(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】無線通信システム及びユーザ装置
(51)【国際特許分類】
H04W 24/10 20090101AFI20221220BHJP
H04W 16/32 20090101ALI20221220BHJP
H04W 72/04 20090101ALI20221220BHJP
【FI】
H04W24/10
H04W16/32
H04W72/04 111
(21)【出願番号】P 2021142590
(22)【出願日】2021-09-01
(62)【分割の表示】P 2019511314の分割
【原出願日】2018-04-06
【審査請求日】2021-09-01
(31)【優先権主張番号】P 2017076632
(32)【優先日】2017-04-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100083806
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100169797
【氏名又は名称】橋本 浩幸
(72)【発明者】
【氏名】高橋 秀明
(72)【発明者】
【氏名】ハプサリ ウリ アンダルマワンティ
(72)【発明者】
【氏名】安部田 貞行
【審査官】桑江 晃
(56)【参考文献】
【文献】国際公開第2017/051902(WO,A1)
【文献】特表2017-509234(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04W 4/00 - 99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、
前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、
前記マスタノードは、
無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、
前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、
前記セカンダリノードは、
無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、
前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、
前記第1測定制御部は、前記測定の対象とするキャリア数の情報を前記第2測定制御部と共有する無線通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マスタノード及びセカンダリノードへのデュアルコネクティビティを実行する無線通信システム及びユーザ装置に関する。
【背景技術】
【0002】
3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G New Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
【0003】
具体的には、非特許文献1では、LTE方式の無線基地局(eNB)と、NR方式の無線基地局(gNB)とを用いたデュアルコネクティビティ(DC)において、eNB及びgNBが、それぞれ無線リソース制御レイヤ(RRCレイヤ)のエンティティ(RRCエンティティ)を有することが記載されている。
【0004】
LTE(eNB)のみのDCでは、マスタノード(MeNB)のRRCエンティティが、セカンダリノード(SeNB)向けを含むユーザ装置(UE)のRRCエンティティを全体的に制御していたが、LTE(eNB)とNR(gNB)とのDC(LTE-NR DC)では、セカンダリノードも、UEに対してRRCメッセージを直接送信することができる。また、UEも、セカンダリセルグループ(SCG)に関する近隣セルの受信品質の測定報告(Measurement Report)をセカンダリノードに直接送信することができる。
【先行技術文献】
【非特許文献】
【0005】
【文献】3GPP TR 38.804 V14.0.0 Section 5.2.2.2 Control plane archite cture for Dual Connectivity between LTE and NR, 3rd Generation Partnership P roject; Technical Specification Group Radio Access Network; Study on New Rad io Access Technology; Radio Interface Protocol Aspects (Release 14)、3GPP、2 017年3月
【発明の概要】
【0006】
上述したように、無線アクセス技術(RAT)が異なるLTE(eNB)とNR(gNB)とのDCでは、eNB及びgNBそれぞれが、独自に自装置のRRCエンティティを制御し得るため、異なるRATのRRCエンティティ間において、どのようにUEに測定報告を実行させるかが問題になる。
【0007】
例えば、マスタノードがeNBであり、セカンダリノードがgNBである場合、eNBが、異RAT(つまり、NR)のキャリアに対するイベント(例えば、3GPP TS36.331で規定されるEvent B1相当)を設定し、gNBが自RAT(つまり、NR)のキャリアに対するイベント(同Event A4相当)を設定するため、設定内容が競合する可能性がある。
【0008】
そこで、本発明は、このような状況に鑑みてなされたものであり、LTE(eNB)とNR(gNB)とのデュアルコネクティビティ(DC)の場合でも、適切な測定報告を実行できる無線通信システム及びユーザ装置の提供を目的とする。
【0009】
本発明の一態様は、無線リソース制御レイヤを介してユーザ装置(UE200)と無線通信を実行するマスタノード(eNB100A)と、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノード(gNB100B)とを含み、前記マスタノード及び
前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システム(無線通信システム10)であって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部(RRC制御部120A)と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部(測定制御部130A)とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部(RRC制御部120B)と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部(測定制御部130B)とを備え、前記第1測定制御部は、前記測定の対象とするキャリア数の情報を前記第2測定制御部と共有する。
【0010】
本発明の一態様は、無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置(UE200)であって、前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部(測定部240)を備え、前記測定部は、前記測定の対象とするキャリア数が前記ユーザ装置での上限数を超える場合、前記上限数を超えるキャリアにおける測定を無効とする。
【0011】
本発明の一態様は、無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置であって、前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部を備え、前記測定部は、前記マスタノード及び前記セカンダリノードのそれぞれに対して、前記測定の結果を同一のタイミングで送信する事象が発生した場合、前記マスタノード及び前記セカンダリノードの何れか一方に対して前記測定の結果を前記タイミングにおいて送信し、他方に対して前記測定の結果を前記タイミングよりも後のタイミングにおいて送信する。
【0012】
本発明の一態様は、無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、前記測定の設定内容を示す測定設定は、前記第1測定制御部及び前記第2測定制御部で共通である。
【0013】
本発明の一態様は、無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、前記第1RRC制御部は、前記マスタノード及び前記セカンダリノードの両方について、前記測定の設定内容を示す測定設定を決定し、前記第1測定制御部は
、前記測定設定を前記第2測定制御部に通知する。
【図面の簡単な説明】
【0014】
【
図1】
図1は、無線通信システム10の全体概略構成図である。
【
図2】
図2は、eNB100Aの機能ブロック構成図である。
【
図3】
図3は、gNB100Bの機能ブロック構成図である。
【
図4】
図4は、UE200の機能ブロック構成図である。
【
図5】
図5は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例 1)の説明図である。
【
図6】
図6は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)による measurement objectの優先処理の説明図(動作例1の変更例1)である。
【
図7】
図7は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)による measurement objectの優先処理の説明図(動作例1の変更例2)である。
【
図8】
図8は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)による measurement objectの優先処理の説明図(動作例1の変更例3)である。
【
図9】
図9は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例 2)の説明図である。
【
図10】
図10は、LTE-NR DCにおける測定報告(Measurement Report)動作(動 作例2の変更例1)の説明図である。
【
図11】
図11は、LTE-NR DCにおける測定報告(Measurement Report)動作(動 作例2の変更例2)の説明図である。
【
図12】
図12は、LTE-NR DCにおける測定報告(Measurement Report)動作(動 作例3)の説明図である。
【
図13】
図13は、eNB100A, gNB100B、及びUE200のハードウェア構成の一例を示 す図である。
【発明を実施するための形態】
【0015】
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
【0016】
(1)無線通信システムの全体概略構成
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。無線通信システム10は、無線基地局100A(以下、eNB100A)及び無線基地局100B(以下、gNB100B)を含む。さらに、無線通信システム10は、ユーザ装置200(以下、UE200)を含む。eNB100A及びgNB100Bは、RRCレイヤを介してUE200と無線通信を実行する。
【0017】
本実施形態では、eNB100Aは、LTE方式(E-UTRA方式)の無線基地局(eNB)であり、マスタノードを構成することができる。gNB100Bは、NR方式の無線基地局(gNB)であり、セカンダリノードを構成することができる。
【0018】
無線通信システム10は、LTE方式のeNB100Aと、NR方式のgNB100Bとを用いたデュアルコネクティビティ(以下、LTE-NR DC)をサポートする。DCでは、マスタノード及びセカンダリノードの両方が同時にUE200と接続する。つまり、UE200は、同時にeNB100A及びgNB100Bと無線リソース制御レイヤ(RRCレイヤ)のコネクションを設定し、ユーザデータの送受信を実行できる。
【0019】
また、
図1に示すように、LTE-NR DCを実現するための制御プレーンのアーキテクチャとしては、eNB100Aは、コアネットワーク(不図示)向けにS1-CまたはNG-Cインタフェースを備える。また、eNB100AとgNB100Bとは、Xx-Cインタフェースによって接続される。UE
200は、eNB100A及びgNB100Bと、Uuインタフェースを介してユーザデータを送受信する。
【0020】
(2)無線通信システムの機能ブロック構成
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A、gNB100B及びUE200の機能ブロック構成について説明する。
【0021】
(2.1)eNB100A及びgNB100B
図2は、eNB100Aの機能ブロック構成図であり、
図3は、gNB100Bの機能ブロック構成図である。
図2及び
図3に示すように、eNB100A及びgNB100Bは、同様の機能ブロックを備える。
【0022】
具体的には、eNB100Aは、無線通信部110A、RRC制御部120A及び測定制御部130Aを備える。また、gNB100Bは、無線通信部110B、RRC制御部120B及び測定制御部130Bを備える。以下、eNB100Aの各機能ブロックについて主に説明する。
【0023】
無線通信部110Aは、LTE方式に従った無線通信を実行する。具体的には、無線通信部110Aは、UE200とLTE方式に従った無線信号を送受信する。当該無線信号には、RRCレイヤのメッセージ及びユーザデータなどが多重される。
【0024】
RRC制御部120Aは、RRCレイヤにおける制御を実行する。本実施形態において、RRC制御部120Aは、第1RRC制御部を構成する。具体的には、RRC制御部120Aは、LTEに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、RRC制御部120Aは、UE200とのRRCコネクションの確立及び解放などを制御する。
【0025】
また、本実施形態では、RRC制御部120Aは、eNB100A及びgNB100Bの両方について、UE200による測定対象セルにおける測定の設定内容を示すMeasurement Configuration(測定設定)を決定できる。
【0026】
測定制御部130Aは、UE200による測定対象セルの受信品質の測定を制御する。本実施形態において、測定制御部130Aは、第1測定制御部を構成する。具体的には、測定制御部130Aは、UE200による測定対象セルとして、UE200のサービングセル及び近隣セルの受信品質の測定を制御する。
【0027】
より具体的には、測定制御部130Aは、Measurement Configuration(測定設定)の内容を決定する。Measurement Configurationは、measurement object(測定オブジェクト)、measurement ID(測定識別子)及びreport configuration(報告設定)を含む。measurement object、measurement ID及びreport configurationの具体的な内容は、3GPP TS36.331 5.5章に記載されたとおりである。例えば、measurement objectとしては、測定対象とするキャリア周波数の情報が含まれている。
【0028】
このように、Measurement Configurationは、UE200による測定対象セルにおける測定の設定内容を示す。本実施形態では、Measurement Configurationは、測定制御部130A及びgNB100Bの測定制御部130Bで共通とすることができる。
【0029】
或いは、Measurement Configurationのうち、measurement object及びmeasurement IDのみが、測定制御部130A及び測定制御部130Bで共通としてもよい。さらに、Measurement Configurationのうち、measurement objectのみが、測定制御部130A及び測定制御部130Bで共通としてもよい。
【0030】
また、測定制御部130Aは、RRC制御部120Aが、eNB100A及びgNB100Bの両方について、Mea
surement Configurationを決定した場合、決定したMeasurement Configurationを測定制御部130Bに通知する。
【0031】
さらに、測定制御部130Aは、Measurement Configurationに従ってUE200による測定の対象とするキャリア数の情報を測定制御部130Bと共有することができる。
【0032】
具体的には、測定制御部130Aは、測定制御部130Aが決定したMeasurement Configurationに含まれるmeasurement objectに従って、測定の対象となるキャリア数の情報を測定制御部130Bに提供する。また、測定制御部130Aは、測定制御部130Bが決定した測定の対象となるキャリア数の情報を測定制御部130Bから取得する。
【0033】
図3に示すgNB100Bの無線通信部110B、RRC制御部120B及び測定制御部130Bは、対応しているRATがNRであることを除き、上述したeNB100Aの無線通信部110A、RRC制御部120A及び測定制御部130Aと概ね同様の機能を有する。
【0034】
本実施形態において、RRC制御部120Bは、RRCレイヤにおける制御を実行する第2RRC制御部を構成し、測定制御部130Bは、UE200による測定対象セルの受信品質の測定を制御する第2測定制御部を構成する。
【0035】
(2.2)UE200
図4は、UE200の機能ブロック構成図である。
図4に示すように、UE200は、無線通信部210、LTE-RRC制御部220、NR-RRC制御部230及び測定部240を備える。
【0036】
無線通信部210は、LTE方式及びNR方式に従った無線通信を実行する。具体的には、無線通信部210は、eNB100AとLTE方式に従った無線信号を送受信する。また、無線通信部210は、gNB100BとNR方式に従った無線信号を送受信する。当該無線信号には、RRCレイヤのメッセージ及びユーザデータなどが多重される。
【0037】
LTE-RRC制御部220は、LTE向け(eNB100A)向けのRRCレイヤにおける制御を実行する。具体的には、LTE-RRC制御部220は、LTEに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、LTE-RRC制御部220は、eNB100AとのRRCコネクションの確立及び解放などを実行する。
【0038】
NR-RRC制御部230は、NR向け(gNB100B)向けのRRCレイヤにおける制御を実行する。具体的には、NR-RRC制御部230は、NRに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、NR-RRC制御部230は、gNB100BとのRRCコネクションの確立及び解放などを実行する。
【0039】
測定部240は、eNB100A及びgNB100Bから受信したMeasurement Configurationに基づいて、測定対象セルの受信品質の測定を実行する。具体的には、測定部240は、eNB100A及びgNB100BそれぞれからRRCレイヤを介してMeasurement Configurationを受信する。Measurement Configurationは、RRCメッセージの一種であるRRC Connection Reconfigurationなどに含まれる。
【0040】
特に、測定部240は、測定の対象とするキャリア数がUE200での上限数を超える場合、上限数を超えるキャリアにおける測定を無効にできる。なお、上限数は、UE200が同時に実行可能な測定数(測定対象のキャリア数)によって定まる。
【0041】
この場合、測定部240は、測定対象セルまたはキャリアと関連付けられた優先度に基づいて当該測定を無効とするキャリアを決定できる。
【0042】
さらに、測定部240は、eNB100A及びgNB100BのそれぞれからMeasurement Configurationによる測定が指示されており、eNB100A及びgNB100Bのそれぞれに対して、測定の結果を同一のタイミングで送信する事象が発生した場合、eNB100A及びgNB100Bの何れか一方に対して測定の結果を当該タイミングにおいて送信できる。この場合、測定部240は、eNB100A及びgNB100Bの他方に対して測定の結果を当該タイミングよりも後のタイミングにおいて送信する。
【0043】
さらに、このように、測定の結果の報告タイミングが競合する場合、測定部240は、測定対象セルまたは測定と関連付けられた優先度に基づいて、先のタイミングにおいて送信する測定の結果を決定してもよい。
【0044】
(3)無線通信システムの動作
次に、無線通信システム10の動作について説明する。具体的には、LTE方式(E-UTRA方式)のeNB100Aと、NR方式のgNB100Bとを用いたデュアルコネクティビティ(LTE-NR DC)におけるMeasurement Configuration(測定設定)に関する動作について説明する。
【0045】
具体的には、LTE-NR DCにおけるMeasurement Configurationに基づく測定報告(Measurement Report)の動作例1~動作例3について説明する。
【0046】
(3.1)動作例1
本動作例では、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)とが、独立して動作する。
【0047】
(3.1.1)基本動作例
図5は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例1)の説明図である。
【0048】
図5に示すように、ネットワーク側、具体的には、eNB100A(マスタノード)及びgNB100B(セカンダリノード)、さらにUE200は、LTE RRC及びNR RRCを完全に独立してMeasurement Configuration(measurement object/measurement ID/report configuration)を設定する。
【0049】
UE200は、eNB100A及びgNB100Bのそれぞれから受信したMeasurement Configurationに基づいて、測定対象セルの測定をそれぞれ実行する。また、UE200は、測定対象セルの測定結果を含むMeasurement ReportをeNB100A及びgNB100Bにそれぞれ送信する。
【0050】
つまり、本動作例では、同一のキャリア周波数に対して、LTE RRC及びNR RRCの両方が同時にmeasurement object及びmeasurement IDを設定し得る。但し、測定の対象とするキャリア数の情報は、eNB100AとgNB100Bとの間で共有される。
【0051】
具体的には、上述したように、eNB100A(測定制御部130A)及びgNB100B(測定制御部130B)は、当該キャリア数の情報を交換することによって、UE200が同時に実行可能な測定数(上限数)を超えないように調整する。つまり、当該上限数は、LTE RRC及びNR RRCによってそれぞれ測定対象として設定されるキャリア数の合計値となるためである。
【0052】
より具体的には、eNB100Aは、LTE内での上限数に基づいてキャリア数を決定し、gNB100Bは、NR内での上限数に基づいてキャリア数を決定する。さらに、eNB100A及びgNB100Bは、それぞれ決定したキャリア数の情報を交換し、決定したキャリア数の合計値が、UE200が同時に実行可能な測定数を超えないように調整する。
【0053】
(3.1.2)変更例1
動作例1では、測定の対象とするキャリア数の情報が、eNB100AとgNB100Bとの間で共有されるが、このような情報の共有がなされない場合には、上述した上限数を超える恐れがある。そこで、UE200は、LTE RRC及びNR RRCによってそれぞれ測定対象として設定されたキャリア数の合計が上限値を超える場合、セカンダリノード(本実施形態では、gNB100B)によって設定されたmeasurement object(キャリア周波数)を任意に幾つか無効にすることによって、上限値以下となるようにしてもよい。
【0054】
或いは、eNB100AまたはgNB100Bが、マスタセルグループ(MCG)またはセカンダリセルグループ(SCG)に関する測定の優先度を低く設定し、UE200は、優先度の低いセルグループに関するmeasurement objectを無効とすることによって、当該上限値以下となるようにしてもよい。
【0055】
さらに、eNB100AまたはgNB100Bが、それぞれのmeasurement IDに優先度を付与し、UE200は、優先度の低いmeasurement IDと対応するmeasurement objectを無効とすることによって、当該上限値以下となるようにしてもよい。
【0056】
以下、
図6を参照して、さらに具体的に説明する。
図6は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例1)である。
【0057】
図6では、キャリア周波数(具体的には、CCの周波数)として、x, y(LTE/E-UTRA)及びa, b, c(NR)が割り当てられている。また、図中のA3, A4, A6, B1は、3GPP TS36.331で規定されるイベントを意味する。具体的には、以下のとおり規定されている。
【0058】
・A3: Neighbour becomes offset better than PCell/ PSCell
・A4: Neighbour becomes better than absolute threshold
・A6: Neighbour becomes offset better than SCell
・B1: Inter RAT neighbour becomes better than threshold
図6に示すように、eNB100Aが設定するMCG内のセル(測定対象セル)、具体的には、近隣セル(Neighbour Cell)に対して、優先度1~4(優先度1が高優先度)の測定が設定されている。同様に、gNB100Bが設定するSCG内のセル(測定対象セル)に対しても、優先度1~4の測定が設定されている。
【0059】
ここで、UE200(
図6では不図示)が同時に実行可能な測定数(具体的には、測定対象のキャリア数)である上限数が7である場合、UE200は、全ての測定(合計8)を実行できず、何れか一つは測定を無効とする必要がある。
【0060】
例えば、SCGの優先度がMCGの優先度よりも低く設定されている場合、UE200は、gNB100Bが設定した優先度4の測定(Event A6を用いたNR Carrier frequency b)を無効とする。
【0061】
逆に、MCGの優先度がSCGの優先度よりも低く設定されている場合、UE200は、eNB100Aが設定した優先度4の測定(Event B1を用いたNR Carrier frequency c)を無効とする。
【0062】
(3.1.3)変更例2
図7は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例2)である。以下、変更例1と異なる部分について主に説明する。
【0063】
本変更例では、セルではなく、キャリアに対して優先度が設定される。なお、MCG及びSCG内のセルの構成及びEventの設定状態は、変更例1と同様である。
【0064】
ここで、UE200(
図7では不図示)が同時に実行可能な測定数(具体的には、測定対象のキャリア数)である上限数が4である場合、UE200は、全ての測定(合計5)を実行できず、何れか一つは測定を無効とする必要がある。
【0065】
例えば、SCGの優先度がMCGの優先度よりも低く設定されている場合、UE200は、gNB100Bが設定した優先度3の測定(Event A4を用いたNR Carrier frequency c)を無効とする。
【0066】
逆に、MCGの優先度がSCGの優先度よりも低く設定されている場合、UE200は、eNB100Aが設定した優先度2の測定(Event A3, A6を用いたE-UTRA Carrier frequency y)を無効とする。
【0067】
(3.1.4)変更例3
図8は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例3)である。以下、変更例1と異なる部分について主に説明する。
【0068】
本動作例のように、eNB100AのLTE RRCと、gNB100BのNR RRCとが独立して動作する場合、UE200(
図8において不図示)は、それぞれのRRCエンティティに対応したMeasurementReportを同時に、つまり、同一タイミングで送信する事象が発生し得る。
【0069】
この場合、UE200は、eNB100A(LTE RRC)及びgNB100B(NR RRC)のうち、何れか一方に対してMeasurement Report(測定の結果)を当該タイミングにおいて送信し、他方に対してMeasurement Reportを当該タイミングよりも後のタイミングにおいて送信してもよい。
【0070】
つまり、UE200は、何れか一方のMeasurement Reportの送信を次の送信タイミングまで延期してもよい。勿論、可能な場合には、UE200は、両方のMeasurement Reportを同一タイミングで送信してもよい。さらに、LTE RRC(つまり、MCG)及びNR RRC(つまり、SCG)の何れを優先するかについて、eNB100AまたはgNB100BがUE200に指示するようにしてもよい。
【0071】
或いは、
図8に示すように、eNB100AまたはgNB100Bが、Eventを用いた各測定に対する優先度(1~8)を設定し、UE200に指示するようにしてもよい。
【0072】
UE200は、指定された優先度に基づいて、優先度が高い測定の結果を含むMeasurement Reportを先のタイミングにおいて送信する。また、UE200は、Measurement Reportに複数の測定の結果が含まれる場合、単純に測定の結果の数を多く含むMeasurement Reportを優先してもよいし、MCG内の測定に付与された優先度の平均値と、SCG内の測定に付与された優先度の平均値とを比較し、当該平均値が低い(つまり、相対的に高優先度である)Measurement Reportを先のタイミングにおいて送信してもよい。
【0073】
(3.2)動作例2
本動作例では、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)とにおいて、共通のMeasurement Configurationが用いられる。
【0074】
(3.2.1)基本動作例
図9は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2)の説明
図である。
【0075】
図9に示すように、eNB100A(マスタノード)及びgNB100B(セカンダリノード)は、共通のMeasurement Configurationを用いる。上述したように、Measurement Configurationは、measurement object、measurement ID及びreport configurationを含む。
【0076】
Measurement Configurationの内容は、eNB100A及びgNB100Bの何れからも設定できる。例えば、eNB100A(マスタノード)からMeasurement Configurationを設定する場合、eNB100Aは、LTE RRCのASN.1でエンコードされたRRC PDU(図中のLTE RRC PDU)をUE200に送信することによって、Measurement Configurationの内容をUE200に通知する。つまり、LTERRC PDUには、Measurement Configurationの内容が含まれる。
【0077】
一方、gNB100B(セカンダリノード)からMeasurement Configurationを設定する場合、gNB100Bは、NR RRCのASN.1でエンコードされたRRC PDU(図中のNR RRC PDU)をUE200に送信することによって、Measurement Configurationの内容をUE200に通知する。つまり、NR
RRC PDUには、Measurement Configurationの内容が含まれる。
【0078】
また、Measurement Reportの送信先(eNB100AまたはgNB100B)については、report configurationにおいて指定するようにすればよい。なお、Measurement Configurationの全体的な内容については、eNB100A及びgNB100Bとが連携して設定する。
【0079】
(3.2.2)変更例1
図10は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例1)の説明図である。上述した動作例2では、measurement object、measurement ID及びreport configurationが共通であったが、本変更例では、measurement object及びmeasurement IDのみ(図中の下線部)が共通である。report configurationについては、LTE RRCとNR RRCとで異なる場合があり得るためである。
【0080】
Measurement Configurationの内容は、eNB100A及びgNB100Bがそれぞれ独立して設定する。また、Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
【0081】
例えば、report configurationがLTE RRCのASN.1でエンコードされた情報要素(IE)である場合、Measurement Reportは、eNB100Aに送信される。一方、report configurationがNR RRCのASN.1でエンコードされた情報要素(IE)である場合、Measurement Reportは、gNB100Bに送信される。
【0082】
measurement object及びmeasurement IDについては、eNB100A及びgNB100Bとが連携して設定する。
【0083】
(3.2.3)変更例2
図11は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例2)の説明図である。上述した動作例2では、measurement object、measurement ID及びreport configurationが共通であったが、本変更例では、measurement objectのみ(図中の下線部)が共通である。
【0084】
変更例1と同様に、Measurement Configurationの内容は、eNB100A及びgNB100Bがそれぞれ独立して設定する。また、Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
【0085】
また、measurement objectについては、eNB100A及びgNB100Bとが連携して設定する。さらに、測定の対象となるキャリア数についてもeNB100A及びgNB100Bとが連携して設定する。
【0086】
(3.3)動作例3
図12は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例3)の説明図である。
【0087】
本動作例では、eNB100A(マスタノード)のRRCエンティティ、本実施形態では、LTE RRCが、NRに関するMeasurement Configuration(measurement object/measurement ID/report configuration)も設定する。
【0088】
Measurement Configurationの全体的な内容については、eNB100Aが、gNB100Bと連携して設定する。また、eNB100AがUE200に通知したMeasurement Configurationは、Xx-Cインタフェースを介してeNB100AからgNB100Bに通知される。例えば、TS36.331によって規定されるSCG-ConfigInfoメッセージを利用できる。
【0089】
Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
【0090】
(4)作用・効果
上述した実施形態によれば、以下の作用効果が得られる。具体的には、上述した動作例1によれば、測定の対象とするキャリア数の情報は、eNB100AとgNB100Bとの間で共有される。このため、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)との独立したMeasurement Configurationの設定を許容しつつ、UE200が同時に実行可能な測定数(測定対象のキャリア数)、つまり、上限数を超えないようにすることができる。
【0091】
これにより、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
【0092】
動作例1の変更例1によれば、UE200は、測定の対象とするキャリア数がUE200での上限数を超える場合、当該上限数を超えるキャリアにおける測定を無効とできる。このため、測定の対象とするキャリア数の情報が、eNB100AとgNB100Bとの間で共有されない場合でも、上限数を超えない範囲で、測定を実行することができる。
【0093】
さらに、無効とする測定(具体的には、測定対象セルまたはキャリアと関連付けられた測定)には、優先度を付与することが可能なため、重要な測定を高確率で実行し得る。
【0094】
動作例1の変更例2によれば、UE200は、eNB100A及びgNB100Bのそれぞれに対して、Measurement Reportを同一のタイミングで送信する事象が発生した場合、eNB100A及びgNB100Bの何れか一方に対してMeasurement Reportを当該タイミングにおいて送信し、他方に対してMeasurement Reportを当該タイミングよりも後のタイミングにおいて送信できる。このため、eNB100A及びgNB100BへのMeasurement Reportの報告タイミングが競合する場合でも、確実にMeasurement Reportを送信できる。
【0095】
さらに、何れのMeasurement Report(具体的には、測定対象セルまたは測定と関連付けられたMeasurement Report)先に送信するかには、優先度を付与することが可能なため、重要なMeasurement Reportを高確率で送信し得る。
【0096】
動作例2によれば、Measurement Configurationは、eNB100A(測定制御部130A)及びgN
B100B(測定制御部130B)で共通である。このため、LTEとNRとにおいて統一されたMeasurement Configurationを適用することができる。これにより、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
【0097】
また、動作例2の変更例1及び変更例2によれば、Measurement Configurationに含まれる一部(measurement object, measurement ID)のみを共通とすることができる。このため、LTE RRCとNR RRCとの実装などを考慮しつつ、適切なMeasurement Configurationの共通化を図り得る。
【0098】
動作例3によれば、eNB100A(RRC制御部120A)は、eNB100A及びgNB100Bの両方について、Measurement Configurationを決定し、eNB100A(測定制御部130A)は、決定したMeasurement ConfigurationをgNB100B(測定制御部130B)に通知する。このため、eNB100A(マスタノード)の主導によるMeasurement Configurationの設定を許容しつつ、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
【0099】
このように、本実施形態によれば、LTE-NR DCの場合でも、eNB100A及びgNB100BがMeasurement Configurationの設定に関して連携することによって、UE200に適切なMeasurement Reportを実行させることができる。これにより、LTE-NR DCが適用される場合でも、無線通信システム10全体としての通信品質の維持向上と、無線リソースの効率的な利用を図り得る。
【0100】
(5)その他の実施形態
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
【0101】
例えば、上述した実施形態では、eNB100AがLTE方式の無線基地局(eNB)であり、マスタノードを構成し、gNB100BがNR方式の無線基地局(gNB)であり、セカンダリノードを構成していたが、このような構成は逆でもよい。つまり、NR方式の無線基地局(gNB)がマスタノードを構成し、LTE方式の無線基地局(eNB)がセカンダリノードを構成してもよい。
【0102】
また、上述した実施形態の説明に用いたブロック構成図(
図2~4)は、機能ブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/またはソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/または論理的に結合した1つの装置により実現されてもよいし、物理的及び/または論理的に分離した2つ以上の装置を直接的及び/または間接的に(例えば、有線及び/または無線)で接続し、これら複数の装置により実現されてもよい。
【0103】
さらに、上述したeNB100A, gNB100B及びUE200(当該装置)は、本発明の処理を行うコンピュータとして機能してもよい。
図13は、当該装置のハードウェア構成の一例を示す図である。
図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
【0104】
当該装置の各機能ブロック(
図2~4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
【0105】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レ
ジスタなどを含む中央処理装置(CPU)で構成されてもよい。
【0106】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、上述した実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0107】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及び/またはストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
【0108】
通信装置1004は、有線及び/または無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
【0109】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0110】
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
【0111】
また、情報の通知は、上述した実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC Connection Setupメッセージ、RRC Connection Reconfigurationメッセージなどであってもよい。
【0112】
さらに、入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
【0113】
上述した実施形態におけるシーケンス及びフローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。
【0114】
また、上述した実施形態において、eNB100A(gNB100B、以下同)によって行われるとし
た特定動作は、他のネットワークノード(装置)によって行われることもある。また、複数の他のネットワークノードの組み合わせによってeNB100Aの機能が提供されても構わない。
【0115】
なお、本明細書で説明した用語及び/または本明細書の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、該当する記載がある場合、チャネル及び/またはシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、「システム」及び「ネットワーク」という用語は、互換的に使用されてもよい。
【0116】
さらに、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
【0117】
eNB100A(基地局)は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。
【0118】
「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び/または基地局サブシステムのカバレッジエリアの一部または全体を指す。
【0119】
さらに、「基地局」「eNB」、「セル」、及び「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、gNodeB(gNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
【0120】
UE200は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
【0121】
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0122】
また、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形の用語は、「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
【0123】
本明細書で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
【0124】
本明細書の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていな
ければ、複数のものを含むものとする。
【0125】
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【産業上の利用可能性】
【0126】
本発明によれば、LTE(eNB)とNR(gNB)とのデュアルコネクティビティ(DC)の場合でも、適切な測定報告を実行できる。
【符号の説明】
【0127】
10 無線通信システム
100A eNB
100B gNB
110A, 110B 無線通信部
120A, 120B RRC制御部
130A, 130B測定制御部
200 UE
210 無線通信部
220 LTE-RRC制御部
230 NR-RRC制御部
240 測定部