(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-12-22
(45)【発行日】2023-01-05
(54)【発明の名称】一軸偏心ねじポンプ
(51)【国際特許分類】
F04C 2/107 20060101AFI20221223BHJP
【FI】
F04C2/107
(21)【出願番号】P 2022124265
(22)【出願日】2022-08-03
【審査請求日】2022-08-03
(31)【優先権主張番号】P 2022005929
(32)【優先日】2022-01-18
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000239758
【氏名又は名称】兵神装備株式会社
(74)【代理人】
【識別番号】100106518
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100111039
【氏名又は名称】前堀 義之
(72)【発明者】
【氏名】上辻 英史
(72)【発明者】
【氏名】榊原 教晃
【審査官】岸 智章
(56)【参考文献】
【文献】特開2016-079971(JP,A)
【文献】特表平07-501374(JP,A)
【文献】特開2015-135100(JP,A)
【文献】特開2016-142188(JP,A)
【文献】特開昭57-176378(JP,A)
【文献】特開昭62-020684(JP,A)
【文献】特開2010-001876(JP,A)
【文献】特表平06-500615(JP,A)
【文献】国際公開第2008/075507(WO,A1)
【文献】中国実用新案第211059004(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
F04C 2/107
F04C 18/107
(57)【特許請求の範囲】
【請求項1】
内周面が雌ねじ型に形成された挿通孔を有するステータと、
前記ステータの挿通孔に挿通され、前記ステータの中心軸に対して偏心回転を行う雄ねじ型の軸体からなるロータと、
を備え、
前記中心軸に直交する横断面において、
前記挿通孔が、長孔として形成され、
前記ロータの前記偏心回転に伴い、前記ロータの断面中心が、前記ステータの前記中心軸を通過して前記挿通孔の長手方向に延びる中心線に沿って、前記中心軸から見て前記長手方向において互いに反対側に設定された一対の折り返し位置の間で、前記長手方向に往復移動し、且つ
前記ロータは、前記長手方向に直交する前記挿通孔の短手方向において、前記挿通孔の前記内周面に密接され、
前記断面中心が前記折り返し位置に位置する場合における前記ロータに対する前記ステータの第1締め代が、前記断面中心が前記中心軸に位置する場合における前記ロータに対する前記ステータの第2締め代よりも大き
く、
第1孔幅とは、前記ロータに密接されていない自然状態において前記折り返し位置での前記挿通孔の前記短手方向における寸法であり、第2孔幅とは、前記中心軸での前記自然状態の前記挿通孔の前記短手方向における寸法であり、
第1ロータ幅とは、前記折り返し位置上の前記断面中心での前記ロータの前記短手方向における寸法であり、第2ロータ幅とは、前記中心軸上の前記断面中心での前記ロータの前記短手方向における寸法であり、
前記第1ロータ幅の前記第2ロータ幅に対する差が、前記第1孔幅の前記第2孔幅に対する差よりも大きい、
一軸偏心ねじポンプ。
【請求項2】
前記断面中心が前記中心線に沿って前記折り返し位置から前記中心軸へと移動するにつれて、前記ロータに対する前記ステータの締め代が、前記第1締め代から前記第2締め代へと漸次小さくなる、
請求項1に記載の一軸偏心ねじポンプ。
【請求項3】
前記断面中心が前記中心線上の任意点に位置する場合において、前記ロータに対する前記ステータの締め代とは、
前記自然状態で当該任意点から前記挿通孔の前記内周面までの前記短手方向における距離に対する、当該任意点上の前記断面中心から前記ロータの外周面までの前記短手方向における距離の超過量である、
請求項1に記載の一軸偏心ねじポンプ。
【請求項4】
前記第1孔幅が、前記第2孔幅よりも小さい、
請求項
1に記載の一軸偏心ねじポンプ。
【請求項5】
前記第1孔幅が、前記第2孔幅と等しい、
請求項
1に記載の一軸偏心ねじポンプ。
【請求項6】
前記横断面において、前記挿通孔が、レーストラック形状に形成されている、
請求項
5に記載の一軸偏心ねじポンプ。
【請求項7】
前記第1孔幅が、前記第2孔幅よりも大きい、
請求項
1に記載の一軸偏心ねじポンプ。
【請求項8】
前記横断面において、前記ロータは、互いに直交する長手軸と短手軸とを備えた非真円形状に形成され、
前記断面中心が前記折り返し位置に位置するとき、前記長手軸が前記短手方向に向けられ、前記短手軸が前記長手方向に向けられ、
前記断面中心が前記中心軸に位置するとき、前記長手軸が前記長手方向に向けられ、前記短手軸が前記短手方向に向けられる、
請求項1から
7のいずれか1項に記載の一軸偏心ねじポンプ。
【請求項9】
前記横断面において、前記ロータは、楕円形状である、
請求項
8に記載の一軸偏心ねじポンプ。
【請求項10】
前記横断面において、前記ロータは、長円形状である、
請求項
8に記載の一軸偏心ねじポンプ。
【請求項11】
前記横断面において、前記ロータは、短手軸方向両側部の第1曲線と、長手軸方向両端部の第2曲線とを備え、前記第1曲線は前記第2曲線に比べて曲率半径が大きい、
請求項
8に記載の一軸偏心ねじポンプ。
【請求項12】
前記横断面において、前記ロータは、長手軸方向に非対称である、
請求項
8に記載の一軸偏心ねじポンプ。
【請求項13】
前記ステータは、弾性材料からなるステータ本体のみで構成されている、
請求項1から
7のいずれか1項に記載の一軸偏心ねじポンプ。
【請求項14】
前記断面中心が前記折り返し位置に位置する場合において、前記ロータの外周面が前記長手方向における所定の締め代で前記挿通孔の前記内周面に前記長手方向に密接される、
請求項1から
7のいずれか1項に記載の一軸偏心ねじポンプ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一軸偏心ねじポンプに関する。
【背景技術】
【0002】
従来、内周面が雌ねじ型に形成された挿通孔を有するステータと、このステータの挿通孔に挿通される雄ねじ型の軸体からなるロータとを備えた一軸偏心ねじポンプが公知である(例えば、特許文献1参照)。
【0003】
前記従来の一軸偏心ねじポンプでは、ロータがステータの横断面に現れる挿通孔の開口の両端領域に位置する場合と、中央領域に位置する場合とでロータに対するステータの締め代がほぼ同じ値となるように設計されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
この場合、所望の締め代を確保しようとすれば、ロータの回転に必要となるトルクが大きくなり、大きな駆動力が要求される。
【0006】
一方、ロータの移動を容易にするために締め代を小さくすると、シール性能が低下して流動物の搬送が適切に行えなくなる。
【0007】
本発明は、シール性能の確保と、ロータの回転に必要とされる駆動力の抑制とを両立することができる一軸偏心ねじポンプを提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明者らは、両端領域で所望の締め代を確保しさえすれば、中央領域ではそれほどの締め代は必要とされない点を見出し、本発明に係る一軸偏心ねじポンプを開発するに至った。
【0009】
本発明の一形態は、内周面が雌ねじ型に形成された挿通孔を有するステータと、前記ステータの挿通孔に挿通され、前記ステータの中心軸に対して偏心回転を行う雄ねじ型の軸体からなるロータと、を備え、前記中心軸に直交する横断面において、前記挿通孔が、長孔として形成され、前記ロータの前記偏心回転に伴い、前記ロータの断面中心が、前記ステータの前記中心軸を通過して前記挿通孔の長手方向に延びる中心線に沿って、前記中心軸から見て前記長手方向において互いに反対側に設定された一対の折り返し位置の間で、前記長手方向に往復移動し、且つ前記ロータは、前記長手方向に直交する前記挿通孔の短手方向において、前記挿通孔の前記内周面に密接され、前記断面中心が前記折り返し位置に位置する場合における前記ロータに対する前記ステータの第1締め代が、前記断面中心が前記中心軸に位置する場合における前記ロータに対する前記ステータの第2締め代よりも大きい、一軸偏心ねじポンプを提供する。
【0010】
この構成によれば、ステータの中心軸に直交する横断面内において、ロータが挿通孔の両端領域に位置する場合、換言すれば、ロータの断面中心が挿通孔内の往復移動範囲の限界となる折り返し位置に位置する場合には、ロータに対するステータの締め代が、第1締め代となる。一方、ロータが挿通孔の中央領域に位置する場合、換言すれば、ロータの断面中心が挿通孔内の往復移動範囲の中央となる中心軸に位置する場合には、ロータに対するステータの締め代が、第2締め代となる。第1締め代は、第2締め代よりも大きく設定される。そのため、ロータは、挿通孔の両端領域に位置する場合に、挿通孔の内周面により強く密接され、両端領域でのシール性能を維持できる。中央領域では締め代がより小さくなっているため、ロータの回転に必要とされる駆動力を抑制できる。
【0011】
前記断面中心が前記中心線に沿って前記折り返し位置から前記中心軸へと移動するにつれて、前記ロータに対する前記ステータの締め代が、前記第1締め代から前記第2締め代へと漸次小さくなっていてもよい。
【0012】
前記断面中心が前記中心線上の任意点に位置する場合において、前記ロータに対する前記ステータの締め代は、前記ロータに密接されていない自然状態で当該任意点から前記挿通孔の前記内周面までの前記短手方向における距離に対する、当該任意点上の前記断面中心から前記ロータの外周面までの前記短手方向における距離の超過量であってもよい。
【0013】
第1孔幅が、前記ロータに密接されていない自然状態において前記折り返し位置での前記挿通孔の前記短手方向における寸法であり、第2孔幅が、前記中心軸での前記自然状態の前記挿通孔の前記短手方向における寸法であり、第1ロータ幅が、前記折り返し位置上の前記断面中心での前記ロータの前記短手方向における寸法であり、第2ロータ幅が、前記中心軸上の前記断面中心での前記ロータの前記短手方向における寸法であって、前記第1ロータ幅の前記第2ロータ幅に対する差が、前記第1孔幅の前記第2孔幅に対する差よりも大きくてもよい。
【0014】
前記第1孔幅は、前記第2孔幅よりも小さくてもよい。前記第1孔幅は、前記第2孔幅と等しくてもよい。前記第1孔幅は、前記第2孔幅よりも大きくてもよい。
【0015】
前記第1孔幅が前記第2孔幅と等しい場合に、前記横断面において、前記挿通孔が、レーストラック形状に形成されていてもよい。
【0016】
前記横断面において、前記ロータは、互いに直交する長手軸と短手軸とを備えた非真円形状に形成され、前記断面中心が前記折り返し位置に位置するとき、前記長手軸が前記短手方向に向けられ、前記短手軸が前記長手方向に向けられ、前記断面中心が前記中心軸に位置するとき、前記長手軸が前記長手方向に向けられ、前記短手軸が前記短手方向に向けられてもよい。
【0017】
前記横断面において、前記ロータは、楕円形状に形成されていてもよいし、長円形状に形成されていてもよい。この構成によれば、ロータの構成を簡略化して簡単に製作することができる。
【0018】
前記横断面において、前記ロータは、短手軸方向両側部の第1曲線と、長手軸方向両端部の第2曲線とを備え、前記第1曲線は前記第2曲線に比べて曲率半径が大きくなるようにしてもよい。前記横断面において、前記ロータは、長手軸方向に非対称であってもよい。
【0019】
前記ステータは、弾性材料からなるステータ本体のみで構成されていてもよい。この構成によれば、部品点数を削減して簡単かつ安価に製作することができる。
【0020】
前記断面中心が前記折り返し位置に位置する場合において、前記ロータの外周面が前記長手方向における所定の締め代で前記挿通孔の前記内周面に前記長手方向に密接されてもよい。
【発明の効果】
【0021】
本発明によれば、シール性能の確保と、ロータの回転に必要とされる駆動力の抑制とを両立することができる。
【図面の簡単な説明】
【0022】
【
図1】本発明の第1実施形態に係る一軸偏心ねじポンプの概略正面図。
【
図2】
図1のII-II線に沿って切断して示す一軸偏心ねじポンプの縦断面図。
【
図3】
図2のIII-III線に沿って切断して示す一軸偏心ねじポンプの横断面図。
【
図4】ロータが挿通孔の両端領域に位置するときのステータの一部及びロータの横断面図。
【
図5】ロータが挿通孔の両端領域から中央領域に向かって回転移動している途中の横断面図。
【
図6】ロータが挿通孔の中央領域に位置する状態を示す横断面図。
【
図7】第1実施形態の変形例に係るステータおよびロータの横断面図。
【
図8】第2実施形態に係るステータおよびロータの横断面図。
【
図9】第2実施形態の変形例に係るステータおよびロータの横断面図。
【
図10】第3実施形態に係るステータおよびロータの横断面図。
【
図11】本実施形態に係るロータの他の例を示す横断面図。
【
図12】本実施形態に係るロータの他の例を示す横断面図。
【
図13】本実施形態に係るロータの他の例を示す横断面図。
【
図14】本実施形態に係るロータの他の例を示す横断面図。
【
図15】本実施形態に係るロータの他の例を示す横断面図。
【
図16】本実施形態に係るロータの他の例を示す横断面図。
【
図17】他の実施形態に係る一軸偏心ねじポンプの一部を示す縦断面図。
【発明を実施するための形態】
【0023】
以下、本開示に係る実施形態を添付図面に従って説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「側」、「端」を含む用語)を使用するが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致しない。
【0024】
図1および
図2は、第1実施形態に係る一軸偏心ねじポンプ100を示す。一軸偏心ねじポンプ100は、回転容積型ポンプの一例であり、ケーシング1、ステータ2、エンドスタッド3、およびロータ4を備える。
【0025】
ケーシング1、ステータ2、およびエンドスタッド3は、筒状に形成され、互いに同軸状に配置される。以下、これら部材1~3間で共通の軸線を中心軸A1とし、中心軸A1の延びる方向を軸方向とする。
図1および
図2の右側を軸方向の一端側または基端側とし、左側を軸方向の他端側または先端側とする。
【0026】
ケーシング1は、金属材料で成形される。ケーシング1は、軸方向に延びる内部空間1aを画定する周壁1bと、周壁1bから径方向に突出する接続管1cとを有する。接続管1cの径方向基端は、第1開口部5を介して内部空間1aと連通する。内部空間1aは、両端のうち少なくとも他端で開口する。ステータ2は、軸方向に延びて両端で開口した挿通孔10を有する。本実施形態では、ステータ2が、挿通孔10を形成するステータ本体2aと、それに外嵌された外筒2bとを備える。外筒2bのステータ本体2aへの接合手段は、特に限定されない。エンドスタッド3は、軸方向に延びて両端で開口した内部空間3aを有する。エンドスタッド3の他端部が、第2開口部6を形成する。
【0027】
ケーシング1とエンドスタッド3とは、ステーボルト8で連結される。ステータ2は、ステーボルト8の締め回しにより、軸方向においてケーシング1とエンドスタッド3との間に挟持される。挿通孔10は、ケーシング1の内部空間1aともエンドスタッド3の内部空間3aとも連通する。一軸偏心ねじポンプ100において、接続管1cから第1開口部5、ケーシング1の内部空間1a、ステータ2の挿通孔10、およびエンドスタッド3の内部空間3aを介して第2開口部6へと繋がる流路7が構成される。接続管1cは、流動物を貯留したタンク(図示せず)と接続される。流動物として、マヨネーズといった粘性を有する材料を例示できる。タンク内の流動物は、ロータ4の回転に応じて、流路7内で移送される。
【0028】
ロータ4は、軸体に形成され、挿通孔10内に配置される。挿通孔10の内周面10aは、n条(ここでは、2条)で単段あるいは多段の雌ねじ形状に形成される。一方、ロータ4の外周面4aは、n-1条(ここでは、1条)で単段あるいは多段の雄ねじ形状に形成される。ロータ4は、ケーシング1の一端側に設けられた駆動機(不図示)により回転駆動され、中心軸A1に対する偏心回転を行う。
【0029】
一軸偏心ねじポンプ100は、駆動機により発生された回転駆動力をロータ4に伝達するための機構を備えている。当該機構は、駆動機の出力軸と連結されるカップリング11、カップリング11から延びるカップリングロッド12、およびカップリングロッド12と連結されるジョイントヘッド13を備え、ケーシング1の内部空間1aに収容される。ジョイントヘッド13は、筒状に形成されており、カップリングロッド12の先端部は、ジョイントヘッド13の一端面に接続される。ロータ4は、ジョイントヘッド13の他端面から軸方向他端側へ延び、ステータ2の挿通孔10内へ挿入されている。
【0030】
ジョイントヘッド13の中心軸A2は、ステータ2の中心軸A1と平行であり、軸直交方向において偏心量eだけ中心軸A1から離れている。カップリングロッド12は、ケーシング1内で中心軸A1,A2に対して傾斜して延びている。
【0031】
図3は、中心軸A1,A2に直交する断面(以下、「横断面」という)を示し、ジョイントヘッド13が軸方向に投影されている。
図3を併せて参照して、駆動機が作動すると、ジョイントヘッド13は、自身の中心軸A2周りに自転し、且つステータ2の中心軸A1周りに公転する。この公転において、ジョイントヘッド13の中心軸A2が、ステータ2の中心軸A1を中心として偏心量eを半径とする円Cに沿って移動する。このように、ロータ4の偏心回転には自転および公転が含まれ、ジョイントヘッド13の中心軸A2が、ロータ4の自転中心としての役割を果たし、ステータ2の中心軸A1が、ロータ4の公転中心としての役割を果たす。
【0032】
横断面において、挿通孔10は、長孔として形成される。挿通孔10は、横断面内で長手方向Xにおいて相対的に長寸を有し、横断面内で長手方向Xに直交する短手方向Yにおいて相対的に短寸を有する。本実施形態では、挿通孔10が、中心軸A1を基準にして点対称(180度回転対称)である。挿通孔10は、中心軸A1を通過して長手方向Xに延びる中心線CXを基準として線対称であり、中心軸A1を通過して短手方向Yに延びる中心線CYを基準として線対称である。
【0033】
横断面において、ロータ4の外周面4aは、閉ループ状の曲線として表され、ロータ4の横断面形状が、この曲線により画定される。以下、ロータ4の横断面形状の中心位置を「断面中心O4」という。断面中心O4は、軸直交方向において偏心量eだけジョイントヘッド13の中心軸A2(ロータ4の自転中心)から離れている。ロータ4の偏心回転に伴い、断面中心O4は、中心線CXに沿って一対の折り返し位置P1,P2の間で長手方向Xに往復移動する。一対の折り返し位置P1,P2は、中心軸A1を基準として長手方向Xにおいて互いに反対側に設定される。各折り返し位置P1,P2は、中心軸A1から長手方向Xにおいて偏心量eの2倍値だけ離れている。
【0034】
図3では、断面中心O4が第1折り返し位置P1上に位置付けられている場合のロータ4の外周面4aP1が実線で示されている(ハッチング領域も参照)。断面中心O4がステータ2の中心軸A1上に位置付けられている場合のロータ4の外周面4aA1と、断面中心O4が第2折り返し位置P2上に位置付けられている場合のロータ4の外周面4aP2とが、二点鎖線で示されている。挿通孔10には、断面中心O4がどこに位置付けられていてもロータ4で占有されない領域が残る。この領域が、軸方向に延びて移送空間15(
図2も参照)を成す。流動物は、ロータ4の偏心回転に伴い、移送空間15内で移送される。
【0035】
断面中心O4が第1折り返し位置P1から中心軸A1まで移動する間に、ロータ4は90度自転し且つ90度公転する。断面中心O4が中心軸A1から第2折り返し位置P2まで移動する間、第2折り返し位置P2から中心軸A1まで移動する間、および中心軸A1から第1折り返し位置P1まで移動する間についても、これと同様である。このように、ロータ4が1周公転する間に、断面中心O4が1往復してロータ4が1周自転する。
【0036】
横断面において、ロータ4の外周面4aは、少なくとも短手方向Yにおいて挿通孔10の内周面10aに密接され続ける。ロータ4は、金属材料で成形される一方、ステータ本体10は、移送される流動物に応じて適宜選択された弾性材料で成形される。使用可能な弾性材料として、ニトリルゴム、フッ素ゴム、エチレンプロピレンゴム、スチレンブタジエンゴム、シリコーンゴム、およびフロロシリコーンゴム等を例示できる。なお、ロータ4は、金属材料に限定されず、炭化ケイ素等のセラミクスや、ナイロン等の樹脂で成形されてもよい。
【0037】
この密接において、挿通孔10の内周面10aは短手方向Yにおいて中心軸A1から遠ざかる側へ弾性変形し、弾性変形の復元力で内周面10aをロータ4の外周面4aに密着させる。そのため、横断面において、ロータ4の外周面4aの短手方向Yの寸法は、挿通孔10がロータ4と密接されていない自然状態における挿通孔10の短手方向Yの寸法に対し、超過している。この超過の程度が、ロータ4に対するステータ2の(短手方向Yにおける)締め代δである。締め代δは、密接時の内周面10aの短手方向Yの弾性変形量であるとも言える。締め代δが大きければ、移送空間15の密閉性が高くなる一方、密接状態でのロータ4の偏心回転に必要とされる駆動力が大きくなる。
【0038】
ここで、締め代δについての説明の便宜上、各種の寸法を以下のとおり定義する。「第1孔幅a」とは、第1折り返し位置P1または第2折り返し位置P2での自然状態の挿通孔10の短手方向Yにおける寸法をいう。より詳しく言えば、横断面内において、位置P1またはP2を通過して短手方向Yに延びる仮想直線を引くと、当該仮想直線は内周面10aと2点で交差する。挿通孔10が自然状態である場合において、この2点間の直線距離が第1孔幅aである。「第2孔幅b」とは、中心軸A1での自然状態の挿通孔10の短手方向Yにおける寸法をいう。
【0039】
「ロータ幅」とは、横断面において、断面中心O4でのロータ4の短手方向Yにおける寸法をいう。より詳しく言えば、横断面内において、断面中心O4を通過して短手方向Yに延びる仮想直線を引くと、仮想直線は外周面4aと2点で交差する。この2点間の直線距離がロータ幅である。断面中心O4の往復移動中にロータ4は自転しているから、ロータ4の断面形状が非真円形状である場合においては、ロータ幅が、断面中心O4の位置に応じて変化する。「第1ロータ幅x」とは、断面中心O4が第1折り返し位置P1または第2折り返し位置P2上に位置付けられている場合におけるロータ幅をいう。「第2ロータ幅y」とは、断面中心O4が中心軸A1上に位置付けられている場合におけるロータ幅をいう。第1ロータ幅xは、第1孔幅aに対して超過し、第2ロータ幅yは、第2孔幅bに対して超過している(x>a,y>b)。
【0040】
断面中心O4が中心線CX上の任意点に位置付けられている場合において、「(短手方向Yの)締め代δ」は、当該任意点から自然状態での挿通孔10の内周面10aまでの短手方向Yにおける距離に対する、当該任意点上の断面中心O4からロータ4の外周面4aまでの短手方向Yにおける距離の超過量(正値)として定義される。この場合、「第1締め代δ1」とは、当該任意点が第1折り返し位置P1または第2折り返し位置P2である場合における締め代δをいう。「第2締め代δ2」とは、当該任意点が中心軸A1である場合における締め代δをいう。第1締め代δ1は、第1ロータ幅xの第1孔幅aに対する超過量の半分値に相当する(δ1=(x-a)/2>0)。第2締め代δ2は、第2ロータ幅yの第2孔幅bに対する超過量の半分値に相当する(δ2=(y-b)/2>0)。
【0041】
第1締め代δ1は、第2締め代δ2よりも大きい(δ1>δ2)。別の言い方では、第1ロータ幅xの第2ロータ幅yに対する差が、第1孔幅aの第2孔幅bに対する差よりも大きい(x-y>a-b)。なお、ここでの「差」は、正値のみならず、ゼロ値も負値もとり得る。式「x-y>a-b」は、式「δ1=(x-a)/2」および「δ2=(y-b)/2」より、式「δ1>δ2」に変形可能である。
【0042】
上記の関係性(δ1>δ2)を満たすため、本実施形態では、横断面において、挿通孔10は、レーストラック(長円)形状に形成されている一方、ロータ4は、断面中心O4にて互いに直交する長手軸および短手軸を備えた非真円形状に形成されている。以降では、特段断らなければ、挿通孔10の形状とは、横断面内で挿通孔10の内周面10aの輪郭を表した閉ループ形状を指す。ロータ4の形状とは、横断面内でロータ4の外周面4aの輪郭を表した閉ループ形状を指す。
【0043】
挿通孔10のレーストラック形状は、長手方向Xに平行に延びる一対の直線部10bと、直線部10bの一端部同士を繋ぐ第1半円部10cと、直線部10bの他端部同士を繋ぐ第2半円部10dとを含む。一対の直線部10bは、第2孔幅bだけ短手方向Yに離れている。
【0044】
本実施形態では、第1折り返し位置P1が、長手方向Xにおいて直線部10bと第1半円部10cとの接続位置と対応する。よって、第1孔幅aが、第2孔幅bと等しい(a=b)。第1半円部10cは、第1折り返し位置P1を中心として第1孔幅a(第2孔幅b)を半径とする半円弧を成す。第2折り返し位置P2についてもこれと同様である。
【0045】
本実施形態では、ロータ4が、非真円形状の一例として、楕円形状に形成されている。この「楕円形状」は、幾何学上の楕円に限定されず、これに近い形状も含まれる。例えば、複数の線分で構成される多角形で楕円に近い形状に形成されたものを含めてもよい。この場合、線分同士の接続部分は円弧等、滑らかな曲線で構成するのが好ましい。また、楕円に近い形状であれば、どのような線で構成されていても構わない。例えば、楕円に類似して次式を満足する閉曲線であるスーパー楕円であってもよい。
【数1】
【0046】
図4を参照して、ロータ4の断面中心O4が第1折り返し位置P1または第2折り返し位置P2上に位置付けられている場合に、ロータ4の長手軸は短手方向Yに向けられ、ロータ4の短手軸は長手方向Xに向けられる。ロータ4の長径が、第1ロータ幅xとなる。
図5を参照して、断面中心O4が折り返し位置P1,P2と中心軸A1との間で移動する間にロータ4は90度自転し、ロータ幅は、第1ロータ幅xから漸次小さくなっていく。
図6を参照して、ロータ4の断面中心O4が中心軸A1上に位置付けられている場合に、ロータ4の長手軸は長手方向Xに向けられ、ロータ4の短手軸は短手方向Yに向けられる。ロータ4の短径が、第2ロータ幅yとなる。
【0047】
このように、第1孔幅aは第2孔幅bと等しい一方、第1ロータ幅xは第2ロータ幅yよりも大きい。そのため、第1締め代δ1が、第2締め代δ2よりも大きくなる。なお、第2ロータ幅y(ロータ4の短径)は、一対の直線部10b同士の間隔(第2孔幅b)よりも大きい。そのため、断面中心O4が折り返し位置P1,P2から中心軸A1へと長手方向Xに移動する過程で、短手方向Yの締め代δは、第1締め代δ1から第2締め代δ2へと漸次小さくなる。
【0048】
仮にロータ4の断面形状が真円であれば、第1ロータ幅と第2ロータ幅とが等しくなり、第1締め代と第2締め代とが等しくなる(本実施形態では第1孔幅aが第2孔幅bと等しいため)。この比較対象としての真円ロータの直径が、本実施形態に係るロータ4の長径と等しいと想定した場合には、本実施形態に係る第1締め代δ1は比較対象のものと同等であり、第2締め代δ2は比較対象のものよりも小さくなる。そのため、挿通孔10の両端領域では比較対象と同等のシール性を確保でき、且つ挿通孔10の中央領域では比較対象よりもロータ4の回転に必要とされる駆動力を低減することができる。また、比較対象としての真円ロータの直径が、本実施形態に係るロータ4の短径と等しいと想定した場合には、本実施形態に係る第1締め代δ1は比較対象のものよりも大きくなり、第2締め代δ2は比較対象と同等である。そのため、挿通孔10の中央領域では比較対象と同等の回転しやすさを確保したうえで、挿通孔10の両端領域では比較対象よりもシール性を高めることができる。
【0049】
以上のように、本実施形態に係る一軸偏心ねじポンプ100によれば、シール性の確保と、ロータ4の回転に必要とされる駆動力の抑制とを両立できる。
【0050】
図3または
図4を参照して、断面中心O4が第1折り返し位置P1上に位置付けられている場合には、ロータ4の外周面4aのうち長手軸方向の先端部が、挿通孔10の第1半円部10cと密接される。ロータ4に対する第1半円部10cの締め代は、直線部10bとの接続位置で最も大きい第1締め代δ1であり、中心線CXと交差する頂点部分において最も小さくなる。本実施形態では、第1折り返し位置P1が長手方向において直線部10bと第1半円部10cとの接続位置と対応していることから、ロータ4に対する頂点部分の長手方向Xにおける締め代δXは、第2締め代δ2と等しい。このことは、断面中心O4が第2折り返し位置P2上に位置付けられている場合も同様である。上記の比較対象としての真円ロータの直径が、本実施形態に係るロータ4の短径と等しいと想定した場合には、長手方向Xにおける締め代δXが比較対象のものと同等に維持されたうえで、短手方向Yにおける第1締め代δ1が比較対象のものよりも大きくなり、高いシール性を確保できる。
【0051】
図7は、第1実施形態の変形例を示す。変形例では、第1折り返し位置P1が、長手方向Xにおいて直線部10bと第1半円部10cとの接続位置P3よりも挿通孔10の先端側に位置付けられている。第2折り返し位置P2、直線部10b、および第2半円部10dの位置関係についても、これと同様である。これにより、第1孔幅aが第2孔幅bよりも短くなるため、第1締め代δ1の第2締め代δ2に対する差をより大きくすることができる。また、断面中心O4が第1折り返し位置P1上に位置付けられている場合において、ロータ4の短手軸が長手方向Xに向けられ、ロータ4の外周面4aは第1半円部10cの頂点部分と長手方向Xに密接される。第1折り返し位置P1がより先端側に位置付けられることで、短手軸が長手方向Xに向けられていても、長手方向Xにおける締め代δXを確保することができ、高いシール性を維持できる。仮想的な真円ロータの直径が、本例のロータ4の長径と同等であり、本例のロータ4の長径と短径の差が第1折り返し位置P1と接続位置P3との距離と同等であり、仮想的な真円ロータの折り返し位置が接続位置と一致している場合を仮想すると、本例のロータ4において得られる長手方向Xにおける締め代δXは、仮想的な真円ロータにおいて得られる長手方向Xにおける締め代と同等となる。
【0052】
図8は、第2実施形態に係るステータ2およびロータ4の横断面を示す。本実施形態では、第1孔幅aが第2孔幅bよりも小さい(a<b)。ロータ4の形状は、第1実施形態と同じであり、第1ロータ幅xは第2ロータ幅yよりも大きい。したがって、第1締め代δ1は、第2締め代δ2よりも大きい。第1孔幅aが第2孔幅bよりも大きいため、第1締め代δ1の第2締め代δ2に対する差を大きくしやすい。
【0053】
挿通孔10の形状は、一例として、楕円形状に形成されている。第2孔幅bは、当該楕円の短径に相当し、第1孔幅aは、第2孔幅b(短径)未満の値となる。
【0054】
第1孔幅aが第2孔幅bよりも小さい場合において、挿通孔10の形状は楕円形状に限定されない。例えば、
図9に示すように、挿通孔10の形状は、異なる曲率半径を有する複数の円弧の組み合わせでもよい。この変形例では、挿通孔10の形状が、レーストラック形状における一対の直線部10bに代えて、短手方向Yにおいて中心軸A1から離れる側に凸の一対の円弧部10eを含む。一対の円弧部10eは、中心線CXを基準として線対称に配置され、各円弧部10eは、中心線CYを基準として線対称である。各半円部10fは、第1実施形態の半円部10c,10d(
図3を参照)と同様にして、一対の円弧部10eの端部同士を接続する。このような形状の採用により、第1孔幅aと第2孔幅bとの差を大きくしやすい。なお、円弧部10eは、真円の円弧でも楕円弧でもよい。円弧部10eは、円弧以外の曲線(例えば、放物線)で構成された曲線部に変更可能である。
【0055】
図10は、第3実施形態に係るステータ2およびロータ4の横断面を示す。本実施形態では、第1孔幅aが第2孔幅bよりも大きい(a>b)。第1締め代δ1を第2締め代δ2よりも大きくするため、第1ロータ幅xは必然的に第2ロータ幅yよりも大きくなり、第1ロータ幅xの第2ロータ幅yに対する差は、第1孔幅aの第2孔幅bに対する差よりも大きい(x-y>a―b>0)。ロータ4の形状は、第1実施形態と同様にして、断面中心O4にて互いに直交する長手軸および短手軸を備えた非真円形状、例えば楕円形状に形成されている。
【0056】
挿通孔10の形状は、一例として、異なる曲率半径を有する複数の円弧の組み合わせでもよい。挿通孔10の形状は、レーストラック形状における一対の直線部に代えて、短手方向において中心軸A1に近づく側に凸の一対の円弧部10gを含んでいる。一対の円弧部10gは、中心線CXを基準として線対称に配置され、各円弧部10gは、中心線CYを基準として線対称である。各半円部10hは、第1実施形態の半円部10c,10d(
図3を参照)と同様にして、一対の円弧部10gの端部同士を接続する。このような形状の採用により、第1孔幅aを第2孔幅bよりも大きくしやすい。なお、円弧部10gは、真円の円弧でも楕円弧でもよい。円弧部10gは、円弧以外の曲線(例えば、双曲線)で構成された曲線部に変更可能である。
【0057】
前記実施形態では、ロータ4の横断面を楕円形状としたが、これに限らず他の形状とすることもできる。すなわち、ロータ4の横断面形状は、長軸と短軸とを備えた非真円形状であればよい。この場合、ロータ4の横断面形状は、長軸及び短軸を中心とする線対称形状とするのが好ましい。
【0058】
例えば、ロータ4の横断面形状は、
図11に示すように、長手軸方向両端部を半円40aとし、半円40a同士を直線40bで接続した長円とすることができる。長円形状には、これに近い形状も含めることができる。例えば、半円部分は複数の直線で構成してもよい。この場合、直線同士の接続部は円弧等、滑らかな曲線で構成するのが好ましい。また、長円形状に近い形状であれば、どのような線で構成されていても構わない。例えば、
図12に示すように、長手軸方向両端部が半円に満たない円弧40cで構成されていたり、
図13に示すように、楕円の一部40d(図中、横軸方向に離間し、縦軸に沿う両側部分)で構成されていたりしてもよい。
【0059】
横断面長円形状のロータ4によれば、両端領域に位置するときは、その半円が挿通孔10の両端領域を構成する直線に所定の締め代で密接する。ロータ4が両端領域から中央領域に移動する際、ロータ4自身が回転し、その長手軸が徐々に挿通孔10の長手方向Xに沿う。これにより、ステータ2の挿通孔10の内周面10aに対するロータ4の外周面4aの密接力を徐々に低減させることができる。ロータ4が中心軸A1上に位置付けられた時点では、ロータ4の長手軸が長手方向Xに向けられ、ロータ4がステータ2から最も力を受けにくい状態となる。
【0060】
また、ロータ4の横断面形状は、異なる曲率半径を有する複数の円弧の組み合わせとすることもできる。例えば、
図14に示すように、短手軸方向に離間し、長手軸に沿う両側部分を第1曲率半径R1の円弧40eでそれぞれ構成し、長手軸方向に離間し、短手軸に沿う両側部分を、第1曲率半径R1よりも小さい第2曲率半径R2の円弧40fでそれぞれ構成することができる。また、
図15に示すように、短手軸方向に離間し、長手軸に沿う両側部分を第1楕円の一部(短手軸の両側に位置する部分)からなる第1曲線40gでそれぞれ構成し、長手軸方向に離間し、短手軸に沿う両側部分を、第2楕円の一部(縦軸の両側に位置する部分)からなり、第1曲線40gとは曲率半径が相違する第2曲線40hでそれぞれ構成することもできる。
図14の例では、第1楕円41の中心と第2楕円42の中心とを一致させ、第1曲線40gを単一の第1楕円41の2箇所の部分で構成し、第2曲線40hを単一の第2楕円42の2箇所の部分で構成したが、これに限らない。第1曲線40g及び第2曲線40hは、それぞれ長手軸及び短手軸を中心として対称な形状であればよい。例えば、第1曲線40gを構成する第1楕円41の中心を、一方と他方(
図15中、上方側と下方側)とで、中心O4から短手軸のプラス方向とマイナス方向に同距離だけそれぞれ位置をずらせることもできる。第2曲線40hについても同様である。さらに、楕円と円弧の組み合わせでも構わない。すなわち、短手軸方向の両側を楕円の一部でそれぞれ構成し、長手軸方向の両側を円弧でそれぞれ構成することもできる。
【0061】
また、ロータ4の横断面形状は、縦(短手)軸を中心として横(長手)軸方向に非対称に形成することもできる。例えば、
図16に示すように、ロータ4の横断面形状を、縦軸に対して右側の輪郭を楕円の半部40iで構成し、左側の輪郭を半円40jで構成することができる。楕円の短軸が縦軸に合致している。この構成によれば、ロータ4の回転によりステータ2の挿通孔10の内周面10aとの密接の仕方を横断面の両側で相違させることができ、用途に応じた設計の自由度を高めることが可能となる。
【0062】
以上のように、ロータ4の断面形状が長手軸方向および短手軸方向を備える場合において、δ1>δ2の関係性を満たす限りにおいて、ロータ4を第1~第3実施形態のいずれにも適用可能である。第2実施形態については、真円形状の断面を有するロータ4も適用可能である。
【0063】
前記実施形態では、第1開口部5からケーシング1内に流動物を取り込んで第2開口部6から吐出するように構成したが、ロータ4を逆方向に回転させることにより第2開口部6から取り込んで第1開口部5から吐出させるように構成することも可能である。
【0064】
前記実施形態では、ステータ2を外筒2bとステータ本体2aとで構成したが、
図17に示すように、外筒のないステータ本体2aのみで構成することもできる。ケーシング1の一端部は、段付き形状に形成され、内径側端部21が円筒状に突出している。エンドスタッド3は、一方の面の中心孔22の周囲に凹部23が形成されている。ステータ本体2aは一端側に鍔部24が形成されている。エンドスタッド3の凹部23に、ステータ本体2aの鍔部24、さらにケーシング1の内径側端部21を挿入することにより、鍔部24を凹部23の底面と内径側端部21の端面との間に挟持してステータ2(ステータ本体2a)を装着することができる。
【0065】
この構成によれば、ステータ2(ステータ本体2a)を、外径側に変形可能で、前記挟持部分での片持ち構造とすることができる。これにより、構造を簡略化して簡単かつ安価に製作することができる。前記実施形態のように、外筒2aとステータ本体2bとを固定するための接着剤もないので、接着剤の耐液性等を考慮する必要もない。
【符号の説明】
【0066】
1…ケーシング
1a…内部空間
1b…周壁
1c…接続管
2…ステータ
2a…ステータ本体
2b…外筒
3…エンドスタッド
3a…内部空間
4…ロータ
4a,4aP1,4aA1,4aP2…外周面
5…第1開口部
6…第2開口部
7…流路
8…ステーボルト
10…挿通孔
10a…内周面
10b…直線部
10c,10d,10f,10h…半円部
10e,10g…円弧部
11…カップリング
12…カップリングロッド
13…ジョイントヘッド
15…移送空間
21…内径側端部
22…中心孔
23…凹部
24…鍔部
100…一軸偏心ねじポンプ
A1…中心軸
CX,CY…中心線
O4…断面中心
P1,P2…折り返し位置
X…挿通孔の長手方向
Y…挿通孔の短手方向
a…第1孔幅
b…第2孔幅
x…第1ロータ幅
y…第2ロータ幅
δ…(短手方向の)締め代
δ1…第1締め代
δ2…第2締め代
【要約】
【課題】シール性能の確保と、ロータの回転に必要とされる駆動力の抑制とを両立する。
【解決手段】一軸偏心ねじポンプは、内周面10aが雌ねじ型に形成された挿通孔10を有するステータ2と、挿通孔10に挿通される雄ねじ型のロータ4とを備える。横断面において、挿通孔10は、長孔として形成される。ロータ4の偏心回転に伴い、ロータ4の断面中心O4が、挿通孔10の長手方向Xに延びる中心線CXに沿って一対の折り返し位置P1,P2の間で長手方向Xに往復移動する。ロータ4は、挿通孔10の短手方向Yにおいて挿通孔10の内周面10aに密接される。断面中心O4が折り返し位置P1,P2に位置する場合におけるロータ4に対するステータ2の第1締め代δ1が、断面中心O4が中心軸A1に位置する場合におけるロータ4に対するステータ2の第2締め代δ2よりも大きい。
【選択図】
図3