IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DMG森精機株式会社の特許一覧

特許7198378画像処理装置、工作機械および撮像ユニット
<>
  • 特許-画像処理装置、工作機械および撮像ユニット 図1
  • 特許-画像処理装置、工作機械および撮像ユニット 図2
  • 特許-画像処理装置、工作機械および撮像ユニット 図3
  • 特許-画像処理装置、工作機械および撮像ユニット 図4
  • 特許-画像処理装置、工作機械および撮像ユニット 図5
  • 特許-画像処理装置、工作機械および撮像ユニット 図6
  • 特許-画像処理装置、工作機械および撮像ユニット 図7
  • 特許-画像処理装置、工作機械および撮像ユニット 図8
  • 特許-画像処理装置、工作機械および撮像ユニット 図9
  • 特許-画像処理装置、工作機械および撮像ユニット 図10
  • 特許-画像処理装置、工作機械および撮像ユニット 図11
  • 特許-画像処理装置、工作機械および撮像ユニット 図12
  • 特許-画像処理装置、工作機械および撮像ユニット 図13
  • 特許-画像処理装置、工作機械および撮像ユニット 図14
  • 特許-画像処理装置、工作機械および撮像ユニット 図15
  • 特許-画像処理装置、工作機械および撮像ユニット 図16
  • 特許-画像処理装置、工作機械および撮像ユニット 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-12-20
(45)【発行日】2022-12-28
(54)【発明の名称】画像処理装置、工作機械および撮像ユニット
(51)【国際特許分類】
   H04N 5/232 20060101AFI20221221BHJP
   B23Q 17/20 20060101ALI20221221BHJP
   B23Q 17/24 20060101ALI20221221BHJP
   G02B 7/28 20210101ALI20221221BHJP
   G03B 13/36 20210101ALI20221221BHJP
【FI】
H04N5/232 120
B23Q17/20 Z
B23Q17/24 Z
G02B7/28 N
G03B13/36
H04N5/232 127
H04N5/232 939
【請求項の数】 8
(21)【出願番号】P 2022004783
(22)【出願日】2022-01-17
【審査請求日】2022-04-25
【早期審査対象出願】
(73)【特許権者】
【識別番号】000146847
【氏名又は名称】DMG森精機株式会社
(74)【代理人】
【識別番号】110002273
【氏名又は名称】弁理士法人インターブレイン
(72)【発明者】
【氏名】高城 誠太郎
(72)【発明者】
【氏名】井上 隆志
(72)【発明者】
【氏名】奥野 絢一郎
(72)【発明者】
【氏名】柳原 圭輔
【審査官】佐藤 直樹
(56)【参考文献】
【文献】特開2012-088375(JP,A)
【文献】特開2014-085580(JP,A)
【文献】特開2013-218139(JP,A)
【文献】特開2007-279677(JP,A)
【文献】特開2018-084701(JP,A)
【文献】特開2006-244363(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/232
B23Q 17/20
B23Q 17/24
G02B 7/28
G03B 13/36
(57)【特許請求の範囲】
【請求項1】
ワークを保持するための保持部と、前記ワークを撮像するための撮像部を取り付け可能な取付部とを有する工作機械の前記取付部に、光源が設けられた前記撮像部が取り付けられた状態で撮像した画像を処理する画像処理装置であって、
前記撮像部の撮像領域内に前記ワークのエッジ部が含まれた状態で前記取付部が所定の軸線方向に移動されるごとに撮像画像を取得する画像処理部と、
各撮像画像について前記エッジ部の輝度変化を算出する輝度変化算出部と、
前記取付部が前記所定の軸線方向に移動して順次取得される撮像画像について算出された前記輝度変化の最大値が増加から減少に転じたときに、信号を出力する信号出力部と、
前記信号出力部から出力された信号に基づいて前記光源の表示態様を制御する表示処理部と、
を備える、画像処理装置。
【請求項2】
前記撮像部が取り付けられた前記取付部の移動を制御する取付部制御部をさらに備える、請求項1に記載の画像処理装置。
【請求項3】
オペレータの操作入力を受け付ける入力部をさらに備え、
前記表示処理部は、前記撮像画像を表示部に表示させ、
前記輝度変化算出部は、オペレータの操作入力に基づいて前記撮像画像における輝度変化の算出領域を限定する、請求項1又は2に記載の画像処理装置。
【請求項4】
前記表示処理部は、前記信号が出力されるときに、オペレータに対して前記撮像部のフォーカス値が最大となる位置を通り過ぎたことを示す前記光源の表示を行う、請求項1に記載の画像処理装置。
【請求項5】
前記表示処理部は、前記取付部が軸線方向一方向へ移動する過程で前記光源の表示を行った後、前記取付部が軸線方向反対方向に移動された場合、その移動過程で各撮像画像について算出される前記輝度変化の最大値に応じて前記光源の表示態様を変化させる、請求項4に記載の画像処理装置。
【請求項6】
前記信号出力部は、前記取付部の軸線方向への移動開始後に各撮像画像について算出された前記輝度変化の最大値が増加することなく減少したときにその旨を示す信号を出力する、請求項1~5のいずれかに記載の画像処理装置。
【請求項7】
ワークを保持するための保持部と、前記ワークを撮像するための撮像部と、前記撮像部を取り付け可能な取付部と、光源が設けられた前記撮像部が取り付けられた状態で撮像した画像を処理する画像処理装置と、を備える工作機械であって、
前記画像処理装置は、
前記撮像部の撮像領域内に前記ワークのエッジ部が含まれた状態で前記取付部が所定の軸線方向に移動されるごとに撮像画像を取得する画像処理部と、
各撮像画像について前記エッジ部の輝度変化を算出する輝度変化算出部と、
前記取付部が前記所定の軸線方向に移動して順次取得される撮像画像について算出された前記輝度変化の最大値が増加から減少に転じたときに、信号を出力する信号出力部と、
前記信号出力部から出力された信号に基づいて前記光源の表示態様を制御する表示処理部と、
を含む、工作機械。
【請求項8】
工作機械の取付部に取り付けられ、光源が設けられ、前記工作機械の保持部に保持されたワークを撮像する撮像ユニットにおいて、撮像領域内に前記ワークのエッジ部が含まれた状態で前記撮像ユニットを移動するごとに撮像画像を取得し、前記撮像画像を基に前記エッジ部の輝度変化を算出し、前記輝度変化の最大値が増加から減少に転じたときに、前記光源の表示態様が変更される、前記ワークを撮像する撮像ユニットであって、
前記取付部に連結される接続部と、
前記接続部が前記取付部に連結された状態で前記ワークを撮像する機能部と、
前記光源の表示態様の変更が当該撮像ユニットを見るオペレータの視野に入るように前記光源が設けられる、撮像ユニット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工作機械において撮像される撮像画像のフォーカス調整に関する。
【背景技術】
【0002】
工作機械には、回転するワークに対して工具を移動させるターニングセンタ、回転する工具をワークに対して移動させるマシニングセンタ、材料をレーザで溶かしながら積層加工する付加加工機、およびこれらの機能を複合的に備える複合加工機などがある。工作機械には、ATC(Automatic Tool Changer)と呼ばれる工具交換装置が備えられ、機械加工の過程で主軸に取り付けられる工具を交換しながらワークが所望の形状に加工される。ATCは、工具収容部(マガジン等)と工具保持部(主軸等)との間で工具交換を実行する。
【0003】
近年、主軸に工具のみならず撮像ユニットを交換可能に取り付け、ワークを観察する機能を有する工作機械も提案されている(特許文献1参照)。撮像ユニットのカメラにより撮像された画像を処理することにより、ワークの表面形状を計測でき、加工精度の評価等を行うことができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-146955号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このような工作機械では一般に、カメラの倍率とワーキングディスタンス(カメラと被写体との距離)との関係が固定されている。このため、撮像処理に先立ってカメラのフォーカス調整を行う必要がある。このフォーカス調整は、オペレータにより手動で行われている。すなわち、オペレータは、操作盤等のモニタに表示される撮像画像を見ながら主軸を手動操作で移動させ、画像のボケ具合に基づいてカメラとワークとの距離を調整する。そして、フォーカスが合ったと判断した位置で主軸を停止させる。しかしながら、このような人の肉眼による調整では、正確なフォーカス調整は難しい。
【課題を解決するための手段】
【0006】
本発明のある態様は画像処理装置である。この画像処理装置は、ワークを保持するための保持部と、ワークを撮像するための撮像部を取り付け可能な取付部とを有する工作機械の取付部に撮像部が取り付けられた状態で撮像した画像を処理する。画像処理装置は、撮像部の撮像領域内にワークのエッジ部が含まれた状態で取付部が所定の軸線方向に移動されるごとに撮像画像を取得する画像処理部と、各撮像画像についてエッジ部の輝度変化を算出する輝度変化算出部と、取付部が所定の軸線方向に移動して順次取得される撮像画像について算出された輝度変化の最大値が増加から減少に転じたときに、信号を出力する信号出力部と、を備える。
【0007】
本発明の別の態様は工作機械である。この工作機械は、ワークを保持するための保持部と、ワークを撮像するための撮像部と、撮像部を取り付け可能な取付部と、取付部に撮像部が取り付けられた状態で撮像した画像を処理する画像処理装置と、を備える。画像処理装置は、撮像部の撮像領域内にワークのエッジ部が含まれた状態で取付部が所定の軸線方向に移動されるごとに撮像画像を取得する画像処理部と、各撮像画像についてエッジ部の輝度変化を算出する輝度変化算出部と、取付部が所定の軸線方向に移動して順次取得される撮像画像について算出された輝度変化の最大値が増加から減少に転じたときに、信号を出力する信号出力部と、を含む。
【発明の効果】
【0008】
本発明によれば、工作機械に取り付けられる撮像部のフォーカス調整を正確に行うことができる。
【図面の簡単な説明】
【0009】
図1】実施形態に係る工作機械の外観を表す斜視図である。
図2】工作機械および画像処理装置のハードウェア構成図である。
図3】加工装置の構成を概略的に表す斜視図である。
図4】撮像ユニットの主軸への取付構造を表す部分拡大図である。
図5】操作盤を概略的に表す正面図である。
図6】画像処理装置の機能ブロック図である。
図7】フォーカス調整方法を模式的に表す図である。
図8】フォーカス値の算出方法の一例を表す図である。
図9】フォーカス値の算出方法の一例を表す図である。
図10】カメラの位置とフォーカス値との関係を表す図である。
図11】フォーカス値の表示例を表す図である。
図12】フォーカス調整処理を表すフローチャートである。
図13】変形例に係るフォーカス調整のための画面例を表す図である。
図14】他の変形例に係るフォーカス調整方法を示す図である。
図15】LEDの取付構造の例を表す図である。
図16】変形例に係るフォーカス調整処理を表すフローチャートである。
図17】他の変形例に係るフォーカス調整処理を表すフローチャートである。
【発明を実施するための形態】
【0010】
以下、図面を参照しつつ、本発明の一実施形態について説明する。
なお、以下の実施形態およびその変形例について、ほぼ同一の構成要素については同一の符号を付し、その説明を適宜省略する。
【0011】
図1は、実施形態に係る工作機械の外観を表す斜視図である。
工作機械1は、工具を適宜交換しながらワークを所望の形状に加工するマシニングセンタとして構成されている。工作機械1は、装置筐体の内部にワークを加工する加工装置2を備える。装置筐体の前面には、加工装置2を操作するための操作盤4が設けられる。
【0012】
操作盤4は、画像処理装置100と接続される。オペレータは、画像処理装置100により工作機械1の作動状況を遠隔監視できる。工作機械1と画像処理装置100とは本実施形態では有線ケーブルを介して接続されるが、無線接続されてもよい。画像処理装置100は、工作機械1の内部、例えば操作盤4の内部装置として形成されてもよい。
【0013】
図2は、工作機械1および画像処理装置100のハードウェア構成図である。
工作機械1は、操作制御装置101、加工制御装置102、加工装置2、ツール交換部104およびツール格納部106を含む。操作制御装置101は、操作盤4を含み、オペレータの操作入力に基づいて加工制御装置102に制御指令を出力する。
【0014】
加工制御装置102は、数値制御部として機能し、加工プログラム(NCプログラム)にしたがって加工装置2に制御信号を出力する。加工装置2は、加工制御装置102からの指示にしたがって工具主軸(図示略:以下、単に「主軸」という)を動かしてワークを加工する。
【0015】
ツール格納部106は工具および撮像ユニット(後述)を格納する。ツール交換部104は、いわゆるATC(Automatic Tool Changer)に対応し、加工制御装置102からの交換指示にしたがって、ツール格納部106から工具を取り出し、主軸にある工具と取り出した工具とを交換する。ツール交換部104は、また、画像処理装置100の指令に基づく加工制御装置102からの交換指示にしたがって、ツール格納部106から撮像ユニットを取り出し、主軸にある工具と撮像ユニットとを交換する。
【0016】
画像処理装置100は、撮像ユニットによる撮像画像に基づき、ワーク形状を計測するための画像処理を行う。画像処理装置100は、また、オペレータにより行われるカメラのフォーカス調整を支援するための画像処理を行うが、その詳細については後述する。画像処理装置100は、一般的なラップトップPC(Personal Computer)あるいはタブレット・コンピュータであってもよい。
【0017】
図3は、加工装置2の構成を概略的に表す斜視図である。
ここでは説明の便宜上、加工装置2を正面からみて左右方向,前後方向,上下方向を、それぞれX軸方向,Y軸方向,Z軸方向とする。
【0018】
工作機械1は、縦型のマシニングセンタであり、加工装置2を備える。加工装置2は、ベッド10と、ベッド10に立設されたコラム12と、コラム12に対して上下に移動自在に設けられた主軸ヘッド14と、ベッド10上に前後左右に移動自在に設けられたテーブル16を備える。主軸ヘッド14は、主軸18を回転可能に支持する。
【0019】
コラム12の前面にガイドレール20が設けられ、主軸ヘッド14がZ軸方向に移動可能に支持されている。主軸ヘッド14の移動は、図示略の送り機構とそれを駆動するサーボモータにより実現される。この送り機構は、例えばボールねじを用いたねじ送り機構である。
【0020】
主軸ヘッド14は、Z軸方向の軸線Lを有し、その軸線Lを中心に主軸18を回転可能に支持する。主軸ヘッド14には、主軸18を回転駆動するための図示略のスピンドルモータが設けられている。主軸18は、図示略の工具ホルダに保持された工具を同軸状に取り付け可能である。また、主軸18は、図示のように、撮像ユニット30を同軸状に取り付け可能である。撮像ユニット30は、後述のカメラを含み、ワークWを撮像するための「撮像部」として機能する。主軸18は、主軸ヘッド14が駆動されることによりZ軸方向に移動自在である。
【0021】
一方、ベッド10の上面にガイドレール24が設けられ、サドル26がY軸方向に移動可能に支持される。サドル26の上面にガイドレール28が設けられ、テーブル16がX軸方向に移動可能に支持される。サドル26およびテーブル16の移動は、それぞれ図示略の送り機構とそれを駆動するサーボモータにより実現される。この送り機構は、例えばボールねじを用いたねじ送り機構である。
【0022】
テーブル16には、図示略の治具を介してワークWが固定される。テーブル16は、ワークを保持するための「保持部」として機能する。ワークWは、サドル26およびテーブル16が駆動されることによりX軸方向およびY軸方向に移動自在である。すなわち、以上の構成により、工具や撮像ユニット30とワークWとの相対位置を三次元的に調整することができる。
【0023】
図4は、撮像ユニット30の主軸18への取付構造を表す部分拡大図である。
撮像ユニット30は、主軸18に着脱可能に取り付けられ、ワークWの撮像に用いられる画像プローブである。主軸18は「取付部」として機能する。撮像ユニット30は、工作機械1とコネクタを介して電気的に接続されるため、有線による給電および通信が可能である。
【0024】
撮像ユニット30は、撮像機能を有する機能部32と、主軸18と同軸状に連結される接続部34と、機能部32および接続部34を回転可能に支持する支持部36を備える。機能部32には、カメラや照明機器などが内蔵されている。接続部34の基端側(機能部32とは反対側)には、工具と同様にテーパ状のシャンク38が設けられている。シャンク38を主軸18の先端に嵌合させることで、撮像ユニット30が主軸18に取り付けられる。
【0025】
支持部36は、機能部32と接続部34との連結体を同軸状に挿通し、その連結体を軸線Lの周りに回転可能に支持する。支持部36の内周面と連結体の外周面との間には軸受が設けられている。軸線Lは、カメラの光軸と一致する。支持部36の外周面にはコネクタ部40が設けられる。一方、主軸ヘッド14の端面にもコネクタ部42が設けられており、コネクタ部40とコネクタ部42とが軸線方向に接続されることで、支持部36が主軸ヘッド14に固定される。
【0026】
すなわち、支持部36は、主軸ヘッド14と一体に固定された状態で機能部32を回転自在に支持する。主軸18の回転により機能部32の回転角度(つまりカメラの撮像角度)を変化させることができる。
【0027】
コネクタ部40とコネクタ部42との接続部には、電気的な接点構造が設けられる。この接点構造により信号線および電力線が確保される。本実施形態では、工作機械1と撮像ユニット30との通信および電力供給が、PoE(Power over Ethernet)の規格に従って実現される。
【0028】
図5は、操作盤4を概略的に表す正面図である。
操作盤4は、オペレータに各種情報を表示するとともにタッチ操作を受け付けるモニタ50と、オペレータの操作入力を受け付ける物理的な操作パネル52を含む。モニタ50は、オペレータによるタッチ操作やキー入力等の操作入力を受け付ける各種操作画面を表示する「表示部」として機能する。操作パネル52として、NC操作パネル54および機械操作パネル56が含まれる。
【0029】
NC操作パネル54には、オペレータが制御プログラムを作成・編集する際に押下する各種キーが含まれる。機械操作パネル56には、オペレータが工作機械1の動作モードを切り替えたり、手動操作をする際に押下する各種ボタンやダイヤルなどが含まれる。モニタ50のタッチパネルによる操作デバイスを「ソフトデバイス」とよび、NC操作パネル54や機械操作パネル56による操作デバイスを「ハードデバイス」ともよぶ。これらの操作デバイスは、オペレータの操作入力を受け付ける「入力部」として機能する。
【0030】
機械操作パネル56には、モード選択ボタン60、NC機能ボタン62、自動運転ボタン64、手動軸送りボタン66、原点復帰ボタン68、非常停止ボタン70などが含まれる。モード選択ボタン60は、モードを切り替えるための複数のボタンを含む。具体的には、メモリモードへ移行させるためのMEMボタン、MDIモードへ移行させるためのMDIボタン、DNCモードへ移行させるためのDNCボタン、編集モードへ移行させるためのEDITボタン、ジョグモードへ移行させるためのJOGボタン、および原点復帰モードへ移行させるためのZRNボタンが含まれる。なお、本実施形態では、操作パネル52をハードデバイスで実現したが、変形例においては、タッチ操作を受け付けるモニタ(ソフトデバイス)としてもよい。
【0031】
「メモリモード」は、予め用意された制御プログラムにしたがって加工装置2を作動させる自動運転モードである。「MDIモード」は、簡単なプログラム指令を手動で入力して加工装置2を作動させるモードである。「DNCモード」は、外部端末に格納されている制御プログラムを受信しながら、加工装置2を制御するモードである。「編集モード」は、制御プログラムを作成・編集するモードである。「ジョグモード」は、主に手動軸送りボタン66の操作により主軸などの制御対象を軸移動させる手動運転モードである。「原点復帰モード」は、主軸などの制御対象を機械原点に復帰させるモードである。オペレータは、いずれかのボタンを押下することで選択したモードへ移行させることができる。
【0032】
NC機能ボタン62は、数値制御部の機能を切り替えるための複数のボタンを含む。具体的には、PCKボタン、DRNボタンなどが含まれる。PCKボタンは、いわゆるプログラムチェックに際して主軸の回転やクーラントの吐出を非動作とするときに押下される。DRNボタンは、設定された速度で制御対象の軸移動を行うときに押下される。空運転でプログラムチェックするときの時間短縮のために使用される。このとき、プログラムで指定されている速度は無視される。
【0033】
自動運転ボタン64は、STARTボタンおよびSTOPボタンを含む。STARTボタンは、自動運転を開始(「サイクルスタート」ともいう)させるときに押下される。STARTボタンの押下は「制御開始入力」となる。STOPボタンは、自動運転中に一時的に軸移動を停止させるときに押下される。
【0034】
手動軸送りボタン66は、ジョグ送り操作、ジョグ早送り操作、原点復帰操作を手動で行う際に押下する選択キーや方向キーを含む。手動軸送りボタン66は、ジョグモードにおいて主軸を移動させるための操作入力を受け付ける。ジョグモードでは、ジョグ送りとジョグ早送りのいずれかの操作を選択可能である。
【0035】
原点復帰ボタン68は、ワンタッチで原点復帰操作を行うときに押下される。このボタンを押すと、全軸が順次に機械原点に戻る。非常停止ボタン70は、機械を緊急停止させるときに押下される。手動運転と自動運転のいずれであるかに関わらず、加工装置2の全ての動作が即時にその場所で停止する。
【0036】
図6は、画像処理装置100の機能ブロック図である。
画像処理装置100の各構成要素は、CPU(Central Processing Unit)および各種コンピュータプロセッサなどの演算器、メモリやストレージといった記憶装置、それらを連結する有線または無線の通信線を含むハードウェアと、記憶装置に格納され、演算器に処理命令を供給するソフトウェアによって実現される。コンピュータプログラムは、デバイスドライバ、オペレーティングシステム、それらの上位層に位置する各種アプリケーションプログラム、また、これらのプログラムに共通機能を提供するライブラリによって構成されてもよい。以下に説明する各ブロックは、ハードウェア単位の構成ではなく、機能単位のブロックを示している。
【0037】
なお、操作制御装置101および加工制御装置102の各構成要素も、プロセッサなどの演算器、メモリやストレージといった記憶装置、それらを連結する有線または無線の通信線を含むハードウェアと、記憶装置に格納され演算器に処理命令を供給するソフトウェアにより実現されてもよい。操作制御装置101および加工制御装置102は、画像処理装置100とは別個の装置として構成されてもよい。
【0038】
画像処理装置100は、ユーザインタフェース処理部110、データ処理部112、データ格納部114および通信部116を含む。
ユーザインタフェース処理部110は、ユーザからの操作を受け付けるほか、画像表示や音声出力など、ユーザインタフェースに関する処理を担当する。通信部116は、操作制御装置101や加工制御装置102との通信を担当する。データ処理部112は、ユーザインタフェース処理部110により取得されたデータおよびデータ格納部114に格納されているデータに基づいて各種処理を実行する。データ処理部112は、ユーザインタフェース処理部110、データ格納部114および通信部116のインタフェースとしても機能する。データ格納部114は、各種プログラムと設定データを格納する。
【0039】
ユーザインタフェース処理部110は、入力部120および出力部122を含む。
入力部120は、タッチパネル、各種キーあるいはハンドル等のハードデバイスを介してユーザからの入力を受け付ける。出力部122は、画像表示あるいは音声出力を介して、ユーザに各種情報を提供する。
【0040】
通信部116は、操作制御装置101や加工制御装置102からデータを受信する受信部150と、操作制御装置101や加工制御装置102にデータおよびコマンドを送信する送信部152を含む。受信部150は、操作盤4を介したオペレータの操作入力に基づく情報を操作制御装置101から受信する。すなわち、受信部150は、操作制御装置101を介してオペレータの操作入力を受け付ける「入力部」としても機能する。
【0041】
データ処理部112は、制御指令部130、画像処理部132、輝度変化算出部134、信号出力部136および表示処理部138を含む。制御指令部130は、フォーカス調整の際、撮像ユニット30が取り付けられた主軸18の移動を制御する制御指令を操作制御装置101ひいては加工制御装置102へ出力する。すなわち、制御指令部130は「取付部制御部」として機能する(詳細後述)。
【0042】
画像処理部132は、フォーカス調整の際、主軸18に撮像ユニット30が取り付けられた状態でカメラが撮像した画像を処理する。表示処理部138は、そのカメラによる撮像画像をモニタ50(表示部)に表示させる。画像処理部132は、主軸18が軸線方向へ移動されるごとに撮像ユニット30の撮像画像を取得する。
【0043】
輝度変化算出部134は、各撮像画像に表示されるエッジ部の輝度変化を算出する。「輝度変化」は、隣接する画素間の輝度値の変化量(微分値)に基づいて算出されてよい。その輝度変化の大きさに基づいてフォーカス値の大きさが算出される。信号出力部136は、主軸18の移動に伴って順次取得される撮像画像について算出されたその輝度変化の最大値が増加から減少に転じたときに、カメラのフォーカス値が最大となる位置を通り過ぎたことを示す信号を出力する。このフォーカス調整の詳細については後述する。
【0044】
データ格納部114は、輝度情報格納部140を含む。輝度情報格納部140は、輝度変化算出部134により算出される輝度情報を一時記憶する。この輝度情報は、カメラの位置とフォーカス値とが対応づけられた情報を含む。データ格納部114は、また、撮像画像を一時記憶するとともに、データ処理部112において演算処理が行われる際のワークエリアとしても機能する。
【0045】
次に、実施形態におけるフォーカス調整処理について詳細に説明する。
図7は、フォーカス調整方法を模式的に表す図である。図7(A)~(D)は、その調整過程を示す。各図の下段はワークWに対するカメラ(撮像ユニット30)の位置を示し、上段はそのカメラによる撮像画像P0を示す。この例では、ワークWの表面(上面)に形成された穴hを利用してフォーカス調整が行われる。穴hは円形の開口縁(つまりエッジ部)を有する。
【0046】
オペレータは、このフォーカス調整に際して操作盤4の手動軸送りボタン66(図5参照)を操作して主軸18をX,Y方向に移動させ、カメラをワークWの上方に位置させる。表示処理部138は、カメラによる撮像画像P0をモニタ50の画面に表示させる。オペレータは、さらに主軸18をZ方向に移動させることで、カメラの画角(つまり撮像領域内)に穴hを収めるようにする。本実施形態では、カメラを下降させながらフォーカス調整を行うため、オペレータは、フォーカスが合うと想定される位置よりも若干高い位置(基準位置)にてカメラを一時停止せる(図7(A))。このとき、仮にカメラの位置(高さ位置)Paにおいてフォーカス値が600であり、穴hのエッジ部がボケている、つまりフォーカス調整が正確ではなかったとする。フォーカス値の具体的算出方法については後述する。
【0047】
オペレータは、この状態から手動軸送りボタン66を操作して主軸18をZ軸方向に徐々に下降させる。それにより、フォーカス値がカメラの位置Pbにおいて800(図7(B))、位置Pcにおいて1000(図7(C))、位置Pdにおいて900(図7(D))と変化したとする。この場合、フォーカス値が最大となる位置Pcにおいて穴hのエッジ部が最もクリアとなり、ピントが合っていると判断できる。オペレータがカメラの高さ位置を位置Pcに設定することでフォーカス調整を完了できる。
【0048】
図8および図9は、フォーカス値の算出方法の一例を表す図である。
ワークWの表面を撮像すると、その表面形状のエッジ部において輝度が大きく変化する。「エッジ部」は、表面形状の段差、内周縁、外周縁などに現れる。その輝度変化の最大値は、エッジ部の画像がクリアであるほど、つまりエッジ部へのフォーカスが正確であるほど大きくなる。そこで、本実施形態では撮像画像に対してソーベルフィルタを用いることにより、フォーカス値を算出する。
【0049】
図8に概念的に示すように、輝度変化算出部134は、撮像画像P0の各画素に対して横方向と縦方向のソーベルフィルタ処理を実行する。すなわち、各画素の輝度値に対して横カーネル係数を用いた畳み込み演算と、縦カーネル係数を用いた畳み込み演算を実行する。カメラの輝度値の範囲が0~255の場合、「0」が黒、「255」が白を示す。そして、それぞれの畳み込み演算結果を合成する(つまり二乗和平方根をとる)。これらの合成結果のうち最大となる画素の値を「フォーカス値」とする。このフォーカス値は、輝度変化の最大値を示す。ノイズ除去などの目的で、単純な最大値ではなく、上位数%の値を除いた中の最大値をフォーカス値としてもよい。
【0050】
図9は、ボケがないクリアな画像(図9(A))、ややボケた画像(図9(B))、ボケが大きい画像(図9(C))について、ソーベルフィルタ処理を実行した結果を示す。図示のように、ボケが少ないクリアな画像ほどフォーカス値の値は大きくなる。本実施形態ではこれを利用し、カメラの位置をフォーカス値が最大となるように設定することで、フォーカス調整を実現する。
【0051】
図10は、カメラの位置とフォーカス値との関係を表す図である。
以下では説明の便宜上、フォーカスが合うカメラの位置を「フォーカスポイント」とも称す。図10(A)に示すように、カメラがフォーカスポイントに近づく方向に移動を開始した場合(白矢印参照)、フォーカス値は徐々に増加し、フォーカスポイントにおいて最大となる。そして、フォーカスポイントを通り過ぎると、フォーカス値は減少に転じる。言い換えれば、カメラがフォーカスポイントを通り過ぎることで、フォーカス値の最大値が定まることとなる。
【0052】
そこで、画像処理部132は、オペレータの手動操作により主軸18が軸線方向に移動されるごとに撮像画像を取得する。このとき、オペレータは、撮像領域内にワークWのエッジ部が含まれる状態を維持する。輝度変化算出部134は、各撮像画像について上述のようにフォーカス値を算出する。このフォーカス値は、ワークWにおけるエッジ部の輝度変化の最大値に対応する。信号出力部136は、主軸18の移動に伴って順次算出されるフォーカス値が増加から減少に転じたときに、その旨を示す信号(以下「第1アラート信号」ともいう)を出力する。第1アラート信号の出力は、主軸18の移動方向を反転させる契機となる(詳細後述)。
【0053】
一方、図10(B)に示すように、カメラがフォーカスポイントから離れる方向に移動を開始した場合(黒矢印参照)、フォーカス値は直後に減少し始める。これは、フォーカス調整のためにカメラを移動させるべき方向とは反対方向(つまり誤った方向)に主軸18が移動していることを意味する。信号出力部136は、このように主軸18の移動開始からフォーカス値が減少し始めたとき、その旨を示す信号(以下「第2アラート信号」ともいう)を出力する。第2アラート信号の出力は、主軸18の移動方向を停止又は反転させる契機となる(詳細後述)。
【0054】
図11は、フォーカス値の表示例を表す図である。
フォーカス調整が行われる際、輝度変化算出部134により算出されたフォーカス値は、カメラの位置情報と対応づけられる形で輝度情報格納部140に順次格納される。表示処理部138は、逐次算出されるフォーカス値を撮像画像P0に重ねる態様でモニタ50の画面に表示させる(図11(A)~(D))。
【0055】
オペレータは、画面に表示されるフォーカス値を見ながら、そのフォーカス値が最大となるように主軸18を移動させ、カメラの位置を調整する。具体的には図示のように、カメラの位置がPaにある状態を基準位置として主軸18の移動を開始したとする。このとき、画面からフォーカス値が600であることを確認できる(図11(A))。
【0056】
主軸18が下降してカメラの位置が変化するにつれてフォーカス値が増加することを確認できる(図11(B),(C))。ただし、カメラが位置Pcに到達するだけでは、フォーカス位置が最大であることは判別できない。その後の位置Pdにおいてフォーカス値が減少したことをもって、それ以前にフォーカス値が最大となる位置が存在したことを認識できる(図11(C),(D))。
【0057】
本実施形態では、フォーカス値が増加から減少に転じることで第1アラート信号が出力されると、表示処理部138は、画面にその旨を示す「ピーク通過」などのダイアログ(図示略)を表示させる(「第1アラート表示」ともいう)。表示処理部138は、オペレータに対してフォーカス値が最大となる位置を通り過ぎたことを報知する「報知部」として機能する。
【0058】
オペレータは、画面上のフォーカス値を確認しながら主軸18の移動を操作するが、この第1アラート表示がなされることで、直近のフォーカス値が最大値であると認識できる。オペレータは、このとき主軸18の移動を反転させる。その反転移動によりフォーカス値が最大となったときに主軸18を停止させる。つまり、フォーカス値が最大となる位置Pcで主軸18を停止させることでフォーカス調整を完了できる。
【0059】
本実施形態のようにオペレータの手動操作によりフォーカス調整を行う場合、主軸18を一度反転するだけではフォーカス値の最大値を直ちに認知できないことも想定される。その場合、オペレータが主軸18の反転を複数回繰り返すことで第1アラート表示が複数回なされることもあり得るが、その都度主軸18の速度を緩めるなどしてフォーカス値の最大値を認知できるようになる。なお、表示処理部138は、フォーカス値が最大となったタイミングでそのフォーカス値とともに「最大」などのダイアログを画面に表示させてもよい。オペレータは、フォーカス値が最大となる位置で主軸18を停止させればよい。
【0060】
なお、フォーカス調整の開始直後にフォーカス値が減少し始めることで第2アラート信号が出力されると、表示処理部138は、画面にその旨を示す「移動方向が逆!」などのダイアログ(図示略)を表示させる(「第2アラート表示」ともいう)。オペレータは、この第2アラート表示がなされることで、カメラが移動すべき方向とは反対方向が移動していることを把握でき、主軸18の移動を直ちに反転させることができる。
【0061】
図12は、フォーカス調整処理を表すフローチャートである。
本処理は、主軸18に撮像ユニット30が取り付けられた状態でオペレータの手動操作がなされることを契機に実行される。まず、オペレータの手動操作に基づいて操作制御装置101が制御指令を出力し、加工制御装置102が主軸18の移動制御を開始する(S10)。画像処理部132は、主軸18の移動とともに撮像画像を取得し(S12)、モニタ50の画面に表示させる(S14)。
【0062】
輝度変化算出部134は、順次取得される撮像画像についてフォーカス値を算出する(S16)。表示処理部138は、算出されたフォーカス値を撮像画像に重ねて表示する(S18)。このフォーカス値が主軸18の移動開始時のものであってその値が減少した場合(S20のY)、信号出力部136が第2アラート信号を出力する。このとき、表示処理部138は、主軸18に移動方向が逆であることをオペレータに報知するための第2アラート表示を実行する(S22)。移動開始時のフォーカス値の減少でなければ(S20のN)、S22の処理をスキップする。
【0063】
また、フォーカス値が増加から減少に転じた場合には(S24のY)、カメラがフォーカスポイントを通過したことをオペレータに報知するための第1アラート表示を実行する(S26)。フォーカス値が増加中の場合には(S24のN)、S26の処理をスキップする。オペレータは、第1アラート表示がなされると主軸18の移動を反転させる。
【0064】
以上の処理をフォーカス調整の終了条件が成立するまで繰り返す(S28のN)。この終了条件については適宜設定できる。例えば、フォーカス調整終了ボタンを設け、そのボタンが選択されることを終了条件としてもよい。あるいは、フォーカス値が最大の位置で18が停止されることを終了条件としてもよい。フォーカス調整の終了条件が成立すれば(S28のY)、本処理を終了する。
【0065】
以上、実施形態に基づき工作機械1について説明した。
本実施形態によれば、内部的に算出されるフォーカス値が数値として画面に明示されるため、オペレータはその数値を見ながら正確にフォーカス調整を行うことができる。人間の肉眼に頼ることなくフォーカス状態を正確かつ迅速に把握できるため、フォーカス調整の作業効率を高めることができる。
【0066】
以上、本発明の好適な実施形態について説明したが、本発明はその特定の実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
【0067】
[変形例1]
図13は、変形例に係るフォーカス調整のための画面例を表す図である。
上記実施形態では述べなかったが、ワークWの表面に複数の凹凸がある場合など、ワークWの形状によってはフォーカス調整の対象部分を絞り込む必要がある場合が想定される。本変形例では、このような場合に対応可能な処理が含まれる。
【0068】
本変形例では、撮像領域に対象部F1および対象部F2の複数のフォーカス対象が含まれている。対象部F1は平面視円形状の穴であり、対象部F2は平面視三角形状の突起である。いずれの対象部もエッジ部を有する。オペレータは画面上の操作により、いずれかの対象部をフォーカス対象として選択することができる。
【0069】
具体的には、図13(A)に示すように、画面上の2点を指定することにより、その2点を含む領域Reを指定できる。図示の例では、画面上の点Aと点Bの座標値を入力することで、これらの2点を対角上に含む正方形の領域Reが指定される。領域Reが、撮像画像P0におけるフォーカス値の算出領域、つまり「輝度変化の算出領域」となる。あるいは、カーソルキーなどで画面上の2点を指定することで同様の領域指定がなされてもよい。それにより、その領域に含まれる対象部F2がフォーカス対象として設定される。フォーカス調整においては、対象部F2のエッジ部についてフォーカス値が算出され、上記実施形態と同様の処理が行われる。
【0070】
あるいは、モニタ50がタッチパネルとして機能する場合、図13(B)に示すように、オペレータが自身の指等で画面にタッチすることで領域指定を行えるようにしてもよい。例えば、画面にタッチした状態でいずれかの対象部を取り囲むように指等を操作することで領域指定されるようにしてもよい。あるいは、画面をドラッグすることで、ドラッグの起点と終点を対角上に含む正方形が領域指定されるようにしてもよい。
【0071】
[変形例2]
図14は、他の変形例に係るフォーカス調整方法を示す図である。
上記実施形態では述べなかったが、撮像ユニット30又はその周辺に光源を設け、その光源の表示態様によりフォーカス値を示唆してもよい。具体的には、撮像ユニット30の外周面にLED210を取り付け、表示処理部138がその表示態様を制御してもよい。
【0072】
例えば、フォーカス調整の開始時にLED210を第1色(例えば緑)で点滅させる(図14(A))。そして、カメラがフォーカスポイントに近づくにつれてLED210の点滅周期を短くする(図14(B))。フォーカス値が最大になったとき、つまりカメラがフォーカスポイントに位置したときにLED210を点灯状態とする(図14(C))。カメラの位置がフォーカスポイントを通り過ぎると、LED210を第2色(例えば赤)で点滅させてオペレータに報知する(図14(D))。表示処理部138は、信号出力部136が第1アラート信号を出力したときに第2色による点滅表示(「第1アラート表示」ともいう)を行う。
【0073】
なお、フォーカス調整の開始直後にカメラが移動すべき方向とは反対方向が移動することでフォーカス値が減少し始めた場合には、信号出力部136が第2アラート信号を出力する。表示処理部138は、信号出力部136が第2アラート信号を出力したときに第2色による点灯表示(「第2アラート表示」ともいう)を行う。
【0074】
フォーカス値とLED210の表示態様との対応関係は、輝度情報格納部140に格納される。ただし、既に述べたように、フォーカス値の最大値はカメラの位置がフォーカスポイントを通り過ぎた後でなければ定まらない。このため、図14(C)に示す表示がなされるのは、図14(D)に示す第1アラート表示に基づいてオペレータが主軸18の移動を反転させた後ということになる。
【0075】
図15は、LED210の取付構造の例を表す図である。
本変形例では、複数のLED210が撮像ユニット30の外周面に沿って等間隔で配設される。例えば、図15(A)に示すように、LED210として4つのLED210aを設けてもよい。これらのLED210aは、機能部32の外周面に軸線を中心に90度の間隔をあけて配設される。このような構成により、オペレータは、主軸18の回転角度にかかわらずLED210aの表示態様を確認できる。すなわち、フォーカス値を認識できる。なお、LED210aの設置数は4つ(4方向)に限らず、8つ(8方向)とするなど適宜設定できる。
【0076】
あるいは、図15(B)に示すように、LED210としてシート状のLED210bを設けてもよい。LED210bは、撮像ユニット30の外周面に巻き付けられる。このような構成であっても、オペレータは、主軸18の回転角度にかかわらずLED210bの表示態様を確認できる。
【0077】
図16は、変形例に係るフォーカス調整処理を表すフローチャートである。
本処理は、主軸18に撮像ユニット30が取り付けられた状態でオペレータの手動操作がなされることを契機に実行される。なお、S10~S16は上記実施形態と同様であるため、説明を省略する。
【0078】
表示処理部138は、輝度変化算出部134により算出されたフォーカス値に応じた態様でLED210を表示させる(S17)。このフォーカス値が主軸18の移動開始時のものであってその値が減少した場合(S20のY)、信号出力部136が第2アラート信号を出力する。このとき、表示処理部138は、主軸18に移動方向が逆であることを報知するための第2アラート表示を実行する(S22)。移動開始時のフォーカス値の減少でなければ(S20のN)、S22の処理をスキップする。
【0079】
また、フォーカス値が増加から減少に転じれば、つまりカメラの位置が、フォーカス値が最大となるフォーカスポイントを通過すれば(S24のY)、信号出力部136が第1アラート信号を出力する。このとき、表示処理部138は、カメラがフォーカスポイントを通過したオペレータに報知するための第1アラート表示を実行する(S26)(図14(D)参照)。また、輝度変化算出部134は、それまで逐次記憶されたフォーカス値の最大値を特定する(S27)。これによりそれ以降、カメラがフォーカスポイントに到達したタイミングでその旨を報知するLED210の表示がなされる(図14(C)参照)。オペレータは、第1アラート表示がなされると主軸18の移動を反転させる。フォーカス値が増加中の場合には(S24のN)、S26およびS27の処理をスキップする。
【0080】
以上の処理をフォーカス調整の終了条件が成立するまで繰り返す(S28のN)。この終了条件については、上記実施形態と同様に適宜設定できる。フォーカス調整の終了条件が成立すれば(S24のY)、本処理を終了する。
【0081】
本変形例によれば、オペレータは、主軸18と一体に動作するLED210を観察することでフォーカス調整を行えるようになる。このため、主軸18とモニタ50の画面の双方に注意を振り向ける必要がなくなる。すなわち、オペレータは、フォーカス調整の際に撮像ユニット30とワークWとが衝突しないよう注意を払う必要があるところ、上記実施形態の構成では、主軸18と画面の双方を見ながら作業を行わなければならない。この点、本変形例では主軸18側のみに意識を集中させればよいため、作業性を高めることができる。
【0082】
なお、本変形例に上記実施形態の表示を併用させてもよいことは言うまでもない。オペレータは、主軸18側に意識を集中させつつ必要に応じて適宜画面を参照し、フォーカス値そのものを確認してもよい。
【0083】
[変形例3]
【0084】
図17は、他の変形例に係るフォーカス調整処理を表すフローチャートである。
本変形例では、オペレータの手動操作ではなく、自動でフォーカス調整を行う。本処理は、例えばオペレータの操作入力により図示略のオートフォーカスボタンが選択されたことを契機に実行される。なお、本変形例のようにオートフォーカスを実現する場合、図2に示した画像処理装置100は、操作制御装置101を介することなく、加工制御装置102に直接接続されてもよい。
【0085】
オートフォーカスボタンが操作されると、制御指令部130がフォーカス調整の実行を指令する。制御指令部130が制御指令を出力し、加工制御装置102が主軸18を基準位置に移動させて一旦待機させる(S110)。続いて、主軸18の一方向(軸線方向下方)への移動を開始する(S112)。画像処理部132は、主軸18の移動とともに所定周期で撮像画像を取得する(S114)。表示処理部138は、撮像画像をモニタ50の画面に表示させる(S116)。
【0086】
輝度変化算出部134は、順次取得される撮像画像についてフォーカス値を算出し(S118)、輝度情報格納部140に記憶させる(S120)。そして、フォーカス値が増加から減少に転じると(S122のY)、制御指令部130は、主軸18の移動を停止させる(S124)。輝度変化算出部134は、それまで逐次記憶されたフォーカス値の最大値を特定して記憶する(S126)。そして、制御指令部130は、主軸18の反対方向(軸線方向上方)への移動を開始させる(S128)。フォーカス値が増加中の間は(S122のN)、S124~S128の処理をスキップする。
【0087】
そして、フォーカス値が最大値となるまでS114~S128の処理を繰り返す(S130のN)。フォーカス値が最大であるか否かは、S126で記憶された最大値に基づいて判定される。フォーカス値が最大値となると(S130のY)、主軸18の移動を停止させる(S132)。これにより、フォーカス調整が完了する。
【0088】
より詳細には、フォーカス値が増加から減少に転じることで信号出力部136が第1アラート信号を出力した時点で、制御指令部130が主軸18の停止指令を出力してもよい。輝度変化算出部134は、第1アラート信号が出力されたときに演算対象としていた撮像画像の一つ前の撮像画像にフォーカスが合っていると判定してもよい。制御指令部130は、その一つ前の撮像画像が撮像された位置に主軸18を反転移動させるよう移動指令を出力してもよい。
【0089】
本変形例によれば、フォーカス調整が自動で行われるため、オペレータの作業負担がほとんどない。フォーカス値を画面に表示する必要もなく、フォーカス調整を正確に行うことができる。
【0090】
[その他の変形例]
上記実施形態では、画像処理装置100を工作機械1の外部コンピュータとして例示した。変形例においては、画像処理装置を工作機械の内部に組み込んだ内部コンピュータとしてもよい。具体的には、操作制御装置101と一体に組み込むなどしてもよい。
【0091】
上記実施形態では、主軸の軸線とカメラの光軸とを一致させ、フォーカス調整の際に主軸をその軸線方向に移動させる構成を例示した。変形例においては、カメラの光軸を主軸の軸線からずらし、主軸をカメラの光軸方向に移動させてもよい。例えば、カメラの光軸が主軸の軸線と直角となるように撮像ユニットを構成し、主軸をZ軸方向ではなく、X軸方向やY軸方向に移動させてもよい。
【0092】
上記実施形態では、フォーカス値が増加から減少に転じたときの「第1アラート表示」、およびフォーカス調整の開始直後にフォーカス値が減少し始めたときの「第2アラート表示」のそれぞれについてダイアログを表示させる例を示した。変形例においては、例えば表示中のフォーカス値やその背景部分をハイライト表示するなどを採用してもよい。具体的には、図11に示す画面において、フォーカス値を囲む領域をハイライト表示してもよい。第1アラート表示についてはそのハイライト表示を点滅表示とし、第2アラート表示についてはそのハイライト表示を点灯表示とするなどしてもよい。
【0093】
上記実施形態や変形例2では、表示処理部138が「報知部」として機能し、フォーカス値が最大となる位置を通り過ぎたことを表示によって報知する構成を例示した。他の変形例においては、「報知部」としてスピーカやブザーを音源とする音声出力部を設け、人の声や効果音等の音声により報知してもよい。上記変形例2では、図14に示したように光源の表示態様によりフォーカス値の大きさを報知する構成を例示した。他の変形例においては、その表示態様を音声態様に置き換えてもよい。
【0094】
具体的には、フォーカス調整の開始時に特定の時間間隔で音を出力し、カメラがフォーカスポイントに近づくにつれてその音の周期を短くしてもよい。フォーカス値が最大になったとき、つまりカメラがフォーカスポイントに位置したときに周期が最短の断続音としてもよい。カメラの位置がフォーカスポイントを通り過ぎると、連続音とすることでオペレータに注意を喚起してもよい。
【0095】
上記実施形態では、フォーカス調整の際にカメラをフォーカスポイントよりも上方で待機させ、調整開始とともに下方へ移動させる例を示した。変形例においては、カメラをフォーカスポイントよりも下方で待機させ、調整開始とともに上方へ移動させるようにしてもよい。また、横型のマシニングセンタなどの場合には、カメラを横方向(X,Y軸方向)に移動させてフォーカス調整してもよい。
【0096】
上記実施形態では、図12に示したように、フォーカス調整の開始直後にフォーカス値が減少し始めた場合に第2アラート表示をするものの、主軸18の停止および反転をオペレータの手動操作に委ねる例を示した。変形例においては、第2アラート表示の実行とともに主軸18を自動停止させてもよい。すなわち、制御指令部130が操作制御装置101又は加工制御装置102に対して主軸停止指令を出力するようにしてもよい。
【0097】
上記変形例1(図13参照)では、オペレータの操作画面をモニタ50の画面とする例を示したが、画像処理装置100の画面(ユーザインタフェース処理部110の入力部120:図6参照)としてもよい。
【0098】
上記実施形態では、フォーカス値の算出に際してソーベルフィルタを用いる例を示した。変形例においては、プレヴィットフィルタ、ラプラシアンフィルタその他のフィルタを用いてもよい。
【0099】
上記実施形態では、工作機械として、回転する工具をワークに対して移動させるマシニングセンタを例示したが、回転するワークに対して工具を移動させるターニングセンタであってもよいし、材料をレーザで溶かしながら積層加工する付加加工機であってもよい。また、これらの機能を複合的に備える複合加工機であってもよい。
【0100】
工作機械がターニングセンタである場合、タレットが「取付部」として機能する。タレットに撮像部を取り付けてワークを撮像する。また、工作機械内のアームロボットに取付部を設けてもよい。いずれにしても、撮像ユニット30(撮像部)は、「工作機械の取付部」に着脱可能に取り付けられる。
【0101】
なお、本発明は上記実施形態や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施形態や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。
【符号の説明】
【0102】
1 工作機械、2 加工装置、4 操作盤、14 主軸ヘッド、16 テーブル、18 主軸、30 撮像ユニット、32 機能部、38 シャンク、50 モニタ、52 操作パネル、64 自動運転ボタン、66 手動軸送りボタン、100 画像処理装置、101 操作制御装置、102 加工制御装置、104 ツール交換部、106 ツール格納部、110 ユーザインタフェース処理部、112 データ処理部、114 データ格納部、116 通信部、130 制御指令部、132 画像処理部、134 輝度変化算出部、136 信号出力部、138 表示処理部、140 輝度情報格納部、210 LED、W ワーク、h 穴。
【要約】
【課題】工作機械に取り付けられる撮像部のフォーカス調整を正確に行えるようにする。
【解決手段】ある態様の画像処理装置は、ワークを保持するための保持部と、ワークを撮像するための撮像部を取り付け可能な取付部とを有する工作機械の取付部に撮像部が取り付けられた状態で撮像した画像を処理する。画像処理装置は、撮像部の撮像領域内にワークのエッジ部が含まれた状態で取付部が所定の軸線方向に移動されるごとに撮像画像を取得する画像処理部と、各撮像画像についてエッジ部の輝度変化を算出する輝度変化算出部と、取付部が所定の軸線方向に移動して順次取得される撮像画像について算出された輝度変化の最大値が増加から減少に転じたときに、信号を出力する信号出力部と、を備える。
【選択図】図11
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17