IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NTTドコモの特許一覧

<>
  • 特許-端末、無線通信システム及び通信方法 図1
  • 特許-端末、無線通信システム及び通信方法 図2
  • 特許-端末、無線通信システム及び通信方法 図3
  • 特許-端末、無線通信システム及び通信方法 図4
  • 特許-端末、無線通信システム及び通信方法 図5
  • 特許-端末、無線通信システム及び通信方法 図6
  • 特許-端末、無線通信システム及び通信方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-20
(45)【発行日】2022-12-28
(54)【発明の名称】端末、無線通信システム及び通信方法
(51)【国際特許分類】
   H04W 24/10 20090101AFI20221221BHJP
   H04W 72/04 20090101ALI20221221BHJP
   H04W 16/32 20090101ALI20221221BHJP
   H04W 56/00 20090101ALI20221221BHJP
【FI】
H04W24/10
H04W72/04 111
H04W16/32
H04W56/00 110
【請求項の数】 5
(21)【出願番号】P 2021152410
(22)【出願日】2021-09-17
(62)【分割の表示】P 2019554138の分割
【原出願日】2017-11-16
(65)【公開番号】P2021193827
(43)【公開日】2021-12-23
【審査請求日】2021-09-17
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100124844
【弁理士】
【氏名又は名称】石原 隆治
(72)【発明者】
【氏名】原田 浩樹
(72)【発明者】
【氏名】佐野 洋介
(72)【発明者】
【氏名】▲高▼田 卓馬
【審査官】伊東 和重
(56)【参考文献】
【文献】特開2016-048857(JP,A)
【文献】国際公開第2016/068072(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24-7/26
H04W 4/00-99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
第1の基地局及び第2の基地局と通信を行う端末であって、
前記第1の基地局と、前記第2の基地局とのタイミング差を測定するための設定を、前記第1の基地局から受信する受信部と、
前記タイミング差を測定するための設定に基づいて、前記第2の基地局に対する測定を実行する制御部と、
実行された前記測定の結果を前記第1の基地局に送信する送信部とを有し、
前記制御部は、前記測定を前記第2の基地局と通信を開始する前に実行し
前記タイミング差を測定するための測定ギャップと、前記第1の基地局におけるinter-frequency測定用の測定ギャップとがオーバラップした場合、いずれかの測定ギャップを優先する端末。
【請求項2】
前記タイミング差を測定するための設定は、前記第2の基地局の同期信号の周波数位置に関する情報、前記第2の基地局の同期信号の送信周期に関する情報、前記第2の基地局の同期信号のサブキャリア間隔に関する情報、報告セル数の少なくとも1つを含む請求項1記載の端末。
【請求項3】
送信される前記測定の結果は、前記報告セル数を上限とする1又は複数の前記第2の基地局のセルごとに、セルID、システムフレームナンバのオフセット、フレーム境界オフセット、電力に係る測定結果の少なくとも1つを含む請求項2記載の端末。
【請求項4】
第1の基地局、第2の基地局及び端末を含む無線通信システムであって、
前記端末は、
前記第1の基地局と、前記第2の基地局とのタイミング差を測定するための設定を、前記第1の基地局から受信する受信部と、
前記タイミング差を測定するための設定に基づいて、前記第2の基地局に対する測定を実行する制御部と、
前記測定の結果を前記第1の基地局に送信する送信部とを有し、
前記制御部は、前記測定を前記第2の基地局と通信を開始する前に実行し
前記タイミング差を測定するための測定ギャップと、前記第1の基地局におけるinter-frequency測定用の測定ギャップとがオーバラップした場合、いずれかの測定ギャップを優先し、
前記第1の基地局は、
前記タイミング差を測定するための設定を、前記端末に送信する送信部と、
前記測定の結果を前記端末から受信する受信部とを有する無線通信システム。
【請求項5】
第1の基地局及び第2の基地局と通信を行う端末が実行する通信方法であって、
前記第1の基地局と、前記第2の基地局とのタイミング差を測定するための設定を、前記第1の基地局から受信するステップと、
前記タイミング差を測定するための設定に基づいて、前記第2の基地局に対する測定を実行するステップと、
実行された前記測定の結果を前記第1の基地局に送信するステップと、
前記測定を、前記第2の基地局と通信を開始する前に実行するステップと
前記タイミング差を測定するための測定ギャップと、前記第1の基地局におけるinter-frequency測定用の測定ギャップとがオーバラップした場合、いずれかの測定ギャップを優先するステップとを有する通信方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、端末、無線通信システム及び通信方法に関する。
【背景技術】
【0002】
現在、3GPP(Third Generation Partnership Project)において、LTE(Long Term Evolution)システム及びLTE-Advancedシステムの後継として、NR(New Radio Access Technology)システムと呼ばれる新たな無線通信システムの仕様策定が進められている(例えば非特許文献1)。
【0003】
NRシステムでは、LTEシステムにおけるデュアルコネクティビティと同様に、LTEシステムの基地局(eNB)とNRシステムの基地局(gNB)との間でデータを分割し、これらの基地局によってデータを同時送受信する、LTE-NRデュアルコネクティビティ又はマルチRAT(Multi Radio Access Technology)デュアルコネクティビティと呼ばれる技術の導入が検討されている(例えば非特許文献2)。また、LTE-LTEデュアルコネクティビティにおいては、マスタノードであるeNBとセカンダリノードであるeNBとの間のSFN(System Frame Number)及びサブフレームタイミングの差をユーザ装置が測定し、ネットワークに報告するSSTD(SFN and Subframe Timing Difference)がサポートされている(例えば非特許文献3)。
【先行技術文献】
【非特許文献】
【0004】
【文献】3GPP TR 38.804 V14.0.0(2017-03)
【文献】3GPP TS 37.340 V1.0.2(2017-09)
【文献】3GPP TS 36.331 V14.4.0(2017-09)
【発明の概要】
【発明が解決しようとする課題】
【0005】
LTE-NRデュアルコネクティビティにおいて、非同期のデュアルコネクティビティを行う場合、マスタノードであるeNBとセカンダリノードであるgNBとの間でフレーム、スロット又はシンボルタイミング差がどれくらいあるかが不明であるため、ユーザ装置がgNBのNRキャリアに対して測定を実行する必要がある。しかしながら、当該測定の手順が確立されていなかった。
【0006】
上述した問題点を鑑み、本発明の課題は、少なくともNRを利用する無線通信システムで実行される同一RATまたは異なるRATの基地局とのデュアルコネクティビティのための測定をユーザ装置が実行することである。
【課題を解決するための手段】
【0007】
開示の技術によれば、第1の基地局及び第2の基地局と通信を行う端末であって、前記第1の基地局と、前記第2の基地局とのタイミング差を測定するための設定を、前記第1の基地局から受信する受信部と、前記タイミング差を測定するための設定に基づいて、前記第2の基地局に対する測定を実行する制御部と、実行された前記測定の結果を前記第1の基地局に送信する送信部とを有し、前記制御部は、前記測定を前記第2の基地局と通信を開始する前に実行し、前記タイミング差を測定するための測定ギャップと、前記第1の基地局におけるinter-frequency測定用の測定ギャップとがオーバラップした場合、いずれかの測定ギャップを優先する端末が提供される。
【発明の効果】
【0008】
開示の技術によれば、少なくともNRを利用する無線通信システムで実行されるデュアルコネクティビティのための測定をユーザ装置が実行することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施の形態における無線通信システムの構成例を示す図である。
図2】本発明の実施の形態における測定手順のシーケンスの一例を示す図である。
図3】本発明の実施の形態における非同期DCでの測定手順の一例(1)を示す図である。
図4】本発明の実施の形態における非同期DCでの測定手順の一例(2)を示す図である。
図5】本発明の実施の形態における基地局装置100の機能構成の一例を示す図である。
図6】本発明の実施の形態におけるユーザ装置200の機能構成の一例を示す図である。
図7】基地局装置100又はユーザ装置200のハードウェア構成の一例を示す図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
【0011】
本実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
【0012】
また、以下で説明する実施の形態では、既存のLTEで使用されているSS(Synchronization Signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical RACH)等の用語を使用しているが、これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語を、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等と表記する。
【0013】
図1は、本発明の実施の形態に係る無線通信システムの構成例である。図1において、本発明の一実施例による無線通信システムの概略を説明する。
【0014】
図1に示されるように、ユーザ装置200(以降、「UE200」ともいう。)は、LTEシステム及びNRシステムによって提供される基地局装置100A、基地局装置100B(以降、基地局装置100Aと基地局装置100Bを区別しない場合「基地局装置100」という。)と通信接続すると共に、基地局装置100Aをマスタノードとし、基地局装置100BをセカンダリノードとするLTE-NRデュアルコネクティビティをサポートする。すなわち、ユーザ装置200は、マスタノードである基地局装置100A及びセカンダリノードである基地局装置100Bにより提供される複数のコンポーネントキャリアを同時に利用して、マスタノードである基地局装置100A及びセカンダリノードである基地局装置100Bと同時送信又は同時受信を実行することが可能である。なお、図1においてLTEシステム及びNRシステムはそれぞれ1つの基地局装置しか図示されていないが、一般にLTEシステム又はNRシステムにおいて、それぞれのサービスエリアをカバーするよう多数の基地局装置100が配置される。
【0015】
なお、以下の実施例は、LTE-NRデュアルコネクティビティに関して説明される。本開示によるユーザ装置は、LTE-NRデュアルコネクティビティに限定されず、異なるRATを利用した複数の無線通信システムの間のデュアルコネクティビティ、すなわち、マルチRATデュアルコネクティビティに適用可能である。また、同一のRATを利用したNR-NRデュアルコネクティビティにも適用可能である。以下、デュアルコネクティビティを「DC」ともいう。
【0016】
なお、本実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
【0017】
また、以下の説明において、送信ビームを用いて信号を送信することは、プリコーディングベクトルが乗算された(プリコーディングベクトルでプリコードされた)信号を送信することとしてもよい。同様に、受信ビームを用いて信号を受信することは、所定の重みベクトルを受信した信号に乗算することとしてもよい。また、送信ビームを用いて信号を送信することは、特定のアンテナポートで信号を送信することと表現されてもよい。同様に、受信ビームを用いて信号を受信することは、特定のアンテナポートで信号を受信することと表現されてもよい。アンテナポートとは、3GPPの規格で定義されている論理アンテナポート又は物理アンテナポートを指す。なお、送信ビーム及び受信ビームの形成方法は、上記の方法に限られない。例えば、複数アンテナを備える基地局装置100及びユーザ装置200において、それぞれのアンテナの角度を変える方法を用いてもよいし、プリコーディングベクトルを用いる方法とアンテナの角度を変える方法を組み合わせる方法を用いてもよいし、異なるアンテナパネルを切り替えて利用してもよいし、複数のアンテナパネルを合わせて使う方法を組み合わせる方法を用いてもよいし、その他の方法を用いてもよい。また、例えば、高周波数帯において、複数の互いに異なる送信ビームが使用されてもよい。複数の送信ビームが使用されることを、マルチビーム運用といい、ひとつの送信ビームが使用されることを、シングルビーム運用という。
【0018】
(実施例)
以下、実施例について説明する。
【0019】
図2は、本発明の実施の形態における測定手順のシーケンスの一例を示す図である。ステップS1において、基地局装置100は、RRCメッセージを介して、情報要素measConfigを含むRRCConnectionReconfigurationをユーザ装置200に送信する。measConfigには、ユーザ装置200が実行する測定の設定に関する情報が含まれる。例えば、intra-frequency測定、inter-frequency測定、inter-RAT mobility測定及び測定ギャップ設定等に関する情報が含まれてよい。なお、RRCConnectionReconfigurationは一例であり、他のRRCメッセージによってmeasConfigは通知されてもよく、例えば、RRCConnectionResumeを介してユーザ装置200にmeasConfigは送信されてもよい。
【0020】
ステップS2において、ユーザ装置200は、ステップS1で受信したmeasConfigによる設定に基づいて測定を実行する。LTEセル又はNRセルに対して、必要な測定が実行される。
【0021】
ステップS3において、ユーザ装置200は、ステップS2で実行した測定結果をRRCメッセージMeasurementReportを介して基地局装置100に送信する。基地局装置100は、受信した測定結果を参照して、ユーザ装置200に必要な無線リソースの設定及びスケジューリング等を実行する。
【0022】
ここで、LTEノードとNRノードとで、非同期のDCが行われる場合を想定する。非同期のDCにおいては、LTEノードとNRノードとの間で、無線フレーム、スロット又はシンボルタイミング差がどれくらいであるかが不明である。LTE-LTEのDCにおいては、マスタノード(「PCell」ともいう。)とセカンダリノード(「PSCell」ともいう。)との間のSFN及びサブフレームタイミングをユーザ装置200は測定して、基地局装置100に報告するSSTD測定がサポートされている。SSTD測定を実行することによって、例えば、マスタノードとセカンダリノード間において、DRX(Discontinuous reception)のアクティブ期間を同期させることができる。
【0023】
LTEにおけるSSTD測定は、PCellとPSCell間のSFNオフセット、フレーム境界オフセット、サブフレーム境界オフセットをユーザ装置200は測定し、基地局装置100に報告する。以下に、ユーザ装置200にSSTD測定の設定に関するRRCメッセージ「MeasResultSSTD」の例を示す。
MeasResultSSTD-r13 ::= SEQUENCE {
sfn-OffsetResult-r13 INTEGER (0..1023),
frameBoundaryOffsetResult-r13 INTEGER (-5..4),
subframeBoundaryOffsetResult-r13 INTEGER (0..127)
}
【0024】
sfn-OffsetResultは、SFNオフセットに対応する情報要素であり、0から1023までの値をとる。frameBoundaryOffsetResultは、フレーム境界オフセットに対応する情報要素であり、-5から4までの値をとる。subframeBoundaryOffsetResultは、サブフレーム境界オフセットに対応する情報要素であり、0から127までの値をとる。基地局装置100は、ユーザ装置200に対して、PSCell設定後に、「MeasResultSSTD」を測定させ、報告させる。
【0025】
一方、ユーザ装置200が、PSCellを設定するためには、セル検出及び基地局装置100への報告を実行する必要がある。LTEにおける非同期DCにおいては、以下の手順によって、PSCellが設定される。
1)マスタノードからInter-frequency measurementがユーザ装置200に設定される。
2)マスタノードは、測定報告結果からPSCellのIDを認識し、ユーザ装置200にPSCellを設定する。
3)マスタノードは、ユーザ装置200に対して、SSTD測定を設定する。
4)マスタノードは、ユーザ装置200からのSSTD測定結果報告により、マスタノードとセカンダリノード間のタイミングオフセットを認識し、セカンダリノードと共有する。
【0026】
図3は、本発明の実施の形態における非同期DCでの測定手順の一例(1)を示す図である。図2で説明したLTE-LTEの非同期DCにおける手順を、LTE-NRの非同期DCへ適用した場合の動作について説明する。
【0027】
測定ターゲットが非同期DCを行うLTEキャリアである場合、LTEのマスタノードから、Inter-frequency measurementをユーザ装置200に設定する。ユーザ装置の能力に応じて、異周波の測定には測定ギャップが合わせて設定されるケースとそうでないケースがある。図3の上図に示されるように、LTEにおいては同期信号の送信周期が5msのため、マスタノードとセカンダリノードとが非同期の場合であっても5msのウィンドウで測定可能である。図3の上図において、SF(サブフレーム)#0及びSF#5で同期信号SS(Synchronization Signal)が検出される。すなわち、5msのウィンドウは、少なくともSF#0又はSF#5で送信されるひとつのSSを含む。
【0028】
一方、測定ターゲットが非同期DCを行うNRキャリアである場合、LTEのマスタノードから、Inter RAT NR measurementをユーザ装置200に設定する。LTEキャリアを測定する場合と同様、ユーザ装置の能力に応じて必要があれば測定ギャップが合わせて設定される。図3の下図に示されるように、NRにおいては同期信号を含むSS blockの送信周期に5ms、10ms、20ms、40ms、80ms又は160msが設定可能であるため、マスタノードとセカンダリノードとが非同期かつセカンダリノードにおいて送信周期160msを使用している場合、同期信号を検出するには160msのウィンドウが必要である。すなわち、160msのウィンドウは、少なくともひとつのSS burst setを含む。なお、SS burst setは、1又は複数のSS blockで構成される。
【0029】
図4は、本発明の実施の形態における非同期DCでの測定手順の一例(2)を示す図である。図3で説明したように、NRにおいては、SS blockの送信周期が5msから160msまで設定可能であるため、NRキャリアが測定ターゲットである場合、inter-RAT測定における必要な測定ギャップ長が大きくなるケースがある。
【0030】
ここで、事前にSSTD測定によりマスタノードとセカンダリノード間のタイミング差が、ネットワークで取得されていれば、適切な測定ウィンドウタイミングをユーザ装置200に設定することが可能である。図4に示されるように、SMTC(SS block measurement timing control)ウィンドウを、SS burst setが送信される期間を含むように、SS burstが送信される周期よりも短く設定することが可能である。しかしながら、SSTD測定はPCellと特定のPSCellとの間のタイミング差の測定であるため、PSCellを発見し設定した後でないと、ユーザ装置200は、SSTD測定を行うことができない。そのため、SSTD測定には、SS blockの測定が必要であるため、SSTD測定を異周波キャリアに対して行うために必要な測定ギャップ長が大きくなる。
【0031】
そこで、LTE-NRの非同期DCを効率よく実行するため、例えば、ネットワーク側でタイミング差測定の仕組みを有さずに、また大きな測定ギャップ長によるサービングセルでの通信不可状態を回避するような測定手順が必要となる。
【0032】
当該測定手順として、PSCell設定前に、SSTD測定をユーザ装置200に設定可能とする手順がある。例えば、新たな情報要素「report-interRAT-SSTD-Meas」によって、PSCell設定前に、SSTD測定をユーザ装置200に設定する。当該情報要素「report-interRAT-SSTD-Meas」によって、ユーザ装置200は、PCellと指定されたキャリアで検出されたinter-RATセルとのSSTDを測定する。Measurement object等から、以下のパラメータの一部又は全部が設定可能である。
1)測定対象周波数及びSS block周波数位置
2)SS burst set periodicity
3)SMTC周期及び期間、さらにSMTCウィンドウ期間として{5,10,20,40,80,160}msのいずれか
4)SS blockのサブキャリア間隔
5)報告セル数
6)報告周期及び回数等
7)報告内容
【0033】
1)測定対象周波数及びSS block周波数位置、2)SS buurst set beriodicity、3)SMTC周期及び期間、さらにSMTCウィンドウ期間として{5,10,20,40,80,160}msのいずれか、4)SS blockのサブキャリア間隔については、PCellが、予め自セル周辺のPSCellとなり得るNRセルの情報を取得しておくことにより、ユーザ装置200に通知される。1)~4)の情報は、周辺のNRセルの準静的な情報であり、当該情報をユーザ装置200が取得することによって、当該NRセルを検出する場合に測定ギャップを短縮することができる。
【0034】
5)報告セル数に関して、複数セルが設定される場合、複数のセルIDとそれぞれのセルに対するSSTD測定結果が報告されるようにしてもよい。
【0035】
6)報告周期及び回数等に関して、周期的な報告が設定されてもよいし、報告回数が設定されてもよい。例えば、ユーザ装置200は、対象周波数でNRセルが検出されなかった場合でも報告は行い、所定の回数又は時間が経過した時点で測定報告を停止してもよいし、報告は行わずに所定の時間が経過したら測定報告を停止してもよい。
【0036】
7)報告内容に関して、SSTD測定結果に加えて、検出セルのRSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal-to-Interference plus Noise power Ratio)、ビームのID又はRSRPの一部又は全部が報告されるように設定されてもよい。
【0037】
また、セカンダリノードで適用されているSS burst set periodicityの情報に基づいて、マスタノードからユーザ装置200に測定ギャップを伴うInter-RAT SSTD測定が設定されてもよい。測定ギャップ長は、例えば、{5,10,20,40,80,160}msに、returning timeの1msを加えた値が設定されてもよい。測定ギャップ周期は、例えば{40,80}msでもよいし、他の値が設定されてもよい。
【0038】
Inter-RAT SSTD測定用の測定ギャップが設定されたサービングセルでは、測定ギャップ内でPDSCH又はPDCCHの受信及びPUCCH又はPUSCHの送信等は実行されなくてもよい。
【0039】
Inter-RAT SSTD測定用の測定ギャップは、通常のinter-frequency測定又はinter-RAT測定用の測定ギャップとは別途設定される。ユーザ装置200は、複数の測定ギャップがオーバラップした場合、Inter-RAT SSTD測定用の測定ギャップを優先してもよいし、通常のinter-frequency測定又はinter-RAT測定用の測定ギャップを優先してもよい。
【0040】
マスタノードに属するPCellとキャリアアグリゲーションされているSCellについて、Inter-RAT SSTD測定用の測定ギャップが設定された場合、測定ギャップ期間中はSCellのdeactivationタイマは停止されてもよい。deactivationタイマが停止されることで、Inter-RAT SSTD測定用の測定ギャップのためにSCellがディアクティベートされることを防ぐことができる。
【0041】
また、マスタノードからInter-RAT SSTD測定が設定された場合、ユーザ装置200は、対象周波数をintra-frequency測定相当の動作によって測定してもよい。すなわち、ユーザ装置200は、対象周波数を測定ギャップなしで測定する。ユーザ装置200は、PCellのタイミングを基準に、設定されたタイミング、例えば、SMTCのタイミング、期間又は周期に基づいて、SSTD測定を実行する。
【0042】
なお、Inter-RAT SSTD測定が設定されたタイミング、すなわち、SMTCウィンドウの開始時刻において、サービングセルで一時的にinterruptionが発生すると想定してもよい。ユーザ装置200においてinterruptionは、例えば、RFモジュールのオンオフ動作・切り替え動作等により発生する。しかしながら、大きな測定ギャップを設定することなく、周辺NRセルのSSTD測定が可能となる。
【0043】
ここで、SSTD測定結果報告に基づいて、PSCellをユーザ装置200に設定する場合は、さらなるinterruptionは発生しないと想定されてもよい。SSTD測定において取得された報告が、PSCellの設定に使用できる場合、再度RFモジュールをオンオフしたり切り替えたりする必要がないからである。
【0044】
また、Inter-RAT SSTD測定報告は、以下の情報を含んでもよい。
1)検出したセルID
2)SFNオフセット
3)フレーム境界オフセット
4)スロット境界オフセット
5)電力に関する測定結果
6)ビームID
【0045】
1)検出したセルIDに関して、ユーザ装置200は、設定された報告セル数を上限として、複数のセルIDを報告してもよい。
【0046】
2)SFNオフセットに関して、ユーザ装置200は、検出したセルごとに報告してもよい。
【0047】
3)フレーム境界オフセットに関して、ユーザ装置200は、検出したセルごとに報告してもよい。オフセットの情報を示すビット幅は、設定されたSS Blockのサブキャリア間隔に応じて、変更されてよい。例えば、ユーザ装置200は、PCellのサブフレーム#0の境界とタイミングが合致するNRセルにおけるスロットインデックスを報告する。
【0048】
4)スロット境界オフセットに関して、ユーザ装置200は、検出したセルごとに報告してもよい。オフセットの情報を示すビット幅は、設定されたSS Blockのサブキャリア間隔に応じて、変更されてよい。例えば、ユーザ装置200は、PCellのサブフレーム境界とタイミングが合致するNRセルにおけるシンボル単位のインデックスを報告する。
【0049】
5)電力に関する測定結果に関して、測定結果は、例えばRSRP、RSRQ、SINRであってよく、検出したセルごとに報告される。ビーム測定結果の報告がユーザ装置200に設定されていた場合には、さらに検出したビームごとにRSRP、RSRQ、SINRが報告されてもよい。
【0050】
6)ビームIDに関して、ユーザ装置200にビーム測定結果の報告が設定された場合に検出したビームごとに報告される。
【0051】
なお、上記のSSTD測定は、PSCellが設定される前に実行されるが、PSCellが設定された後にも、上記のSSTD測定が同様に行われてもよい。当該SSTD測定は、PCellと設定されたPSCellとの間のタイミング差が測定されて報告される。
【0052】
上述の実施例において、ユーザ装置200は、基地局装置100から通知されるSSTDを測定する設定に基づいて、デュアルコネクティビティを行うPSCell設定前に、候補となるNRセルとマスタノードのセルとのSSTDを測定することができる。ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報、例えば、周波数位置、送信周期、サブキャリア間隔等を取得することで、効率のよい測定を実行することができる。
【0053】
すなわち、少なくともNRを利用する無線通信システムで実行されるデュアルコネクティビティのための測定をユーザ装置が実行することができる。
【0054】
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局装置100及びユーザ装置200の機能構成例を説明する。基地局装置100及びユーザ装置200はそれぞれ、少なくとも実施例を実施する機能を含む。ただし、基地局装置100及びユーザ装置200はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
【0055】
図5は、基地局装置100の機能構成の一例を示す図である。図5に示されるように、基地局装置100は、送信部110と、受信部120と、設定情報管理部130と、測定設定部140とを有する。図5に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
【0056】
送信部110は、ユーザ装置200側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、ユーザ装置200から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置200へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、等を送信する機能を有する。また、送信部110は、ユーザ装置200に送信電力制御に関する情報及びスケジューリングに関する情報、測定の設定に係る情報を送信し、受信部120は、ユーザ装置200から測定結果の報告に係るメッセージを受信する。
【0057】
設定情報管理部130は、予め設定される設定情報、及び、ユーザ装置200に送信する各種の設定情報を格納する。設定情報の内容は、例えば、ユーザ装置200における測定の設定に使用する情報等である。
【0058】
測定設定部140は、実施例において説明した、ユーザ装置200において実行される測定の設定に使用される情報の生成に係る制御、及びユーザ装置200から受信した測定結果の処理に係る制御を行う。
【0059】
図6は、ユーザ装置200の機能構成の一例を示す図である。図6に示されるように、ユーザ装置200は、送信部210と、受信部220と、設定情報管理部230と、測定制御部240とを有する。図6に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
【0060】
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置100から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を受信する機能を有する。また、送信部210は、基地局装置100に測定結果の報告に係るメッセージを送信し、受信部220は、基地局装置100から測定の設定に使用する情報を受信する。
【0061】
設定情報管理部230は、受信部220により基地局装置100から受信した各種の設定情報を格納する。また、設定情報管理部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、測定を実行するための設定に係る情報等である。
【0062】
測定制御部240は、実施例において説明した、ユーザ装置200における測定の実行に係る制御を行う。なお、測定制御部240における測定結果送信等に関する機能部を送信部210に含め、測定制御部240における測定に係る設定受信等に関する機能部を受信部220に含めてもよい。
【0063】
(ハードウェア構成)
上述の本発明の実施の形態の説明に用いた機能構成図(図5及び図6)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
【0064】
また、例えば、本発明の一実施の形態における基地局装置100及びユーザ装置200はいずれも、本発明の実施の形態に係る処理を行うコンピュータとして機能してもよい。図7は、本発明の実施の形態に係る基地局装置100又はユーザ装置200である無線通信装置のハードウェア構成の一例を示す図である。上述の基地局装置100及びユーザ装置200はそれぞれ、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0065】
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局装置100及びユーザ装置200のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0066】
基地局装置100及びユーザ装置200における各機能は、プロセッサ1001、記憶装置1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
【0067】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
【0068】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、補助記憶装置1003及び/又は通信装置1004から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図5に示した基地局装置100の送信部110、受信部120、設定情報管理部130、測定設定部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図6に示したユーザ装置200の送信部210と、受信部220と、設定情報管理部230、測定制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
【0069】
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。記憶装置1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0070】
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び/又は補助記憶装置1003を含むデータベース、サーバその他の適切な媒体であってもよい。
【0071】
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、基地局装置100の送信部110及び受信部120は、通信装置1004で実現されてもよい。また、ユーザ装置200の送信部210及び受信部220は、通信装置1004で実現されてもよい。
【0072】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0073】
また、プロセッサ1001及び記憶装置1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
【0074】
また、基地局装置100及びユーザ装置200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
【0075】
(実施の形態のまとめ)
以上説明したように、本発明の実施の形態によれば、第1の基地局装置及び第2の基地局装置と通信を行うユーザ装置であって、前記第1の基地局装置と、前記第2の基地局装置とのタイミング差を測定するための設定を、前記第1の基地局装置から受信する受信部と、前記タイミング差を測定するための設定に基づいて、前記第2の基地局装置に対する測定を実行する制御部と、実行された前記測定の結果を前記第1の基地局装置に送信する送信部とを有し、実行される前記測定は、前記第2の基地局装置と通信を開始する前に実行されるユーザ装置が提供される。
【0076】
上記の構成によって、ユーザ装置200は、基地局装置100から通知されるSSTDを測定する設定に基づいて、デュアルコネクティビティを行うPSCell設定前に、候補となるNRセルとマスタノードのセルとのSSTDを測定することができる。すなわち、少なくともNRを利用する無線通信システムで実行されるデュアルコネクティビティのための測定をユーザ装置が実行することができる。
【0077】
前記タイミング差を測定するための設定は、前記第2の基地局装置の同期信号に関する情報を含んでもよい。当該構成により、ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報を取得することで、効率のよい測定を実行することができる。
【0078】
前記タイミング差を測定するための設定は、前記第2の基地局装置の同期信号の周波数位置に関する情報、前記第2の基地局装置の同期信号の送信周期に関する情報、前記第2の基地局装置の同期信号のサブキャリア間隔に関する情報の一部又は全部を含んでもよい。当該構成により、ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報、例えば、周波数位置、送信周期、サブキャリア間隔等を取得することで、効率のよい測定を実行することができる。
【0079】
前記タイミング差を測定するための設定に含まれる前記第2の基地局装置の同期信号に関する情報に基づいて、測定ギャップを設定してもよい。当該構成により、ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報を取得することで、適切なギャップを設定して効率のよい測定を実行することができる。
【0080】
設定される前記測定ギャップは、前記第2の基地局装置の同期信号が送信される周期よりも短くてもよい。当該構成により、ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報を取得して、ギャップ長を短くすることで効率のよい測定を実行することができる。
【0081】
送信される前記測定の結果は、前記第2の基地局装置のセルID、前記第2の基地局装置のシステムフレームナンバのオフセット、前記第2の基地局装置のフレーム境界オフセット、前記第2の基地局装置のスロット境界オフセット、電力に係る測定結果、ビームIDの一部又は全部を含んでもよい。当該構成により、ユーザ装置200は、PSCell候補となるNRセルのSS blockに関する情報を取得することで、効率のよい測定を実行することができる。
【0082】
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置100及びユーザ装置200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
【0083】
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
【0084】
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
【0085】
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0086】
本明細書において基地局装置100によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置100を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置200との通信のために行われる様々な動作は、基地局装置100及び/又は基地局装置100以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局装置100以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
【0087】
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
【0088】
ユーザ装置200は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
【0089】
基地局装置100は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、gNB、ベースステーション(Base Station)、又はいくつかの他の適切な用語で呼ばれる場合もある。
【0090】
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
【0091】
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0092】
「含む(include)」、「含んでいる(including)」、及びそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
【0093】
本開示の全体において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
【0094】
なお、本発明の実施の形態において、測定制御部240は、制御部の一例である。測定設定部140は、設定部の一例である。
【0095】
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
【0096】
(付記)
以上説明した実施の形態に関し、更に以下の付記のようにも記載できる。
【0097】
(付記1)
第1の基地局装置及び第2の基地局装置と通信を行うユーザ装置であって、
前記第1の基地局装置と、前記第2の基地局装置とのタイミング差を測定するための設定を、前記第1の基地局装置から受信する受信部と、
前記タイミング差を測定するための設定に基づいて、前記第2の基地局装置に対する測定を実行する制御部と、
実行された前記測定の結果を前記第1の基地局装置に送信する送信部とを有し、
実行される前記測定は、前記第2の基地局装置と通信を開始する前に実行されるユーザ装置。
【0098】
(付記2)
前記タイミング差を測定するための設定は、前記第2の基地局装置の同期信号に関する情報を含む付記1記載のユーザ装置。
【0099】
(付記3)
前記タイミング差を測定するための設定は、前記第2の基地局装置の同期信号の周波数位置に関する情報、前記第2の基地局装置の同期信号の送信周期に関する情報、前記第2の基地局装置の同期信号のサブキャリア間隔に関する情報の一部又は全部を含む付記2記載のユーザ装置。
【0100】
(付記4)
前記タイミング差を測定するための設定に含まれる前記第2の基地局装置の同期信号に関する情報に基づいて、測定ギャップを設定する付記2記載のユーザ装置。
【0101】
(付記5)
設定される前記測定ギャップは、前記第2の基地局装置の同期信号が送信される周期よりも短い付記4記載のユーザ装置。
【0102】
(付記6)
送信される前記測定の結果は、前記第2の基地局装置のセルID、前記第2の基地局装置のシステムフレームナンバのオフセット、前記第2の基地局装置のフレーム境界オフセット、前記第2の基地局装置のスロット境界オフセット、電力に係る測定結果、ビームIDの一部又は全部を含む付記1記載のユーザ装置。
【符号の説明】
【0103】
100 基地局装置
200 ユーザ装置
110 送信部
120 受信部
130 設定情報管理部
140 測定設定部
200 ユーザ装置
210 送信部
220 受信部
230 設定情報管理部
240 測定制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
図1
図2
図3
図4
図5
図6
図7