(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】マルチレベル自己選択メモリデバイス
(51)【国際特許分類】
G11C 11/56 20060101AFI20221220BHJP
G11C 13/00 20060101ALI20221220BHJP
【FI】
G11C11/56 450
G11C13/00 270G
G11C13/00 400F
G11C13/00 400B
(21)【出願番号】P 2021179214
(22)【出願日】2021-11-02
(62)【分割の表示】P 2020531750の分割
【原出願日】2018-11-30
【審査請求日】2021-11-02
(32)【優先日】2017-12-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】595168543
【氏名又は名称】マイクロン テクノロジー,インク.
(74)【代理人】
【識別番号】100121083
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100074099
【氏名又は名称】大菅 義之
(72)【発明者】
【氏名】レダエッリ,アンドレア.
(72)【発明者】
【氏名】トルトレッリ,インノチェンツォ.
(72)【発明者】
【氏名】ピロヴァーノ,アゴスティーノ.
(72)【発明者】
【氏名】ペッリッツェル,ファビオ.
【審査官】後藤 彰
(56)【参考文献】
【文献】特開2005-012186(JP,A)
【文献】特表2009-534835(JP,A)
【文献】特開平11-265582(JP,A)
【文献】特表2002-510119(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11C 11/56
G11C 13/00
(57)【特許請求の範囲】
【請求項1】
複数の電圧と単一の極性とを有する読み出しパルスを識別すること
であって、前記読み出しパルスは、複数の継続期間を含み、前記複数の継続期間のうちの各継続期間は、前記複数の電圧のうちの1つの電圧と関連付けられる、前記識別することと、
前記読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに前記読み出しパルスを印加することと、
前記読み出しパルスを印加することに少なくとも部分的に基づいて、前記自己選択メモリセルの閾値電圧を検出することと、
前記自己選択メモリセルの前記閾値電圧を検出することに少なくとも部分的に基づいて、前記自己選択メモリセルの論理状態であって2以上のビットのデータを表す該論理状態を判定することであって、前記閾値電圧は、前記自己選択メモリセルの3つ以上の閾値電圧分布のうちの1つに対応し、前記読み出しパルスの前記複数の電圧のうちの1つの電圧は、前記3つ以上の閾値電圧分布のうちの第1の閾値電圧分布の最も高い電圧と、前記3つ以上の閾値電圧分布のうちの第2の閾値電圧分布の最も低い電圧との間である、前記判定することと
を含む方法。
【請求項2】
前記読み出しパルスと同じ極性を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすることを更に含む、請求項1に記載の方法。
【請求項3】
前記読み出しパルスとは異なる極性を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすることを更に含む、請求項1に記載の方法。
【請求項4】
前記読み出しパルスは、所定の電圧範囲内で時間に対する電圧の一定速度の増加を有する、請求項1に記載の方法。
【請求項5】
前記3つ以上の閾値電圧分布はそれぞれの電圧範囲に対応し、前記第1の閾値電圧分布と前記第2の閾値電圧分布とは、前記それぞれの電圧範囲に関して互いに連続している、請求項1に記載の方法。
【請求項6】
前記自己選択メモリセルの前記閾値電圧に少なくとも部分的に基づくパルス形状を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすることを更に含む、請求項1に記載の方法。
【請求項7】
第1のプログラミングパルスと第2のプログラミングパルスとの組み合わせを用いて前記自己選択メモリをプログラムすることであって、前記第1のプログラミングパルスは前記第2のプログラミングパルスとは異なる電圧を有する、前記プログラムすることを更に含む、請求項1に記載の方法。
【請求項8】
前記第1のプログラミングパルスと前記第2のプログラミングパルスとの少なくともどちらか一方は、階段上昇パルス形状若しくは階段降下パルス形状を含む、請求項
7に記載の方法。
【請求項9】
前記第1のプログラミングパルスと前記第2のプログラミングパルスとの少なくともどちらか一方は、上向き三角パルス形状若しくは下向き三角パルス形状を含む、請求項
7に記載の方法。
【請求項10】
自己選択メモリセルを含むメモリアレイと、
前記メモリアレイと結合されたコントローラであって、
複数の電圧と単一の極性とを有する読み出しパルスを識別すること
であって、前記読み出しパルスは、複数の継続期間を含み、前記複数の継続期間のうちの各継続期間は、前記複数の電圧のうちの1つの電圧と関連付けられる、前記識別することと、
前記読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに前記読み出しパルスを印加することであって、前記読み出しパルスの前記複数の電圧のうちの1つの電圧は、3つ以上の閾値電圧分布のうちの第1の閾値電圧分布の最も高い電圧と、前記3つ以上の閾値電圧分布のうちの第2の閾値電圧分布の最も低い電圧との間である、前記印加することと、
前記読み出しパルスを印加することに少なくとも部分的に基づいて、前記自己選択メモリセルの閾値電圧を検出することと、
前記自己選択メモリセルの前記閾値電圧を検出することに少なくとも部分的に基づいて、前記自己選択メモリセルの論理状態であって2以上のビットのデータを表す該論理状態を判定することであって、前記閾値電圧は、前記3つ以上の閾値電圧分布のうちの1つに対応する、前記判定することと
を動作可能な前記コントローラと
を含む、メモリデバイス。
【請求項11】
前記コントローラは、
前記読み出しパルスと同じ極性を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすること
を更に動作可能である、請求項
10に記載のメモリデバイス。
【請求項12】
前記コントローラは、
前記読み出しパルスとは異なる極性を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすること
を更に動作可能である、請求項
10に記載のメモリデバイス。
【請求項13】
前記読み出しパルスは、所定の電圧範囲内で時間に対する電圧の一定速度の増加を有する、請求項
10に記載のメモリデバイス。
【請求項14】
前記3つ以上の閾値電圧分布はそれぞれの電圧範囲に対応し、前記第1の閾値電圧分布と前記第2の閾値電圧分布とは、前記それぞれの電圧範囲に関して互いに連続している、請求項
10に記載のメモリデバイス。
【請求項15】
前記コントローラは、
前記自己選択メモリセルの前記閾値電圧に少なくとも部分的に基づくパルス形状を有するプログラミングパルスを用いて前記自己選択メモリをプログラムすること
を更に動作可能である、請求項
10に記載のメモリデバイス。
【請求項16】
前記コントローラは、
第1のプログラミングパルスと第2のプログラミングパルスとの組み合わせを用いて前記自己選択メモリをプログラムすることであって、前記第1のプログラミングパルスは前記第2のプログラミングパルスとは異なる電圧を有する、前記プログラムすること
を更に動作可能である、請求項
10に記載のメモリデバイス。
【請求項17】
前記メモリアレイは、クロスポイントメモリアレイを含む、請求項
10に記載のメモリデバイス。
【請求項18】
複数の電圧と単一の極性とを有する読み出しパルスを識別する
手段であって、前記読み出しパルスは、複数の継続期間を含み、前記複数の継続期間のうちの各継続期間は、前記複数の電圧のそれぞれの電圧と関連付けられる、前記識別する
手段と、
前記読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに前記読み出しパルスを印加する
手段と、
前記読み出しパルスを印加することに少なくとも部分的に基づいて、前記自己選択メモリセルの閾値電圧を検出する
手段と、
前記自己選択メモリセルの前記閾値電圧を検出することに少なくとも部分的に基づいて、前記自己選択メモリセルの論理状態であって2以上のビットのデータを表す該論理状態を判定する
手段であって、前記閾値電圧は、前記自己選択メモリセルの3つ以上の閾値電圧分布のうちの1つに対応し、前記読み出しパルスの前記複数の電圧のうちの1つの電圧は、前記3つ以上の閾値電圧分布のうちの第1の閾値電圧分布の最も高い電圧と、前記3つ以上の閾値電圧分布のうちの第2の閾値電圧分布の最も低い電圧との間である、前記判定する
手段と
を含む
装置。
【発明の詳細な説明】
【技術分野】
【0001】
[クロスリファレンス]
特許に対する本出願は、2017年12月14日に出願の“Multi-Level Self-Selecting Memory Device”という名称のRedaelli等による米国特許出願番号15/842,496の優先権を主張する2018年11月30日に出願の“Multi-Level Self-Selecting Memory Device”という名称のRedaelli等によるPCT出願番号PCT/US2018/063309の優先権を主張し、該出願の各々は本願の譲受人に与えられ、該出願の各々は、参照によりその全体が本明細書に明白に組み込まれる。
【0002】
以下は、一般的に、メモリアレイを動作することに関し、より具体的には、マルチレベル自己選択メモリデバイスに関する。
【背景技術】
【0003】
メモリデバイスは、コンピュータ、無線通信デバイス、カメラ、及びデジタル表示装置等の様々な電子デバイス内に情報を蓄積するために広く使用される。情報は、メモリデバイスの異なる状態をプログラミングすることによって蓄積される。例えば、バイナリデバイスは、論理“1”又は論理“0”によりしばしば示される2つの状態を有する。他のシステムでは、2つよりも多くの状態が蓄積され得る。蓄積された情報にアクセスするために、電子デバイスのコンポーネントは、メモリデバイス内の蓄積状態を読み出し得、又はセンシングし得る。情報を蓄積するために、電子デバイスのコンポーネントは、メモリデバイス内に状態を書き込み得、又はプログラミングし得る。
【0004】
磁気ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ダイナミックRAM(DRAM)、同期型ダイナミックRAM(SDRAM)、強誘電体RAM(FeRAM)、磁気RAM(MRAM)、抵抗変化RAM(RRAM)、フラッシュメモリ、及び相変化メモリ(PCM)等を含む様々な種類のメモリデバイスが存在する。メモリデバイスは揮発性又は不揮発性であり得る。不揮発性メモリは、外部電源が存在しなくても長時間、それらの蓄積された論理状態を維持し得る。揮発性メモリデバイスは、外部電源により定期的にリフレッシュされない限り、それらの蓄積状態を時間と共に喪失し得る。
【0005】
メモリシステムの改善は、メトリックの中でもとりわけ、メモリセル密度の増加、読み出し/書き込み速度の増加、信頼性の増加、データ保持の増加、電力消費の削減、又は製造コストの削減を一般的に含み得る。ビット単位のコストを削減するために物理的なメモリセル密度を増加させることなく論理的なメモリセル密度を増加させるために、メモリセル内に1ビットよりも多くの情報を蓄積することが望まれ得る。
【図面の簡単な説明】
【0006】
【
図1】本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするメモリセルの3次元アレイを有するメモリデバイスの一例を説明する。
【
図2】本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする3次元メモリアレイの一例を説明する。
【
図3】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする閾値電圧分布の例を説明する。
【
図4】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする電気パルスの実施形態を説明する。
【
図5】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするカルコゲナイド合金の成分の空間分布の例を説明する。
【
図6】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする閾値電圧対プログラミング電流(V
TH-I
PROG)の例を説明する。
【
図7】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするデバイスのブロック図を示す。
【
図8】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするデバイスのブロック図を示す。
【
図9】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするメモリアレイを含むシステムのブロック図を示す。
【
図10】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスのための方法を説明する。
【
図11】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスのための方法を説明する。
【
図12】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスのための方法を説明する。
【
図13】本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスのための方法を説明する。
【発明を実施するための形態】
【0007】
カルコゲナイド合金を含む自己選択メモリセルは、プログラミングパルスの様々な形状を使用することによって1ビット以上のデータを蓄積するようにプログラミングされ得る。プログラミングパルスの形状は、正又は負の極性と異なる振幅とを有し得る。プログラミングパルスの全体的な形状は、正又は負の極性で電圧の固定レベル又は電流の固定レベルが維持される1つ以上の継続期間を修正すると共に、プログラミングパルスの極性及び振幅を変更することによって変えられ得る。幾つかの場合、プログラミングパルスの形状は、電圧の該レベル又は電流の該レベルが変化している部分(例えば、ランプ電圧、ランプ電流)を含み得る。
【0008】
プログラミングパルスは、幾つかの場合、カルコゲナイド合金の局所的な組成に変化を生じさせ得る。こうした変化は、プログラミングパルスにより確立された電界に基づいたカルコゲナイド合金の成分(元素、要素(part)、又はサブコンポーネントとも称され得る)のマイグレーションをもたらし得る。カルコゲナイド合金に流れる電流は該合金を加熱し得る。幾つかの場合、カルコゲナイド合金の加熱は、成分のマイグレーションを容易にし得る。プログラミングパルスの極性が反転された場合、カルコゲナイド合金に渡る電界の向きは反転され得る。結果として、元素のマイグレーションの向きもまた、幾つかの場合、カルコゲナイド合金の局所的な組成に更なる変化を生成するように反転され得る。幾つかの例では、プログラミングパルスの振幅が変化した場合、電界の強度は変化し得る。幾つかの場合、電界の強度のこうした変化は、カルコゲナイド合金の加熱を修正するために電流の量が変更され得ながら、電界の下での元素のマイグレーションの正味の流動を修正し得る。
【0009】
結果として、プログラミングパルスを印加すると、合金内の成分の不均一な分布が発現し得、合金の組成に局所的な変化をもたらす。自己選択メモリセルに読み出しパルスが印加された場合、自己選択メモリセルは、該合金内の組成の濃度によって(例えば、局所的な濃度に基づいて)設定されていてもよい特定の閾値電圧(VTH)を提示し得る。したがって、プログラミングパルスの適切な形状を判定及び印加することによって、マルチレベルセル動作を可能にする1ビットよりも多くのデータを蓄積するために、自己選択メモリセルの複数の閾値電圧(例えば、3つ以上のVTHレベル)が設定され得る。幾つかの場合、自己選択メモリセルは、1ビットのデータを蓄積するために2つのVTHレベルを含み得る。
【0010】
幾つかの実施形態では、自己選択メモリセルが1ビットよりも多くのデータを蓄積することを可能にするように、所与のカルコゲナイド合金に対して異なる閾値電圧レベルを確立するためにプログラミングパルスの異なる形状が使用され得る。プログラミングパルスの形状は、セル内で使用されるカルコゲナイド合金に基づいて構成され得る。例えば、比較的単純な形状を有するプログラミングパルスに応答して該合金が合金の組成を局所的に修正するのにより適する異なるカルコゲナイド合金が自己選択メモリセルにおいて使用され得る。自己選択メモリデバイス又はマルチレベルデバイスでの使用のための具体的なカルコゲナイド合金の選択における他の検討要素は、製造プロセス中の合金の熱的安定性、製造プロセス中の合金の機械的安定性、自己選択メモリデバイスの電気的特性(例えば、サイクル性能、経時的なVTHの安定性、データ保持能力、選択解除バイアス下でのリーク電流レベル)、又はそれらの組み合わせを含み得る。
【0011】
上で紹介された開示の機構は、クロスポイントアーキテクチャを有するメモリアレイの文脈で以下で更に説明される。幾つかの実施形態においてマルチレベル自己選択メモリデバイスに関連するメモリアレイを動作するための具体例がその後説明される。開示のこれら又はその他の機構は、マルチレベル自己選択メモリデバイスに関連する装置図、システム図、及びフローチャートによって更に説明され、それらを参照しながら更に説明される。
【0012】
図1は、本開示の実施形態に従った例示的なメモリデバイス100を説明する。メモリデバイス100は、電子メモリ装置とも称され得る。
図1は、メモリデバイス100の様々なコンポーネント及び機構の説明される表現である。そのようなものだとして、メモリデバイス100のコンポーネント及び機構は、機能的な相互関係を説明するために示され、メモリデバイス100内のそれらの実際の物理的位置を示さないと分かるべきである。
図1の説明される例では、メモリデバイス100は、3次元(3D)メモリアレイ102を含む。3Dメモリアレイ102は、異なる状態を蓄積するようにプログラム可能であり得るメモリセル105を含む。幾つかの実施形態では、各メモリセル105は、論理0及び論理1として示される2つの状態を蓄積するようにプログラム可能であり得る。幾つかの場合、メモリセル105は、2つよりも多くの状態を蓄積するように構成される。メモリセル105は、幾つかの実施形態では、自己選択メモリセルを含み得る。
図1に含まれる幾つかの素子が数表示を用いてラベルが付されているが、描写された機構の視認性及び明確性を増加させるために、その他の対応する素子はラベルが付されていないが、それらは、同じであり、又は同様であると理解されるであろう。
【0013】
幾つかの場合、メモリセル(例えば、自己選択メモリセル)は、それと関連付けられた閾値電圧を有し得る、すなわち、印加された電圧が閾値電圧を超えた後に電流が流れ得るアモルファス状態を保つ材料を含み得る。それ故、印加された電圧が閾値電圧未満である場合、明白な量の電流は何ら流れなくてもよい。幾つかの実施形態では、電流の流れ又はその欠乏は、選択されたメモリセル内の蓄積された情報を読み出すために、
図1を参照しながら説明したようなセンスコンポーネント125によってセンシングされ得る。幾つかの実施形態では、該材料はカルコゲナイド合金であり得る。カルコゲナイド合金の組成は、プログラミングパルスを印加すると局所的に修正され得、メモリセル105は、複数の異なる閾値電圧レベル(例えば、3つ以上の閾値電圧レベル)を提示し得る。それ故、メモリセル105は、1ビットよりも多くのデータを蓄積可能であり得る。以下で論じるように、その閾値電圧で表されるメモリセル105の論理状態をセットすることは、メモリ素子を加熱することによって助長され得る。
【0014】
3Dメモリアレイ102は、相互に積み重ねられて形成された2つ以上の2次元(2D)メモリアレイを含み得る。これは、2Dアレイと比較して、単一のダイ又は基板上に設置又は創出され得るメモリセルの数を増加させ得、それは、順次、産出コストを削減し得、若しくはメモリデバイスの性能を増加させ得、又はそれら両方であり得る。
図1に描写した例に基づくと、メモリアレイ102は、メモリセル105の2つのレベルを含み、それ故、3次元メモリアレイとみなされ得るが、レベルの数は2つに限定されない。各レベルは、メモリセル105が各レベルに渡って相互に(丁度、重複して、又は凡そ)整列され得、メモリセルスタック145を形成するように整列又は位置付けられ得る。幾つかの場合、メモリセルスタック145は、以下で説明されるように、双方のためのアクセス線を共有しつつ相互に積み重ねられて敷設された複数の自己選択メモリセルを含み得る。幾つかの場合、自己選択メモリセルは、マルチレベル蓄積技術を使用して1ビットよりも多くのデータを蓄積するように構成されたマルチレベル自己選択メモリセルであり得る。
【0015】
幾つかの実施形態では、メモリセル105の各行はアクセス線110に接続され、メモリセル105の各列はビット線115に接続される。アクセス線110及びビット線115は、相互に対して実質的に直角であり得、メモリセルのアレイを創出し得る。
図1に示すように、メモリセルスタック145内の2つのメモリセル105は、ビット線115等の共通の導電線を共有し得る。すなわち、ビット線115は、上部のメモリセル105の底部電極、及び下部のメモリセル105の最上部電極と電子通信し得る。その他の構成が可能であり得、例えば、第3の層は、下部の層とアクセス線110を共有し得る。一般的に、1つのメモリセル105は、アクセス線110及びビット線115等の2つの導電線の交点に配置され得る。この交点は、メモリセルのアドレスと称され得る。対象のメモリセル105は、通電したアクセス線110とビット線115との交点に配置されたメモリセル105であり得、すなわち、アクセス線110及びビット線115は、それらの交点におけるメモリセル105を読み出す又は書き込むために通電され得る。同じアクセス線110又はビット線115と電子通信する(例えば、接続された)他のメモリセル105は、非対象のメモリセル105と称され得る。
【0016】
上で論じたように、メモリセル105と、アクセス線110又はビット線115とに電極が結合され得る。用語、電極は、電気伝導体を指し得、幾つかの場合、メモリセル105への電気的コンタクトとして用いられ得る。電極は、メモリデバイス100の素子又はコンポーネント間の導電経路を提供するトレース、ワイヤ、導電線、又は導電層等を含み得る。幾つかの実施形態では、メモリセル105は、第1の電極と第2の電極との間に位置付けられたカルコゲナイド合金を含み得る。第1の電極の一方の側面はアクセス線110に結合され得、第1の電極の他方の側面はカルコゲナイド合金に結合され得る。また、第2の電極の一方の側面はビット線115に結合され得、第2の電極の他方の側面はカルコゲナイド合金に結合され得る。第1の電極及び第2の電極は、同じ材料(例えば、炭素)であり得、又は異なり得る。
【0017】
読み出し及び書き込み等の動作は、アクセス線110及びデジット線115を活性化又は選択することによってメモリセル105上で実施され得る。幾つかの実施形態では、アクセス線110はワード線110としても知られ得、ビット線115はデジット線115としても知られ得る。ワード線及びビット線、又はそれらの類似物への言及は、理解又は動作を失うことなく交換可能である。ワード線110又はデジット線115を活性化又は選択することは、個別の線に電圧を印加することを含み得る。ワード線110及びデジット線115は、金属(例えば、銅(Cu)、アルミニウム(Al)、金(Au)、タングステン(W)、チタン(Ti))、金属合金、炭素、導電的にドープされた半導体等の導電性材料、若しくはその他の導電性材料、合金、又は化合物等で作られてもよい。
【0018】
幾つかのアーキテクチャでは、セルの論理蓄積デバイス(例えば、PCMセル内の抵抗器、FeRAMセル内のコンデンサ)は、選択コンポーネントによってデジット線から電気的に絶縁され得る。ワード線110は、選択コンポーネントに接続され得、選択コンポーネントを制御し得る。例えば、選択コンポーネントはトランジスタであり得、ワード線110は、該トランジスタのゲートに接続され得る。ワード線110を活性化することは、メモリセル105のコンデンサとその対応するデジット線115との間の電気的接続又は閉回路をもたらす。デジット線は、メモリセル105の読み出し又は書き込みの何れかのためにその後アクセスされ得る。メモリセル105を選択すると、もたらされる信号は、蓄積された論理状態を判定するために使用され得る。幾つかの場合、第1の論理状態は、電流なし又は無視できる程小さな電流に対応し得、一方、第2の論理状態は、有限の電流に対応し得る。幾つかの場合、メモリセル105は、2つの端子を有する自己選択メモリセルを含み得、別個の選択コンポーネントを使用しなくてもよい。そのようなものだとして、自己選択メモリセルの一方の端子は、ワード線110に電気的に接続され得、自己選択メモリセルの他方の端子は、デジット線115に電気的に接続され得る。
【0019】
メモリセル105へのアクセスは、行デコーダ120及び列デコーダ130を通じて制御され得る。例えば、行デコーダ120は、メモリコントローラ140から行アドレスを受信し得、受信した行アドレスに基づいて適切なワード線110を活性化し得る。同様に、列デコーダ130は、メモリコントローラ140から列アドレスを受信し得、適切なデジット線115を活性化し得る。例えば、メモリアレイ102は、WL_1~WL_Mとラベルが付された複数のワード線110と、DL_1~DL_Nとラベルが付された複数のデジット線115とを含み得、M及びNはアレイのサイズに依存する。それ故、ワード線110及びデジット線115、例えば、WL_2及びDL_3を活性化することによって、それらの交点におけるメモリセル105がアクセスされ得る。
【0020】
アクセスすると、メモリセル105は、メモリセル105の蓄積状態を判定するために、センスコンポーネント125によって読み出され得又はセンシングされ得る。例えば、(対応するワード線110及びビット線115を使用して)メモリセル105に電圧が印加され得、もたらされる電流の存在は、印加された電圧とメモリセル105の閾値電圧とに依存し得る。幾つかの場合、1つよりも多くの電圧が印加され得る。また、印加された電圧が電流の流れをもたらさない場合、センスコンポーネント125によって電流が検出されるまでその他の電圧が印加され得る。電流の流れをもたらした電圧を評価することによって、メモリセル105の蓄積された論理状態が判定され得る。幾つかの場合、電流の流れが検出されるまで、電圧は、大きさが増強され得る。他の場合、電流が検出されるまで、所定の電圧が順次印加され得る。同様に、メモリセル105に電流が印加され得、電流を創出するための電圧の大きさは、メモリセル105の電気抵抗又は閾値電圧に依存し得る。
【0021】
幾つかの実施形態では、自己選択メモリセル内に蓄積された3つ以上の閾値電圧レベルの内の1つを判定するために、一連の所定の電圧が印加され得る。所定の電圧レベルは、線形モードにおいては、自己選択メモリセルの特定の閾値電圧を検出するために大きさを増加させ得る。或いは、所定の電圧レベルは、二分探索モードにおいては、自己選択メモリセルの特定の閾値電圧を検出するために大きさを増加又は減少させ得る。所定の電圧レベルは、自己選択メモリセルをプログラミングするために使用される電圧と同じ極性を有し得る。所定の電圧レベルは、自己選択メモリセルをプログラミングするために使用される電圧とは反対の極性を有し得る。所定の電圧の範囲は、自己選択メモリセルの閾値電圧の範囲によって判定され得る。
【0022】
センスコンポーネント125は、ラッチと称され得る、信号の差を検出及び増幅するために様々なトランジスタ又はアンプを含み得る。メモリセル105の検出された論理状態は、出力135として、列デコーダ130を通じてその後出力され得る。幾つかの場合、センスコンポーネント125は、列デコーダ130又は行デコーダ120の一部であり得る。又は、センスコンポーネント125は、列デコーダ130又は行デコーダ120に接続され得、又は列デコーダ130又は行デコーダ120と電子通信し得る。
図1は、(破線のボックス内の)センスコンポーネント125-aを配置する代替的な選択肢をも示す。センスコンポーネントは、その機能的な目的を失うことなく列デコーダ又は行デコーダの何れかと関連付けられ得ると当業者は分かるであろう。
【0023】
メモリセル105は、関連するワード線110及びデジット線115を同様に活性化することによってセットされ得、又は書き込まれ得、少なくとも1つの論理値がメモリセル105内に蓄積され得る。列デコーダ130又は行デコーダ120は、メモリセル105に書き込まれるデータ、例えば、入力/出力135を受け取り得る。カルコゲナイド合金を含む自己選択メモリセルの場合、メモリセル105は、プログラミングパルスを印加することによって、例えば、該合金の局所的な組成を修正することによって、データを蓄積するように書き込まれ得る。プログラミングパルスは、自己選択メモリセルにおいて確立される具体的な閾値電圧に依存して様々な形状を有し得る。このプロセスは、
図4~
図6を参照しながら以下でより詳細に論じられる。
【0024】
幾つかのメモリアーキテクチャでは、メモリセル105へのアクセスは、蓄積された論理状態を劣化又は破壊し得、元の論理状態をメモリセル105に戻すために、再書き込み又はリフレッシュ動作が実施され得る。DRAMでは、例えば、コンデンサは、センシング動作の間に部分的に又は完全に放電され得、蓄積された論理状態を破損する。該論理状態は、センシング動作後に再書き込みされ得る。また、単一のワード線110を活性化することは、行中の全てのメモリセルの放電をもたらし得、それ故、行中の幾つかの又は全てのメモリセル105は再書き込みされる必要があり得る。しかしながら、自己選択メモリ、PCM、FeRAM、又は3D NANDメモリ等の不揮発性メモリでは、メモリセル105へのアクセスは、論理状態を破壊しなくてもよく、それ故、メモリセル105は、アクセス後に再書き込みする必要がなくてもよい。
【0025】
メモリコントローラ140は、様々なコンポーネント、例えば、行デコーダ120、列デコーダ130、及びセンスコンポーネント125を通じて、メモリセル105の動作(例えば、読み出し、書き込み、再書き込み、リフレッシュ、放電)を制御し得る。幾つかの場合、行デコーダ120、列デコーダ130、及びセンスコンポーネント125の内の1つ以上は、メモリコントローラ140と共同設置され得る。メモリコントローラ140は、所望のワード線110及びデジット線115を活性化するために、行及び列のアドレス信号を生成し得る。メモリコントローラ140はまた、メモリデバイス100の動作の間に使用される様々な電圧又は電流を生成及び制御し得る。例えば、メモリコントローラ140は、自己選択メモリセルの所望の論理状態と、自己選択メモリセルの所望の論理状態に対応する閾値電圧に基づいたプログラミングパルスの形状とを判定し得、自己選択メモリセルにプログラミングパルスを印加し得る。一般的に、本明細書で論じる印加される電圧又は電流の振幅、形状、極性、及び/又は継続期間は、調整又は変更され得、メモリデバイス100の動作において論じられる様々な動作に対して異なり得る。更に、メモリアレイ102内の1つの、複数の、又は全てのメモリセル105は同時にアクセスされ得、例えば、メモリアレイ102の複数の又は全てのセルは、全てのメモリセル105又はメモリセル105のグループが単一の論理状態にセットされるリセット動作の間に同時にアクセスされ得る。
【0026】
図2は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする3Dメモリアレイ202の一例を説明する。メモリアレイ202は、
図1を参照しながら説明したメモリアレイ102の一部の一例であり得る。メモリアレイ202は、基板204の上方に位置付けられたメモリセルの第1のアレイ又はデッキ205と、第1のアレイ又はデッキ205の上のメモリセルの第2のアレイ又はデッキ210とを含み得る。メモリアレイ202はまた、
図1を参照しながら説明したようなワード線110及びビット線115の例示であり得るワード線110-a及びワード線110-bと、ビット線115-aとを含み得る。第1のデッキ205及び第2のデッキ210のメモリセルは、1つ以上の自己選択メモリセルを各々有し得る。
図2に含まれる幾つかの素子は数表示を用いてラベルが付されているが、描写された機構の視認性及び明確性を増加させるために、その他の対応する素子はラベルが付されていないが、それらは、同じであり、又は同様であると理解されるであろう。
【0027】
第1のデッキ205の自己選択メモリセルは、第1の電極215-a、カルコゲナイド合金220-a、及び第2の電極225-aを含み得る。また、第2のメモリデッキ210の自己選択メモリセルは、第1の電極215-b、カルコゲナイド合金220-b、及び第2の電極225-bを含み得る。第1のデッキ205及び第2のデッキ210の自己選択メモリセルは、幾つかの実施形態では、各デッキ205及び210の対応する自己選択メモリセルが
図1を参照しながら説明したようにビット線115又はワード線110を共有し得るように、共通の導電線を有し得る。例えば、第2のデッキ210の第1の電極215-bと、第1のデッキ205の第2の電極225-aとは、垂直方向に隣接する自己選択メモリセルによってビット線115-aが共有されるように、ビット線115-aに結合され得る。幾つかの実施形態では、第2のデッキ210の第1の電極215-bが付加的なビット線と結合され得、第1のデッキ205の第2の電極225-aがビット線115-aと結合され得るように、付加的なビット線(図示せず)が付加され得る。付加的なビット線は、(例えば、付加的なビット線とビット線115-aとの間に絶縁材料を有することによって)ビット線115-aから電気的に絶縁され得る。結果として、各デッキ205及び210が相互に独立し得ながら、第1のデッキ205及び第2のデッキ210は分離され得る。
【0028】
メモリアレイ202のアーキテクチャは、
図2に説明したようにワード線とビット線との間のトポロジカルなクロスポイントにおいてメモリセルが形成されるクロスポイントアーキテクチャと称され得る。こうしたクロスポイントアーキテクチャは、他のメモリアーキテクチャと比較して、より低い生産コストで比較的高密度のデータ蓄積を提供し得る。例えば、クロスポイントアーキテクチャは、他のアーキテクチャと比較して、領域の削減と、結果としてメモリセル密度の増加とを有するメモリセルを有し得る。例えば、該アーキテクチャは、3端子選択コンポーネントを有するアーキテクチャ等の6F
2のメモリセル領域を有する他のアーキテクチャと比較して4F
2のメモリセル領域を有し得、Fは最小の機構サイズである。例えば、DRAMは、メモリセル毎の選択コンポーネントとして、3端子デバイスであるトランジスタを使用し得、クロスポイントアーキテクチャと比較してより大きなメモリセル領域を有し得る。
【0029】
幾つかのアーキテクチャ(図示せず)では、基板と平行な並行平面又はティア上に複数のワード線が形成され得る。複数のビット線の各々がホールの垂直方向に整列されたセットを貫通するように、複数のビット線がワード線の平面と直交して形成される(例えば、ワード線の平面及び水平方向の基板に対してビット線が垂直方向に配備される)ことを可能にするために、複数のワード線は複数のホールを含むように構成され得る。蓄積素子を含むメモリセル(例えば、カルコゲナイド合金を含む自己選択メモリセル)は、ワード線とビット線との交差点(例えば、ホールの垂直方向に整列されたセット内のワード線とビット線との間の空間)において形成され得る。
図1を参照しながら上で説明したのと同様の仕方で、メモリセル(例えば、カルコゲナイド合金を含む自己選択メモリセル)は、個別のアクセス線(例えば、ビット線及びワード線)を選択することと、電圧又は電流パルスを印加することとによって動作され(例えば、読み出され及び/又はプログラミングされ)得る。
【0030】
図2の例は2つのメモリデッキを示すが、その他の構成が可能である。幾つかの実施形態では、自己選択メモリセルの単一のメモリデッキが基板204の上方に構築され得、それは、2次元メモリと称され得る。幾つかの実施形態では、3次元クロスポイントアーキテクチャの同様の方法で、メモリセルの3つ又は4つのメモリデッキが構成され得る。幾つかの実施形態では、メモリデッキの内の1つ以上は、カルコゲナイド合金220を含む自己選択メモリセルを含み得る。カルコゲナイド合金220は、例えば、セレン(Se)、テルル(Te)、ヒ素(As)、アンチモン(Sb)、炭素(C)、ゲルマニウム(Ge)、及びシリコン(Si)の合金等のカルコゲナイドガラスを例えば含み得る。幾つかの実施形態では、主にセレン(Se)、ヒ素(As)、及びゲルマニウム(Ge)を有するカルコゲナイド合金はSAG合金と称され得る。幾つかの実施形態では、SAG合金はシリコン(Si)を含み得、こうしたカルコゲナイド合金はSiSAG合金と称され得る。幾つかの実施形態では、カルコゲナイドガラスは、水素(H)、酸素(O)、窒素(N)、塩素(Cl)、又はフッ素(F)等の付加的な元素を、各々原子又は分子の形式で含み得る。
【0031】
幾つかの実施形態では、カルコゲナイド合金220を含む自己選択メモリセルは、ビット線115及びワード線110を使用して自己選択メモリセルにプログラミングパルスを印加することによって、特定の閾値電圧を提示するようにプログラミングされ得る。特定の閾値電圧、3つ以上の閾値電圧レベルの内の1つは、カルコゲナイド合金220の局所的な組成を修正することによって確立され得る。カルコゲナイド合金220の局所的な組成のこうした修正は、上で説明したカルコゲナイド合金の1つ以上の元素のマイグレーションによって確立され得る。幾つかの実施形態では、カルコゲナイド合金のセレン及び/又はその他の元素は、印加されたプログラミングパルスに応答して、カルコゲナイド合金220内に不均一な濃度プロファイルを提示し得、それ故、カルコゲナイド合金220の局所的な組成を修正する。プログラミングパルスは、自己選択メモリセルに対して意図する特定の閾値電圧レベルに依存して、様々な形状(例えば、複数の、電圧若しくは電流レベル及び継続時間)を有し得る。
【0032】
続いて、幾つかの実施形態では、ビット線115及びワード線110を使用して、所定の電圧を有する一連の読み出しパルスが自己選択メモリセルに印加され得る。読み出しパルスの所定の電圧レベルは、自己選択メモリセルの特定の閾値電圧を検出するために大きさが増加又は減少させられ得る。幾つかの実施形態では、読み出しパルスの所定の電圧は、自己選択メモリセルをプログラミングするために使用されるプログラミングパルスの電圧と同じ極性を有し得る。幾つかの実施形態では、読み出しパルスの所定の電圧は、自己選択メモリセルをプログラミングするために使用されるプログラミングパルスの電圧とは反対の極性を有し得る。
【0033】
図3は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするメモリセルの閾値電圧(V
TH)分布300の例を説明する。自己選択メモリセルは、マルチレベル蓄積技術を使用して、複数ビットのデータを含む論理状態を蓄積するように構成され得る。幾つかの自己選択メモリセルでは、カルコゲナイド合金は、マルチレベルの蓄積のための異なる閾値電圧を実現するために修正され得る。こうした方法で該合金を修正する場合、論理状態に対する正確な電圧閾値は、分布に従って期待値から変わり得る。V
TH分布300は、自己選択メモリセルにおいて電圧閾値が中央値の周囲でどのように変わり得るかを示す。
【0034】
V
TH分布300は、1つ以上のメモリセルの閾値電圧(x軸)の関数として、V
THを有するメモリセルの数(y軸)を描写する。幾つかの実施形態では、自己選択メモリセルは、
図1及び
図2を参照しながら説明したように、カルコゲナイド合金を含み得る。V
TH分布300は、セル毎に少なくとも2ビットを蓄積するマルチレベルセル動作スキームを表し得る。分布310は、V
TH1の中央V
TH値を提示し得る。同様に、分布320、330、及び340は、V
TH2、V
TH3、及びV
TH4の中央V
TH値を提示し得る。分布310、320、330、及び340は、セル毎に2ビットを蓄積する4つの論理状態、すなわち、00、01、10、及び11の内の1つを夫々表し得る。幾つかの実施形態では、2つの分布は、重複部分を有し得、それ故、2つの分布の間に明確な分離を有しなくてもよい。幾つかの実施形態では、各分布は、その中央V
THの周囲で対称でなくてもよい。幾つかの実施形態では、各分布は、異なる範囲のV
TH値を提示し得る。
【0035】
分布(例えば、分布310)の最も高い電圧と隣接する分布(例えば、分布320)の最も低い電圧との間の電圧差は、読み出しウィンドウ(例えば、読み出しウィンドウ350)と称され得る。幾つかの実施形態では、読み出しウィンドウは、正であってもよく、負であってもよい。幾つかの実施形態では、読み出しウィンドウは、読み出しパルスと関連付けられた電圧レベルに関連し得る。例えば、自己選択メモリセルが読み出しパルスの電圧よりも低い閾値電圧(例えば、VTH分布310の一部であり得る閾値電圧)を提示するか、それとも高い閾値電圧(例えば、VTH分布320、VTH分布330、又はVTH分布340の一部であり得る閾値電圧)を提示するかを判定するために、自己選択メモリセルに印加される読み出しパルスの電圧レベルは、読み出しウィンドウ(例えば、読み出しウィンドウ350)内に収まるべきである。こうした判定は、読み出しパルスを印加すると自己選択メモリセルがオンになる(例えば、自己選択メモリセルのVTHが読み出しパルスの電圧よりも低い)か否かに基づいてなされ得る。自己選択メモリセルがオンにならない(例えば、自己選択メモリセルのVTHが読み出しパルスの電圧よりも高い)場合、分布320、330、又は340の一部であり得る自己選択メモリセルの特定のVTHを判定するために、読み出しパルスの電圧は、値(例えば、読み出しウィンドウ360又は読み出しウィンドウ370に対応する値)まで増加させられ得る。
【0036】
幾つかの実施形態では、カルコゲナイド合金の局所的な組成の変化は、自己選択メモリセルの異なるV
TH値(例えば、V
TH1、V
TH2、V
TH3、又はV
TH4)を生み出し得る。該合金に流れる電流によって該合金が加熱され得ながらカルコゲナイド合金の元素をマイグレーションするための電界の強度を修正することによってカルコゲナイド合金の局所的な組成に変化を生み出すために、
図4に説明されるようなプログラミングパルスの形状の変化が自己選択メモリセルに印加され得る。
【0037】
図4は、本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする電気パルス400の例を説明する。400の電気パルスは、時間(x軸)に対して自己選択メモリセルに印加される電圧又は電流の何れか(y軸)の様々な形状を描写する。自己選択メモリセルに印加されたプログラミングパルスに対して、極性及び振幅の変化を含む様々な形状が判定され得る。幾つかの後続の例は、説明目的のための電圧レベルで自己選択メモリセルに印加されたプログラミングパルスの様々な形状を説明する。電流レベルで自己選択メモリセルに印加されるプログラミングパルスの様々な形状は、機能を失うことなく同様に使用され得ると分かるべきである。
【0038】
パルス410-a及び410-bは矩形パルスと称され得る。パルス410-aは、正の極性と、電圧振幅V1又はV2の固定レベルが維持される単一の継続時間T1とを有する。電圧V0は、パルスの基準値を表し、幾つかの実施形態では、第1の電圧(例えば、グランド、仮想接地、約0V)にあり得る。幾つかの実施形態では、T1は、数十のナノ秒(nsec)の長さ、例えば、20~40nsecであり得る。幾つかの実施形態では、V2は、自己選択メモリセルに流れる約100μAの電流レベルに対応し得る一方、V1は、自己選択メモリセルに流れる約50マイクロアンペア(μA)の電流レベルに対応し得る。幾つかの実施形態では、ある組成を有するカルコゲナイド合金(例えば、ヒ素、ゲルマニウム、セレン、又はそれらの組み合わせを含む合金)を有する自己選択メモリセルは、V1を有する矩形パルス又はV2を有する矩形パルスを受け取ると、閾値電圧に明白な差を提示しないことがある。こうしたカルコゲナイド合金の挙動は、その結晶構造に起因し得、該合金の1つ以上の元素の空間プロファイル分布に明白な正味の変化を起こすために、矩形パルスの振幅に、より有意な変化を必要とし得る。
【0039】
幾つかの実施形態では、それだけではなく、修正されたカルコゲナイド合金を有する自己選択メモリセルは、V1を有する矩形パルス又はV2を有する矩形パルスを印加すると、閾値電圧に明白な差を提示し得る。こうした修正は、上で列挙した1つ以上の元素を付加することによりカルコゲナイド合金内の原子の配置、種類、又は比率を変化させることによって成し遂げられ得る。幾つかの実施形態では、自己選択メモリセルの閾値電圧に明白な差をもたらす電流レベルは、自己選択メモリセルの物理的サイズ、自己選択メモリセル内に使用されるカルコゲナイド合金、又はそれらの組み合わせに依存して変わり得る。
【0040】
負の極性を有するパルス410-bは、幾つかの実施形態では、パルス410-aとは異なる閾値電圧を生み出すために、カルコゲナイド合金を有する自己選択メモリセルに対して使用され得る。パルス410-bの継続時間は、T1と同じであってもよく、異なってもよい。パルス410-bと関連付けられた電圧振幅-V1及び-V2は、パルス410-aの大きさV1及びV2と同じであってもよく、異なってもよい。言い換えれば、パルス410-bは、その極性を除いてパルス410-aと全体的に同じ形状を有してもよい。上で論じたように、自己選択メモリセルに印加されるパルスの極性の反転は、カルコゲナイド合金に渡る電界の向きを反転し得、カルコゲナイド合金の元素の異なる(例えば、反転した)分布をもたらし得る。
【0041】
結果として、自己選択メモリセルは、パルス401-a又はパルス410-bの何れが使用されて自己選択メモリセルがプログラミングされたかに依存して、読み出しアクセス動作の間に異なる閾値電圧を提示し得る。また、閾値電圧を異なるように設定するためにカルコゲナイド合金の元素の分布を更に修正するために、プログラミングパルスの振幅(例えば、V1又はV2)は増加又は減少させられ得る。したがって、プログラミングパルスの極性及び振幅の両方を修正することによって、自己選択メモリセル内に1ビットよりも多くのデータが蓄積され得る。幾つかの場合、プログラミングパルスは、正の極性部分と負の極性部分とを含み得る。例えば、プログラミングパルスは、パルス410-a及び410-bの組み合わせを含み得る。
【0042】
パルス420-a及び420-bは、階段降下パルスと称され得る。幾つかの場合、パルス420-a及び/又は420-bは、階段上昇パルス(図示せず)であるように修正され得る。パルス420-aは、正の極性で電圧振幅の固定レベル(例えば、V3、V4、V5、又はV6)が維持される1つよりも多くの継続時間(例えば、4つの継続時間T2a、T2b、T2c、及びT2d)を有する。全体の継続時間T2は、該1つよりも多くの継続時間の総和であり得る。幾つかの実施形態では、T2は、数十のナノ秒の長さ、例えば、20~40nsecであり得る。これに応じて、各継続時間、例えば、T2a、T2b、T2c、及びT2dは、約5~10nsecの長さであり得る。幾つかの実施形態では、各継続時間は異なり得る。幾つかの実施形態では、約50~100μAの全体の電流レベルが自己選択メモリセルに流れ得る。
【0043】
ある一定の組成を有するカルコゲナイド合金(例えば、ヒ素、ゲルマニウム、セレン、又はそれらの任意の組み合わせを含む合金)を有する自己選択メモリセルは、該自己選択メモリセルをプログラミングするための階段降下パルス420-a又はV2を有する矩形パルス410-aを受け取ると、閾値電圧に明白な差を提示し得る。異なる閾値電圧を提示するこうしたカルコゲナイド合金の挙動は、該合金の1つ以上の元素の空間プロファイル分布の明白な正味の変化に起因し得る。
【0044】
空間プロファイル分布のこうした変化は、矩形パルス410-aの電圧振幅V2と比較した場合に、継続時間T2aの間の電圧振幅V6に対応する該合金に渡るより強い電界に少なくとも部分的に起因して、階段降下パルス420-aが印加された場合に生じ得る。階段降下パルス420-aの残りの継続時間、例えば、T2b、T2c、及びT2dの間の電界は、カルコゲナイド合金に流れる電流が1つ以上の元素の移動を助長するための熱エネルギーを提供し得ながら、1つ以上の元素の移動を更に容易にし得る。
【0045】
また、自己選択メモリセルをプログラミングするために、負の極性を有するパルス420-bが使用され得る。パルス420-bは、その極性を除いてパルス420-aと同じ全体的な形状を有し得る。上で論じたように、パルス420-bの反対の極性は、カルコゲナイド合金の1つ以上の元素の空間分布の反転をもたらし得、順次、異なる閾値電圧を生み出し得る。それ故、プログラミングパルスの様々な形状(例えば、プログラミングパルスの極性及び振幅の両方)は、1ビットよりも多くのデータを蓄積するように異なる閾値電圧を具体的なカルコゲナイド合金に提示させるために使用され得る。幾つかの実施形態では、継続時間と関連付けられた固定の電圧レベルは、自己選択メモリセルの閾値電圧を確立するために増加又は減少させられ得る。幾つかの実施形態では、自己選択メモリセル内に1ビットよりも多くのデータを蓄積するために、階段上昇パルス(図示せず)が使用され得る。幾つかの場合、プログラミングパルスは、正の極性部分と負の極性部分とを含み得る。例えば、プログラミングパルスは、パルス410-a、410-b、420-a、420-b、又はそれらの組み合わせの一部を含み得る。
【0046】
パルス430-a及び430-bは、上向き三角パルスと称され得る。パルス430-aは下向き三角パルス(図示せず)であるように修正され得ると分かるべきである。こうした下向き三角パルスは、継続時間の数が増加し、及び各継続時間の間に維持される固定の各電圧レベル間の差が減少したパルス420-aの極端な場合とみなされ得る。幾つかの実施形態では、パルス430-a及び430-bは、電圧が連続的に、例えば、ステップなしに変化する上向き三角パルス(図示せず)を含み得る。幾つかの実施形態では、上向き三角パルスは、読み出しパルスとして使用され得る。
【0047】
例えば、自己選択メモリセルに上向き三角読み出しパルスが印加された場合、自己選択メモリセルがオンになるためにかかる(すなわち、上向き三角読み出しパルスの電圧レベルが自己選択メモリセルの特定の閾値電圧よりも大きくなる時の)継続時間は、自己選択メモリセルの特定の閾値電圧に対応し得る。したがって、自己選択メモリセルの特定の閾値電圧と関連付けられた特定の論理状態を判定することは、上向き三角読み出しパルスを印加することと、自己選択メモリセルがオンになる間に経過した継続時間を監視することとによって実行可能であり得る。上で論じたように、プログラミングパルスは、正の極性及び負の極性内にあり得る。読み出しパルスは、自己選択メモリセルの動作の間に単一の極性、正又は負を維持し得る。
【0048】
上向き三角読み出しパルスの最大電圧レベル(例えば、V
7)は、自己選択メモリセル内に蓄積される論理状態と関連付けられた最も高い閾値電圧に基づいて判定され得る。上向き三角読み出しパルスと関連付けられた電圧レベルの範囲(例えば、V
7とV
0との間の差)は、自己選択メモリセル内に蓄積される論理状態と関連付けられた閾値電圧の範囲(例えば、
図3を参照しながら説明した分布310~分布340)に基づいて判定され得る。継続時間T
3は、プログラミング動作の間の電圧レベルの範囲と閾値電圧の配置の粒度とに基づいて判定され得る。幾つかの実施形態では、上向き三角読み出しパルスと関連付けられた電圧レベルの範囲は、上向き三角読み出しパルスの初期値(例えば、V
0)を読み出しウィンドウ(例えば、読み出しウィンドウ360)内の電圧に設定することによって、着目した閾値電圧分布(例えば、分布330及び分布340)のサブセットを検出するように修正され得る。同様に、上向き三角読み出しパルスの最大電圧レベル(例えば、V
7)は、該最大電圧レベルを読み出しウィンドウ(例えば、読み出しウィンドウ350)内の電圧に設定することによって、閾値電圧分布(例えば、分布310)のサブセットを検出するように修正され得る。
【0049】
例として、4つの論理状態を表す閾値電圧の総範囲が同じままであると仮定すると、読み出しウィンドウが比較的大きい(例えば、閾値電圧分布310及び320がそれらの中央電圧V
TH1及びV
TH2の周囲に比較的狭まり得ることを指し示し、
図3の読み出しウィンドウ350が比較的大きくてもよい)場合、パルス430内の固定の各電圧レベルの間の差は比較的大きくてもよく、読み出しウィンドウが比較的小さい(例えば、分布310及び320がそれらの中央電圧V
TH1及びV
TH2の周囲に比較的広がり得ることを指し示し、
図3の読み出しウィンドウ350が比較的小さくてもよい)場合と比較した場合に、T
3は比較的短くてもよい。幾つかの場合、プログラミングパルスは、正の極性部分と負の極性部分とを含み得る。例えば、プログラミングパルスは、パルス410-a、410-b、420-a、420-b、430-a、430-b、又はそれらの組み合わせの一部を含み得る。
【0050】
パルス440-a及び440-bは、ある一定種類のカルコゲナイド合金(例えば、ヒ素、ゲルマニウム、セレン、シリコン、又はそれらの任意の組み合わせを含む合金)を含む自己選択メモリセルの特定の閾値電圧を生み出すように判定されたプログラミングパルスの形状を表し得る。幾つかの実施形態では、全体の継続時間T4は、T1又はT2と同様の、数十のナノ秒の長さ、例えば、20~40nsecであり得る。電圧レベル(例えば、V8、V9、又はV10)は、自己選択メモリセルの所望の特定の閾値電圧によって判定され得る。T4の間に自己選択メモリセルに流れる全体の電流レベルは、複数の中間値(例えば、70μA及び90μA)で50μAから120μAまで変わり得る。各継続時間T4a、T4b、T4cは、等しくてもよく、異なってもよい。継続時間の数は、パルス440-aに説明されるように3つであってもよく、又はパルス410-aに説明されるようにより小さくてもよく、若しくはパルス420-aに説明されるようにより大きくてもよい。
【0051】
幾つかの実施形態では、メモリコントローラは、自己選択メモリセルの所望の論理状態と対応する閾値電圧とを判定し得、所望の論理状態は1ビットより多くのデータを表す。メモリコントローラは、自己選択メモリセルの閾値電圧に基づいて、プログラミングパルスの極性及び振幅を判定し得る。プログラミングパルスの形状のこうした判定は、何れの極性を使用するかを判定すること、及び、固定の電圧振幅が維持される1つ以上の継続期間を判定すること、又は、プログラミングパルスの形状の変化を生じさせるために自己選択メモリセルに流れる電流レベルを変えることを含み得る。幾つかの場合、プログラミングパルスは、正の極性部分と負の極性部分とを含み得る。例えば、プログラミングパルスは、パルス410-a、410-b、420-a、420-b、430-a、430-b、440-a、440-b、又はそれらの組み合わせの一部を含み得る。
【0052】
上で説明したように、自己選択メモリセル内に1ビットよりも多くのデータを蓄積するために、プログラミングパルスの様々なパルス形状が使用され得る。所与のカルコゲナイド合金に対して2つ以上のユニークな閾値電圧分布を確立するために、複合のパルス形状(例えば、パルス420、パルス440、又は様々なパルスの組み合わせ)が望ましいことがある。対照的に、別のカルコゲナイド合金に対して2つ以上のユニークな閾値電圧分布を確立するために、単一のパルス形状(例えば、パルス410)が使用され得る。上で論じたように、自己選択メモリデバイスを設計するための特定のカルコゲナイド合金の選択は、製造プロセス中の該合金の熱的及び機械的安定性、並びに自己選択メモリデバイスの電気的特性(例えば、サイクル性能、経時的なVTHの安定性、データの保持能力、選択解除バイアス下でのリーク電流レベル)、又はそれらの組み合わせ等のその他の検討を含み得る。
【0053】
図5は、本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするカルコゲナイド合金の成分の空間分布500の図を説明する。カルコゲナイド合金の成分の空間分布500は、自己選択メモリセルのアクセス動作の間に印加されるプログラミングパルスによって設定され得る。空間分布500は、自己選択メモリセルの閾値電圧を判定し得、自己選択メモリセルの閾値電圧は、自己選択メモリセル上に蓄積された論理状態を判定し得る。
【0054】
略
図501は、第1の電極505と第2の電極515との間に位置付けられたカルコゲナイド合金510を説明する。カルコゲナイド合金510、第1の電極505、及び第2の電極515の合成スタックは、
図2を参照しながら説明した自己選択メモリデバイス(例えば、225-a、220-a、及び215-aを含む合成スタック)の一部の一例であり得る。幾つかの実施形態では、略
図501は、特定のカルコゲナイド合金内の成分の空間分布を説明し得る。カルコゲナイド合金510の均一な陰影は、自己選択メモリデバイスが電気的なストレスを経験することなく製造された場合のカルコゲナイド合金510内の成分の均一な分布を表し得る。略
図501は、描写される機構の視認性及び明確性を増加させるための成分の空間分布を説明するが、本開示は、不均一な空間分布を提示する単一の成分に限定されない。
【0055】
第1の電極505と第2の電極515との間のカルコゲナイド合金510の成分の空間プロファイルは、第1の電極505又は第2の電極515からの距離の関数としての成分の濃度として表され得る。該濃度は、
図5に説明されるように、カルコゲナイド合金510と第1の電極505との間の第1の接合面を指し示す525-aと、カルコゲナイド合金510と第2の電極515との間の第2の接合面を指し示す525-bとの軸において表され得る。濃度プロファイル520は、自己選択メモリデバイスが電気的なストレスを経験することなく製造された場合の成分の不均一な分布を表し得る。
図5に含まれる幾つかの素子は数表示を用いてラベルが付されているが、描写された機構の視認性及び明確性を増加させるために、その他の対応する素子はラベルが付されていないが、それらは、同じであり、又は同様であると理解されるであろう。
【0056】
自己選択メモリセルをプログラミングするために、カルコゲナイド合金510にプログラミングパルスが印加され得る。プログラミングパルスは、
図4を参照しながら説明した様々なパルス形状の内の1つであり得る。プログラミングパルスは、アクセス線(例えば、
図2を参照しながら説明したようなビット線115-a)に電気的に接続された第1の電極505と、別のアクセス線(例えば、
図2を参照しながら説明したようなワード線110-a)に電気的に接続された第2の電極515との間の電圧差を使用してカルコゲナイド合金510に印加され得る。或いは、プログラミングパルスは、アクセス線(例えば、
図2を参照しながら説明したようなビット線115-a)に電気的に接続された第1の電極505から、別のアクセス線(例えば、
図2を参照しながら説明したようなワード線110-a)に電気的に接続された第2の電極515へ流れる電流を使用してカルコゲナイド合金510に印加され得、逆もまた然りであり得る。
【0057】
プログラミングパルスの極性は、2つの電極の内の何れが他の電極に対してより高い電位レベルを取るかを判定し得、したがって、カルコゲナイド合金510の元素の異なる空間プロファイルをもたらし得る。プログラミングパルスに対して両極性が実装される場合、自己選択メモリデバイスの周辺回路は、両極性のプログラミングパルスの様々な形状を生み出すように設計され得る。幾つかの実施形態では、電極505及び515に電気的に接続されたアクセス線(例えば、
図2を参照しながら説明したようなビット線115-a及びワード線110-a)の組み合わせを選択することによって、プログラミングパルスと同様の方法でカルコゲナイド合金510に読み出しパルスが印加され得る。幾つかの実施形態では、読み出しパルスは単一の極性を有し得る。
【0058】
カルコゲナイド合金510にプログラミングパルスが印加された場合、第1の電極505と第2の電極515との間の電位差に起因して、カルコゲナイド合金510に渡って電界が確立され得、カルコゲナイド合金510に電流が流れ得る。電界の影響下では、カルコゲナイド合金510の、イオンの形式を取り得る成分(元素又は要素とも称され得る)は、第1の電極505又は第2の電極515の何れかに向かってマイグレーションし得る。
【0059】
カルコゲナイド合金510に(同時に、又は別に)流れる電流は、カルコゲナイド合金510が提示し得る抵抗に起因してカルコゲナイド合金510を加熱し得る。こうした加熱は、電界の下にあるカルコゲナイド合金510内のイオンの移動を助長又は容易にし得る。結果として、カルコゲナイド合金510内の成分の空間分布の不均一な非対象のプロファイルは、カルコゲナイド合金510にプログラミングパルスを印加することに応答して発現し得る。更に、
図4を参照しながら説明したようなプログラミングパルスの様々な形状(例えば、極性及び振幅の変化の両方)は、加熱の強さと併せて電界の向き及び大きさを修正することによって、成分の空間分布の様々なプロファイルを生み出し得る。こうした不均一な非対称の空間分布は、カルコゲナイド合金510の組成の局所的な変化をもたらし得る。幾つかの実施形態では、カルコゲナイド合金510の組成のこうした局所的な変化は、カルコゲナイド合金510の抵抗率の局所的な変化をもたらし得る。
【0060】
図5には、略
図501-a、501-b、501-c、及び501-dによって表されるカルコゲナイド合金510の4つの異なる状態も説明されている。例えば、カルコゲナイド合金510-aの不均一な陰影は、プログラミングパルスを印加することに応答して確立された、カルコゲナイド合金510の成分の不均一な空間分布を表し得る。言い換えれば、より暗く陰影が付けられた領域は、より明るく陰影が付けられた領域と比較した場合により高濃度の成分を有するカルコゲナイド合金510の部分を指し示し得る。これに応じて、濃度プロファイル520-a、520-b、520-c、及び520-dは、第1の電極505と第2の電極515との間の距離の関数として、カルコゲナイド合金510の成分の不均一な空間分布を表し得る。濃度プロファイルは、
図5に説明したように線形又は非線形であり得る。陰影及びプロファイルは、印加されるプログラミングパルスの極性に依存して反転され得る(例えば、略
図501-cと比較した場合の略
図501-a、又はプロファイル520-dと比較した場合のプロファイル520-b)と分かるべきである。
図4を参照しながら説明したような異なる形状を有するプログラミングパルスを印加することによって、付加的な濃度プロファイル(
図5に図示せず)が得られ得ることも分かるべきである。付加的な濃度プロファイルは、濃度勾配の中間レベル、又は
図5に説明した濃度プロファイルよりも急激な濃度プロファイルを有し得る。そのようなものだとして、本開示は、
図5に描写した4つの異なる濃度プロファイルを用いた説明される例に限定されない。
【0061】
各略
図501-a、501-b、501-c、又は501-cは、カルコゲナイド合金510に印加される特定のプログラミングパルスと関連付けられ得る。例えば、略
図501-aは、電圧振幅V
1を有するパルス410-aが印加された後のカルコゲナイド合金の成分の濃度プロファイルの観点からカルコゲナイド合金510の状態を表し得、一方、略
図501-bは、電圧振幅V
2を有するパルス410-aが印加された後のカルコゲナイド合金の成分の濃度プロファイルの観点からカルコゲナイド合金510の状態を表し得る。また、略
図501-cは、電圧振幅-V
1を有するパルス410-bが印加された後のカルコゲナイド合金の成分の濃度プロファイルの観点からカルコゲナイド合金510の状態を表し得、一方、略
図501-dは、電圧振幅-V
2を有するパルス410-bが印加された後のカルコゲナイド合金の成分の濃度プロファイルの観点からカルコゲナイド合金510の状態を表し得る。プログラミングパルスのその他の形式、例えば、
図4に説明したようなパルス420又はパルス440は、カルコゲナイド合金510の成分の特定の不均一な濃度プロファイル、又は特定の局所的な組成の変化、又はカルコゲナイド合金510内の特定の局所的な抵抗率の変化を対象にするために、パルス極性及び全体の電圧(又は電流)振幅の変化と組み合わせて使用され得、順次、自己選択メモリセルの特定の閾値電圧を生み出し得る。
【0062】
カルコゲナイド合金510の成分の特定の不均一な非対称の濃度プロファイルは、読み出しパルスが印加された場合のカルコゲナイド合金510を含む自己選択メモリデバイスの特定の閾値電圧に対応し得る。上で説明したように、アモルファスなカルコゲナイド合金を含むメモリセル(例えば、自己選択メモリセル)は、それと関連付けられた閾値電圧を有し得、すなわち、印加された読み出し電圧が閾値電圧を超えた後に、明白な量の電流が流れ得る。それ故、印加された読み出し電圧が自己選択メモリセルの閾値電圧未満である場合、明白な量の電流は何ら流れなくてもよい。幾つかの実施形態では、電流の流れ又はその欠乏は、選択された自己選択メモリセル内の蓄積された情報を読み出すために、
図1を参照しながら説明したようなセンスコンポーネント125によってセンシングされ得る。幾つかの実施形態では、閾値の挙動は、カルコゲナイド合金510の成分の局所的な濃度、局所的な組成、又は局所的な抵抗率に依存し得る。幾つかの実施形態では、自己選択メモリデバイスの特定の閾値電圧は、第1の電極505又は第2の電極515の又はその付近のカルコゲナイド合金510の成分の濃度に基づいて判定され得る。それ故、カルコゲナイド合金510の成分の濃度プロファイルの観点から略
図501-a、501-b、501-c、及び501-dにより表されたカルコゲナイド合金510の4つの異なる状態は、自己選択メモリデバイスの4つの特定の閾値電圧(例えば、
図6で説明したV
TH1、V
TH2、V
TH3、及びV
TH4)を表し得、したがって、セル毎に2ビットを蓄積するマルチレベルセル構成を表す。略
図501-a、501-b、501-c、又は501-dにより表されるカルコゲナイド合金510の状態の各々は、00、01、10、及び11の4つの異なる論理状態の内の1つを表し得る。
図4を参照しながら説明したような異なる形状を有するプログラミングパルスを印加することによって、(例えば、00、01、10、及び11の4つの論理状態よりも多くの)付加的な論理状態が得られ得ることも分かるべきである。例えば、自己選択メモリセルに印加されるプログラミングパルスを修正することによって、自己選択メモリセル内に蓄積される3ビットの情報を表すために、自己選択メモリセルの閾値電圧の8つの異なる分布(図示せず)が実行可能であり得る。
【0063】
自己選択メモリセルの特定の閾値電圧を得るためにプログラミングパルスの形状をメモリコントローラが判定する場合、メモリコントローラは、自己選択メモリセルの現在の状態と、自己選択メモリセルの所望の特定の閾値電圧とに基づいて、プログラミングパルスの極性及び振幅を判定し得る。例えば、V1を有する矩形パルス410-aは、自己選択メモリセルがVTH1の閾値電圧を現在提示する場合にVTH2を生み出すのには、自己選択メモリセルにとって十分であり得る。-V2を有する矩形パルス410-bは、しかしながら、VTH4を生み出すために同じ自己選択メモリセルに対して使用され得る。或いは、例えば、論理状態00(例えば、VTH1)から論理状態11(例えば、VTH4)へ、又は論理状態10(例えば、VTH3)から論理状態11(例えば、VTH4)へ自己選択メモリセルの論理状態が変化する異なる場合に対しては、異なる極性及び振幅を有するパルス440の異なる形状が判定され得る。
【0064】
図6は、本開示の様々な実施形態に従ったマルチレベル自己選択メモリデバイスをサポートする閾値電圧対プログラミング電流(V
TH-I
PROG)プロット600の一例を説明する。自己選択メモリデバイスは、
図5を参照しながら説明したような第1の電極505及び第2の電極515、又は
図2を参照しながら説明したような第1の電極215-a及び第2の電極225-aを含む合成スタックの一部であり得るカルコゲナイド合金510を含み得る。V
TH-I
PROGプロット600において、自己選択メモリデバイスの閾値電圧は、水平軸(すなわち、x軸)におけるプログラミングパルスと関連付けられた電流の関数として、垂直軸(すなわち、y軸)において自己選択メモリデバイスの閾値電圧が表されている。電流の向きは反対(例えば、正の向きのI
3及びI
4と負の向きのI
1及びI
2)であってもよいと分かるべきである。
図6において、閾値電圧分布300と共に略
図501-a、501-b、501-c、及び501ーdにより表されるカルコゲナイド合金510の4つの異なる状態が並置されている。V
TH-I
PROGプロットは、00、01、10、又は11の内の1つの論理状態に各々対応する4つの区別可能な閾値電圧分布により表されるような、セル毎に2ビットを蓄積する自己選択メモリデバイスの4つの論理状態を表し得る。特定の論理状態の中央V
TH(例えば、00の論理状態のV
TH1)の周囲の変化は、実際のプログラミング電流と、もたらされるV
TH値との変動に起因する閾値電圧の変動を表し得る。
【0065】
プログラミング電流I
PROGの極性の変化は、自己選択メモリセルの閾値電圧の変化に対応し得る。また、ある向きにおけるプログラミング電流I
PROGの増加又は減少は、自己選択メモリセルの閾値電圧の増加又は減少に対応し得る。例えば、プログラミングパルス(例えば、カルコゲナイド合金510に流れる電流I
3を生じさせるプログラミングパルス)が自己選択メモリセルに印加された場合、自己選択メモリセルは、V
TH1に対応する閾値電圧を提示し得る。プログラミングパルス(例えば、カルコゲナイド合金510に流れる電流I
4を生じさせるプログラミングパルス)が自己選択メモリセルに印加された場合、自己選択メモリセルは、V
TH2に対応する閾値電圧を提示し得る。閾値電圧のこうした増加は、
図5を参照しながら説明したように、略
図501-aと501-bとの間の電極の又はその付近の成分の異なる濃度プロファイル、したがって、増加したプログラミング電流I
PROGによって確立されたカルコゲナイド合金の異なる局所的な組成又はカルコゲナイド合金の異なる局所的な抵抗率に起因し得る。また、反対の極性を有するプログラミングパルス(例えば、反対の向きにカルコゲナイド合金510に流れる電流I
2を生じさせるプログラミングパルス)が自己選択メモリセルに印加された場合、自己選択メモリセルは、V
TH3に対応する閾値電圧を提示し得る。自己選択メモリセルの閾値電圧のこうした増加は、
図5を参照しながら説明したように、略
図501-aと501-cとの間の成分の濃度プロファイルの反転に起因し得る。より小さなステップを使用してプログラミング電流レベルを調整することによって、4つよりも多くの閾値電圧レベルが実装され得る。例えば、(例えば、I
3よりも大きいがI
4よりも小さい)中間の振幅を有するがI
3及びI
4と同じ極性のプログラミングパルスは、図示されていない(例えば、V
TH1よりも大きいがV
TH2よりも小さい)異なる閾値電圧を各々特徴とする、成分の異なる濃度ファイル及び/又は局所的な濃度をもたらし得る。
【0066】
それ故、その極性及び振幅により判定されるようなプログラミングパルスの形状は、カルコゲナイド合金510に渡る電界の異なる強度と異なる向きとを生み出すように修正され得る。電界の異なる強度及び向きは、カルコゲナイド合金510の成分の空間分布を変え得る。言い換えれば、プログラミングパルスの形状は、マルチレベルセル動作を可能にするために、自己選択メモリセル内の閾値電圧を成し遂げるように修正され得る。
図6の例は、4つの異なる論理的な状態を用いてセル毎に2ビットを蓄積するマルチレベルセルスキームを説明するが、本開示は、セル毎に2ビットに限定されないと分かるべきである。
【0067】
図7は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするメモリアレイ705のブロック図を示す。メモリアレイ705は、電子メモリ装置と称され得、本明細書に説明されるようなメモリデバイス100のコンポーネントの一例であり得る。
【0068】
メモリアレイ705は、1つ以上のメモリセル710、メモリコントローラ715、ワード線720、リファレンスコンポーネント730、センスコンポーネント735、デジット線740、及びラッチ745を含み得る。これらのコンポーネントは、相互に電子通信し得、本明細書で説明される機能の内の1つ以上を実施し得る。幾つかの場合、メモリセル710は自己選択メモリセルを含み得る。幾つかの場合、メモリコントローラ715は、バイアスコンポーネント750及びタイミングコンポーネント755を含み得る。幾つかの場合、センスコンポーネント735は、リファレンスコンポーネント730として役立ち得る。その他の場合、リファレンスコンポーネント730は随意であり得る。また、
図7は、(破線のボックスの)センスコンポーネント736、ラッチ746、リファレンスコンポーネント731、リファレンス線761、及びセンス制御線765を配置する代替的な選択肢の概略図を示す。センスコンポーネント及び関連するコンポーネント(すなわち、ラッチ、リファレンスコンポーネント、リファレンス線、及びセンス制御線)は、それらの機能的な目的を失うことなく列デコーダ又は行デコーダの何れかと関連付けられ得ると、当業者は分かるであろう。
【0069】
メモリコントローラ715は、
図1及び
図2を参照しながら説明したようなワード線110、デジット線115、及びセンスコンポーネント125の例示であり得るワード線720、デジット線740、及びセンスコンポーネント735と電子通信し得る。メモリアレイ705のコンポーネントは、相互に電子通信し得、
図1~
図6を参照しながら説明し機能の態様を実施し得る。幾つかの場合、リファレンスコンポーネント730、センスコンポーネント735、及びラッチ745は、メモリコントローラ715のコンポーネントであり得る。
【0070】
幾つかの実施形態では、デジット線740は、センスコンポーネント735及び自己選択メモリセル710と電子通信する。自己選択メモリセル710は、論理状態(例えば、第1、第2、又は第3の論理状態)で書き換え可能であり得る。ワード線720は、メモリコントローラ715及び自己選択メモリセル710と電子通信し得る。センスコンポーネント735は、メモリコントローラ715、デジット線740、ラッチ745、及びリファレンス線760と電子通信し得る。リファレンスコンポーネント730は、メモリコントローラ715及びリファレンス線760と電子通信し得る。センス制御線765は、センスコンポーネント735及びメモリコントローラ715と電子通信し得る。これらのコンポーネントは、その他のコンポーネント、接続部、又はバスを介して、上に列挙されないコンポーネントに加えて、メモリアレイ705の内側及び外側の両方のその他のコンポーネントとも電子通信し得る。
【0071】
メモリコントローラ715は、ワード線720又はデジット線740を、それらの様々なノードに電圧を印加することによって活性化するように構成され得る。例えば、バイアスコンポーネント750は、上で説明したように自己選択メモリセル710を読み出す又は書き込むために、自己選択メモリセル710を動作させるための電圧を印加するように構成され得る。幾つかの場合、メモリコントローラ715は、本明細書で説明するように、行デコーダ、列デコーダ、又はそれら両方を含み得る。このことは、
図1を参照しながら説明したように、メモリコントローラ715が1つ以上の自己選択メモリセル105にアクセスすることを可能にし得る。バイアスコンポーネント750はまた、センスコンポーネント735に対するリファレンス信号を生成するための電圧をリファレンスコンポーネント730に提供し得る。また、バイアスコンポーネント750は、センスコンポーネント735の動作のための電圧を提供し得る。
【0072】
幾つかの実施形態では、メモリコントローラ715は、その動作をタイミングコンポーネント755を使用して実施し得る。例えば、タイミングコンポーネント755は、本明細書で論じる、読み出し及び書き込み等のメモリ機能を実施するためのスイッチング及び電圧印加に対するタイミングを含む、様々なワード線選択又はビット線バイアスのタイミングを制御し得る。幾つかの場合、タイミングコンポーネント755はバイアスコンポーネント750の動作を制御し得る。
【0073】
リファレンスコンポーネント730は、センスコンポーネント735に対するリファレンス信号を生成するための様々なコンポーネントを含み得る。リファレンスコンポーネント730は、リファレンス信号を生み出すように構成された回路を含み得る。幾つかの場合、リファレンスコンポーネント730は、他の自己選択メモリセル105を使用して実装され得る。センスコンポーネント735は、(デジット線740を通じた)自己選択メモリセル710からの信号をリファレンスコンポーネント730からのリファレンス信号と比較し得る。論理状態を判定すると、センスコンポーネントは、ラッチ745内に出力をその後蓄積し得、それは、メモリアレイ705が一部である電子デバイスの動作に従って使用され得る。センスコンポーネント735は、ラッチ745及び自己選択メモリセル710と電子通信するセンスアンプを含み得る。
【0074】
メモリコントローラ715及び/又はその様々なサブコンポーネントの内の少なくとも幾つかは、ハードウェア、プロセッサにより実行されるソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実装され得る。プロセッサにより実行されるソフトウェアで実装される場合、メモリコントローラ715及び/又はその様々なサブコンポーネントの内の少なくとも幾つかの機能は、本開示で説明する機能を実行するように設計された汎用プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)若しくはその他のプログラム可能な論理デバイス、個別的なゲート若しくはトランジスタロジック、個別的なハードウェアコンポーネント、又はそれらの任意の組み合わせによって実行され得る。メモリコントローラ715及び/又はその様々なサブコンポーネントの内の少なくとも幾つかは、機能の(複数の)部分が1つ以上の物理的デバイスによって異なる物理的場所に実装されるように分散されることを含む、様々な位置に物理的に設置され得る。幾つかの実施形態では、メモリコントローラ715及び/又はその様々なサブコンポーネントの内の少なくとも幾つかは、本開示の様々な実施形態に従った別個の別々のコンポーネントであり得る。他の例では、メモリコントローラ715及び/又はその様々なサブコンポーネントの内の少なくとも幾つかは、本開示の様々な実施形態に従って、I/Oコンポーネント、送受信器、ネットワークサーバ、別のコンピューティングデバイス、本開示で説明される1つ以上のその他のコンポーネント、又はそれらの組み合わせを含むがそれらに限定されない1つ以上のその他のハードウェアコンポーネントと組み合わせられ得る。
【0075】
メモリコントローラ715は、自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定することと、自己選択メモリセルの所望の論理状態に基づいてプログラミングの極性及び振幅を判定することと、プログラミングパルスの極性及び振幅を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加することとをし得る。
【0076】
メモリコントローラ715はまた、複数の電圧と単一の極性とを有する読み出しパルスを識別することと、読み出しパルスを識別することに基づいて自己選択メモリセルに読み出しパルスを印加することと、読み出しパルスを印加することに基づいて自己選択メモリセルの閾値電圧を検出することと、自己選択メモリセルの閾値電圧を検出することに基づいて自己選択メモリセルの論理状態であって、1ビットよりも多くのデータを表す該論理状態を判定することとをし得る。
【0077】
メモリコントローラ715はまた、カルコゲナイド合金を含む自己選択メモリセルの所望の閾値電圧を判定することであって、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、所望の閾値電圧は、1ビットよりも多くのデータを表す自己選択メモリセルの所望の論理状態に対応することと、自己選択メモリセルの所望の閾値電圧に基づいてプログラミングパルスの極性及び振幅を判定することと、プログラミングパルスの極性及び振幅を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加するによってカルコゲナイド合金の少なくとも1つの要素の空間分布を変えることであって、自己選択メモリセルの所望の閾値電圧は、カルコゲナイド合金の少なくとも1つの要素の空間分布に基づくこととをし得る。
【0078】
メモリコントローラ715はまた、カルコゲナイド合金を含む自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定することと、自己選択メモリセルの所望の論理状態に基づいてプログラミングパルスの形状を判定することと、プログラミングパルスの形状を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加することとをし得る。
【0079】
図8は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするメモリコントローラ815のブロック
図800を示す。メモリコントローラ815は、
図7及び
図9を参照しながら説明したメモリコントローラ715及び915の態様の一例であり得る。メモリコントローラ815は、バイアスコンポーネント820、タイミングコンポーネント825、プログラミングコンポーネント830、及び読み出しコンポーネント840を含み得る。これらのモジュールの各々は、(例えば、1つ以上のバスを介して)相互に直接又は間接的に通信し得る。
【0080】
幾つかの実施形態では、バイアスコンポーネント820は、プログラミングパルスの極性及び振幅を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加すること、カルコゲナイド合金を加熱することに基づいて、カルコゲナイド合金の第1の側面とカルコゲナイド合金の第2の側面との間でカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすこと、自己選択メモリセルにプログラミングパルスを印加することに基づいて、カルコゲナイド合金の局所的な組成を変えるために、電界の下で該少なくとも1つの要素の正味の移動を生み出すことをし得る。
【0081】
幾つかの実施形態では、バイアスコンポーネント820は、読み出しパルスを識別することに基づいて自己選択メモリセルに読み出しパルスを印加すること、プログラミングパルスの極性及び振幅を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加することによってカルコゲナイド合金の少なくとも1つの要素の空間分布を変えることであって、自己選択メモリセルの所望の電圧閾値は、カルコゲナイド合金の少なくとも1つの要素の空間分布に基づくことをし得る。
【0082】
幾つかの実施形態では、バイアスコンポーネント820は、プログラミングパルスの形状を判定することに基づいて自己選択メモリセルにプログラミングパルスを印加すること、プログラミングパルスが印加される少なくとも1つの継続期間の間に電界の下で自己選択メモリセルに流れる電流を使用してカルコゲナイド合金を加熱すること、電流を生み出すことに基づいてカルコゲナイド合金を加熱すること、又は自己選択メモリセルに流れる電流に基づいてカルコゲナイド合金の温度変化を起こすことをし得る。
【0083】
幾つかの場合、自己選択メモリセルにプログラミングパルスを印加することは、プログラミングパルスの極性及び振幅に基づいて、カルコゲナイド合金に渡る電界を使用してカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすことを含み得る。幾つかの場合、自己選択メモリセルにプログラミングパルスを印加することは、プログラミングパルスの極性及び振幅に基づいてカルコゲナイド合金に渡る電界を確立すること及びカルコゲナイド合金を加熱(例えば、同時に加熱)することによって、カルコゲナイド合金の局所的な組成を修正することを含み得る。幾つかの場合、自己選択メモリセルは、カルコゲナイド合金の第1の側面に接触する第1の電極との間の第1の接合面と、カルコゲナイド合金の第2の側面に接触する第2の電極との間の第2の接合面とを含み得、自己選択メモリセルにプログラミングパルスを印加することは、カルコゲナイド合金に流れる電流を生み出すことを更に含む。
【0084】
幾つかの実施形態では、タイミングコンポーネント825は、1つ以上の継続期間の間に維持される第1の極性を有するプログラミングパルスの電流振幅を設定し得る。幾つかの場合、プログラミングパルスの形状を判定することは、第1の極性を有する固定の電圧振幅が維持される1つ以上の継続期間を判定することを含み得る。
【0085】
幾つかの実施形態では、プログラミングコンポーネント830は、自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定すること、自己選択メモリセルにプログラミングパルスが印加される各継続期間の間にカルコゲナイド合金に渡る電界の強度若しくは向き、又はそれら両方を変更するためにプログラミングパルスの形状を変えることをし得る。
【0086】
幾つかの実施形態では、プログラミングコンポーネント830は、自己選択メモリセルの現在の状態と、自己選択メモリセルの所望の論理状態とに基づいてプログラミングパルスの極性を判定することであって、自己選択メモリセルの所望の論理状態は、閾値電圧分布と関連付けられ、自己選択メモリセルの閾値電圧分布は、カルコゲナイド合金の局所的な組成に少なくとも部分的に基づいて設定されること、1つ以上の継続期間の間に維持される極性を有するプログラミングパルスの電圧振幅を設定すること、1つ以上の継続期間の間に第1の電極と関連付けられたプログラミングパルスの電流振幅を設定すること、自己選択メモリセルの現在の論理状態と自己選択メモリセルの所望の論理状態とに基づいてプログラミングパルスの極性又は振幅を判定することであって、極性及び振幅はプログラミングパルスの形状を画定することをし得る。
【0087】
幾つかの実施形態では、プログラミングコンポーネント830は、複数の電圧と単一の極性とを有する読み出しパルスを識別すること、読み出しパルスと同じ極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングすること、自己選択メモリセルの所望の論理状態に基づいてプログラミングパルスの極性及び振幅を判定することをし得る。
【0088】
幾つかの実施形態では、プログラミングコンポーネント830は、カルコゲナイド合金を含む自己選択メモリセルの所望の閾値電圧を判定することであって、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、所望の閾値電圧は、1ビットよりも多くのデータを表す自己選択メモリセルの所望の論理状態に対応することをし得る。
【0089】
幾つかの実施形態では、プログラミングコンポーネント830は、自己選択メモリセルの所望の閾値電圧に基づいて、プログラミングパルスの極性及び振幅を判定すること、自己選択メモリセルの第1の接合面におけるカルコゲナイド合金の少なくとも1つの要素の濃度に基づいて、自己選択メモリセルの所望の閾値電圧を設定することをし得る。
【0090】
幾つかの実施形態では、プログラミングコンポーネント830は、カルコゲナイド合金を含む自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定すること、自己選択メモリセルの所望の論理状態に基づいてプログラミングパルスの形状を判定すること、読み出しパルスとは異なる極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングすることをし得る。
【0091】
幾つかの場合、プログラミングパルスの極性及び振幅を判定することは、自己選択メモリセルの現在の状態と自己選択メモリセルの所望の論理状態とに基づいてプログラミングパルスの極性を設定することを含み得る。
【0092】
幾つかの実施形態では、読み出しコンポーネント835は、読み出しパルスを印加することに基づいて自己選択メモリセルの閾値電圧を検出することと、自己選択メモリセルの閾値電圧を検出することに基づいて自己選択メモリセルの論理状態であって、1ビットよりも多くのデータを表す該論理状態を判定することとをし得る。
【0093】
図9は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスをサポートするデバイス905を含むシステム900を説明する。デバイス905は、例えば、
図1を参照しながら上で説明したようなメモリデバイス100のコンポーネントの一例であり得、又は該コンポーネントを含み得る。デバイス905は、通信を送受信するためのコンポーネントを含む双方向の音声及びデータ通信のためのコンポーネントを含み得、メモリコントローラ915、メモリセル920、ベーシックインプット/アウトプットシステム(BIOS)コンポーネント925、プロセッサ930、I/Oコントローラ935、及び周辺コンポーネント940を含む。これらのコンポーネントは、1つ以上のバス(例えば、バス910)を介して電子通信し得る。
【0094】
メモリセル920は、本明細書に説明されるように情報(すなわち、論理的な状態の形式で)蓄積し得る。幾つかの実施形態では、メモリセル920は、自己選択メモリセルを含むクロスポイントメモリアレイを含み得る。メモリコントローラ915は、該クロスポイントアレイと結合され得、
図8を参照しながら上で説明したようなアクセス動作(例えば、プログラミング又は読み出し)を実施するように動作可能であり得る。幾つかの実施形態では、メモリコントローラ915は、プログラミングパルスの極性を生み出す周辺回路を含み得る。幾つかの実施形態では、クロスポイントメモリアレイは、カルコゲナイド合金を各々含む自己選択メモリセルの2つ以上のデッキを含み得、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合する。幾つかの実施形態では、自己選択メモリセルは、第1の電極と接合するカルコゲナイド合金の第1の側面の第1の領域と、第2の電極と接合するカルコゲナイド合金の第2の側面の第2の領域とを有し得る。
【0095】
BIOSコンポーネント925は、ファームウェアとして動作するBIOSを含むソフトウェアコンポーネントであり、それは、様々なハードウェアコンポーネントを初期化し得、稼働し得る。BIOSコンポーネント925は、プロセッサと様々なその他のコンポーネント、例えば、周辺コンポーネント、入力/出力制御コンポーネント等との間のデータの流れをも管理し得る。BIOSコンポーネント925は、リードオンリーメモリ(ROM)、フラッシュメモリ、又は任意のその他の不揮発性メモリ内に蓄積されたプログラム又はソフトウェアを含み得る。
【0096】
プロセッサ930は、インテリジェントハードウェアデバイス(例えば、汎用プロセッサ、DSP、中央処理装置(CPU)、マイクロコントローラ、ASIC、FPGA、プログラム可能論理デバイス、個別的なゲート若しくはトランジスタ論理コンポーネント、個別的なハードウェアコンポーネント、又はそれらの任意の組み合わせ)を含み得る。幾つかの場合、プロセッサ930は、メモリコントローラを使用してメモリアレイを動作するように構成され得る。その他の場合、メモリコントローラはプロセッサ930に統合され得る。プロセッサ930は、様々な機能(例えば、マルチレベル自己選択メモリデバイスをサポートする機能又はタスク)を実施するためにメモリ内に蓄積されたコンピュータ可読命令を実行するように構成され得る。
【0097】
I/Oコントローラ935は、デバイス905に対する入力及び出力信号を管理し得る。I/Oコントローラ935は、デバイス905に統合されない周辺装置をも管理し得る。幾つかの場合、I/Oコントローラ935は、外部の周辺装置への物理的接続又はポートを表し得る。幾つかの場合、I/Oコントローラ935は、iOS(登録商標)、ANDROID(登録商標)、MS-DOS(登録商標)、MS-WINDOWS(登録商標)、OS/2(登録商標)、UNIX(登録商標)、LINUX(登録商標)、又は別の周知のオペレーティングシステム等のオペレーティングシステムを利用し得る。他の場合、I/Oコントローラ935は、モデム、キーボード、マウス、タッチスクリーン、又は同様のデバイスを表し得、又はそれらと相互作用し得る。幾つかの場合、I/Oコントローラ935は、プロセッサの一部として実装され得る。幾つかの場合、ユーザは、I/Oコントローラ935を介して、又はI/Oコントローラ935により制御されるハードウェアコンポーネントを介してデバイス905と相互作用し得る。
【0098】
周辺コンポーネント940は、任意の入力若しくは出力デバイス、又はそうしたデバイスに対するインタフェースを含み得る。例示として、ディスクコントローラ、音声コントローラ、画像コントローラ、イーサネットコントローラ、モデム、ユニバーサルシリアルバス(USB)コントローラ、シリアル若しくはパラレルポート、又はペリフェラルコンポーネントインタコネクト(PCI)若しくはアクセラレーテッドグラフィックスポート(AGP)スロット等の周辺カードスロットが挙げられ得る。
【0099】
入力945は、デバイス905又はそのコンポーネントへの入力を提供する、デバイス905の外部のデバイス又は信号を表し得る。これは、ユーザインタフェース、又は他のデバイスとのインタフェース若しくは他のデバイス間のインタフェースを含み得る。幾つかの場合、入力945は、I/Oコントローラ935によって管理され得、又は周辺コンポーネント940を介してデバイス905と相互作用し得る。
【0100】
出力950は、デバイス905又はそのコンポーネントの内の何れかから出力を受信するように構成された、デバイス905の外部のデバイス又は信号をも表し得る。出力950の例は、表示装置、音声スピーカ、プリントデバイス、別のプロセッサ、又はプリント回路基板等を含み得る。幾つかの場合、出力950は、周辺コンポーネント940を介してデバイス905とインタフェースで連結する周辺素子であり得る。幾つかの場合、出力950は、I/Oコントローラ935によって管理され得る。
【0101】
デバイス905のコンポーネントは、それらの機能を実行するように設計された回路を含み得る。これは、本明細書で説明した機能を実行するように構成された様々な回路素子、例えば、導電線、トランジスタ、コンデンサ、インダクタ、抵抗器、アンプ、又はその他の能動若しくは非能動素子を含み得る。デバイス905は、コンピュータ、サーバ、ラップトップコンピュータ、ノートブックコンピュータ、タブレットコンピュータ、携帯電話、ウェアラブル電子デバイス、又はパーソナル電子デバイス等であり得る。又は、デバイス905は、こうしたデバイスの一部又は態様であり得る。
【0102】
図10は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスのための方法1000を説明するフローチャートを示す。方法1000の動作は、本明細書に説明されるように、メモリデバイス100又はそのコンポーネントによって実装され得る。例えば、方法1000の動作は、
図1及び
図7~
図9を参照しながら説明したようなメモリコントローラによって実施され得る。幾つかの実施形態では、メモリデバイス100は、以下で説明する機能を実施するために、該デバイスの機能的素子を制御するためのコードのセットを実行し得る。付加的に又は代替的に、メモリデバイス100は、以下で説明される機能の態様を専用のハードウェアを使用して実施し得る。
【0103】
ブロック1005において、メモリデバイス100は、自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定し得る。ブロック1005の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1005の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0104】
ブロック1010において、メモリデバイス100は、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいて、プログラミングパルスの極性及び振幅を判定し得る。ブロック1010の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1010の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0105】
ブロック1015において、メモリデバイス100は、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加し得る。ブロック1015の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1015の動作の態様は、
図7~
図9を参照しながら説明したようなバイアスコンポーネントによって実施され得る。
【0106】
幾つかの場合、方法100はまた、自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定することと、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいて、プログラミングパルスの極性及び振幅を判定することと、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加することとを含み得る。幾つかの場合、自己選択メモリセルは、カルコゲナイド合金を含み、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、自己選択メモリセルの所望の論理状態は、閾値電圧分布と関連付けられ、自己選択メモリセルの閾値電圧分布は、カルコゲナイド合金の局所的な組成に少なくとも部分的に基づいて設定される。
【0107】
幾つかの場合、自己選択メモリセルにプログラミングパルスを印加することは、プログラミングパルスの極性及び振幅に基づいてカルコゲナイド合金に渡って電界を確立すること及びカルコゲナイド合金を加熱(例えば、同時に加熱)することによって、カルコゲナイド合金の局所的な組成を修正することを含み得る。幾つかの場合、カルコゲナイド合金の少なくとも1つの要素は、シリコン(Si)、セレン(Se)、ヒ素(As)、又はゲルマニウム(Ge)を含み、方法1000は、自己選択メモリセルにプログラミングパルスを印加することに少なくとも部分的に基づいて、カルコゲナイド合金の局所的な組成を変えるために電界の下で該少なくとも1つの要素の正味の移動を生み出すことを含み得る。
【0108】
幾つかの場合、プログラミングパルスは、自己選択メモリセルに印加される電圧差、又は自己選択メモリセルに流れる電流を含む。幾つかの場合、方法1000は、自己選択メモリセルの現在の状態と、自己選択メモリセルの所望の論理状態とに少なくとも部分的に基づいて、プログラミングパルスの極性を判定することを含み得る。幾つかの場合、方法1000は、1つ以上の継続期間の間に維持される極性を有するプログラミングパルスの電圧振幅を設定すること、又は1つ以上の継続期間の間に第1の電極と関連付けられたプログラミングパルスの電流振幅を設定することを含み得る。幾つかの場合、方法1000は、自己選択メモリセルの現在の論理状態と、自己選択メモリセルの所望の論理状態とに基づいて、プログラミングパルスの極性又は振幅を判定することであって、該極性及び振幅は、プログラミングパルスの形状を画定することを含み得る。
【0109】
幾つかの場合、プログラミングパルスは、第1の極性を有する第1の電圧振幅、第1の極性を有する第2の電圧振幅、第2の極性を有する第1の電圧振幅、又は第2の極性を有する第2の電圧振幅を含み得る。幾つかの場合、プログラミングパルスは、第1の電極から流れる電流の第1の電流振幅、第1の電極から流れる電流の第2の電流振幅、第1の電極へ流れる電流の第1の電流振幅、又は第1の電流へ流れる第2の電流振幅を含み得る。
【0110】
幾つかの実施形態では、マルチレベル自己選択メモリデバイスのための装置が説明される。該装置は、自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定するための手段と、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいて、プログラミングパルスの極性及び振幅を判定するための手段と、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加するための手段とを含み得る。
【0111】
幾つかの場合、装置は、プログラミングパルスの極性及び振幅に少なくとも部分的に基づいてカルコゲナイド合金に渡って電界を確立すること及びカルコゲナイド合金を加熱(例えば、同時に加熱)することによって、カルコゲナイド合金の局所的な組成を修正するための手段を含み得る。幾つかの場合、装置は、自己選択メモリセルにプログラミングパルスを印加することに少なくとも部分的に基づいて、カルコゲナイド合金の局所的な組成を変えるために電界の下で該少なくとも1つの要素の正味の移動を生み出すことであって、カルコゲナイド合金の少なくとも1つの要素は、シリコン(Si)、セレン(Se)、ヒ素(As)、又はゲルマニウム(Ge)を含むことのための手段を含み得る。
【0112】
幾つかの場合、装置は、自己選択メモリセルの現在の状態と、自己選択メモリセルの所望の論理状態とに少なくとも部分的に基づいてプログラミングパルスの極性を判定するための手段を含み得る。幾つかの場合、装置は、1つ以上の継続期間の間に維持される極性を有するプログラミングパルスの電圧振幅を設定すること、又は1つ以上の継続期間の間に第1の電極と関連付けられたプログラミングパルスの電流振幅を設定することのための手段を含み得る。幾つかの場合、装置は、自己選択メモリセルの現在の論理状態と、自己選択メモリセルの所望の論理状態とに基づいて、プログラミングパルスの極性又は振幅を判定することであって、該極性及び振幅は、プログラミングパルスの形状を画定することのための手段を含み得る。
【0113】
図11は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスのための方法1100を説明するフローチャートを示す。方法1100の動作は、本明細書に説明されるように、メモリデバイス100又はそのコンポーネントによって実装され得る。例えば、方法1100の動作は、
図1及び
図7~
図9を参照しながら説明したようなメモリコントローラによって実施され得る。幾つかの実施形態では、メモリデバイス100は、以下で説明する機能を実施するために、該デバイスの機能的素子を制御するためのコードのセットを実行し得る。付加的に又は代替的に、メモリデバイス100は、以下で説明される機能の態様を専用のハードウェアを使用して実施し得る。
【0114】
ブロック1105において、メモリデバイス100は、複数の電圧と単一の極性とを有する読み出しパルスを識別し得る。ブロック1105の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1105の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0115】
ブロック1110において、メモリデバイス100は、読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに読み出しパルスを印加し得る。ブロック1110の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1110の動作の態様は、
図7~
図9を参照しながら説明したようなバイアスコンポーネントによって実施され得る。
【0116】
ブロック1115において、メモリデバイス100は、読み出しパルスを印加することに少なくとも部分的に基づいて、自己選択メモリセルの閾値電圧を検出し得る。ブロック1115の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1115の動作の態様は、
図7~
図9を参照しながら説明したような読み出しコンポーネントによって実施され得る。
【0117】
ブロック1120において、メモリデバイス100は、自己選択メモリセルの閾値電圧を検出することに少なくとも部分的に基づいて、自己選択メモリセルの論理状態であって、1ビットよりも多くのデータを表す該論理状態を判定し得る。ブロック1120の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1120の動作の態様は、
図7~
図9を参照しながら説明したような読み出しコンポーネントによって実施され得る。
【0118】
幾つかの場合、方法1100は、複数の電圧と単一の極性とを有する読み出しパルスを識別することと、読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに読み出しパルスを印加することと、読み出しパルスを印加することに少なくとも部分的に基づいて、自己選択メモリセルの閾値電圧を検出することと、自己選択メモリセルの閾値電圧を検出することに少なくとも部分的に基づいて、自己選択メモリセルの論理状態であって、1ビットよりも多くのデータを表す該論理状態を判定することとを含み得る。幾つかの場合、方法1100は、読み出しパルスと同じ極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングすることを含み得る。幾つかの場合、方法1100は、読み出しパルスとは異なる極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングすることを含み得る。
【0119】
幾つかの場合、読み出しパルスは、所定の電圧範囲内で時間に対する電圧の一定速度の増加を有し得、所定の電圧範囲は、1ビットよりも多くのデータを蓄積する自己選択メモリセルの閾値電圧の範囲と関連付けられる。幾つかの場合、読み出しパルスは、複数の継続期間を含み得、複数の継続期間の内の各継続期間は、複数の電圧の内の電圧と関連付けられる。
【0120】
幾つかの実施形態では、マルチレベル自己選択メモリデバイスのための装置が説明される。該装置は、複数の電圧と単一の極性とを有する読み出しパルスを識別するための手段と、読み出しパルスを識別することに少なくとも部分的に基づいて、自己選択メモリセルに読み出しパルスを印加するための手段と、読み出しパルスを印加することに少なくとも部分的に基づいて、自己選択メモリセルの閾値電圧を検出するための手段と、自己選択メモリセルの閾値電圧を検出することに少なくとも部分的に基づいて、自己選択メモリセルの論理状態であって、1ビットよりも多くのデータを表す該論理状態を判定するための手段とを含み得る。
【0121】
幾つかの場合、装置は、読み出しパルスと同じ極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングするための手段を含み得る。幾つかの場合、装置は、読み出しパルスとは異なる極性を有するプログラミングパルスを使用して自己選択メモリセルをプログラミングするための手段を含み得る。
【0122】
図12は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスのための方法1200を説明するフローチャートを示す。方法1200の動作は、本明細書に説明されるように、メモリデバイス100又はそのコンポーネントによって実装され得る。例えば、方法1200の動作は、
図1及び
図7~
図9を参照しながら説明したようなメモリコントローラによって実施され得る。幾つかの例では、メモリデバイス100は、以下で説明する機能を実施するために、該デバイスの機能的素子を制御するためのコードのセットを実行し得る。付加的に又は代替的に、メモリデバイス100は、以下で説明される機能の態様を専用のハードウェアを使用して実施し得る。
【0123】
ブロック1205において、メモリデバイス100は、カルコゲナイド合金を含む自己選択メモリセルの所望の閾値電圧を判定することであって、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、所望の閾値電圧は、1ビットよりも多くのデータを表す自己選択メモリセルの所望の論理状態に対応することをし得る。ブロック1205の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1205の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0124】
ブロック1210において、メモリデバイス100は、自己選択メモリセルの所望の閾値電圧に少なくとも部分的に基づいてプログラミングパルスの極性及び振幅を判定し得る。ブロック1210の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1210の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0125】
ブロック1215において、メモリデバイス100は、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて自己選択メモリセルにプログラミングパルスを印加することによってカルコゲナイド合金の少なくとも1つの要素の空間分布を変えることであって、自己選択メモリセルの所望の閾値電圧は、カルコゲナイド合金の少なくとも1つの要素の空間分布に少なくとも部分的に基づくことをし得る。ブロック1215の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1215の動作の態様は、
図7~
図9を参照しながら説明したようなバイアスコンポーネントによって実施され得る。
【0126】
幾つかの場合、方法1200は、カルコゲナイド合金を含む自己選択メモリセルの所望の閾値電圧を判定することであって、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、所望の閾値電圧は、1ビットよりも多くのデータを表す自己選択メモリセルの所望の論理状態に対応することと、自己選択メモリセルの所望の閾値電圧に少なくとも部分的に基づいてプログラミングパルスの極性及び振幅を判定することと、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて自己選択メモリセルにプログラミングパルスを印加することによってカルコゲナイド合金の少なくとも1つの要素の空間分布を変えることであって、自己選択メモリセルの所望の閾値電圧は、カルコゲナイド合金の少なくとも1つの要素の空間分布に少なくとも部分的に基づくこととを含み得る。
【0127】
幾つかの場合、プログラミングパルスの極性及び振幅を判定することは、自己選択メモリセルの現在の状態と自己選択メモリセルの所望の論理状態とに基づいて、プログラミングパルスの極性を設定することと、1つ以上の継続期間の間に維持される第1の極性を有するプログラミングパルスの電流振幅を設定することとを含み得る。幾つかの場合、自己選択メモリセルにプログラミングパルスを印加することは、プログラミングパルスの極性及び振幅に少なくとも部分的に基づいて、カルコゲナイド合金に渡る電界を使用してカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすことと、自己選択メモリセルに流れる電流に少なくとも部分的に基づいてカルコゲナイド合金の温度変化を起こすこととを含み得る。幾つかの場合、方法1200は、自己選択メモリセルの第1の接合面におけるカルコゲナイド合金の少なくとも1つの要素の濃度に少なくとも部分的に基づいて、自己選択メモリセルの所望の閾値電圧を設定することを含み得る。
【0128】
幾つかの実施形態では、マルチレベル自己選択メモリデバイスのための装置が説明される。該装置は、カルコゲナイド合金を含む自己選択メモリセルの所望の閾値電圧を判定することであって、カルコゲナイド合金の第1の側面は第1の電極と接合し、カルコゲナイド合金の第2の側面は第2の電極と接合し、所望の閾値電圧は、1ビットよりも多くのデータを表す自己選択メモリセルの所望の論理状態に対応することのための手段と、自己選択メモリセルの所望の閾値電圧に少なくとも部分的に基づいてプログラミングパルスの極性及び振幅を判定するための手段と、プログラミングパルスの極性及び振幅を判定することに少なくとも部分的に基づいて自己選択メモリセルにプログラミングパルスを印加することによってカルコゲナイド合金の少なくとも1つの要素の空間分布を変えることであって、自己選択メモリセルの所望の閾値電圧は、カルコゲナイド合金の少なくとも1つの要素の空間分布に少なくとも部分的に基づくことのための手段とを含み得る。
【0129】
幾つかの場合、装置は、自己選択メモリセルの現在の状態と、自己選択メモリセルの所望の特定の閾値電圧とに少なくとも部分的に基づいて、プログラミングパルスの極性を設定するための手段と、1つ以上の継続期間の間に維持される第1の極性を有するプログラミングパルスの電流振幅を設定するための手段とを含み得る。幾つかの場合、装置は、プログラミングパルスの極性及び振幅に少なくとも部分的に基づいて、カルコゲナイド合金に渡る電界を使用してカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすための手段と、自己選択メモリセルに流れる電流に少なくとも部分的に基づいてカルコゲナイド合金の温度変化を起こすための手段とを含み得る。幾つかの場合、装置は、自己選択メモリセルの第1の接合面におけるカルコゲナイド合金の少なくとも1つの要素の濃度に少なくとも部分的に基づいて、自己選択メモリセルの所望の閾値電圧を設定するための手段を含み得る。
【0130】
図13は、本開示の実施形態に従ったマルチレベル自己選択メモリデバイスのための方法1300を説明するフローチャートを示す。方法1300の動作は、本明細書に説明されるように、メモリデバイス100又はそのコンポーネントによって実装され得る。例えば、方法1300の動作は、
図1及び
図7~
図9を参照しながら説明したようなメモリコントローラによって実施され得る。幾つかの実施形態では、メモリデバイス100は、以下で説明する機能を実施するために、該デバイスの機能的素子を制御するためのコードのセットを実行し得る。付加的に又は代替的に、メモリデバイス100は、以下で説明される機能の態様を専用のハードウェアを使用して実施し得る。
【0131】
ブロック1305において、メモリデバイス100は、カルコゲナイド合金を含む自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定し得る。ブロック1305の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1305の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0132】
ブロック1310において、メモリデバイス100は、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいて、プログラミングパルスの形状を判定し得る。ブロック1310の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1310の動作の態様は、
図7~
図9を参照しながら説明したようなプログラミングコンポーネントによって実施され得る。
【0133】
ブロック1315において、メモリデバイス100は、プログラミングパルスの形状を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加し得る。ブロック1315の動作は、本明細書で説明した方法に従って実施され得る。幾つかの例では、ブロック1315の動作の態様は、
図7~
図9を参照しながら説明したようなバイアスコンポーネントによって実施され得る。
【0134】
幾つかの場合、方法1300は、カルコゲナイド合金を含む自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定することと、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいてプログラミングパルスの形状を判定することと、プログラミングパルスの形状を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加することとを含み得る。幾つかの場合、プログラミングパルスの形状を判定することは、第1の極性を有する固定の電圧振幅が維持される1つ以上の継続期間を判定することを含み得る。
【0135】
幾つかの場合、方法1300は、自己選択メモリセルにプログラミングパルスが印加される各継続期間の間にカルコゲナイド合金に渡る電界の強度若しくは向き、又はそれら両方を変更するためにプログラミングパルスの形状を変えることと、プログラミングパルスが印加される少なくとも1つの継続期間の間に電界の下で自己選択メモリセルに流れる電流を使用してカルコゲナイド合金を加熱することとを含み得る。幾つかの場合、自己選択メモリセルは、カルコゲナイド合金の第1の側面に接触する第1の電極との間の第1の接合面と、カルコゲナイド合金の第2の側面に接触する第2の電極との間の第2の接合面とを含み得、自己選択メモリセルにプログラミングパルスを印加することは、カルコゲナイド合金に流れる電流を生み出すことと、電流を生み出すことに少なくとも部分的に基づいてカルコゲナイド合金を加熱することと、カルコゲナイド合金を加熱することに少なくとも部分的に基づいて、カルコゲナイド合金の第1の側面とカルコゲナイド合金の第2の側面との間でカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすこととを更に含み得る。
【0136】
幾つかの実施形態では、マルチレベル自己選択メモリデバイスのための装置が説明される。該装置は、カルコゲナイド合金を含む自己選択メモリセルの所望の論理状態であって、1ビットよりも多くのデータを表す該所望の論理状態を判定するための手段と、自己選択メモリセルの所望の論理状態に少なくとも部分的に基づいて、プログラミングパルスの形状を判定するための手段と、プログラミングパルスの形状を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加するための手段とを含み得る。幾つかの場合、装置は、第1の極性を有する固定の電圧振幅が維持される1つ以上の継続期間を判定するための手段を含み得る。
【0137】
幾つかの場合、装置は、自己選択メモリセルにプログラミングパルスが印加される各継続期間の間にカルコゲナイド合金に渡る電界の強度若しくは向き、又はそれら両方を変更するためにプログラミングパルスの形状を変えるための手段と、プログラミングパルスが印加される少なくとも1つの継続期間の間に電界の下で自己選択メモリセルに流れる電流を使用してカルコゲナイド合金を加熱するための手段とを含み得る。幾つかの場合、装置は、カルコゲナイド合金に流れる電流を生み出すための手段と、電流を生み出すことに少なくとも部分的に基づいてカルコゲナイド合金を加熱するための手段と、カルコゲナイド合金を加熱することに少なくとも部分的に基づいて、カルコゲナイド合金の第1の側面とカルコゲナイド合金の第2の側面との間でカルコゲナイド合金の少なくとも1つの要素の正味の移動を起こすための手段とを含み得る。
【0138】
幾つかの場合、マルチレベル自己選択メモリデバイスにアクセスするための方法はまた、電極との接合面を有するカルコゲナイド合金を含む自己選択メモリセルの閾値電圧であって、1ビット以上のデータを表す所望の論理状態に対応する該閾値電圧を判定することを含み得る。幾つかの場合、自己選択メモリセルの閾値電圧は、接合面におけるカルコゲナイド合金の局所的な組成に少なくとも部分的に基づいて設定される。幾つかの場合、自己選択メモリセルの閾値電圧は、接合面におけるカルコゲナイド合金の少なくとも1つの成分の濃度に比例する。幾つかの場合、方法はまた、自己選択メモリセルの閾値電圧を判定することに少なくとも部分的に基づいて、単一の極性を有するプログラミングパルスの形状を判定することを含み得る。幾つかの場合、方法はまた、プログラミングパルスの形状を判定することに少なくとも部分的に基づいて、自己選択メモリセルにプログラミングパルスを印加することを含み得る。
【0139】
上で説明した方法は可能な実装を説明すること、動作及びステップは再配置され得、さもなければ修正され得ること、並びにその他の実装が可能であることに留意すべきである。更に、方法の内の2つ以上からの実施形態は組み合わせられ得る。
【0140】
本明細書で説明される情報及び信号は、様々な異なる科学技術及び技術の内の何れかを使用して表され得る。例えば、上の説明全体を通じて言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光粒子、又はそれらの任意の組み合わせにより表され得る。幾つかの図面は、複数の信号を単一の信号として説明し得るが、バスが様々なビット幅を有し得る場合に、信号は複数の信号のバスを表し得ることを当業者は理解するであろう。
【0141】
本明細書で使用されるとき、用語“仮想接地(virtual ground)”は、約ゼロボルト(0V)の電圧に保持されるがグランドと直接接続されない電気回路のノードを指す。したがって、仮想接地の電圧は、一時的に変動し得、定常状態で約0Vに戻り得る。仮想接地は、オペアンプ及び抵抗器を含む電圧分圧器等の様々な電子回路素子を使用して実装され得る。その他の実装も可能である。“仮想接地する(virtual grounding)”又は“仮想接地される(virtually grounded)”は約0Vに接続されることを意味する。
【0142】
用語“電子通信”及び“結合された(coupled)”は、コンポーネント間の電子流動をサポートするコンポーネント間の関係を指す。これは、コンポーネント間の直接接続を含み得、又は介在コンポーネントを含み得る。相互に電子通信する又は結合されたコンポーネントは、(例えば、通電された回路内の)電子若しくは信号を能動的に交換し得、又は(例えば、非通電の回路内の)電子若しくは信号を能動的に交換しないことがあるが、回路が通電されると電子若しくは信号を交換するように構成され得、動作可能であり得る。例として、スイッチ(例えば、トランジスタ)を介して物理的に接続された2つのコンポーネントは、スイッチの状態(すなわち、開放又は閉鎖)に関わらず電子通信し、又は結合され得る。
【0143】
本明細書で使用されるとき、用語“実質的に(substantially)”は、修飾される特徴(例えば、用語、実質的により修飾される動詞又は形容詞)は、絶対的である必要はないが、該特徴の利点を達成するのに十分に近いことを意味する。
【0144】
本明細書で使用されるとき、用語“電極”は、導電体を指し得、幾つかの場合、メモリアレイのメモリセル又はその他のコンポーネントへの電気的コンタクトとして用いられ得る。電極は、メモリデバイス100の素子又はコンポーネント間の導電経路を提供するトレース、ワイヤ、導電線、又は導電層等を含み得る。
【0145】
カルコゲナイド材料は、元素S、Se、及びTeの内の少なくとも1つを含む材料又は合金であり得る。カルコゲナイド材料は、S、Se、Te、Ge、As、Al、Si,Sb、Au、インジウム(In)、ガリウム(Ga)、スズ(Sn)、ビスマス(Bi)、パラジウム(Pd)、コバルト(Co)、酸素(O)、銀(Ag)、ニッケル(Ni)、プラチナ(Pt)の合金を含み得る。例示的なカルコゲナイド材料及び合金は、Ge-Te、In-Se、Sb-Te、Ga-Sb、In-Sb、As-Te、Al-Te、Ge-Sb-Te、Te-Ge-As、In-Sb-Te、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd、又はGe-Te-Sn-Ptを含み得るが、これらに限定されない。ハイフンで連結された化学的組成の表記法は、本明細書で使用されるとき、特定の化合物又は合金に含まれる元素を指し示し、指し示された元素を含む全ての化学量論を表すことを意図する。例えば、Ge-Teは、GexTeyを含み得、x及びyは、任意の正の整数であり得る。可変抵抗材料の他の例は、例えば、遷移金属、アルカリ土類金属、及び/又は希土類金属等の2つ以上の金属を含む、二元金属酸化物材料又は混合原子価酸化物を含み得る。実施形態は、メモリセルのメモリ素子と関連付けられる1つ以上の特定の可変抵抗材料には限定されない。例えば、可変抵抗材料の他の例は、メモリ素子を形成するために使用され得、とりわけ、カルコゲナイド材料、巨大磁気抵抗材料、又はポリマーベースの材料を含み得る。
【0146】
用語“絶縁された(isolated)”は、コンポーネント間を電子が現在流れることができないコンポーネント間の関係を指し、コンポーネントは、それらの間に開回路がある場合に相互から絶縁される。例えば、スイッチにより物理的に接続された2つのコンポーネントは、スイッチが開放された場合に相互から絶縁され得る。
【0147】
メモリデバイス100を含む本明細書で論じられるデバイスは、シリコン、ゲルマニウム、シリコン-ゲルマニウム合金、ヒ化ガリウム、窒化ガリウム等の半導体基板上に形成され得る。幾つかの場合、該基板は半導体ウエハである。その他の場合、該基板は、シリコンオングラス(SOG)若しくはシリコンオンサファイア(SOP)等のシリコンオンインシュレータ(SOI)基板、又は別の基板上の半導体材料のエピタキシャル層であり得る。基板又は基板のサブ領域の導電性は、リン、ホウ素、又はヒ素を含むがそれらに限定されない様々な化学種を使用したドーピングを通じて制御され得る。ドーピングは、イオン注入により、又は任意のその他のドーピング手段により、基板の初期の形成又は成長の間に実施され得る。
【0148】
本明細書で論じられる1つ以上のトランジスタは、電界効果トランジスタ(FET)を表し得、ソース、ドレイン、及びゲートを含む3端子デバイスを含み得る。端子は、導電性材料、例えば金属を通じて他の電子素子に接続され得る。ソース及びドレインは、導電性であり得、高濃度にドープされた、例えば縮退した、半導体領域を含み得る。ソース及びドレインは、低濃度にドープされた半導体領域又はチャネルによって分離され得る。チャネルがn型(すなわち、主たるキャリアが電子)である場合、該FETはn型FETと称され得る。チャネルがp型(すなわち、主たるキャリアがホール)である場合、該FETはp型FETと称され得る。チャネルは、絶縁ゲート酸化物によって覆われ得る。チャネルの導電性は、ゲートに電圧を印加することによって制御され得る。例えば、正の電圧又は負の電圧をn型FET又はp型FETに夫々印加することは、チャネルが導電性になる結果をもたらし得る。トランジスタの閾値電圧以上の電圧がトランジスタのゲートに印加された場合、トランジスタは“オン”に又は“活性化”され得る。トランジスタの閾値電圧未満の電圧がトランジスタのゲートに印加された場合、トランジスタは“オフ”に又は“不活性化”され得る。
【0149】
添付の図面に関連して本明細書に記載される説明は、例示的構成を説明し、実装され得る又は請求項の範囲内にある全ての例を表さない。本明細書で使用される用語“例示的(exemplary)”は、“好適”又は“その他の例よりも有利”ではなく“一例、実例、又は説明として役立つこと”を意味する。詳細な説明は、説明される技術の理解を提供する目的のための具体的詳細を含む。これらの技術は、しかしながら、これらの具体的詳細なしに実践され得る。幾つかの実例では、説明される例の内容を不明確にすることを避けるために、周知の構造体及びデバイスはブロック図の形式で示される。
【0150】
添付の図において、同様のコンポーネント又は機構は、同じ参照ラベルを有し得る。更に、同じ種類の様々なコンポーネントは、ダッシュと、同様のコンポーネント間で区別する第2のラベルとを参照ラベルに続けることによって区別され得る。明細書中にただ第1の参照ラベルが使用される場合、説明は、第2の参照ラベルに関係なく、同じ第1の参照ラベルを有する同様のコンポーネントの内の何れか1つに適用できる。
【0151】
本明細書に説明される情報及び信号は、様々な異なる科学技術及び技術の何れかを使用して表され得る。例えば、上の説明全体を通じて言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光粒子、又はそれらの任意の組み合わせにより表され得る。
【0152】
本明細書の開示と関連して記述される様々な説明ブロック及びモジュールは、本明細書で説明される機能を実施するように設計された汎用プロセッサ、DSP、ASIC、FPGA若しくはその他のプログラム可能論理デバイス、個別的なゲート若しくはトランジスタ論理、個別的なハードウェアコンポーネント、又はそれらの任意の組み合わせで実装又は実施され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代わりに、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、又はステートマシーンであり得る。プロセッサはまた、コンピューティングデバイスの組み合わせ(例えば、デジタルシグナルプロセッサ(DSP)とマイクロプロセッサとの組み合わせ、複数のマイクロプロセッサ、DSPコアと連携した1つ以上のマイクロプロセッサ、又は任意のその他のこうした構成)として実装され得る。
【0153】
本明細書で説明される機能は、ハードウェア、プロセッサにより実行されるソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実装され得る。プロセッサにより実行されるソフトウェアで実装される場合、機能は、コンピュータ可読媒体上の1つ以上の命令又はコードとして蓄積され得、又は送信され得る。その他の例及び実装は、開示及び添付の請求項の範囲内である。例えば、ソフトウェアの性質に起因して、上で説明した機能は、プロセッサにより実行されるソフトウェア、ハードウェア、ファームウェア、配線、又はこれらの任意の組み合わせを使用して実装できる。機能を実装する機構はまた、機能の(複数の)部分が異なる物理的場所で実装されるように分散されることを含む、様々な場所に物理的に配置され得る。また、請求項を含む本明細書で使用されるとき、項目のリスト(例えば、“少なくとも1つの”又は“の内の1つ以上”等の句により前置きされる項目のリスト)に使用されるような“又は”は、例えば、A、B、又はCの内の少なくとも1つのリストがA又はB又はC又はAB又はAC又はBC又はABC(すなわち、A及びB及びC)を意味するように包含的リストを指し示す。また、本明細書で使用されるとき、句“基づいて”は、条件の閉集合への言及として解釈されないであろう。例えば、“条件Aに基づいて”と説明される例示的ステップは、本開示の範囲から逸脱することなく、条件A及び条件Bの両方に基づき得る。言い換えれば、本明細書で使用されるとき、句“基づいて”は、句“少なくとも部分的に基づいて”と同様の方法で解釈されるであろう。
【0154】
コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む非一時的コンピュータ記憶媒体及び通信媒体の両方を含む。非一時的記憶媒体は、汎用又は専用のコンピュータによりアクセスできる任意の利用可能な媒体であり得る。例として、非限定的に、非一時的コンピュータ可読媒体は、RAM、ROM、電気的消去可能プログラム可能リードオンリーメモリ(EEPROM)、コンパクトディスク(CD)ROM若しくはその他の光ディスクストレージ、磁気ディスクストレージ若しくはその他の磁気ストレージデバイス、又は所望のプログラムコード手段を命令若しくはデータ構造の形式で搬送若しくは蓄積するのに使用でき、且つ汎用若しくは専用コンピュータ又は汎用若しくは専用プロセッサによりアクセスできる任意のその他の非一時的媒体を含み得る。また、任意の接続は、コンピュータ可読媒体として適切に称される。例えば、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等の無線技術を使用してウェブサイト、サーバ、又はその他の遠隔ソースからソフトウェアが送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等の無線技術は媒体の定義に含まれる。本明細書で使用されるとき、磁気ディスク(disk)及び光学ディスク(disc)は、CD、レーザディスク、光ディスク、デジタル多目的ディスク(DVD)、フロッピーディスク、及びブルーレイディスクを含み、光学ディスクがレーザでデータを光学的に再生する一方で、磁気ディスクはデータを磁気的に通常再生する。上の組み合わせもコンピュータ可読媒体の範囲内に含まれる。
【0155】
本明細書の説明は、当業者が開示を製作又は使用できるように提供される。開示への様々な修正が当業者に容易に分かるであろうし、本明細書で定義される包括的な原理は開示の範囲を逸脱することなくその他の変形に適用され得る。したがって、開示は、本明細書で説明された例示及び設計に限定されず、本明細書に開示された原理及び新規の機構と一致する最も広い範囲に一致すべきである。