秒の遅延をベンチマークとして選択した。
【0063】
図7のシーケンスは、動き経路に影響を与える可能性のある障害物をステップ702で検出するインテリジェントセンサのスケジューラ600から始まる。インテリジェントセンサは、潜在的ではあるが検証されていない危険が環境に存在するという喚起を提供するインテリジェントLADARシステム206などの広視野センサであり得る。センサがLADARシステム自体ではなく別の異種センサである場合、このプロセス200は、例示的な実施形態では2つのケースを取ることができる。
【0064】
第1のケースは、「選択的な検知」と呼ぶことができるものであり、それによって、スケジューラ600は、上述された直接プロービングのケースのように、LADAR源402を方向付ける。この例では、LADARシステム206は、センサがカメラなどのようなもの(赤外線または視覚センサ)である場合に、射程、速度、または単により良好な照明などのより詳細な情報を得るために使用される。上記では、物体が識別されたと想定して、当該物体に関する知識を向上させるためにLADARシステムを利用している。言い換えれば、喚起に基づいて、LADARシステムが物体に関する追加情報を返すための検知ショットが選択される。スケジューリングの別の実施形態である「比較」検知では、状況はよりニュアンスのあるものとなる。比較検知では、物体の有無は、LADARデータおよびビデオ物体が得られた後にのみ推論される。これは、ビデオ内の変化が、任意の1つの物体に関連付けられている場合と関連付けられていない場合とがあるためである。光の揺らぎは、様々な距離にある様々な静止した物体(例えば、非脅威)に起因しているか、または通過する動物の毛(例えば、脅威)からの反射などのものに起因している可能性がある。例えば、画像のフレーム間の変化は、迅速に動きを示すが、動きは画像をぼかし、したがって、移動する物体の形態および形状を評価することを困難にする。LADARシステム206は、受動画像センサを補完することができる。さらなるセンシングのためにぼやけエリアを選択することにより、LADARシステム206は、鮮明な3次元画像をプロービングして判定することができる。これは、画像は、約10Hz程度の動きに対してぼやけてしまうが、LADARシステム206は、数百ナノ秒以内にシーン全体をサンプリングすることができ、そのため、ぼやけないためである。比較は、LADAR戻りがぼやけ領域または静的背景に対応するかどうかを評価するために、LADAR後の画像形成に実施することができる。
【0065】
別の例として、2つのセンサ(LADARシステムとキューセンサなど)間の双方向フィードバックループは、相殺されたデータレビューと検証の固有の性質に基づいて、動作計画のために必要な情報を提供することができる。
【0066】
選択的および比較的な検知はまた、センサの自己喚起からも発生してもよい。選択検知の例として、以下について考える。物体の動きがLADARシステム206で検出され、次いで、LADARシステム(圧縮センシングなどを介してインテリジェント測距点機能を有する場合)は、物体をさらに特徴付けるためにLADARショットのサルボで物体/関心領域を囲むようにタスク付与を行うことができる。比較例として、以前のフレームで物体が検出された道路の部分を再訪することを考える。射程または強度の戻りが変化する場合(これは定義上、比較の行為である)、これは比較検知と呼ばれてもよい。いったん物体が検出されると、信頼性の高い割り込みが自動車テレマティクス制御サブシステムに提供される前に、「客観的」検知と呼ばれ得るより高い知覚層が必要とされる。LADARシステム206は、低レイテンシであるために、そのビームを喚起された物体に迅速にスルーさせられることが望ましい。これは、迅速な走査を必要とする(その例は、方位角走査ミラー602および仰角走査ミラー604のジンバリングされた対として
図6A~
図6Cに示されている)。2次元光学フェーズドアレイLADARも同様に使用することができ、ジンバルは、微小機械走査ミラーの任意の方法で置き換えることができる。機械的走査であるMEMSシステムの例は、Boulder Nonlinear SystemsおよびBeamcoによって提供されているような液晶を使用した空間光変調器である。
【0067】
図7に戻ると、ステップ700は、後続のセンサ解釈を用いて、潜在的な脅威を検出する。解釈は、道路の側面から道路への突然の動き(例えば、木の枝(無害)またはLADAR搭載車の前に飛び出す鹿(脅威))であり得る。ここでは、変化検出から動きを検知する簡単なビデオ活用が使用されてもよく、利用可能なアルゴリズムの選択肢は膨大であり、オープンCVなどのオープンソースプロジェクトが主流である。数多くのベンダーが、毎秒100フレーム以上を処理できる100万画素を超える高解像度カメラを販売している。わずか数フレームで、車両の計画された経路に沿ったまとまった動きを検出することができるので、喚起は非常に高速に発生し得る。第1のベクトル割り込み702は、LADARシステム206自体に対するものであってもよい。この例示的な実施形態では、ステップ700においてセンサによって観測された物体を抽出する要求で、LADARスケジューラ704が割り込まれ、オーバーライドされる(ステップ706)。この例では、レーザーは照準されていると想定される。視差がないことにより、カメラからレーザーへ座標を迅速に転送することができる。次に、必要に応じて、スキャナ602および604にコマンドが発行され、スキャナ602および604によって実行され、関心のある項目に向けてレーザーを発射するように方向付ける(ステップ708)。次いで、(例えば、LADAR送信機302によって)一組のLADARショットが発射され(ステップ710)、(例えば、LADAR受信機304によって)戻りパルスが光検出器内で収集され(ステップ712)て解析される。レイテンシをさらに低減するために、(例えば、マルチプレクサ504を介して)受信された焦点面の所望のセルのみが抽出される(ステップ714)。これにより、LADARデータを光学検出器からデジタルメモリに渡して解析する際の読み取り時間が合理化される。LADARシステム206自体が元の喚起源である場合、これは、1つのセンサが別のセンサを喚起する交差喚起とは対照的に、自己喚起と呼ぶことができる。
【0068】
次に、単一の測距点パルス戻り(716参照)がデジタル化され、ステップ718において解析されて、ピーク、最初の戻り、および最後の戻りが判定される。この操作は、点群352を活用して、先行する1つ以上の測距点パルス戻りも考慮することができる。このプロセスは、候補の脅威物体が、ベクトル割り込み決定を行うのに十分な忠実度で抽出されるまで、必要に応じて繰り返される。割り込み720が必要であるとみなされるならば、動作計画システム202が通知され、その結果、動作計画システム202のパイプライン化キュー722が割り込まれ、新しい経路計画(および関連する必要な動き)がスタックの先頭に挿入され得る(ステップ724)。
【0069】
100mを本発明者らのシナリオのための公称基準点としてとると、ステップ710でのパルスの発射から射程プロファイル(716を参照)の完了までに必要な時間は、以下のようになるので、約600ナノ秒である。
【数3】
【0070】
図7の下の部分は、本明細書に開示された例示的な実施形態および従来のラスタ走査システムの大まかに類似した段階に関して、このプロセスの各段階の予想される比較タイミングおよび距離(累積的)を示している。その違いは顕著であり、本発明の例示的な実施形態では、従来のシステムの68フィートに対して、障害物の動きが1フィート未満である必要があることが予想される。
図7のこの部分は、レイテンシの支配的な発生源である段階を示す星印を含む。
【0071】
図7の処理チェーンの各段階でのレイテンシの節約の原因を探ることは有益である。
【0072】
センサ処理チェーンにおけるレイテンシの最初の段階は、喚起するセンサが脅威アイテムからの生の波面を受信したときから、LADARシステムコントローラが、LADAR送信機がこの脅威アイテムに対処するために指すべき方向を判定するまでの時間である。脅威を検出するためには喚起するセンサからの複数のフレームが必要となることが予想されるため、ここでの時間レイテンシは喚起するセンサのフレーム時間に支配される。従来、これには公称20Hzの更新レートが必要とされていたが、高速フレームビデオでは、衝突の可能性がある領域に重点を置いて100Hzに短縮することができる。例えば、45度の走査体積では、衝突評価のために約30%の画素検査しか必要ないと予想されている。現在利用可能な組み込みプロセッサは 、100GOPs の射程(毎秒数十億回の演算)で動作するため、異常検出のための画像解析段階は、実行時間をカウントする際に無視することができ、このためカメラの収集時間が支配的になる。
【0073】
かなりのレイテンシの次の段階は、割り込みを通じて(例えば、高速経路LADARショットのタスク再付与を介して)LADARショットをスケジュールすることである。スケジューリングスタックの最上部に新しいショットを配置する際のレイテンシは、レーザー402の最小空間反復率によって支配される。空間反復は、シーン内のスポットを再訪するのに必要な最小時間によって規定される。現在の従来の走査LADARシステムの場合、このタイムラインは10Hz程度、つまり100ミリ秒周期である。インテリジェント測距点の場合、例えば、圧縮センシングでLADARを走査する場合、最小空間反復率は走査速度によって決まる。これは、MEMSデバイスの機械的スルーレート(または熱制御された電気走査の同等の機械的ヒステリシス)によって制限される。5KHzは、必要なタイムラインのかなり控えめな推定である。この段階により、本発明の例示的な実施形態による1フィート未満の予想される追加の距離と比較して、従来のアプローチでは、物体が約13フィートの追加の距離を移動すると予想される。次のステップは、LADAR送信機へのコマンド、およびレーザーが発射するためのセットアップ時間の実行を計算することである。この時間は小さく、従来の方法と本発明の方法との両方に匹敵するものであり、100KHz程度であると本発明者らは考える。これは、ほとんどの自動車用LADARシステムの発射時間に対応している。
【0074】
動作計画センサパイプラインにおけるかなりのレイテンシの次の段階は、LADARパルスの発射および戻りの収集である。飛行時間はごくわずかなので(前述の解析では約600ナノ秒)、この段階はショット間の所要時間によって時間的に支配される。LADARレポートの信頼性を高めるには、複数の観測が必要になることが予想されるため、この段階は支配的になる可能性がある。実際、10Hzの空間再訪を行う現在のレーザーの場合、5ショット(安全な割り込みのための確実な使用に必要な最小ショット数であると予想される)1/2秒のレイテンシになる。専用の注視が可能なレーザーを用いると、レーザーの再発射速度内で5ショットを発射することができる(約200マイクロ秒の再発射時間を控えめな数値として使用することができる場合)。パルスが発射された後、活用前の追加のレイテンシはわずかであり、LADAR戻りのメモリページングによって支配される。正確なタイミングは実施者が使用する電子機器に依存するが、現在のSDRAMの典型的な量は1マイクロ秒程度である。最後に、LADARおよびカメラの画像を動作計画部に割り込む決定(そうである場合、計画部に渡す情報)に変換するための活用段階が必要である。この段階は、インテリジェント測距点LADARシステムで非常に短くすることができる。従来のパイプライン化されたLADARシステムの場合、レイテンシは1つの固定フレーム程度、公称10Hzであると予想される。
【0075】
最後に、干渉は、レーダーおよび他の能動的なイメージャ(例えば、超音波)と同様に、LADARシステムにおけるレイテンシの原因となる。その理由は、データマイニング、機械学習、および推論が、そのようなノイズをフェレットアウトするために使用できるからである。低レイテンシを達成するために、動作計画は、ストライド干渉の低減で使用することができる。そのような方法の1つは、2017年2月17日に出願され、「Method and System for Ladar Pulse Deconfliction」と題された米国特許出願第62/460,520号に開示されているようなパルス符号化の使用であり、その開示の全体が参照により本明細書に組み込まれる。追加の方法が次に提案される。散発的な干渉の1つの原因は、強い戻りからの「独自の」LADARシステム誘発の飽和、または他のLADARシステムの飽和のいずれかに起因する受信機の飽和である。このような飽和は、LADAR受信機の光検出回路の増幅器に電流スパイクが入るのを防ぐ保護回路を用いて克服することができる。そのような保護回路は、感度と飽和からのレイテンシとを交換したいという実施者の要望に応じて、製造中に選択的に追加または破棄することができるというよりも、メタライゼーション層として製造することができる。このような保護回路は、次のように動作するように設計することができる:電流スパイクがある値を超えると、フィードバック回路が出力をチョークする。これにより、感度が低下する(例えば、ノイズ等価電力が増加する)代わりに、フォトダイオードが保護される。
図9は、(例えば)第1のトランスインピーダンス増幅器の出力における電圧910を超えると、ダイオード920が起動するように保護ダイオード920が使用される、このような保護回路の例示的な実施形態を示している。ダイオード920が起動されると、電流が流れ、エネルギーが後続の検出回路930から迂回される。
【0076】
図8は、様々な種類の脅威の協働検出のための例示的な処理フローを開示している。
図8の異なる列は、インテリジェントセンサに組み込まれた脅威検出インテリジェンスによって検出され得る脅威の異なるタイプを示している。この例では、検出され得る脅威のタイプは、「脱線」800、「揺らぎ」810、および「光沢のある物体」820が含まれる。これらの脅威のタイプは例示に過ぎず、実施者が所望する場合、脅威検出インテリジェンスはまた、異なるおよび/または追加の脅威を検出するように構成され得ることが理解されるべきである。
【0077】
図8の行は、システムのどの要素または段階が、協働モデルの様々な操作を実施するために使用され得るかを示している。第1の行は、センサ喚起操作に対応する。第2の行は、LADARシステムまたは他のセンサインテリジェンス(カメラインテリジェンスなど)による点群活用に対応する。一般的に、点群活用のための信号処理はFPGAまたはカスタムプロセッサで実行され、処理ではなくセンサ収集時間が制限要因となるレベルまでレイテンシを抑えることができる。第3の行は、動作計画システム202によって実施される割り込み動作に対応する。
【0078】
LADAR自己喚起802は、脱線事象を検出するために使用することができる。脱線脅威の検出では、LADARシステムは、LADAR搭載車両の車線内の進入車両および/または進入車両が不規則に移動していることを示すLADARフレームデータを得る。LADARシステムは、関心領域を横断するラスタ走査を使用することができる。この関心領域は、例えば、水平線で見た、LADAR搭載車両が中心にある道路であってもよく、ここで、最初に進入車両が検出される。この場合、走査から走査までの間に不規則な行動を示す車両が存在する可能性がある。これは、(i)車両が、検出される方位角ビームの変化によって証明されるように、車線から脱線したり戻ったりしている、(ii)車両が、おそらく別の車両を追い越しているために、誤った車線から接近してきている、あるいは(iii)車両が、安全であることが保証されている道路状態および標識などの速度を大幅に上回るかまたは下回る速度で移動している可能性がある。これらの3つの状態はすべて、データの1つのまたは数フレームの中で識別することができる(ステップ804を参照)。
【0079】
ステップ804において、点群352は、フレームデータ220を介して日常的に更新され、動作計画システム202に報知される。背景モードでは、LADARシステム206内の脅威検出インテリジェンス(例えば、FPGA)が、領域内の個別の物体を追跡する。非線形射程レートまたは角度レートは、物体の追跡が不規則であるか、または車線変更を示すかどうかを明らかにすることができる。物体の動きが脅威的であるとみなされる場合、割り込みを動作計画部に発行することができる(例えば、優先フラグ250を介して)。
【0080】
ステップ806において、動作計画部は、検出された脱線状態(例えば、正面衝突の脅威または単に対向車両間衝突の脅威)に起因する危険となる進入交通があることを、割り込みを介して通知される。
【0081】
「揺らぎ」検出810のための例示的な処理フローは、ステップ812によって示されるように、別のセンサからの交差喚起を含むことができる。ここでは、LADAR搭載車両の経路に沿って、カメラ画素のクラスタで変化が検出される実施形態が示されている。この変化は、車が森林エリアを走行している場合には、葉が揺らいでいることに起因する場合があり、または鹿が道路に飛び込んできたことに起因する場合がある。このようなカメラの検出は、次いで、LADARシステムを喚起して追加のプロービングを行うために使用することができる。
【0082】
LADARシステムは、ステップ814において2ショット以内の動きを検知することができ、数ショットで移動する物体のサイズを決定することもできる。このような学習は、受動カメラだけでは、はるかに長い時間がかかる。したがって、カメラが揺らぎを示す変化を検出すると、これは、揺らぎ領域に向けてLADARショットを目標に設定にするために、LADARシステムを喚起することができる。LADAR戻りを処理するインテリジェンスは、ブロブ動きモデルを作成することができ、これらのブロブ動きモデルは、動作計画の割り込みが必要かどうかを判定するために解析することができる。
【0083】
ステップ816において、動作計画部は、障害物(前の点群フレームからは存在しなかった可能性がある)があること、およびこの障害物が車両との衝突コース上にあり得る場所がどこにあるかを、割り込みを介して通知される。
【0084】
脅威検出処理フローの第3の例は、光沢のある物体820についてのものであり、これは、別の交差喚起の例であり得る(822を参照)。ステップ824において、物体が最近の既存のフレームに存在しない色を有する、単一のカメラフレームで観測される。これは、自然の秩序から得られた可能性が低いとみなされ、したがって、人間の人工物であると推定される。このような色の変化は、点群のカラーヒストグラムでフラグを立てることができる。タスクが付与されたLADARショットは、この物体の位置を迅速に判定し、それが小さな破片であるか、または移動する、潜在的に脅威となる物体の一部であるかを、車両の動き経路と比較することを介して判定することができる。色変化物体が脅威的であるとみなされる場合には、割り込みを発行することができる(その後、ステップ816を実施することができる)。
【0085】
図8の例では、計算の複雑さは、低い(ショットあたり数十回程度の演算である)ことが予想され、これは、本発明者らが低レイテンシソリューションに適していると考えている。
【0086】
図10A~
図10Dの例は、カメラをLADAR受信機と共に照準させることによって、LADARデータが処理されるレイテンシをどのように改善できるかを示している。従来のレーザーシステムでは、カメラはレーザーシステムの外部に位置付けられている。この配置では、カメラ画像をレーザーに再整列させるために、計算量の多い(したがって、レイテンシを誘発する)作業が必要となる。外部カメラを有する従来のレーザーシステムのこの再整列プロセスは、視差除去として知られている。このような視差除去タスクを回避するために、
図10A~
図10Dは、カメラおよびLADAR受信機が共通の光学エンジンの一部である例示的な実施形態を説明する。例えば、
図10A~
図10Cは、カメラ1002がLADAR受信機の光検出器500と共に照準されている例を示す。カメラ1002はビデオカメラであってもよいが、これに限定される必要はない。
図10A~
図10Cの例は、カメラ1002が共に照準されていることを除いて、
図6A~
図6Cの例と類似している。
【0087】
レンズ610は、受信機を外部環境から分離し、可視光とレーザー帯域光との両方を受信するように構成されている。共に照準されることを達成するために、光学システムは、レンズ610と光検出器500との間に光学的に位置付けられるミラー1000、およびレンズ610とカメラ1002との間に光学的に位置付けられるミラー1000を含む。ミラー1000、光検出器500、およびカメラ1002は、通常、統合されたLADARシステムの一部として同じエンクロージャまたはハウジング内に収容することができる。ミラー1000は、その反射特性が入射光の周波数または波長に基づいて変化するように、ダイクロイックミラーであり得る。例示的な実施形態では、ダイクロイックミラー1000は、(1)第1の光スペクトル(例えば、可視光スペクトル、赤外(IR)光スペクトルなど)のレンズ610からの入射光を、経路1004を介してカメラ1002に方向付け、かつ(2)第2の光スペクトル(例えば、LADARパルス反射を含むレーザー光スペクトル)のレンズ610からの入射光を、経路1006を介して光検出器500に方向付けるように構成されている。例えば、ミラー1000は、第1の光スペクトルの光をカメラ1002に向けて反射し(経路1004を参照)、第2の光スペクトルの光を光検出器500に向けて通過させることができる(パス1006を参照)。光検出器500およびカメラ1002は、共に照準されることに起因して同じ視野を共有するため、これにより、特に立体視システムにおいて、カメラ1002からの画像データと光検出器500から導出された測距点データとの融合が大幅に合理化される。すなわち、カメラ1002からの画像データは、当技術分野の従来のシステムによって必要とされる計算集約的な視差除去タスクを必要とせずに、光検出器500から導出された計算された測距点データと空間的に整列することができる。例えば、典型的な高フレームレートの立体ビデオストリームは、位置合わせ誤差による視力の損失にもかかわらず、ビデオをLADARデータに整列するために、数十ギガフロップスもの処理を必要とする。これらは、共に照準されるカメラ1002を使用することで回避することができる。ビデオおよびLADARの位置合わせにギガフロップスの処理を使用する代わりに、共に照準されるカメラを使用することで、より複雑ではない技術を使用して整列することができる。例えば、工場の組み立てステーションで較正する場合、LADARシステムおよびカメラを使用してチェックボードパターンの画像を取り込むことができる。次いで、カメラ画像とLADAR画像との間に不整合があるかどうかを観測し、読み出しコードの整列をハードワイヤリングすることによって不整合を除去することができる。商用グレードのLADARシステムおよびカメラでは、これらの不整合はまばらになると予想される。例えば、カメラとLADARシステムとの両方が100×100画素のx-y画素グリッドを有しているとする。次いで、LADARシステムとカメラとの両方が100×100の白黒チェッカーボードに対して画像を表示する。この例では、カメラ画像の右上隅の画素100、100がグリッドから外れていることを除いて、すべての画素が一直線に並んでおり、カメラ画像の画素99、100がチェックボードのエッジにあるが、LADAR画像は、角部を指している画素99、100および100、100の両方を有する。次いで、整列は単純に以下のようになる:
1) xおよびyのカメラ画素をそれぞれiおよびj、射程をi、j=1、.....、100、LADARをk、l、射程を同様にk、l=1、.....、100と規定する。
【0088】
2) カメラ画像との画素位置合わせに基づいて、LADARをインデックス化(融合/整列)する。例えば、カメラ画素、例えば12、23を検査するとする。ここで本発明者らは同様に、その対応するLADAR画素を検査するとする。そのために、システムは、LADARデータの画素12、23を呼び戻す(例えば、メモリからフェッチする)。上記の例に関して、カメラ画素が99、100または100、100以外の任意の画素である場合、呼び戻されたLADAR画素はカメラ画素と同じであり、本発明者らは、カメラの画素99、100にアクセスしている場合、LADAR画像の画素99、100および100、100の集合を選択し、カメラ画像が画素100、100にある場合、LADAR画像にはアクセスしない。
【0089】
3) LADARで喚起されるカメラについても、逆方向ではあるが、同様の方向に繰り返す。
【0090】
この整列を実施するために複雑な演算は必要ないことに留意されたい。その代わりに、各データ照会に必要なのは単純で小さな論理テーブルだけであり、典型的には数キロバイトである。対照的に、共に照準されない整列には多くのGバイトが必要である。
【0091】
図10Dは、共に照準されるカメラ1002がシステムでどのように有利に使用され得るかを示す例示的な処理フローを示している。ステップ1050において、光が受信される。この受信された光は、上述されたように、1つ以上のLADARパルス反射を含むことができる。ステップ1050は、レンズ610によって実施することができる。ステップ1052において、第1の光スペクトルの受信光の部分は、カメラ1002に向けて方向付けられ、第2の光スペクトルの受信光の部分は、光検出器500に向けて方向付けられる。上述されたように、第2の光スペクトルは、LADARパルスおよびLADARパルス反射のスペクトルを包含する。このステップは、ミラー1000によって実施することができる。
【0092】
ステップ1054において、光検出器1054は、ミラー1000によって光検出器1054に向けられたLADARパルス反射を検出する。ステップ1056において、検出されたLADARパルス反射に基づいて測距点データが計算される。ステップ1056は、上述されたような信号処理回路およびプロセッサを使用して実施することができる。
【0093】
一方、ステップ1058において、カメラ1002は、ミラー1000によってカメラ1002に向けられた光に基づいて画像データを生成する。その後、プロセッサは、ステップ1056からの計算された測距点データを、ステップ1058からの画像データと空間的に整列することができる(ステップ1060を参照)。次に、LADARシステムおよび/または動作計画システムは、空間的に整列された測距点データおよび画像データに基づいて、LADAR目標設定および/または車両の動きに関する決定を行うことができる。例えば、
図10B~
図10Cによって示されるように、この意思決定は、ショットリスト400における新しいショットの挿入をもたらすことができる。さらにまた、動作計画システム202は、空間的に整列された測距点および画像データの内容に基づいて、何らかの方法で車両の動きを変更することを選択することができる。
【0094】
図10A~
図10Cは例示的な実施形態を示しており、実施者は、システムにさらなる光学素子を含めることを選択してもよいことが理解されるべきである。例えば、ミラー1000による分割後の光路、例えば、ミラー1000とカメラ1002との間の光路1004、および/またはミラー1000と光検出器500との間の光路1006に、追加の光学素子が含まれてもよい。さらに、カメラ1002の波長は、可視色スペクトル、グレースケールスペクトル、受動IRスペクトル、ハイパースペクトルスペクトル、ズーム倍率の有無などであってもよい。また、LADARシステムの焦点面は、能動(LADAR)焦点面と受動(ビデオ)焦点面の組み合わせとして機能するのに十分な受容波長を有してもよい。
【0095】
レイテンシ低減の別の利点は、LADARデータの単一フレーム内のデータに基づいて物体に関する動きデータを計算する能力である。例えば、(3D)速度および加速度の真の推定値は、LADARショットの単一フレーム内のLADARデータから計算することができる。これは、ファイバまたはダイオードLADARシステムに関連付けられている短いパルス持続時間に起因するものであり、短いタイムライン内での複数の目標測定を可能にする。速度推定により、動きのない物体(LADAR搭載車両が動いている場合は閉速度を有する)を除去することができる。また、速度推定は、検出が発生した後に追跡が開始されたときに存在するノイズの量を減少することもできる。例えば、速度がない場合、100mで10mradのビームでは、3mの射程関連付けウィンドウが必要となるが、これは3nsのパルスでは18個のx、y分解能のノイズ暴露ビン(パルス幅から1/2m、ビーム発散から1m)に相当する。対照的に、3mの関連付けに加えて、両方の次元で3m/sの速度フィルタがある場合、公称10Hzのフレームレートでは、ノイズ曝露の範囲は約2~4ビンに減少する。フレーム内ベースで物体に関する動きデータを計算する能力により、物体の堅牢な運動学的モデルを低レイテンシで作成することができる。
【0096】
図11Aは、例示的な実施形態に従ってフレーム内の動きデータを計算するための例示的な処理フローを示す。ステップ1100において、LADAR送信機302は、単一のLADARフレーム内の目標に、重複するLADARパルスショットのクラスタを発射する。クラスタ内のLADARパルスは、短い持続時間(例えば、MEMS走査ミラーがLADARシステムによって使用される実施形態では、典型的なMEMS共振速度では、約5マイクロ秒~約80マイクロ秒)にわたって時間的に離間している。ビームクラスタは、方位角、仰角、および射程のすべての3次元において重複を提供することができる。これは、各LADARパルスがパルスの飛行時間にわたって光の円錐を切り出すことに注目することによって可視化することができる。いずれの時点でも、ミラーの位置から、この円錐が空間のどこに位置付けられるかを計算することができます。この情報は、スケジューラでパルスのショット時間を選択するために使用されて、すべての3次元での重複を確実にすることができる。この重複は、シーンに関する情報を抽出するために、異なるルックアングル(視差)を効果的に使用することによって、シーンに関する独自の情報源を提供する。
【0097】
動き推定に対するこのクラスタ化アプローチのレイテンシの利点は、上記で参照されて組み込まれた特許および特許出願に記載されているような圧縮センシングを使用する動的LADARシステムと組み合わせて使用される場合には、さらに拡大され得る。このような動的LADARシステムでは、LADARコントローラは、パルスごと(すなわち、ショットごと)にLADAR送信に影響を及ぼす。これとは対照的に、従来のLADARシステムは、ショットパターンが繰り返されるときに開始および停止を行う固定フレームを規定している。つまり、フレーム内のショットパターンはフレームの開始時に固定されており、フレーム内で動的に適応されることはない。圧縮センシングを使用した動的LADARシステムでは、ショットパターンはフレーム内で動的に変化し得(すなわち、フレーム内ダイナミズム)、すなわち、i番目のショットのショットパターンは、ショットi-1の直接の結果によって異なり得る。
【0098】
典型的な固定フレームLADARシステムは、FOVによって規定されるフレームを有し、FOVは、ショットからショットへと走査され、FOVが完全に抽出されると、プロセスが繰り返される。したがって、圧縮センシングを使用する動的LADARシステムのショット選択を適応させる能力はマイクロ秒で測定されるが、従来の固定フレームLADARシステムのショット選択を適応させる能力は数百ミリ秒または100,000倍遅く測定される。このように、動きデータを推定するのに役立つフレーム内LADARパルスの動的に選択されたタイトなクラスタを使用する能力は、物体の動き推定に関してレイテンシの大幅な改善をもたらすことが期待される。
【0099】
一方で、
図11Aに戻ると、ステップ1102において、LADAR受信機304は、LADARパルスのクラスタからの反射戻りを受信および処理する。この処理の一部として、LADAR受信機304は、目標のフレーム内の動きデータを計算することができる。この動きデータは、タイトクラスタによって目標に設定された測距点からの反射戻りに対する射程および強度の変化に基づいて計算することができる。例えば、目標の速度および加速度は、これらの反射戻りに基づいて推定することができる。このような動きデータをフレーム内で計算することによって、視野内の1つ以上の目標の動きをモデル化する際のレイテンシを大幅に減少することができ、その結果、動作計画システムによるより高速な意思決定につながる。
【0100】
図11Bは、
図11Aのステップ1100および1102を実装するための例示的な処理フローを示す。
図12Aは、
図11Bに関して参照のためのLADARパルスビームの例示的なクラスタを示している。
図11Bは、関心目標が検出されるステップ1110から始まる。目標検出を実施するために、いくつかの技法のいずれかを使用することができる。例えば、LADARデータおよび/またはビデオデータをステップ1110で処理して、目標を検出することができる。さらにまた、ソフトウェアで定義されたフレーム(その例は以下で説明される)を処理して、関心のある目標を検出することができる。例として、ステップ1110においてランダムフレームを選択することができ、目標は、その射程が高解像度マップからの固定点にマッピングされない戻りとして宣言することができる。しかしながら、目標検出のための他の技法が使用され得ることが理解されるべきである。
【0101】
ステップ1112において、検出された目標の座標は、互いに直交する2つの軸に関して規定することができる。参照を容易にするために、これらの座標は、XおよびYと呼ばれ得る。例示的な実施形態では、Xは、水平(方位角)軸に沿った座標を指すことができ、Yは、垂直(仰角)軸に沿った座標を指すことができる。
【0102】
ステップ1114において、LADAR送信機302は、LADARショットBおよびCを目標に発射し、ここで、LADARショットBおよびCは同じ水平座標Xを共有するが、LADARショットBおよびCが視野内の指定された距離で重複するビームを有するように、異なる垂直座標を有する。
図12Aは、LADARショットBおよびCの考えられる配置の例を示している。ビームの半径は、光学系(発散)と目標までの射程との両方に依存することが理解されるべきである。
【0103】
ステップ1116において、LADAR受信機304は、LADARショットBおよびCからの反射戻りを受信および処理する。これらの反射戻りは、推定された目標仰角Ytを計算するために処理される。これを行うために、BおよびCからの戻りのショットエネルギーを比較することができる。例えば、2つの戻りのエネルギーが等しい場合、目標は、BとCとの中心間の線の中点に存在するとみなすことができる。B戻りのエネルギーがC戻りのエネルギーを超える場合、目標は、B戻りおよびC戻りのエネルギー比に対応する量だけこの中間点より上に存在するとみなすことができる(例えば、C戻りに比べてB戻りの対応するエネルギーが大きいほど、Bの中心に比例して近くなる)。C戻りのエネルギーがB戻りのエネルギーを超える場合、目標は、B戻りおよびC戻りのエネルギー比に対応する量だけ、この中間点よりも下に存在するとみなすことができる(例えば、B戻りに比べてC戻りの対応するエネルギーが大きいほど、Cの中心に比例して近くなる)。
【0104】
ステップ1118において、新しいLADARショットB´が、垂直座標Ytおよび水平座標Xの測距点を目標とするように規定される。次に、ステップ1120において、新しいLADARショットAが、垂直座標Ytおよび水平座標X’の測距点を目標に設定するように規定され、XとX´との間のオフセットは、交差射程目標位置の推定を可能にするのに十分に大きいが、B´またはAのいずれかで目標を見落とすのを避けるのに十分に小さい。すなわち、B’およびAのうちの少なくとも1つが検出された目標にヒットする。X´の選択は、LADARビーム発散と同様に、数学を使用して、特徴付けられる対象物までの距離および寸法に依存する。例えば、10mradのLADARビーム、100mの射程、1mの幅の車両(例えば、自動二輪車)を後方から見た場合、X´の値は、1/2メートルであるように規定することができる。
【0105】
ステップ1122において、LADAR送信機302は、LADARショットB´およびAをそれぞれの目標に設定する測距点で発射する。次いで、LADAR受信機304は、B´およびAの反射戻りを受信して処理し、B´およびAの射程および強度データを計算する(ステップ1124)。具体的には、標準的なLADAR射程の式をとり、固定LADARシステムパラメータを入力し、測定された信号パルスエネルギーを達成するために必要な目標反射率を計算することによって、所望の反射値を得ることができる。射程は、飛行時間技法を使用して評価することができる。射程は、射程(B´)および射程(A)で表すことができる。強度は、強度(B´)および強度(A)で表すことができる。次いで、ステップ1126において、プロセッサは、射程(B´)、射程(A)、強度(B´)、および強度(A)に基づいて、目標の交差射程および射程重心を計算する。交差射程は、rで表される射程(飛行時間)、および方位角θ(発射時間およびミラー位置から)を計算し、極変換rsin(θ)を評価することによって求めることができる。I(i)は強度を表し、複数回の測定で射程重心は以下のように求められる:
【数4】
ただし、交差射程重心は以下である:
【数5】
関心のある物体が少なくとも数ミリメートルまたは数センチメートル移動するのに十分な期間が経過した後に新しいデータが収集されるので、このプロセスを最初から繰り返すことができ、重心の位置の変化は、目標の速度および加速度を推定するために使用することができる。
【0106】
図12Aは、
図11Bに関して動作原理を説明するのに役立つ、LADARショットクラスタのための視野内の例示的なビームレイアウトを示す。
図12Aによって示されているのは、目標が抽出されるビーム位置A、B、C(1200)である。これらのビームは、全幅の半分の最大値、すなわち1/e
2レベルで重複している。説明の目的および教育上の実演のために、(i)有効な目標は、これらのビームA、B、およびCの結合内にあり、(ii)A、BおよびB、Cは同一平面上にあると想定される。この文脈では、3つのビームが同一平面上にあると規定されるのは、接続部のコリニアルック方向が直交するペアワイズの組み合わせが存在する場合である。
図12Aでは、A、Bが水平方向に整列し、B、Cが垂直方向に整列するので、これが当てはまることが分かる。中心軸(位相中心)が一致している必要はないことに留意されたい。真の目標は、視野内の1201にある。上記のように、
図11Bの処理フローは、ある時点での目標位置の精緻な推定値を得るために、方位角および仰角の補間を可能にすることができる。この精緻な推定値を中心とする(またはその近くにある)LADARビームは、A´(1202)と表すことができる。実際には、A´が1201を完全に中心とすることはほとんどなく、というのも、(i)ノイズに起因する重心で1201の真の値を近似しているだけであり、(ii)ソフトウェアは一般的に、常にではないにせよ、選択可能な位置の量子化されたセットに限定されるためである。ビームA´が作成されると、システムはまた、同一線上に重複するLADARビームB´およびC´も同様に作成することができる(図示を容易にするために
図12Aには示されていない)。これらのビームを介して行われた抽出および解析の結果は、
図12Bに示された速度テーブルとなる。この結果から、システムは、目標の射程および角度位置の正確な推定値を生成することができるが、説明の目的のためには、知識をビーム発散(角度位置)の実質的に減少した割合として考慮することで十分であり、射程の場合も同様である。この精度により、角度および射程のペアワイズの変化を調べて、目標の速度および加速度の情報を抽出することができる。したがって、
図11Bの処理フローは、目標のための横方向の動きを追跡するために使用することができる。
【0107】
図12Bは、
図11Bの例示的な処理フローに従って目標を追跡するための例示的なタイムラインを示しており、これらのタイムラインは、後述されるように、フレーム内の動きデータを計算するためのクラスタ化技法が従来のアプローチよりも優れていることを示している。さらに、タイムラインは、走査ミラーの速度を妨げないように十分に短いものであり、これは、広い視野を維持するために有用であると同時に、動作計画の低レイテンシを達成することもできる。
【0108】
現実的なシナリオのサンプルおよび既存のコヒーレントFMCW(周波数変調連続波)レーザーとの速度抽出比較を提供するために、全体の速度ベクトルに3nsパルス、100mの目標、25メートル/秒の目標接近速度、10%の非半径方向速度を想定している。本発明者らはまた、加速度については、1/ms
2の加速度(標準重力g力の約10%)を想定している。本発明者らは、半値全幅(FWHM)のレベルで規定されるように、ビームおよび射程ビンにおける不確実性の20%まで測定する能力を想定する。本発明者らは15KHzの高速スキャン軸の想定を使用し、その結果、公称30u秒の再訪率になる。比較の基礎として、本発明者らは、ドップラー抽出に基づくLADARシステムを記載し、500ナノ秒以上の滞留時間を有する米国特許第9,735,885号および同第9,310,471号に開示されているFMCWレーザーを検討することができる。これは、ビームがその時間の間に多くのスルーが発生するという欠点があり、これはフォトニックステアリングで克服することができる。しかし、高デューティサイクルおよびドップラー抽出のための時間積分の必要性は、達成可能なパルスの狭さを制限する。
図12Bの現在の比較は、非半径方向速度を抽出する能力に基づいている。
【0109】
図12Bでは、位置精度精緻化のためのショット間の時間が30μ秒から2,000μ秒の間であることが分かる(
図12Bでは2msとして示されている)。上限は射程がドリフトするまでの時間であり、射程および距離変化率が混合されている。距離変化率を推定するためには、本発明者らは、目標が確実に推定できる量だけ移動するまで待つ。これは約3mm(10cmの持続時間[約3.3ns]、SNR約60)である。つまり、25m/sでは、5m/sの動きに対して20%刻みで動きを検出することができ、1msの更新では5mmになる。本発明者らは、
図12Bに反映されるように、1m/sは距離変化率更新の良好な下限であると結論付ける。1m/s/s/5、または20cm/s/sの動きの場合、角度のある目標スルーでは、加速度は識別可能ではなく、したがって速度はぼやけない。10%のオフセットの場合、これは2cm/sになる。3mradのオフセットで100mになると、約30cmの交差射程範囲、つまり300mmが得られ、5:1の分割後に60kμmになる。したがって、1msの時間では、5:1分割での加速度の動きは20μmである。5:1になるためには、これを3,000倍に増加させる必要がある。本発明者らは、角度空間でのドウェルの限界因子は、加速度ではなく、速度ビームウォークであると結論付ける。ここで、本発明者らは、6cmのビームの1/5をウォークさせることが分かり、したがって、指定された25m/sクラブの10%では、2.5m/s、つまり2.5mm/msが得られる。次いで本発明者らは、約10ms前後でぼかす。本発明者らは、上限の射程境界と下限の距離変化率境界との間に、公称50%のマージンを設けている。本発明者らは、信頼性の高い位置勾配は、常に地形および運動学的制約を伴うため、より複雑なラジオメトリックおよび自我運動のモデル化が必要になるため、
図12Bには加速度を含めていない。Mathworks、MathCAD、Ansys、およびその他からソフトウェアツールが入手可能であり、これは、この作業を支援することができる。
【0110】
加速度は典型的には、5msで5mm/sの速度をぼかす。上記の段落の仕様である5m/sを検出するには、本発明者らは、このぼかし率で10倍のマージンを必要とする。誤差は微分演算子が連続するごとに蓄積されていくので、このようなマージンをとるのが賢明であり、したがって本発明者らは、真の速度のサンプル間の最大持続時間として5msを使用する。側面情報は、これを大幅に拡大することができ、これは、スピニングシステムに一般的な10~20Hzにはほど遠いものである。
【0111】
図12Bでは、発射時の角度ビーム位置(ショットリスト)を大文字で、パルスの発射時間を小文字で示している。本発明者らは、3つの(極)座標すべての射程および速度変化率を得るために使用されるデータの組み合わせの例を示す。その場合、標準的なユークリッド単位ベクトルへのマッピングは簡単である。
【0112】
1フレーム(フレーム内)で向上された測距、速度、加速度を得る能力は、効果的なSNRおよび測定などのLADARメトリクスの向上につながるが、後述されるように、この機能がカメラまたは同類のものから導出される画像データとの通信などのフレーム内通信と組み合わされたときに生じる追加の利点があることが理解されるべきである。
【0113】
LADARシステムとカメラとの間の通信がフレーム間で確立されると、さらに多くのレイテンシ低減を達成することができる。追加のレイテンシの低減を促進するために、例示的な実施形態では、ソフトウェア定義フレーム(SDF)を使用する。SDFは、LADARフレームのショットリストであり、LADARシステムのフレームごとに選択可能である、事前に指定されたレーザーショットパターンのセット(ファミリー)を識別する。選択プロセスは、動作計画システムおよび/またはLADARシステムにアクセス可能な知覚スタックなどの視野に関するデータ、またはエンドユーザによって支援され得る。LADARシステムにおける処理インテリジェンスは、SDFの選択を支援することができ、または選択は、機械学習、カメラからのフレームデータ、もしくはさらにはマップデータに基づいていてもよい。
【0114】
例えば、進入車両が、その前の車を追い越している最中に、追い越しによって(潜在的な)正面衝突に向けた速度で向かっている場合、SDFスタックは、より厳密な監視のために進入してくる脅威車両の周囲の関心エリアを選択することができる。これに加えて、動き構造を使用した精密な定位のために、様々な車両または固定物体の周囲に複数の関心エリアを設定することができる。LADARパルスを介した抽出のためのこれらの関心エリアは、SDFによって規定することができ、例として、SDFは、固定グリッド、ランダムグリッド、または「フォビエイテッド」グリッドとすることができ、所望の「固定点」の周りに密集したショットパターンを有し、他の場所ではよりまばらにサンプリングされる。衝突の可能性が予測される場合には、LADARフレームを終了してリセットすることができる。回転するLADARなどの既存の固定LADARシステムをエミュレートするLADAR/カメラビジョンソフトウェアを活用することには大きなメリットがある。したがって、このようなソフトウェアを活用するために、固定LADARスキャナのためのエミュレーションモードをSDFスイートに含めることは、実施者にとって価値がある。例えば、フォビエイテッドSDFは、LADAR搭載車両が進入する道路部分がおそらく検出水平線および/または地理的水平線で最も高い密度でより高いショット密度を享受するように構成することができ、それによって、空および他の道路以外の部分はショットがよりまばらに配置される。
【0115】
図13Aは、LADARシステムの視野内の観測された特性に基づいてLADARシステムのSDFを選択するために、プロセッサによって実行される例示的な処理フローを開示している。これにより、フレームごとのLADARショットの低レイテンシ適応が可能になる。
【0116】
ステップ1300において、プロセッサは、新しいLADARフレームが開始されるべきであるかどうかをチェックする。そうであれば、処理フローは、ステップ1302に進む。ステップ1302において、プロセッサは、LADARシステムの視野の1つ以上の特性を表すデータを処理する。この処理されたデータは、LADARデータ(例えば、先行するLADARショットからの射程情報)、画像データ(例えば、ビデオカメラなどからの画像)、および/またはマップデータ(例えば、既存のマップ情報に従った道路内またはその近傍の既知の物体に関するデータ)のうちの1つ以上を含むことができる。この処理されたデータに基づいて、プロセッサは、視野に関する判断を行い、視野の観察特性に適したSDFのライブラリの中から適切なSDFを選択することができる(ステップ1304)。SDFのライブラリは、プロセッサがアクセス可能なメモリに記憶することができ、各SDFは、そのSDFの特定のLADARショットを、観測された状況に最も適合するようにさらに調整することを可能にする1つ以上のパラメータを含むことができる。例えば、これらのパラメータは、SDFのLADARパルス間の間隔、SDFのLADARパルスによって規定されるパターン(例えば、後述されるように、フォビエイテッドSDFの水平線または他の特徴部がどこに位置しているか)、およびSDFのLADARパルスによる目標設定のための特定の座標のうちの少なくとも1つを制御する1つ以上の変数を含むことができる。ステップ1306において、プロセッサは、そのパラメータ化に基づいて選択されたSDFをインスタンス化する。これにより、SDFは、所定のLADARフレーム内のLADARパルスによる目標設定のための複数の測距点を具体的に識別する。ステップ1308において、LADAR送信機は、次いで、インスタンス化されたSDFに従ってLADARパルスを発射する。SDFが完了すると(または場合によっては、対象のLADARフレームの割り込みに応答して)、処理フローは、次のフレームのためにステップ1300に戻る。
【0117】
図13B~
図13Iは、
図13Aの例示的な実施形態の一部としてLADARシステムによって使用され得る異なるタイプのSDFの例を示しており、
図13B~
図13Iの例示的な実施形態の様々な線および他のパターンは、LADARパルスが視野内で目標に設定される場所を示している。
【0118】
図13Bは、例示的なラスタエミュレーションSDFを示す。このSDFによって規定されるラスタパターンは、多くのLADARシステムによって使用される標準的なスキャンパターンに対応する。機敏性を維持するために、LADARシステムは、任意の既存のLADARシステムをエミュレートすることが望ましく、これにより、LADARシステムが既存のLADAR抽出ソフトウェアを活用することが可能になる。
【0119】
図13C~
図13Dは、フォビエーションSDFの例を示している。フォビエーションSDFでは、LADARショットは、迅速な脅威対応を可能にするために、潜在的な脅威エリアまたは他の関心領域とみなされるエリアにクラスタ化される。視野内の潜在的な脅威エリアの例としては、LADAR搭載車両が走行する車線が挙げられる。フォビエーションは、多くのパターンに基づいて変化し得る。例えば、
図13Cは、仰角(または垂直)フォビエーションSDFを示している。フォビエーションは、スパース化(より低い密度およびより高い密度)が望まれる軸として規定されることに注意されたい。これは、対称軸、すなわちショットが(一様に)高密度に適用される軸の反対側である。
図13Cの例では、フォビエーションは、視野内の特定の仰角に焦点を当てているが水平線全体を走査する。望ましい仰角の選択は、水平線とLADAR搭載車両が走行している車線との交点である。本発明者らはまた、車線を水平方向にスキャンし、その先に車両の出入りのある交差点が迫っているかどうかを確認したい場合もある。標高では、ショットの密度は、この水平線領域で最も高く、すぐ上や下の標高では低く、他のすべての標高ではおそらく低くなるが、所望のスパース化の程度によって異なる。別の潜在的なフォビエーションパターンは、方位角(または水平)フォビエーションSDFであり、この場合、ショットの密度が高いことは、水平軸に沿って規定された位置にある垂直線に対応する(方位角はまばらであり、対称性は垂直である)。別の例は、
図13Dによって示されるような重心フォビエーションSDFである。
図13Dの例では、フォビエーションは、指定された垂直および水平座標に沿って集中しており、これは、この仰角/方位角の交点に重心密度の高いLADARショットをもたらす。フォビエーションSDFのパラメータ化は、LADARショットのこれらの高密度の位置(およびSDF内のそのようなショットの密度)を規定することができる。
【0120】
図13Eは、ランダムSDFの例を示しており、ここでは、LADARショットは、位置のランダムサンプリングに基づいて視野全体に広がっている。ランダムSDFは、曖昧さの抑制を可能にすることによって、迅速な脅威検出をサポートするのに役立ち得る。ランダムSDFは、ランダム性の程度および視野内のランダムショットの間隔を制御するためにパラメータ化することができる。例えば、ランダムSDF内のLADARショットのランダムリストは、潜在的な目標がLADARシステムによって検出される前に10フィート以上移動することができないように制御可能に規定することができる。
【0121】
図13Fは、関心領域SDFの例を示している。例として、関心領域SDFは、所定のLADARフレーム内のLADARショットで目標に設定するための関心領域を規定することができる。
図13Fによって示される例は、車両が出入りする可能性のあるトリップワイヤー(
図13Fの道路交差点の細い線を参照)および/または境界ボックス(
図13Fの左側車線の車の後ろの長方形のボックスを参照)などの固定領域を含む。この例は、おそらくLADARシステムの前にある関心領域、つまり関心の高いエリアを示している。境界ボックスは、事前のLADAR走査および/またはマシンビジョン(例えば、カメラ画像データの処理を介して)から得ることができ、境界ボックスは、システムが以前に検出された目標の管理を保持することを可能にする。そのような目標の例としては、マシンビジョンを介して検出された歩行者(複数可)、マシンビジョンを介して検出された自動二輪車(複数可)、およびマシンビジョンを介して検出された道路標識(複数可)(または他の固定参照)を含むことができる。
【0122】
図13Gは、例示的な画像で喚起されるSDFを示す図である。このようなSDFに喚起する画像は、受動カメラ画像またはLADARデータからレンダリングされた画像であってもよい。例として、画像で喚起されるSDFは、画像内で観測されるエッジに基づいていてもよく、検出されたエッジを使用して、LADARシステムによる後続の照会のためのフレームを形成することができる。別の例として、画像で喚起されるSDFは、画像内で観測される影に基づいていてもよく、検出された影を使用して、LADARシステムによる後続の照会のためのフレームを形成することができる。別の例は、ビデオのみのシステムの深度検知を強化するために、境界ボックスからLADARを喚起することであり得る。例えば、本明細書に開示されるような専用の測距点選択は、この目的に向けて、2018年にArxivで 公開されたMAGIC Leap著「Estimating Depth from RGB and Sparse Sensing」に記載された技術を活用することができる。
【0123】
図13Hは、例示的なマップで喚起されるSDFを示す。マップで喚起されるSDFは、フレームが自車検知に基づいているが、以前に収集されたマップデータに基づいているため、アジャイルLADARシステムの強力な動作モードとなり得る。例えば、マップデータを使用して交差道路を検出することができ、マップで喚起されるSDFを操作して交差道路に到着する前にLADARショットを用いて交差道路を照会することができる。
図13Hには、交差道路の位置がブロック点として示されており、白い点は、交差点に進入するLADAR搭載車両に対応している。
【0124】
単一フレーム喚起を使用することは、LADARデータとカメラデータとの両方を支援する。カメラは、SDFスイートからフレーム選択を指示することができる。また、LADARデータは、2つの物体が曖昧に関連付けられている場合(結果として、望ましくない高い混同行列スコアが生じる)に、より高い信頼性を確立することによって、ビデオ機械学習を強化するために使用することができる。この例は、フレーム内(すなわち、サブフレーム)のビデオ/LADAR融合によって、既存のソフトウェアがどのように容易に適応され、強化されるかを示している。例えば、標準的な回転LADARシステムのフレームレートは10Hzである。多くのカメラは100Hz前後のフレームレートを許容しているが、従来のLADARのフレームレートは一般的に10Hz前後、つまりカメラのフレームレートの10分の1である。したがって、カメラデータを融合する前にLADARフレームが完了するのを待つことによって、システムがLADARフレームの完了を待っている間にレイテンシが発生することが分かる。したがって、このようなサブフレーム処理はレイテンシを高速化し、セットアップ時間またはフレーム間レイテンシを伴わずに、フレーム間でのSDFの更新を可能にすることが理解されるべきである。
【0125】
カメラ―LADAR交差喚起の特に説得力のある使用例が
図13Iに示されている。
図13Iの左側は、視野のLADARマップを示し、
図13Iの右側は、このLADARマップと重ね合わされた視野のカメラ画像を示している(ここでは、この例はAEYE JO-GLADARユニットを使用して作成された)。
図13Iの右側から、LADARマップが形成されたときから車両が移動していることが分かり、これは、カラーカメラ画像の視覚的なエッジを検査し、LADAR画像のエッジと比較することによって検出することができる。この種の交差喚起は非常に高速であり、カメラ画像またはラダー画像のいずれかでフレーム間のエッジを単独で接続しようとするよりもはるかに誤差が生じにくい。LADARフレームが終了した後、車両の方向および速度を判定するのに必要な時間は、カメラ画像を1つ(10ミリ秒程度)撮影する時間であり、その後、カメラ画像のエッジ検出(これは、自由に利用できるOpen CVソフトウェアを使用して実施することができる)が続き、この時間は10万回程度の演算に相当するが、光学カメラ画像のみの場合に期待されるギガ演算に比べて大幅に改善されている。
【0126】
図14は、上述された、いくつかのフレームの詳細を詳しく説明する例示的な実施形態を示す。まず、ビデオカメラにおける影付けを考慮すると、参照番号10017は照明源(例えば、太陽、街灯、ヘッドライトなど)を示しており、参照番号10018は、光を遮蔽し、それによって光線10019および10020によって規定される境界を有する影を投射する障害物を示している。この例では、目標10004のすべておよび目標10003のいくつかは、カメラに視認可能ではないが、影のある領域の大部分は、影で喚起されるSDFの使用を介して、LADAR10001および10002を使用して回復可能である。
【0127】
本発明者らは、車両10003が、より遠くにある第2の車両10004を妨害しているシナリオを観測する。例えば、これは、車両10004が車両10003を追い越す途中の自動二輪車であるというシナリオに対応し得る。これは、道路上に自動二輪車がほとんどない場合でも、自動二輪車を巻き込む事故が多いために危険な状況である。この例では、本発明者らは、自動二輪車が、ある程度の期間、LADAR搭載車両10008の車線内に少なくともある程度の期間存在すると考える。本発明者らのシナリオでは、車両10008は、LADARおよびビデオを備える2つのセンサヘッド(10001および10002)を有する。影で喚起されるSDFは、LADARヘッドごとに異なるものとなる。
図14のスケッチは縮尺ではなく、車両10008上のセンサ間の間隔は、一般的に2メートル程度であり、車両10008から車両10004までの距離は100数メートルであり得ることに留意されたい。また、車両のアスペクト比も正確ではないが、フォームファクタは説明を簡略化し、より簡単に要点を示す。
【0128】
10001および10002を頂点とした2つの三角形は、それぞれ影のあるエリア10005、10007、および10006、10007を含み、LADARおよび共に照準されるカメラの視野を示している。センサ10001は、陰のある領域10006として示されている10003から投射される影を有する。これは車両10004を含むので、LADARもカメラも車両10004を見ていないことに留意されたい。センサ10002についても同様である。センサ10002からの影は、車両の後方から投射され、センサ10001については右側の前方から投射され、左側では10003の前方が両方の影の頂点であることに留意されたい。構造化されたテクスチャ領域10005は、センサ10002の影のうち、センサ10001から既に影が付けられていない部分を示している。動きの立体構造は、センサ10001、10002の境界ボックスを生成し、ここで、そのような境界ボックスは、車両10003上でそれぞれ10011、10012によって識別される。これは、車両10003を追跡するために、各LADARのための新しい(関心領域)ソフトウェアフレーム10013を規定する。狭いROIフレームの使用により、所定の正味誤報率に対してより低いSNRが可能になり、したがって、充電時間が短縮され、レイテンシが低減する。
【0129】
車両10003が存在しない場合、両方のカメラは異なる角度から車両10004を見ることに留意されたい。実施者は、これにより、ビデオカメラが動きから構造を得ることができること、具体的には角度の違いから射程を推測することができることに気づくであろう。当然のことながら、この射程はLADARから直接得られる。センサの出力を平均化することでノイズが低減されるため、物体が遮蔽されていないときには、本発明者らは、より正確な定位、したがって、速度や動き予測を得ることができ、それによって、射程がさらに伸びることが観測され得る。これは、
図14において参照番号10014、10015[黒い点を参照]によって示されており、構造化された動きから、車両10003の前部が位置付けられるべきであると推定される位置である。一方または両方のLADARからの射程を使用して、異なる、そして両方ともわずかに誤差のある目標位置10014、10015をより正確な位置10016[白い点を参照]に置き換えて、正確な測距を得ることができる。距離d、10009、および角度オフセットa10010からのマルチラテレーションを使用した改良された位置決めは、直接、より小さい推定された目標体積10013につながる。その結果、これは、速度推定ナラティブで以前に説明されたように、ノイズの露出を減少させることを通じて有効なSNRを増加させる。
【0130】
以下の項目は、3D速度および加速度などの運動学的モデルから動作計画値を抽出することができる例示的な使用例である。これらの例では、検出および追跡される目標は、LADAR搭載車両のセンサ範囲内にある他の車両であり得る。次いで、これらの他の車両の動きデータを使用して、LADAR搭載車両の予測される行動を個別にもしくは集合として(交通密度など)計算するか、または環境状態を抽出する。これらの例は、本明細書に記載されている短パルス速度LADARを用いた3D速度および加速度推定の能力を実証している。さらに、これらの使用例は、コヒーレントであるか否かにかかわらず、任意のLADARシステムによってアドレス可能であるが、本明細書に記載され、上記で参照されて組み込まれた特許および特許出願に記載されているようなコヒーレントなランダムアクセスLADARシステムは、
図12Aおよび
図12Bに概説されているように、動的な再訪時間および選択的なプロービング(例えば、可変ショットリスト)に好適である。さらに、カメラがビデオフレームレートよりも速くLADARセンサに情報をフィードバックすることができれば、これらの使用例はすべて強化される。例えば、先に説明されたように、LADARシステムは、60マイクロ秒以下で所定の位置をサンプリングできるのに対し、ビデオフレームは、通常5~10ミリ秒程度(200~100fpsカメラの場合)であり、多くの場合、FOVを犠牲にしている。その結果、カメラがラインごとにLADARシステムにデータを送り返すことができれば、レイテンシを大幅に低減することができる。例えば、最新の標準規格である3kx3kピクセルのカメラでは、ラインごとの読み出しで3,000のレイテンシが低減される。つまり、完全な9Mピクセルでの更新レートが20Hzに制限されていたとしても、本発明者らは、読み出しを1フレームから1ラインに落とせば、LADARの再訪に一致させることができる。ビデオの活用はLADARよりも発展している分野のため、Open CVなど様々なソフトウェアツールおよび製品があり、以下のようなシナリオに対応している。
【0131】
高速動作計画のための環境知覚:「環境プロービング」としての他の車両の活用
・ 差し迫ったバンプ/ポットホール‐垂直y軸に沿って上下に再方向付けられる速度
o 検出: マップから明らかなように道路の勾配をはるかに超える高速の瞬間的な垂直速度。
o 実用性: バンプが差し迫っていることを警告し、乗客が快適に過ごせるように減速する時間を確保し、および/または車両制御を強化する。
・ 雨/氷の発生(横滑り)‐バルク速度ベクトルの変化を伴わない水平面内でのマイクロスケールの車両速度シフト
o 検出:車両の位置のランダムウォークは、標準的な自我(すなわち、自車)の動きをはるかに超えて戻る。
o 実用性: 安全でない[グリップが低下した]道路状況の警告、車両制御のためのターン半径および制動モデルを更新する。
・ 差し迫ったワインディング/カーブ道路 ‐速度を変えずに水平方向に徐々に横方向に変化して(揺れて)いるか、または速度が低下している可能性がある
o 検出:車両の半径方向に投影された長さのわずかな変化、および/または車両の後方と前方との速度の差[範囲が分解されている場合]、または上記の検出モダリティに対してSNR依存の範囲分解が不十分な場合の方位角重心の変化。
o 実用性:横方向の変化は、道路の曲率が近づいていることを事前に警告し、自車の路面が変化する前に車両制御に対する修正アクションを可能にする。
・ 差し迫った渋滞‐減速/制動
o 検出:ライダー搭載車両の前の車両のコヒーレント減速パターン。
o 実用性:減速の必要性の事前警告、および/または好ましい経路の選択肢を探る経路計画の変更。
行動知覚:人間またはロボット運転手の意思確認。行動の知覚は、異常検出の問題である。したがって、例えば、1台の車両は、「フリップフロップ」していた場合、路面が証拠となる原因になることはなく、運転が直接の原因であることは明らかである。
・ 運転者の異常行動[飲酒運転または機器の故障]‐方向および速度(速度ベクトル)の微妙な横方向への変化(脱線)
o 検出:車両の半径方向に投影された長さのわずかな変化、および/または車両の後方と前方との速度の差[範囲が分解されている場合]、または上記の検出モダリティに対してSNR依存の範囲分解が不十分な場合の方位角重心の変化。
o 実用性:ロボットであれ人間であれ、異常な運転者は脅威的な運転者である。高度な警告は、回避的な自車の予防的な再計画を可能にする。
・ 「マクドナルドでの停止」 (自発的な脱線)‐方向および速度(方位速度ベクトル)の急速な横方向の変化(揺れ)。
o 検出:車両の半径方向に投影された長さのわずかな変化、および/または車両の後方と前方との速度の差[範囲が分解されている場合]、または上記の検出モダリティに対してSNR依存の範囲分解が不十分な場合の方位角重心の変化。
o 実用性:当該迂回者を後回しにすることを回避する。
上記検出モードの様々な混合を含む追加の行動モード検出は、以下のものを含む。
・ 合流/車線変更/通過-微妙なまたは急速な加速を伴う微妙なまたは急速な横方向の方向転換。
・ 緊急制動‐Z軸(半径方向の)減速
・ 左旋回開始-旋回車線の手前で半径方向に減速する。
・ 黄信号での保護(黄色で飛び出す)-横方向への減速
・ ブレーキの故障による惰性走行(丘)-一定のベクトルでの徐々の加速(減速なし)。
【0132】
本発明をその例示的な実施形態に関連して上述してきたが、なおも本発明の範囲にある様々な修正がそれに対して行われる場合がある。本発明に対するそのような修正は、本明細書の教示を精査することで認識することが可能である。