(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-21
(45)【発行日】2023-01-04
(54)【発明の名称】X線管用の対物レンズ及び集束レンズ、X線管並びにそのようなX線管を操作する方法
(51)【国際特許分類】
H01J 35/14 20060101AFI20221222BHJP
【FI】
H01J35/14
【外国語出願】
(21)【出願番号】P 2018149244
(22)【出願日】2018-08-08
【審査請求日】2021-03-16
(31)【優先権主張番号】10 2017 007 479.8
(32)【優先日】2017-08-08
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】512028965
【氏名又は名称】エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】YXLON INTERNATIONAL GMBH
【住所又は居所原語表記】Essener Bogen 15,22419 Hamburg(DE)
(74)【代理人】
【識別番号】110002734
【氏名又は名称】弁理士法人藤本パートナーズ
(72)【発明者】
【氏名】シュー,アンドレ
(72)【発明者】
【氏名】シュレーダー,ビョルン
(72)【発明者】
【氏名】フリント,ニコル
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2002-343290(JP,A)
【文献】特開昭59-081850(JP,A)
【文献】特開平08-115696(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 35/14
H01J 35/00
H05G 1/00- 1/02
A61B 6/00
G21K 1/093
H01J 37/141
(57)【特許請求の範囲】
【請求項1】
X線管
用の対物レンズ(1)であって、
対物レンズ内側コア(10)と、前記対物レンズ内側コア(10)上に配置された内側対物レンズコイル(12)と、前記対物レンズ内側コア(10)の周囲に配置された対物レンズ外側コア(11)とを備えており、
前記内側対物レンズコイル(12)と前記対物レンズ外側コア(11)との間に、外側対物レンズコイル(13)が配置されており、
前記外側対物レンズコイル(13)は、同じ巻数を有する2つの対物レンズ線材部分(13a,13b)を有して
おり、かつ、
前記2つの対物レンズ線材部分(13a,13b)は、前記2つの対物レンズ線材部分(13a,13b)が互いに打ち消し合う磁界を発生させるように構成されている、
対物レンズ(1)。
【請求項2】
X線管
用の集束レンズ(2)であって、
集束レンズ内側コア(20)と、前記集束レンズ内側コア(20)上に配置された内側集束レンズコイル(22)と、前記内側集束レンズコイル(22)の周囲に配置された集束レンズ外側コア(21)とを備えており、
前記内側集束レンズコイル(22)と前記集束レンズ外側コア(21)との間に、外側集束レンズコイル(23)が配置されており、
前記外側集束レンズコイル(23)は、同じ巻数を有する2つの集束レンズ線材部分(23a,23b)を有して
おり、かつ、
前記2つの集束レンズ線材部分(23a,23b)は、前記2つの集束レンズ線材部分(23a,23b)が互いに打ち消し合う磁界を発生させるように構成されている、集束レンズ(2)。
【請求項3】
前記対物レンズ(1)の前記外側対物レンズコイル(13)の前記2つの対物レンズ線材部分(13a,13b)又は前記集束レンズ(2)の前記外側集束レンズコイル(23)の前記2つの前記集束レンズ線材部分(23a,23b)は、それぞれ反対方向に巻かれている、請求項1に記載の対物レンズ(1)又は請求項2に記載の集束レンズ(2)。
【請求項4】
前記内側集束レンズコイル(22)は、それぞれ同じ巻数を備えている偶数個の磁界線材部分(22a,22b,22c,22d)を有して
おり、
前記偶数個の磁界線材部分(22a,22b,22c,22d)は、前記偶数個の磁界線材部分(22a,22b,22c,22d)のそれぞれによって発生される磁界が、第1の動作モードにおいて互いに打ち消し合い、第2の動作モードにおいて全て合算されることが可能となるように構成されている、
請求項2に記載の集束レンズ(2)。
【請求項5】
前記磁界線材部分(22a,22b,22c,22d)の数が4である、請求項4に記載の集束レンズ(2)。
【請求項6】
マイクロフォーカスX線管用の対物レンズ(1)又は集束レンズ(2)である、請求項1又は3に記載の対物レンズ(1)又は請求項2~5のいずれか1項に記載の集束レンズ(2)。
【請求項7】
X線
管であって、
請求項1又は3に記載の対物レンズ(1)と、請求項2
又は3に記載の集束レンズ(2)とを備えており、
前記外側対物レンズコイル(13)は、第1のフィラメント電流源に接続されており、かつ/又は、前記外側の集束レンズコイル(23)は、第2のフィラメント電流源に接続されており、前記第1及び第2のフィラメント電流源は、前記外側対物レンズコイル(13)の前記2つの対物レンズ線材部分(13a,13b)が互いに打ち消し合う磁界を発生させるように、かつ/又は、前記外側集束レンズコイル(23)の前記2つの集束レンズ線材部分(23a,23b)が互いに打ち消し合う磁界を発生させるように取付けられている、X線管。
【請求項8】
X線
管であって、
請求項1又は3に記載の対物レンズ(1)と、請求
項4又は
5に記載の集束レンズ(2)とを備えており、
前記外側対物レンズコイル(13)は、第1のフィラメント電流源に接続されており、かつ/又は、前記外側の集束レンズコイル(23)は、第2のフィラメント電流源に接続されており、前記第1及び第2のフィラメント電流源は、前記外側対物レンズコイル(13)の前記2つの対物レンズ線材部分(13a,13b)が互いに打ち消し合う磁界を発生させるように、かつ/又は、前記外側集束レンズコイル(23)の前記2つの集束レンズ線材部分(23a,23b)が互いに打ち消し合う磁界を発生させるように取付けられている、X線管。
【請求項9】
前記外側対物レンズコイル(13)の前記2つの対物レンズ線材部分(13a,13b)及び/又は前記外側集束レンズコイル(23)の前記2つの集束レンズ線材部分(23a,23b)は、直列に接続されている、請求項3と組み合わせられた請求項
7又は8に記載のX線管。
【請求項10】
前記フィラメント電流源の少なくとも1つは、制御システムに接続されており、前記制御システムは、前記対物レンズ(1)及び/又は前記集束レンズ(2)の温度を測定する温度センサに接続されて
おり、測定された前記温度に基づいて前記フィラメント電流源の電流強度を制御し、それによって前記対物レンズ(1)及び/又は前記集束レンズ(2)の温度を制御するように構成されている、請求項
7~9のいずれか1項に記載のX線管。
【請求項11】
請求項2,4又は5のいずれか1項に記載の集束レンズ(2)を備えたX線
管であって、磁界源(4)が存在しており、前記磁界源(4)は前記内側集束レンズコイル(22)に接続されている、X線管。
【請求項12】
マイクロフォーカスX線管である、請求項7~11のいずれか1項に記載のX線管。
【請求項13】
請求項
8に記載のX線
管を操作する方法であって、前記内側集束レンズコイル(22)の個々の前記磁界線材部分(22a,22b、22c、22d)の磁界は、第1の動作モードにおいて互いに打ち消し合い、第2の動作モードにおいて全て合算される、方法。
【請求項14】
前記内側集束レンズコイル(22)の個々の前記磁界線材部分(22a,22b、22c、22d)の前記磁界が、第3の動作モードにおいて部分的に互いに打ち消し合う、請求項
13に記載の方法。
【請求項15】
前記X線管がマイクロフォーカスX線管である、請求項13又は14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線管用の対物レンズ、X線管用の集束レンズ、並びに、そのような対物レンズ及び/又はそのような集束レンズを備えたX線管並びにそのようなX線管を操作する方法に関する。該X線管は、特に、マイクロフォーカスX線管である。
【背景技術】
【0002】
X線管の操作中には、焦点スポットの形状、寸法及び位置が変化するが、このことは、マイクロフォーカスX線管に非常に広く該当する。この変化は、部分的には、X線管のコンポーネントの温度変化に起因している。このような焦点スポットの変化は、X線管がイメージング法において使用される際に、イメージング品質に対して悪影響を及ぼす。
【0003】
この問題に対する解決手段として、特許文献1には、冷却流体を用いた未制御の冷却によりX線管のコイルを熱的に安定化させる旨が提示されている。X線管は、一定量の体積流量の冷却媒体によって、外部の影響から独立して冷却される。管の出力、周囲温度及びコイル電流に応じて、不定の温度平衡が生じる。これにより、冷却されていないX線管と比較すると、より絶対値の低い温度平衡が達成される。その結果、周囲温度との温度差が小さくなるため、温度平衡がより迅速に達成され得る。この手法は、冷却流体用の流路をコイル内に導入する必要があると共に、冷却回路を高真空環境に配置するかX線管の外側に冷却を当てる必要があるため複雑であり、そのためX線管が非常に大きくなる。
【先行技術文献】
【特許文献】
【0004】
【文献】独国特許出願公開第102010032338号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、本発明の目的は、焦点スポットを可能な限り一定に保つことができるが、冷却流体による複雑な冷却を伴わない代替手段を提供することにある。
【課題を解決するための手段】
【0006】
上記目的は、請求項1の特徴に従う対物レンズによって達成される。外側対物レンズコイルの2つの対物レンズ線材部分が同じ巻数を有するため、これらに同じ電流強度の電流を供給することが可能であり、その結果、それぞれの磁界は等しい大きさとなる。これらの磁界が反対向きに並んでいることが確実である場合、それらは互いに打ち消し合い、その結果、得られる磁界総計がゼロになる。このことは、本質的に2つの設計によって達成され得る。すなわち、巻線が反対方向に実現されている場合には、2つの対物レンズ線材部分が直列に接続されると共に電流が同じフィラメント電流源によって供給され得る設計、又は、2つの対物レンズ線材部分が反対方向に実現されていない場合には、同じ電流強度であるが反対方向に電流を供給する必要がある設計のいずれかである。当業者は、そのような実施形態をどのようにして製造するかを理解している。したがって、外側対物レンズコイルの磁界総計は、X線管の電子ビームの誘導に影響を及ぼさず、むしろ対物レンズコイル内に熱を発生させるようにのみ機能する。その結果、温度差は、技術水準と同様に、ここでは時間の経過とともに減少する。したがって、X線管の焦点を安定化させる効果が、対物レンズコイルに導入するのが複雑となる冷却流体を使用することなく得られる。
【0007】
本目的は、請求項2の特徴を備えた集束レンズによっても達成される。本発明に係る集束レンズの設計は、原則的には直前に説明した本発明に係る対物レンズの設計と同じであり、そこで示された利点を備えている。
【0008】
本発明の有利な発展形態は、対物レンズの外側対物レンズコイルの2つの対物レンズ線材部分又は集束レンズの外側集束レンズコイルの2つの集束レンズ線材部分が、それぞれ反対方向に巻かれていることを提供する。その結果、同じフィラメント電流源を用いて追加のデバイスを用いることなく、2つの対物レンズ線材部分又は2つの集束レンズ線材部分への電流の供給を直列接続によって行うことができるという点で、既に上述した平行巻線に対して有利となる。
【0009】
本目的は、請求項4の特徴を備えた集束レンズによっても達成される。内側集束レンズコイルは偶数個の磁界線材部分、例えば2,4,6,8又は10個の磁界線材部分に分割されているため、この内側集束レンズコイルによって発生される磁界の磁界強度は、内側集束レンズコイルへの電力入力が変化することなく種々変化可能であり、このとき、個々の磁界線材部分には電流が供給され、これにより、それぞれの場合に発生する個々の磁界線材部分の(部分的な)磁界(それぞれの場合において巻数が同じであるため、該磁界は同じ電流強度では等しい大きさである)が互いに打ち消し合う又は増強されるため、結果的に得られる磁界強度総計は、一方の極値ではゼロであり、他方の極値では個々の磁界強度の合計である。内側集束レンズコイル全体への電力入力は、たとえ異なる磁界強度が生成されたとしても変化しない。したがって、電力入力は一定に保たれる。その結果、内側集束レンズコイルの熱変化に起因する、該集束レンズコイルにて発生する異なる強度の磁界に対する焦点スポットの変化がなくなる。言うまでもないが、より多くの磁界線材部分が存在するほど、達成可能な磁界強度間の細分化はより細かくなる。そのため、2つの磁界線材部分が使用される際には、内側集束レンズコイルを遮断すること(磁界強度の合計はゼロである)又は最大磁界強度を生成することのみが可能である。これに対し、6つの磁界線材部分が使用される際には、2つの中間段階(磁界強度総計の1/3又は2/3)が選択可能である。
【0010】
本発明の有利な発展形態は、磁界線材部分の数が4であることを提供する。磁界線材部分を4つに分割することにより、スイッチオフモード(それぞれの場合における2つの磁界線材部分の反対の磁界強度により、磁界強度がゼロになる)及び最大磁界強度(4つの個々の磁界強度の全てが合算される)に加えて、半磁界強度モード(3つの磁界強度が一方向に向けられると共に1つの磁界強度が反対方向に向けられ、その結果、全体として2つの磁界強度が互いに打ち消し合う)もまた設定することができる。
【0011】
本目的は、請求項6の特徴を備えたX線管によっても達成される。フィラメント電流源は対物レンズ線材部分又は集束レンズ線材部分に同じ電流強度の電流を供給するが、反対方向の磁界強度が発生するため、磁界が互いに打ち消し合い、それぞれのコイルに熱が発生するにも関わらず磁界が得られない。その結果、請求項1に関連して既に上述した利点が生じる。当業者は、指定される個々の電場強度を達成するために、どのようにフィラメント電流源を対物レンズ線材部分又は集束レンズ線材部分に接続する必要があるかについて理解している。
【0012】
本発明の有利な発展形態は、外側対物レンズコイルの2つの対物レンズ線材部分及び/又は外側集束レンズコイルの2つの集束レンズ線材部分が、直列に接続されていることを提供する。それぞれの線材部分が反対方向に巻かれて直列に接続される際に、単一のフィラメント電流源のみを外側対物レンズコイル又は外側集束レンズコイルに対して使用することができ、それによって追加の要素を用いることなく電流供給を非常に簡単な方法で行うことができる。
【0013】
本発明のさらなる有利な発展形態は、フィラメント電流源の少なくとも1つが、制御システムに接続されており、該制御システムが、対物レンズ及び/又は集束レンズの温度を測定する温度センサに接続されていることを提供する。このような制御システムにより、熱出力を変更することができ、その結果、対物レンズ及び/又は集束レンズの温度を、変化した状況に適合させることが可能になり、それによって焦点スポットのさらなる良好な安定化が達成され得る。
【0014】
本目的は、請求項9の特徴を備えたX線管によっても達成される。そのようなX線管では、請求項4及びその4つの磁界線材部分を備えた発展形態に関して上述した利点が結果として生じる。
【0015】
本目的は、請求項10の特徴を有するX線管を操作する方法によっても達成される。本発明による2つの動作モード(磁界強度総計ゼロ及び最大磁界強度)によって、請求項4に関して既に上述したものと同じ利点が達成される。
【0016】
本発明の有利な発展形態は、内側集束レンズコイルの個々の磁界線材部分の磁界が、第3の動作モードにおいて部分的に互いに打ち消し合うことを提供する。存在する磁界線材部分の数に応じて、特定の数の中間段階(磁界強度ゼロと最大磁界強度との間)が選択可能であるため、導入された電力が変化することにより生じる熱を発生させることなく、X線管をより柔軟に使用できるようになる。
【0017】
本発明の更なる利点及び詳細は、図面に表される実施形態の例を参照して、以下により詳細に説明される。
【図面の簡単な説明】
【0018】
【
図1】本発明に係るX線管における、本発明に係る集束レンズ及び本発明に係る対物レンズの概略的縦断面図。
【
図2a】本発明に係るX線管の本発明による第1の動作モードの概略図。
【
図2b】本発明に係るX線管の本発明による第3の動作モードの概略図。
【
図2c】本発明に係るX線管の本発明による第2の動作モードの概略図。
【発明を実施するための形態】
【0019】
図1には、本発明に係るマイクロフォーカスX線管の詳細が、その集束レンズ2及びその対物レンズ1の領域において、概略的な縦断面図に示されている。マイクロフォーカスX線管の残りの部分は図示されていないが、技術水準に対応したものであって、本発明とは関連がない。マイクロフォーカスX線管の代わりに、別のタイプのX線管であることも可能である。
【0020】
集束レンズ2及び対物レンズ1は、電子ビーム3のための管の周囲に配置されている。電子ビーム3の方向において、集束レンズ2は、対物レンズ1の前方に位置している。
【0021】
集束レンズ2は、集束レンズ内側コア20を有しており、集束レンズ内側コア20は、電子ビーム3のための管周りに回転対称に実現され、それによって形成される。集束レンズの内側コア20もまた、電子ビーム3へと垂直に延びており、その外側において外壁の一部を形成し、そこでは管形状を有している。
【0022】
電子ビーム3の方向における前方には、集束レンズ外側コア21が配置されている。集束レンズ外側コア21は、電子ビーム3に対して垂直に延びる前壁(中央に電子ビーム3のための開口を有する)に加えて、管状コンポーネントを有する。該管状コンポーネントは、外壁の一部でもあり、集束レンズ内側コア20によって形成される外壁の一部と同一平面にある。
【0023】
集束レンズ内側コア20の中央部分には、内側集束レンズコイル22が配置され、これもまた電子ビーム3のための管を形成している。内側集束レンズコイル22は、それぞれ同じ巻数を有する4つの線材部分を備えており、電子ビーム3の方向において、以下の順に積み重なって(このバージョンは
図1に示されている)又は連続して配置される:第1の磁界線材部分22a、第2の磁界線材部分22b、第3の磁界線材部分22c、第4の磁界線材部分22d。
【0024】
内側集束レンズコイル22の周囲には、外側集束レンズコイル23が配置されている。外側集束レンズコイル23は、それぞれ同じ巻数を有する2つの線材部分を備えており、電子ビーム3の方向において、以下の順に積み重なって(このバージョンは
図1に示されている)又は連続して配置される:第1の集束レンズ線材部分23a、第2の集束レンズ線材部分23b。これらの2つの線材部分は、互いに反対方向に巻かれている。
【0025】
対物レンズ1は、対物レンズ内側コア10を有しており、対物レンズ内側コア10は、電子ビーム3のための管周りに回転対称に実現され、それによって形成される。対物レンズの内側コア10もまた、電子ビーム3へと垂直に延びており、その外側において外壁の一部を形成し、そこでは管形状を有している。該外壁の一部は、対物レンズ内側コア10によって形成される外壁の一部と同一平面にあると共に、その外壁に結合される。
【0026】
電子ビーム3の方向における前方には、対物レンズ外側コア11が配置されている。対物レンズ外側コア11は、電子ビーム3に対して垂直に延びる前壁(中央に電子ビーム3のための開口を有する)に加えて、管状コンポーネントを有する。該管状コンポーネントは、外壁の一部でもあり、対物レンズ内側コア10によって形成される外壁の一部と同一平面にある。
【0027】
対物レンズ内側コア10の内側部分には、内側対物レンズコイル12が配置され、これもまた、技術水準より理解されるようにして、電子ビーム3のための管を形成している。
【0028】
内側対物レンズコイル12の周囲には、外側対物レンズコイル13が配置されている。外側対物レンズコイル13は、それぞれ同じ巻数を有する2つの線材部分を備えており、電子ビーム3の方向において、以下の順に積み重なって(このバージョンは
図1に示されている)又は連続して配置される:第1の対物レンズ線材部分13a、第2の対物レンズ線材部分13b。これらの2つの線材部分は、互いに反対方向に巻かれている。
【0029】
第1の集束レンズ線材部分23a及び第2の集束レンズ線材部分23bはいずれも、互いに反対方向に巻かれていると共に同じ巻数を有しており、両者には同じ電流が第2のフィラメント電流源(図示しない)より供給される。このため、両者は、一方のすぐ後に他方があるように、直列に接続され得る。これによって、2つの線材部分によって生成された2つの磁界が互いに打ち消し合うため、外側集束レンズコイル23全体について得られる磁場強度がゼロになる。そのため、外側集束レンズコイル23は、電流が供給される際において熱のみを生成し、電子ビーム3の軌道に影響を及ぼすこととなる磁界を生成しない。したがって、第2のフィラメント電流源の既存の電流強度を変更すると、集束レンズ2全体の熱に影響が及ぼされ得る。集束レンズ2の温度を検出する温度センサ(図示しない)と、該温度センサに接続された制御システム(図示しない)とによって、第2のフィラメント電流源の電流強度の変化を介して集束レンズ2の温度を実質的に一定に保つことができ、その結果、集束レンズ2に対する熱的影響に起因するマイクロフォーカスX線管の焦点スポットの変化が生じなくなる。温度センサ、制御システム及び第2のフィラメント電流源を備えたそのような装置は、原則的に当業者に理解されている。
【0030】
外側対物レンズコイル13についても、直前に述べた外側集束レンズコイル23と同様のことが適用される。すなわち、第1の対物レンズ線材部分13a及び第2の対物レンズ線材部分13bはいずれも、互いに反対方向に巻かれていると共に同じ巻数を有しており、両者には同じ電流が第1のフィラメント電流源(図示しない)より供給される。このため、両者は直接前後に並べて直列に接続され得る。これによって、2つの線材部分によって生成された2つの磁界が互いに打ち消し合うため、外側対物レンズコイル13全体について得られる磁場強度がゼロになる。そのため、外側対物レンズコイル13は、電流が供給される際において熱のみを生成し、電子ビーム3の軌道に影響を及ぼす磁界を生成しない。したがって、第1のフィラメント電流源の既存の電流強度を変更すると、対物レンズ1全体の熱に影響が及ぼされ得る。これにより、対物レンズ1の温度を検出する温度センサ(図示しない)と、該温度センサに接続された制御システム(図示しない)とによって、第1のフィラメント電流源の電流強度の変化を介して対物レンズ1の温度を実質的に一定に保つことができ、その結果、対物レンズ1に対する熱的影響に起因するマイクロフォーカスX線管の焦点スポットの変化が生じなくなる。温度センサ、制御システム及び第1のフィラメント電流源を備えたそのような装置は、原則的に当業者に理解されている。
【0031】
したがって、電子ビーム3の変化については、外側集束レンズコイル23及び外側対物レンズコイル13ではなく、内側集束レンズコイル22及び内側対物レンズコイル12が原因となる。内側対物レンズコイル12に関しては、従来技術より既知の対物レンズコイルであり、その構造の面では本発明にとって本質的ではないため、その動作モードについてより詳細に説明する必要はない。
【0032】
しかしながら、本発明に係る内側集束レンズコイル22は、基本的に、従来技術より既知の集束レンズコイルとは異なるように構成されている(上記説明を参照のこと)。以下に記載する既知の集束レンズコイルの場合では、該集束レンズコイルが、本発明に係る内側集束レンズコイル22における4つの線材部分の合計と同じ巻数を有すると仮定する。他の具体的な特徴についても、技術水準に係る集束レンズコイルと本発明に係る内側集束レンズコイル22との比較を可能にするために、対応しているべきである。
【0033】
既知の集束レンズコイルの場合、該集束レンズコイルは1つの連続巻線のみを有しており、磁界の強さの調整は、集束レンズコイルに接続された電流源の電流の変化によって行われる。磁界が存在しない場合には、電流強度は0Aである。そのため、集束レンズコイルへの電力入力は0Wである。このとき、集束レンズコイルの温度は、例えば25℃である。中程度の磁界が必要な場合には、例えば1Aの電流強度が用いられ、15Vの定電圧が印加されている場合には15Wの電力入力が生じ、そのため集束レンズコイルの温度は、例えば35℃となる。強い磁界の場合には、例えば2Aの電流強度が用いられ、電圧が30Vの場合には、60Wの電力入力と、例えば60℃の集束レンズコイルの温度とが得られる。温度変化が激しいと、焦点スポットに対して影響が及ぶ。
【0034】
同じ巻数の4つの線材部分を有する本発明に係る内側集束レンズコイル22の構造は、以下により詳細に説明されると共に
図2a~
図2dに表された4つの線材部分の異なる相互接続によって電力入力を一定に保つことが可能になり、それによって内側集束レンズコイル22の温度が一定になる。その他の境界条件の場合には、従来技術より既知の集束レンズコイルに関して前段落に述べた通りである。4つの線材部分は磁界電流源4に接続されており、この磁界電流源4は、前段落に記載された既知の集束レンズコイルの場合における強い磁界の場合と同様に、2Aの電流にて一定で動作している。上記と同じ電圧の場合、60Wの電力入力が常に存在している。このことは、内側集束レンズコイルの温度が、例えば60℃にて一定であることを意味する。後述する内側集束レンズコイル22全体の異なる磁界強度を可能にするために、磁界電流源4は、4つの線材部分(第1の磁界線材部分22a、第2の磁界線材部分22b、第3の磁界線材部分22c、第4の磁界線材部分22d)に、当業者に既知の回路を介して接続されており、それによって個々の線材部分での異なる電流方向が可能になる。
【0035】
図2aに示される回路では、第1の磁界線材部分22a及び第2の磁界線材部分22bには同じ方向に電流が流れるが、第3の磁界線材部分22c及び第4の磁界線材部分22dには最初に述べた2つの部分とは反対方向に電流が流れる。したがって、個々の線材部分の磁界が互いに打ち消し合い、結果として生じる磁界はなくなる。
【0036】
図2bに示される回路では、第1の磁界線材部分22a、第2の磁界線材部分22b及び第3の磁界線材部分22cには同じ方向に電流が流れるが、第4の磁界線材部分22dには最初に述べた3つの部分とは反対方向に電流が流れる。したがって、2つの部分的な磁界が互いに打ち消し合い、結果として生じる磁界は、2つの線材部分の合計となる。これは、上述したように、既知の集束レンズコイルの場合における弱い磁界に対応している。
【0037】
図2cに示される回路では、第1の磁界線材部分22a、第2の磁界線材部分22b、第3の磁界線材部分22c及び第4の磁界線材部分22dの全てにおいて同じ方向に電流が流れる。これは、上述したように、既知の集束レンズコイルの場合における強い磁界に対応している。
【0038】
内側集束レンズコイル22の巻数をより多くの線材部分へとさらに細分化する場合には、ゼロと最大磁界強度との間における中間磁界強度のさらに細かい調節が生成可能であることは明らかである。ここで、最大磁界強度は、全ての線材部分において同じ方向に電流が流れる際の磁界強度である。
【0039】
要約すると、本発明による主な態様の1つは、一定の温度における内側集束レンズコイル22の異なる磁界強度が、線材部分内の電流方向を異なるように分布させることのみにより、回路を用いて達成できることである。磁界強度が変化しても温度変化が生じないため、熱の影響に起因する焦点スポットの変化がなくなる。
【0040】
内側集束レンズコイル22の個々の線材部分の全てが同じ巻数を有することは、絶対に必要というわけではない。原則的には、任意の他の細分化も可能であり、結果として得られる磁界強度総計がゼロとなる少なくとも1つの組み合わせが可能であることさえ保証されればよい。したがって、例えば、総巻数を1/4+1/8+1/8+1/8+1/8+1/4の比率で細分化することも可能である。
【符号の説明】
【0041】
1 対物レンズ
2 集束レンズ
3 電子ビーム
4 磁界電流源
10 対物レンズ内側コア
11 対物レンズ外側コア
12 内側対物レンズコイル
13 外側対物レンズコイル
13a 第1の対物レンズ線材部分
13b 第2の対物レンズ線材部分
20 集束レンズ内側コア
21 集束レンズ外側コア
22 内側集束レンズコイル
22a 第1の磁界線材部分
22b 第2の磁界線材部分
22c 第3の磁界線材部分
22d 第4の磁界線材部分
23 外側集束レンズコイル
23a 第1の集束レンズ線材部分
23b 第2の集束レンズ線材部分