(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-23
(45)【発行日】2023-01-06
(54)【発明の名称】視差補償空間フィルタ
(51)【国際特許分類】
G01S 7/481 20060101AFI20221226BHJP
G01S 17/931 20200101ALI20221226BHJP
G02B 5/20 20060101ALN20221226BHJP
【FI】
G01S7/481 A
G01S17/931
G02B5/20
(21)【出願番号】P 2020528168
(86)(22)【出願日】2019-10-28
(86)【国際出願番号】 US2019058262
(87)【国際公開番号】W WO2020092192
(87)【国際公開日】2020-05-07
【審査請求日】2020-07-29
(32)【優先日】2018-11-02
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-12-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】317015065
【氏名又は名称】ウェイモ エルエルシー
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】シェパード,ラルフ,ハミルトン
(72)【発明者】
【氏名】ガッサン,ブレイズ
(72)【発明者】
【氏名】ドロズ,ピエール-イヴ
【審査官】九鬼 一慶
(56)【参考文献】
【文献】国際公開第2018/071251(WO,A1)
【文献】特表2019-535005(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
G01S 17/00 -17/95
G02B 5/20
(57)【特許請求の範囲】
【請求項1】
システムであって、
光を集束させるように構成された、レンズと、
前記レンズの光軸と交差するように画定された一次アパーチャおよび前記光軸の外に画定された複数の二次アパーチ
ャを有する、不透明材料であって、前記複数の二次アパーチャは、前記一次アパーチャから第1の距離にある第1の二次アパーチャおよび前記一次アパーチャから第2の距離にある第2の二次アパーチャを含
み、前記第2の距離は前記第1の距離よりも大きい、不透明材料と、
前記レンズによって集束され、前記不透明材料によって画定された前記
一次アパーチャおよび前記複数の二次アパーチャを通過した光を検出するように配置された光検出器と、を備える、システム。
【請求項2】
前記不透明材料が、前記レンズの焦点面にまたはその近くに配設されている、請求項1に記載のシステム。
【請求項3】
前記不透明材料が、前記システムの所定の最大走査範囲構成に関連する前記レンズの共役面にまたはその近くに配設されている、請求項1に記載のシステム。
【請求項4】
前記一次アパーチャのサイズが、前記複数の二次アパーチャの各二次アパーチャのそれぞれのサイズより大きい、請求項1に記載のシステム。
【請求項5】
前記一次アパーチャが、第1のサイズを有し、各二次アパーチャが、第2のサイズを有する、請求項4に記載のシステム。
【請求項6】
前記一次アパーチャが、第1のサイズを有し、前記第1の二次アパーチャが、第2のサイズを有し、前記第2の二次アパーチャが、第3のサイズを有する、請求項4に記載のシステム。
【請求項7】
前記第2のサイズが、前記第3のサイズより大きい、請求項6に記載のシステム。
【請求項8】
前記レンズによって集束された前記光が、光検出および測距(LIDAR)デバイスの送信器によって照明された1つ以上のオブジェクトによって反射された光を含む、請求項1に記載のシステム。
【請求項9】
前記複数の二次アパーチャが、前記システムの前記レンズの位置に対する前記LIDARデバイスの前記送信器の位置に基づいて前記不透明材料に画定されている、請求項8に記載のシステム。
【請求項10】
前記一次アパーチャが、垂直軸および前記垂直軸に直交する水平軸を有し、前記第1の二次アパーチャが、前記一次アパーチャの前記水平軸の上方に位置決めされ、前記第2の二次アパーチャが、前記一次アパーチャの前記水平軸の下方に位置決めされている、請求項1に記載のシステム。
【請求項11】
前記一次アパーチャが、垂直軸および前記垂直軸に直交する水平軸を有し、前記複数の二次アパーチャが、前記垂直軸と前記水平軸との間に第1の線形配置で画定された少なくとも2つの二次アパーチャと、前記垂直軸と前記水平軸との間に第2の線形配置で画定された少なくとも2つの他の二次アパーチャとを含む、請求項1に記載のシステム。
【請求項12】
前記光検出器が、互いに並列に接続された光検出器のアレイを含む、請求項1に記載のシステム。
【請求項13】
前記光検出器が、単一の感知要素検出器を備える、請求項1に記載のシステム。
【請求項14】
方法であって、
レンズによって、光を集束させることと、
前記集束させられた光を、不透明材料内に画定された複数のアパーチャのうちの少なくとも1つを通過させることであって、前記複数のアパーチャが、前記レンズの光軸と交差するように画定された一次アパーチャおよび前記光軸の外に画定された複数の二次アパーチャを含み、前記複数の二次アパーチャは、前記一次アパーチャから第1の距離にある第1の二次アパーチャおよび前記一次アパーチャから第2の距離にある第2の二次アパーチャを含
み、前記第2の距離は前記第1の距離よりも大きい、通過させることと、
光検出器によって、前記不透明材料によって画定された前記
一次アパーチャおよび前記複数の二次アパーチャを通過した光を検出することと、を含む、方法。
【請求項15】
光検出および測距(LIDAR)デバイスであって、
光で周囲環境を照明するように構成されたLIDAR送信器と、
前記LIDAR送信器によって照明された1つ以上のオブジェクトによって反射された光を受信するように構成されたLIDAR受信器であって、
前記反射された光を集束させるように構成されたレンズと、
前記レンズの光軸と交差するように画定された一次アパーチャおよび前記光軸の外に画定された複数の二次アパーチ
ャを有する、不透明材料であって、前記複数の二次アパーチャは、前記一次アパーチャから第1の距離にある第1の二次アパーチャおよび前記一次アパーチャから第2の距離にある第2の二次アパーチャを含
み、前記第2の距離は前記第1の距離よりも大きい、不透明材料と、
前記レンズによって集束され、前記
一次アパーチャおよび前記複数の二次アパーチャを通過した光を検出するように構成された光検出器と、を備える、LIDAR受信器と、を備えるLIDARデバイス。
【請求項16】
前記光検出器の断面積が、前記一次アパーチャの断面積より大きい、請求項15に記載のLIDARデバイス。
【請求項17】
前記光検出器の断面積が、前記
一次アパーチャおよび前記複数の二次アパーチャの断面積の合計よりも大きい、請求項15に記載のLIDARデバイス。
【請求項18】
前記光検出器が、前記レンズまでの第
3の距離にあり、前記不透明材料が、前記レンズまでの第
4の距離にあり、前記第
3の距離が、前記第
4の距離より大きい、請求項15に記載のLIDARデバイス。
【請求項19】
前記不透明材料が、ガラス基板を覆う不透明マスクを含む、請求項15に記載のLIDARデバイス。
【請求項20】
前記不透明材料が、金属を含み、前記
一次アパーチャおよび前記複数の二次アパーチャは、前記金属のエッチングにより画定されている、請求項15に記載のLIDARデバイス。
【請求項21】
システムであって、
バイスタティック構成の光検出および測距(LIDAR)デバイスであって、オブジェクトに対して移動しながら動作するように構成されており、
前記オブジェクトを照明するための光を送信する送信レンズと、
前記オブジェクトからの光を集束させる受信レンズと、
前記受信レンズから前記集束させられた光を受信する空間フィルタであって、
前記オブジェクトが前記LIDARデバイスまでの閾値距離よりも大きい距離にあることに基づいて、前記空間フィルタを通って、前記集束させられた光の少なくとも閾値部分を通過させるように画定された一次ピンホールと、
前記一次ピンホールから第1の距離にある第1の二次ピンホールおよび前記一次ピンホールから第2の距離にある第2の二次ピンホールを含む複数の二次ピンホールであって、
前記第2の距離は前記第1の距離よりも大きく、前記複数の二次ピンホールのそれぞれの各サイズが、前記一次ピンホールのサイズより小さく、前記複数の二次ピンホールが、前記オブジェクトが前記LIDARデバイスまでの閾値距離未満の距離にあることに基づいて、前記空間フィルタを通って、前記集束させられた光の1つ以上の部分を通過させるように画定されている、複数の二次ピンホールと、を含む、空間フィルタと、を含む、LIDARデバイス、を含む、システム。
【請求項22】
車両をさらに備え、前記LIDARデバイスが、前記車両に結合されている、請求項21に記載のシステム。
【請求項23】
前記LIDARデバイスが、
前記送信レンズを通して送信される光を放出するように構成されたエミッタと、
前記送信レンズから前記放出された光を前記LIDARデバイスの外に向ける回転可能ミラーであって、前記放出された光は、前記回転可能ミラーの回転により複数の方向に向けられる、回転可能ミラーと、をさらに備える、請求項21に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2018年12月29日に提出された米国特許出願第16/236,442号、および2018年11月2日に提出された米国仮出願第62/755,252号の優先権を主張し、それらは共に参照によりそれらの全体が本明細書に組み入れられる。
【背景技術】
【0002】
本明細書に別段の断りのない限り、このセクションに記載の資料は、本出願の特許請求の範囲に対する先行技術ではなく、このセクションに含めることよって先行技術であると認められるものでもない。
【0003】
フォトダイオード、単一光子アバランシェダイオード(SPAD)、または他のタイプのアバランシェフォトダイオード(APD)などの光検出器を使用して、光検出器の表面上に照射された光を検出することができる(例えば、光の強度に対応する電圧または電流などの電気信号を出力することにより)。このようなデバイスの多くのタイプは、シリコンなどの半導体材料から製造される。実質的な幾何学的領域の光を検出するために、複数の光検出器を並列に接続されたアレイに配置できる。これらのアレイは、シリコン光電子増倍管(SiPM)またはマルチピクセル光子カウンタ(MPPC)と呼ばれることがある。
[先行技術文献]
[特許文献1] 国際公開第2018/071251号
【発明の概要】
【0004】
一例では、システムは、シーンに対して配設され、シーンからの光を集束するように構成されたレンズを含む。システムはまた、不透明材料も含む。不透明材料は、一次アパーチャおよび1つ以上の二次アパーチャを含む複数のアパーチャを画定している。システムはまた、レンズによって集束され、複数のアパーチャのうちの少なくとも1つを通過した光を捕捉するように配置された1つ以上の光検出器を含む。
【0005】
別の例では、方法は、シーンに対して配設されたレンズによって、シーンからの光を集束させることを含む。方法はまた、不透明材料内に画定された複数のアパーチャのうちの少なくとも1つを通して集束光を通過させることを含む。複数のアパーチャは、一次アパーチャおよび1つ以上の二次アパーチャを含む。方法はまた、1つ以上の光検出器によって、複数のアパーチャのうちの少なくとも1つを通過した光を捕捉することを含む。方法はまた、1つ以上の光検出器によって、捕捉された光を検出することを含む。
【0006】
さらに別の例では、光検出および測距(LIDAR)デバイスは、シーンを光で照明するように構成されたLIDAR送信器を含む。LIDARデバイスは、シーン内の1つ以上のオブジェクトによって反射された光を受信するように構成されたLIDAR受信器も含む。LIDAR受信器は、シーンからの反射光を集束させるように構成されたレンズを含む。LIDAR受信器はまた、不透明材料も含む。不透明材料は、一次アパーチャおよび1つ以上の二次アパーチャを含む複数のアパーチャを画定する。LIDAR受信器はまた、レンズによって集束され、複数のアパーチャのうちの少なくとも1つを通過した光を検出するように構成された1つ以上の光検出器を含む。
【0007】
さらに別の例では、システムは、シーンに対して配設されたレンズによって、シーンからの光を集束させるための手段を備える。システムはまた、不透明材料内に画定された複数のアパーチャのうちの少なくとも1つを通して集束光を通過させるための手段を備える。複数のアパーチャは、一次アパーチャおよび1つ以上の二次アパーチャを含む。システムはまた、1つ以上の光検出器によって、複数のアパーチャのうちの少なくとも1つを通過した光を捕捉するための手段を備える。システムはまた、1つ以上の光検出器によって、捕捉された光を検出するための手段を備える。
【0008】
さらに別の例では、システムが提供される。システムは、バイスタティック構成の光検出および測距(LIDAR)デバイスを備える。LIDARデバイスは、オブジェクトに対して移動しながら動作するように構成されている。LIDARデバイスは、オブジェクトを照明するための光を送信する送信レンズと、オブジェクトからの光を集束する受信レンズと、受信レンズから集束光を受信する空間フィルタと、を備える。空間フィルタは、オブジェクトがLIDARデバイスまでの閾値距離よりも大きい距離にあることに基づいて、空間フィルタを通って、集束光の少なくとも閾値部分を通過させるように配置された一次ピンホールを含む。空間フィルタはまた、一次ピンホールに対して1つ以上の位置に配設された1つ以上の二次ピンホールを含む。1つ以上の二次ピンホールのそれぞれの各サイズは、一次ピンホールのサイズよりも小さい。1つ以上の二次ピンホールは、オブジェクトがLIDARデバイスまでの閾値距離未満の距離にあることに基づいて、集束光の1つ以上の部分を、空間フィルタを通過させるように配置されている。
【0009】
前述の概要は例示にすぎず、決して限定することを意図したものではない。上記の理解を助ける態様、実施形態、および特徴に加えて、さらなる態様、実施形態、および特徴が、図面および以下の「発明を実施するための形態」を述べることによって、明らかになってくるであろう。
【図面の簡単な説明】
【0010】
【
図1】例示的な実施形態による、光検出システムの図である。
【
図2】例示的な実施形態による、LIDARデバイスの図である。
【
図3】例示的な実施形態による、別のLIDARデバイスの図である。
【
図4A】例示的な実施形態による、さらに別のLIDARデバイスの図である。
【
図4B】例示的な実施形態による、
図4AのLIDARデバイスの部分断面図を示す。
【
図4C】例示的な実施形態による、
図4AのLIDARデバイスの別の部分断面図を示す。
【
図5】例示的な実施形態による、単一のアパーチャを画定する不透明材料の図である。
【
図6】例示的な実施形態による、複数のアパーチャを画定する不透明材料の図である。
【
図7】例示的な実施形態による、複数のアパーチャを画定する別の不透明材料の図である。
【
図8】例示的な実施形態による、LIDARシステム応答の概念図である。
【
図10】例示的な実施形態による、方法のフローチャートである。
【発明を実施するための形態】
【0011】
本明細書では、方法およびシステムの例について記載する。本明細書において記載された任意の例示的な実施形態または特徴は、必ずしも他の実施形態または特徴よりも好ましいまたは有利であると解釈されるものではない。本明細書において記載された例示的な実施形態は、限定的であることを意味するものではない。開示されるシステムおよび方法の特定の態様は、多種多様な異なる構成で配置し、組み合わせることができ、これらの構成の全てが、本明細書において熟考されることは容易に理解できるであろう。さらに、図に示されている特定の配置は、限定的であるとみなされるべきではない。他の実施形態は、所定の図に示されるそれぞれの要素をより多く、またはより少なく含むことができることを理解されるべきである。加えて、図示の要素のうちのいくつかは、組み合わせてもよく、または省略されてもよい。同様に、例示的な実施形態は、図に示されていない要素を含んでいてもよい。
【0012】
I.概要
例示的な実施形態は、1つ以上の光検出器(例えば、単一要素検出器または検出器のアレイ)に照射されたバックグラウンド光を低減するためのデバイス、システム、および方法に関連し得る。光検出器(複数可)は、シーンからの光を感知していてもよい(例えば、光検出器(複数可)は、LIDARシステムの構成要素であってもよい)。
【0013】
システムの一例は、レンズを含むことができる。レンズは、シーンからの光を焦点面上に集束させるために使用され得る。しかしながら、レンズはまた、焦点面上に観察されることを意図されていないバックグラウンド光(例えば、シーン内の太陽光)を集束させてもよい。光を選択的にフィルタリングする(すなわち、シーン内の情報に対応する光からバックグラウンド光を分離する)ために、不透明材料(例えば、選択的にエッチングされた金属、その上にマスクが置かれたガラス基板)がレンズの焦点面に置かれてもよい。不透明材料は、様々な実施形態において、スラブ、シート、または様々な他の形状とすることができる。不透明材料内に、アパーチャが画定され得る。アパーチャは、レンズによって焦点面上に集束されたシーンの光の一部または全体を通過させることができる。
【0014】
不透明材料の裏側(すなわち、レンズの反対側の不透明材料の側)では、アパーチャによって選択された光はアパーチャから発散し得る。光の発散の方向において、システムは、アパーチャからある距離に配設された1つ以上の光検出器(例えば、SPAD)を含んでもよい。光検出器(複数可)は、発散光(例えば、発散光の強度)を検出し得る。光が発散しているため、光検出器(複数可)に利用できる検出領域は、レンズの焦点面にある同じ光円錐に対応する検出領域よりも大きくなることがある。これは、検出領域が、より厳密に集束され、これによりアパーチャから離れた距離よりもレンズの焦点面においてより小さいことによる。一例として、200μm×200μmの断面積を有するアパーチャは、数百のSPAD分(例えば、各SPADは、200μm2~600μm2の断面積を有する)と同等の面積を占め得る。比較すると、光がアパーチャから離れて直径1.33mmの円形断面領域に相当する距離に発散する場合、その平面での検出領域は、数千または数万のSPADと同等の領域を占め得る。
【0015】
例えば例示的なシステムがLIDARデバイスの一部であるいくつかのシナリオでは、シーンからの光は、シーンに対して、光検出器の視線(line-of-sight:LOS)とは異なるLOSを有する1つ以上の光源(例えば、LIDAR送信器)により送信された光の反射を含み得る。例えば、LIDAR送信器は、光検出器によって検出された光を選択するアパーチャの視点とは異なる視点(例えば、空間位置)からシーンを照明し得る。光源の位置と光検出器(複数可)の位置との間のオフセットにより、レンズは、通過光の戻り反射を焦点面の異なる領域に送信し得る(例えば、LIDARデバイスと、送信された光を反射さしてLIDARデバイスへと戻すそれぞれのオブジェクトとの間の距離に応じて)。この現象は一般に視差と呼ばれている。
【0016】
視差の影響を軽減するために、いくつかの例では、不透明材料は、その中に画定された複数のアパーチャを有し得る。例えば、不透明材料は、LIDARによって遠くのオブジェクト(例えば、視差エラーの影響を受けにくい)から受信した集束光を選択する一次アパーチャ(例えば、レンズの焦点でのまたはその近くの)を画定してもよい。不透明材料はまた、LIDARによってより近いオブジェクト(例えば、視差エラーの影響を受けやすい)から受信した集束光を選択する1つ以上の二次アパーチャ(軸の外、中心の外、焦点の外などの位置で)を画定してもよい。例えば、1つ以上の二次アパーチャは、集束光の視差シフト部分が予想される焦点面上の位置に配置できる(例えば、LIDAR送信器とLIDAR受信器などとの相対的な幾何学的配置に基づいて)。
【0017】
いくつかの例では、複数のアパーチャは、異なる形状および/またはサイズを有してもよい。一例では、一次アパーチャは、二次アパーチャよりも大きいサイズを有してもよい。上記のように、二次アパーチャで受信された視差シフトされた光の部分は、比較的近いオブジェクトから反射された光に対応し得る。一般に、オブジェクトから反射してLIDARに戻る光の強度は、オブジェクトとLIDARとの間の距離が増加するにつれて減少すると予想される。したがって、この例では、比較的小さい二次アパーチャは、(視差シフト光部分の予想される比較的高い光強度により)十分な量の光を通過させることができる。追加的に、この例では、遠くのオブジェクト(すなわち、比較的低い光強度を有すると予想される)から反射された十分な量の光も、比較的大きな一次アパーチャを通過することができる。他の例も可能である。
【0018】
上記の議論に沿って、本明細書の1つの例示的なLIDARデバイスは、バイスタティック構成を有してもよい。バイスタティックLIDARは、例えば、別個の送信レンズと受信レンズを有してもよい。2つのレンズ間の横方向の分離は、ターゲットオブジェクトまでの範囲の関数として視差を引き起こし得る。例えば、LIDARとターゲットオブジェクトとの間の距離が変化すると、LIDARの受信器の焦点面にあるオブジェクトの像が横方向にシフトし得る。この例では、LIDARの受信器で空間フィルタ(例えば、受信レンズの焦点面に一次パーチャ/ピンホールがある不透明材料)を使用してバックグラウンド放射を抑制している場合、その像は一次ピンホールから「ウォークオフ」して、これにより、比較的近距離(例えば、ターゲットオブジェクトとLIDARとの間の距離)で空間フィルタを通過した光の強度を低下させてもよい。場合によっては、受信される信号の強度の変化は均一ではないことがある。例えば、LIDAR内の視差シフト像の内部反射(例えば、受信器の壁などで)により、ターゲットオブジェクトがLIDARに近づくにつれて、受信された信号の強度も散発的に増加し得る(ターゲットオブジェクトが近づくにつれて、強度が均一に徐々に減少するのとは対照的に)。
【0019】
したがって、ターゲットオブジェクトがLIDARの近距離(例えば、1メートル以内など)にあるときの受信された信号の均一性と強度を向上を容易にするために、空間フィルタは、視差シフト像の一部を検出器(複数可)に向けて送信するように配置された1つ以上の小さなピンホール(例えば、二次アパーチャ)を含んでもよい(例えば、これにより、ターゲットオブジェクトまでの範囲または距離の関数として受信された信号の均一性を向上させるなど)。
【0020】
II.例示的なデバイスおよびシステム
図1は、例示的な実施形態による、システム100の図である。システム100は、光検出器のアレイ110(検出器112よって例示される)と、不透明材料120内に画定されたアパーチャ122と、レンズ130と、フィルタ160と、を含んでもよい。システム100は、シーン内のオブジェクト140から受信した光102を測定し得る。光102はまた、少なくとも部分的に、バックグラウンド源から到来してもよい。
【0021】
いくつかの実施形態では、システム100は、LIDARデバイス(例えば、LIDAR受信器)の一部として実装されてもよい。一例では、システム100を含むLIDARデバイスは、車両ナビゲーションに使用されてもよい。いくつかの実施形態では、システム100またはその一部は、レンズ130を介してシステム100に入る光以外の外光から光学的に分離(例えば、ハウジングなどに配設)されてもよい。
【0022】
アレイ110は、(検出器112によって例示される)光検出器の配置を含む。様々な実施形態において、アレイ110は異なる形状を有し得る。
図1に示されるように、アレイ110は、長方形または正方形の形状を有し得る。代替の実施形態では、アレイ110は、円形であってもよく、または任意の他の形状を有していてもよい。アレイ110のサイズは、光102の断面積(アパーチャ122から外に広がる)に対応するように選択されてもよく、したがって、アレイ110のサイズは、アレイ110とアパーチャ122との間の距離に基づいて選択されてもよい。いくつかの実施形態では、アレイ110は移動可動であってもよい。例えば、アレイは、アレイを一方向、二方向、または三方向に並進させることができる電気ステージ上にあってもよい。一実施形態では、アレイ110は、アパーチャ122の近くに、またはアパーチャ122から遠くに移動可能であってもよい。
【0023】
また、アレイ110は、コンピューティングデバイスへの1つ以上の出力を有してもよい。コンピューティングデバイス(例えば、マイクロプロセッサ)は、アレイの光検出器(例えば、112)に入射する光102の強度を示す電気信号をアレイ110から受信してもよい。コンピューティングデバイスは、電気信号を使用して、オブジェクト140に関する情報(例えば、オブジェクト140のアパーチャ122からの距離)を決定してもよい。いくつかの実施形態では、アレイ110内の光検出器(例えば、112など)を互いに並列に相互接続して、アレイ内の光検出器の任意の組み合わせによる検出を示す合成出力信号を提供してもよい。例えば、アレイ110は、アレイ110の光検出器の特定の配置およびタイプに応じて、SiPMまたはMPPCとして実装されてもよい。
【0024】
アレイ110内の光検出器(例えば、検出器112など)は、様々なタイプの検出器を含み得る。一実施形態では、光検出器(例えば、112)はSPADを含んでもよい。SPADは、逆バイアスされたpn接合(すなわち、ダイオード)内でアバランシェ降伏を使用して、光検出器への所与の入射照明に対する出力電流を増加させ得る。さらに、SPADは、単一の入射光子に対して複数の電子正孔対を生成することが可能であり得る。別の実施形態では、光検出器は、APDを含んでもよい。APDとSPADの両方に、アバランシェ降伏電圧を超えるバイアスをかけてもよい。このようなバイアス条件は、1より大きいループ利得を有する正のフィードバックループを生成し得る。したがって、閾値のアバランシェ降伏電圧を超えてバイアスされたAPDおよびSPADは、単一光子に感度を有し得る。さらに他の実施形態では、光検出器(例えば、112など)は、フォトレジスタ、電荷結合デバイス(CCD)、光電池、または任意の他のタイプの光センサを含んでもよい。
【0025】
いくつかの実装形態では、アレイ110は、アレイ全体に複数のタイプの光検出器を含んでもよい。例えば、アレイ110は、複数の波長を検出するように構成されてもよい。この例では、アレイ110は、ある範囲の波長に敏感な1つ以上のSPADと、異なる範囲の波長に敏感な1つ以上のSPADと、を備えてもよい。いくつかの実施形態では、光検出器110は、400nm~1.6μmの波長(可視および赤外波長)に敏感であってもよい。さらに、アレイ110の光検出器は、所与の実施形態内で、または様々な実施形態にわたって、様々なサイズおよび形状を有してもよい。一実施形態では、光検出器(例えば、112)は、アレイ110の面積の1%、0.1%、または0.01%であるパッケージサイズを有するSPADを含んでもよい。
【0026】
不透明材料120は、レンズ130によって集束された光102の少なくとも一部がアレイ110に送信されるのを防止(または低減)してもよい。例えば、不透明材料120は、アレイ110の光検出器を使用して収集される測定の精度に悪影響を及ぼす可能性がある特定のバックグラウンド光を阻止するように構成されてもよい。いくつかの例では、不透明材料120、したがってアパーチャ122は、レンズ130の焦点面に、または焦点面の近くに位置決めされてもよい。不透明材料120は、そこに入射する光102を吸収することにより通過を阻止し得る。追加的または代替的に、不透明材料120は、光102をアレイ110から反射および/または別の方法でそらすことにより、光102の通過を阻止してもよい。いくつかの実施形態では、不透明材料120は、エッチングされた金属を含んでもよい。代替の実施形態では、不透明材料120としては、ポリマー基板、二軸延伸ポリエチレンテレフタレート(BoPET)シート(Mylar(登録商標)シートとも呼ばれる)、または不透明マスクで覆われたガラスが挙げられる。様々な代替の実施形態では、他の不透明材料も可能である。
【0027】
アパーチャ122は、光102がアレイ110に向かって通過し得る、不透明材料120内のポートを提供する。アパーチャ122は、様々な方法で不透明材料120内に画定され得る。一例では、不透明材料120は、金属を含んでもよく、その金属は、エッチングされてアパーチャ122を画定してもよい。別の例では、不透明材料120は、マスクで覆われたガラス基板を含んでもよく、そのマスクは、フォトリソグラフィを使用して画定されたアパーチャ122を含んでもよい。様々な実施形態では、アパーチャ122は、部分的または全体的に透明であってもよい。例えば、不透明材料120がマスクで覆われたガラス基板を含む場合、アパーチャ122は、マスクで覆われていないガラス基板の一部として画定されてもよい。したがって、この例では、アパーチャ122は、完全に中空ではなく、ガラスでできている。いくつかの例では、アパーチャ122は、オブジェクト140によって散乱された光102の波長に対して、完全ではないがほぼ透明であってもよい(例えば、ほとんどのガラスは100%透明ではない)。
【0028】
アパーチャ122は(不透明材料120と併せて)、シーンからの光102を空間的にフィルタリングするように構成されてもよい。例えば、光102を、不透明材料120上に集束させてもよく、アパーチャ122は、集束光の一部分のみをアレイ110に通過させてもよい。したがって、アパーチャ122は、光学ピンホールとして振る舞い得る。
【0029】
例示のために、アパーチャ122は、円形の形状を有するように示されている。代替の実施形態では、アパーチャ122は、長方形の形状、鍵穴の形状、または任意の他の形状などの異なる形状を有してもよい。
【0030】
アパーチャ122に関して上記で使用される「アパーチャ」という用語は、光を通過させ得る不透明材料の凹部または穴を表すが、「アパーチャ」という用語は多岐にわたる光学的特徴を含み得ることに留意されたい。例えば、明細書および特許請求の範囲を通して使用される「アパーチャ」という用語は、光を部分的に通過させ得る不透明材料内に画定される透明または半透明の構造を追加的に包含し得る。また、「アパーチャ」という用語は、不透明材料で囲まれたミラーなどの、光路を他の方法で選択的に制限する構造体(例えば、反射または屈折による)を表し得る。例示的な一実施形態では、光を特定の方向に反射するように、不透明材料に囲まれたミラーアレイを配置してもよく、それにより反射部分を画定する。この反射部分は、「アパーチャ」と呼ぶことがある。
【0031】
レンズ130は、シーンからの光102をレンズの焦点面に向けて(例えば、不透明材料120に向けて)集束させ得る。このようにして、光102が投影されている断面積を減少させながら(すなわち、光102の空間出力密度を増加させながら)、シーンから収集されたレンズ130での光強度を維持し得る。一例では、レンズ130は、収束レンズを含んでもよい。
図1に示されるように、いくつかの例では、レンズ130は、両凸レンズを含んでもよい。いくつかの例では、レンズ130は、球面レンズを含んでもよい。代替の実施形態では、レンズは、複数のレンズまたは他の光学要素のアセンブリ(例えば、第1の方向に光を集束させる両凸レンズと、第1の方向に直交する第2の平面に光を集束させる追加の両凸レンズ)を含んでもよい。他のタイプのレンズも可能である。さらに、レンズ130に入射する光102を不透明材料120上に集束させるのを助けるために、レンズ130の近くに位置決めされた他の自由空間光学系(例えば、ミラー)があってもよい。
【0032】
オブジェクト140は、システム100を取り巻くシーン内に位置決めされた任意のオブジェクトであり得る。システム100がLIDARシステムの受信器の構成要素である例では、オブジェクト140は、同じLIDARシステムの送信器によって照明されてもよい。LIDARシステムが例えば車両のナビゲーションに使用される例示的な実施形態では、オブジェクト140としては、とりわけ、歩行者、他の車両、障害物(例えば、木)、または道路標識が挙げられる。
【0033】
1つの例示的なシナリオでは、上記のように、光102は、LIDARデバイスの送信器からの光を含んでもよい。このシナリオでは、光102(またはその一部)は、オブジェクト140によって反射され、レンズ130によって集束され、アパーチャ122を通過し、次にアレイ110によって測定される。このシーケンスは、例えば、オブジェクト140に関する情報を決定するために(例えば、LIDARデバイスを介して)行われてもよい。いくつかの実施形態では、アレイによって測定された光はまた、複数のオブジェクトによって反射された光および/または他の光源からの光(例えば、周囲光)を含んでもよい。
【0034】
さらに、オブジェクト140を分析するために使用される光102の波長は、シーン内にあると想定されるオブジェクトのタイプと、レンズ130からのオブジェクトの想定距離とに基づいて選択されてもよい。例えば、シーン内にあると想定されるオブジェクトが波長500nmの入射光を吸収する場合、500nm以外の波長を選択してオブジェクト140を照明し、システム100によって分析してもよい。光102の波長(例えば、LIDARデバイスの送信器によって送信される)は、光102を生成する光源に依存し得る。例えば、特定のダイオードレーザは、900nmを含む波長範囲を有する光102を放出し得る。任意の特定の波長範囲内で光102を生成することができる他の光源も可能である(例えば、光ファイバ増幅器、レーザ、フィルタを備えた広帯域光源など)。
【0035】
フィルタ160は、シーンからの入射光(レンズ130によって集束された)を選択的に通過させるように構成されたバンドパスフィルタまたは他の任意の光学フィルタを含んでもよい。光学フィルタ160は、特定の波長の光をアレイ110からそらすように構成されてもよい。例えば、システム300がLIDARデバイス(例えば、LIDAR受信器)の構成要素である場合、光フィルタ160は、LIDARデバイスのエミッタ(例えば、LIDAR送信器)によって放出される波長範囲ではない光を(例えば、アパーチャ122から離れるように)そらしてもよい。例えば、光学フィルタ160は、少なくとも部分的に、周囲光またはバックグラウンド光がアレイ110による測定に悪影響を与えることを防止し得る。
【0036】
様々な実施形態では、光学フィルタ160は、アレイ110に対して様々な位置に位置してもよい。図示の実施形態では、光学フィルタ160は、レンズ130と不透明材料120との間に位置してもよい。代替の実施形態では、光学フィルタ160は、レンズとオブジェクトとの間、不透明材料とアレイとの間、またはアレイ自体の上に位置してもよい(例えば、単一の光学フィルタがアレイ上に配設されてもよく、または各光検出器が個別に別の光学フィルタで覆われてもよい)。
【0037】
いくつかの例では、光学フィルタ160として、吸収フィルタ(例えば、入射光の一部を吸収するフィルタ)、反射フィルタ(例えば、入射光の一部を反射するフィルタ)、および/または他のタイプのフィルタ(例えば、その波長に基づいて入射光の方向を調整するフィルタ)が挙げられる。したがって、様々な例では、光フィルタ160は、画定された波長範囲内の波長(例えば、帯域通過光フィルタ、単色光フィルタなど)、画定された波長範囲外の波長(すなわち、帯域阻止光フィルタなど)、画定された閾値を下回る波長(すなわち、ローパス光学フィルタ)、または画定された閾値を超える波長(すなわち、ハイパス光学フィルタ)を選択的に通過させてもよい。
【0038】
いくつかの実施形態では、フィルタ160は、特定のフィルタリング特性を達成するために光学的に結合された複数の光学フィルタを含んでもよい(例えば、バンドパスフィルタ特性を達成するためにハイパスフィルタとカスケードされたローパスフィルタなど)。いくつかの実施形態では、光学フィルタ160は、ダイクロイックフィルタまたは1つ以上の(例えば、カスケードされた)ダイクロイックフィルタを含んでもよい。代替の実施形態では、光学フィルタ160は、回折フィルタを含んでもよい。回折フィルタは、例えば、バックグラウンド光と信号光の光路を分割してもよい。例えば、フィルタ160は、バックグラウンド光を別の光検出器アレイ(図示せず)に向けてもよい。したがって、この例では、システム100は、アレイ110による測定とは別個にバックグラウンド光を測定することができる。
【0039】
いくつかの実施形態では、フィルタ160は、アパーチャ122を通過した光102のパワー密度を光検出器112の間で分配する(例えば、より均一なエネルギー分布を達成する)ように構成された光学ディフューザを含んでもよい。例えば、光学ディフューザとして、様々な実施形態では、サンドブラストガラスディフューザ、すりガラスディフューザ、またはホログラフィックディフューザが挙げられる。他のタイプの光学ディフューザも可能である。したがって、フィルタ160(例えば、光学ディフューザ)は、アパーチャ122を通過した光102の発散の側面を促進するように構成し得る。本明細書における他の可能な発散促進構成要素には、例えば、屈折率が単一ではない光導波路または流体が含まれる。
【0040】
いくつかの例では、フィルタ160は、波長以外の(または波長に加えた)光特性に基づいて光を選択的に通過させてもよい。例えば、光学フィルタ160は、偏光(例えば、水平偏光または垂直偏光)に基づいて光を選択的に通過させてもよい。他のタイプの光学フィルタも可能である。
【0041】
図2は、例示的な実施形態による、LIDARデバイス200の図である。図示されるように、LIDARデバイス200は、システム100のアレイ110、不透明材料120、およびレンズ130のそれぞれと同様な、1つ以上の光検出器210、不透明材料220、およびレンズ230を含む。したがって、いくつかの例では、検出器(複数可)210は、アレイ110と同様の光検出器のアレイとして実装されてもよい。しかしながら、代替の例では、検出器(複数可)210は、代わりに、単一の感知要素(例えば、単一の検出器)として実装されてもよい。また、例えば、図示されていないが、不透明材料220は、レンズ230によって集束された光の一部がアレイ110による受信のために通過するアパーチャ(例えば、ピンホールなど)を含んでもよい。図示されるように、LIDARデバイス200はまた、エミッタ250(例えば、エミッタ150と同様)およびコンピューティングデバイス270を含む。
【0042】
エミッタ250は、シーン内のオブジェクト240(例えば、オブジェクト140と同様)によって反射され、最終的に光検出器(複数可)210によって測定される光202(例えば、光102と同様)を放出し得る。いくつかの実施形態では、レーザエミッタ250は、レーザエミッタ250のパワー出力を増大させるために、光ファイバ増幅器または他の増幅システムを含んでもよい。他の実施形態では、レーザエミッタ250として、レーザダイオード(例えば、ダイオードバーなど)、フィラメント光源、液晶ディスプレイ(LCD)、フィラメント光源、または任意の他のタイプの光源が挙げられる。いくつかの実施形態では、エミッタ250は、(連続波(CW)レーザとは対照的に)パルスレーザを含んで、等価な連続パワー出力を維持しながらピークパワーを増加させてもよい。
【0043】
コンピューティングデバイス270は、LIDARデバイス200の1つ以上の構成要素から受信された信号を制御および/または分析するように構成され得る。そのために、コンピューティングデバイス270は、メモリ(例えば、データストレージ)内に格納された命令を実行して、LIDARデバイス200に様々な動作を実行させる1つ以上のプロセッサ(例えば、マイクロコントローラのマイクロプロセッサ)を含んでもよい。例えば、コンピューティングデバイス270は、検出器(複数可)210を介して測定された信号に関連するタイミング情報を使用して、オブジェクト240の場所(例えば、オブジェクト240とLIDARデバイス200との間の距離)を決定してもよい。例えば、レーザエミッタ250がパルスレーザである実施形態では、コンピューティングデバイス270は、出力光パルスのタイミングを監視し、それらのタイミングを検出器(複数可)210により検出された反射光パルスのタイミングと比較することができる。例えば、コンピューティングデバイス270は、(エミッタ250を介して)光パルスの放出と(検出器(複数可)210を介して)放出された光パルスの反射の受信との間の時間の量を考慮することにより、デバイス200とオブジェクト240との間の距離を計算してもよい。
【0044】
いくつかの例では、コンピューティングデバイス270は、レーザエミッタ250によって放出された光202を変調するように構成されてもよい。例えば、コンピューティングデバイス270は、レーザエミッタ250のポインティング方向を変更するように構成されてもよい(例えば、レーザエミッタ270は、コンピューティングデバイス270によって制御される機械ステージに取り付けられてもよい)。いくつかの例では、コンピューティングデバイス270はまた、レーザエミッタ250によって放出された光202のタイミング、パワー、または波長を変調するように構成されてもよい。そのような変調は、とりわけ、光202の経路からのフィルタの追加または除去を含んでもよい。
【0045】
いくつかの例では、コンピューティングデバイス270は、レンズ230、不透明材料220、および/または検出器(複数可)210の場所を互いに対して調整するように構成されてもよい。一例では、レンズ230は、レンズ230の場所(したがって、レンズ230の焦点面の場所)を調整するためにコンピューティングデバイス270によって制御される可動ステージに取り付けることができる。別の例では、検出器(複数可)210は、コンピューティングデバイス270が検出器(複数可)210を不透明材料220(および/またはその上に画定されたアパーチャ(複数可))に対して移動できるようにする別個のステージに取り付けられてもよい。いくつかの例では、検出器(複数可)210は、検出器(複数可)210上の検出領域を変更するためにコンピューティングデバイス270によって移動してもよい。例えば、検出器(複数可)210は、(例えば、不透明材料220のアパーチャを通過して発散する光202の発散により)検出器(複数可)210上の断面検出面積を増大させるために、不透明材料220からさらに遠くに移動することができる。したがって、コンピューティングデバイス270は、検出器(複数可)210を移動させて、発散光によって照明される光検出器の数を変更し得る。
【0046】
いくつかの実施形態では、コンピューティングデバイスはまた、アパーチャを制御するように構成してもよい。いくつかの実施形態では、例えば、アパーチャは、不透明材料内に画定されたいくつかのアパーチャから選択可能であってもよい。そのような実施形態では、レンズと不透明材料との間に位置するMEMSミラーは、光が向けられている複数のアパーチャのどれに決定するようにコンピューティングデバイスによって調整可能であってもよい。いくつかの実施形態では、様々なアパーチャは、異なる形状およびサイズを有し得る。さらに他の実施形態では、アパーチャは、アイリス(または他のタイプの絞り)によって画定されてもよい。アイリスは、例えば、アパーチャのサイズを制御するために、コンピューティングデバイスによって拡大または縮小され得る。
【0047】
図3は、例示的な実施形態による、別のLIDARデバイス300を示す。図示されるように、デバイス300は、LIDAR送信器350、LIDAR受信器380、および回転プラットフォーム392を含む。
【0048】
LIDAR送信器350は、デバイス200のエミッタ250および光202のそれぞれと同様に、光302aをデバイス300の環境に向けて放出するように構成され得る。図示されるように、送信器350は、送信レンズ332を含み得る。レンズ332は、デバイス300の環境の特定の領域を照明するために、LIDARデバイス300から送信された放出光302aを向ける(例えば、および/またはコリメートするなど)ように構成され得る。図示されていないが、送信器350はまた、送信器350のハウジングの内部に(例えば、エミッタ250と同様の)エミッタを含み得る。例えば、エミッタは、送信レンズ332を通ってLIDARデバイス300から周囲環境に向けて光302aを放出するように構成されてもよい。
【0049】
LIDAR受信器380は、光検出システム(例えば、システム100)を含み得る。例えば、受信器380は、環境内の1つ以上のオブジェクトで反射し、反射光302bとしてLIDARデバイス300に戻る、放出光302aの少なくとも一部を受信するように構成されてもよい。例えば、図示されるように、受信器380は、レンズ130および/または230と同様であり得る受信レンズ330を含む。また、図示されていないが、受信器380は、光学フィルタ(例えば、フィルタ160)、空間フィルタ(例えば、不透明材料120)、および/または1つ以上の光検出器(例えば、光検出器112、アレイ110など)などの、システム100の構成要素と同様の1つ以上の構成要素(受信器380のハウジングの内部)を含み得る。したがって、この例では、反射光302bは、
図1~
図2の説明に沿って、1つ以上の光検出器(図示せず)による検出のために、アパーチャ(図示せず)を通して受信レンズ130によって集束され得る。例えば、アパーチャは、受信レンズ330の背後の特定の位置に位置決めされ、反射光302b(例えば、放出光302aによって照明された環境の領域からの光)を含むレンズ330からの集束光の一部を選択することができる。
【0050】
回転プラットフォーム392(例えば、機械的ステージなど)は、図示されている特定の相対配置で受信器380および送信器350を支持する。そのために、回転プラットフォーム392を、LIDAR300の1つ以上の構成要素を支持するのに好適な任意の固体材料から形成することができる。一例では、回転プラットフォーム392は、軸390を中心に回転するように構成されてもよい。回転中、送信器350および受信器380のポインティング方向は、同時に変化して、図示されている特定の相対配置を維持し得る。したがって、LIDAR300は、軸390を中心としたLIDAR300の様々な回転位置に応じて、周囲環境の様々な領域を走査することができる。例えば、デバイス300(および/または別のコンピューティングシステム)は、LIDARが軸390を中心に回転するときに、LIDAR300の様々なポインティング方向に関連付けられたデータを処理することにより、デバイス300の環境の360°(またはそれより小さい)ビューの三次元マップを決定することができる。一実施形態では、LIDAR300を車両に搭載することができ、回転プラットフォーム392を、車両から離れる様々な方向に沿って周囲環境の領域を走査するために回転させることができる。
【0051】
いくつかの例では、軸390は実質的に垂直であり得る。これらの例では、受信器380(および送信器350)を軸390を中心に回転させることにより、デバイス300の視界または走査方向を水平に調整することができる。他の例では、LIDARが軸390を中心に回転するときに、受信器380(および送信器350)を(軸390に対して)傾けて、LIDAR300によって走査される視野(FOV)の垂直範囲を調整することができる。例として、LIDAR300は、車両の上面に取り付けることができ、受信器380(送信器350とともに)は、車両に向かって傾けることができる。したがって、この例では、LIDAR300は、車両が位置する運転面に近い環境の領域から、車両の上方にある環境の領域からのデータ点よりも多くのデータ点を収集し得る。LIDARデバイス300の他の取り付け位置、傾斜構成、および/または用途も可能である。例えば、LIDARは、車両の別の側面、ロボットプラットフォーム、またはその他の取り付け面に取り付けることができる。
【0052】
この方法でプラットフォーム392を回転させるために、LIDARデバイス300はまた、プラットフォーム382を作動させる(例えば、回転、傾斜など)ように構成された1つ以上のアクチュエータ(図示せず)を含んでもよい。例示的なアクチュエータとしては、とりわけ、モータ、空気圧アクチュエータ、油圧ピストン、および/または圧電アクチュエータが挙げられる。
【0053】
図4Aは、例示的な実施形態による、システム100とともに使用され得る別のLIDARデバイス400を示す。説明の便宜上、
図4Aは、xyz直交方向軸を示し、x軸とy軸はページの表面に平行である。図示されるように、LIDARデバイス400は、受信レンズ430、送信レンズ432、送信器450、受信器480、および回転プラットフォーム492を含み、これらはそれぞれ、受信レンズ330、送信レンズ332、送信器350、受信器380、回転プラットフォーム392と同様である。図示されるように、デバイス400はまた、ミラー434およびモータ494を含む。モータ494は、x軸に平行な水平軸を中心にミラー434を回転させるように構成されている。
【0054】
いくつかの例では、LIDAR送信器450は、(送信レンズ432を介して)ミラー434で反射してLIDAR400から離れて伝搬する光を放出してもよい。また、LIDAR400の環境からの光(放出光の戻り反射を含む)は、ミラー434から(レンズ430を介して)LIDAR受信器480へと反射されてもよい。したがって、例えば、LIDAR400の垂直走査方向は、ミラー434を回転させることにより(例えば、x軸に平行な水平軸を中心にして)制御でき、LIDAR400の水平走査方向は、回転プラットフォーム492を使用してLIDARデバイスを垂直軸(例えば、y軸に平行)を中心に回転させることにより制御できる。
【0055】
一実施形態では、ミラー434は、三角ミラーとして実装されてもよい。三角ミラーは、送信器450が一連の光パルスをミラーに向けて放出している間に回転させることができる。したがって、ミラーの回転位置に応じて、各光パルスを(例えば、垂直に)導くことができる。これにより、LIDAR400は、ミラー434によって提供されるある範囲の(垂直)導き方向によって画定される垂直FOVを走査し得る。いくつかの例では、LIDAR400は、ミラー434を1回または複数回完全に回転させて、送信器450からの放出光を垂直に導くように構成されてもよい。他の例では、LIDARデバイス400は、所与の角度範囲内でミラー434を回転させて、放出光を特定の範囲の方向に(垂直に)導くように構成されてもよい。したがって、LIDAR400は、ミラー434の回転を調整することにより、様々な垂直FOVを走査し得る。一実施形態では、LIDAR400の垂直FOVは、110°である。
【0056】
モータ494としては、とりわけ、ステッピングモータ、電気モータ、燃焼モータ、パンケーキモータ、および/または圧電アクチュエータなどの任意のアクチュエータが挙げられる。
【0057】
いくつかの例では、プラットフォーム492はまた、モータ494と同様のモータを使用して(例えば、y軸に平行な垂直軸を中心に)回転させることができる。プラットフォーム492の回転は、ミラー434、モータ494、レンズ430および432、送信器450、および受信器480を垂直軸を中心に回転させる。したがって、回転プラットフォーム492は、(送信器450からの)放出光を、水平に(例えば、プラットフォーム492の回転軸を中心に)導くために使用することができる。追加的に、プラットフォーム492の回転範囲を制御して、LIDAR400の水平FOVを画定することができる。一実施形態では、プラットフォーム492は、所定の角度範囲(例えば、270°など)内で回転して、360°未満の水平FOVを提供してもよい。しかしながら、任意の水平FOVを走査するために、他の回転量(例えば、360°、8°など)も可能である。
【0058】
図4Bは、LIDARデバイス400の部分断面図を示す。LIDAR400のいくつかの構成要素は、説明の便宜上、
図4Bの図から省かれていることに留意されたい。
【0059】
図4Bに示されるように、送信器450は、例えば、エミッタ250について説明された光源のいずれかと同様であり得る光源452を含む。代替の実施形態では、送信器450は、代替として、2つ以上の光源を含んでもよい。光源452は、1つ以上の光パルス402a(例えば、レーザビームなど)をレンズ432に向けて放出するように構成されてもよい。いくつかの例では、送信レンズ432は、放出光402aをミラー434に向けて(および/またはコリメートして)構成されてもよい。
【0060】
図4Bに示されるように、ミラー434は、3つの反射面434a、434b、434cを有する三角ミラーを含み得る。しかしながら、他の例では、ミラー434は、代替として、追加のまたはより少ない反射面を含んでもよい。図示の例では、光402aは、その後、反射面434aで反射し、矢印404で示される方向にLIDAR400の環境に入り得る。この例では、ミラー434が(例えば、ページを通って延びる軸を中心に)回転すると、放出光402aは、矢印404によって示される方向とは異なる方向を有するように導かれ得る。例えば、放出光402aの方向404は、三角ミラー434の回転位置に基づいて調整することができる。
【0061】
図4Cは、LIDARデバイス400の別の部分断面図を示す。説明のために、
図4Cはxyz直交方向軸を示し、x軸とy軸はページの表面に平行である。LIDAR400のいくつかの構成要素は、説明の便宜上、
図4Cの図から省略されていることに留意されたい。
【0062】
図示されるように、受信器480は、不透明材料420および1つ以上の光検出器412を含み、これらは、それぞれ、システム100の不透明材料120および検出器(複数可)112と同様であり得る。例えば、受信レンズ430は、LIDAR400の環境から受信した光を不透明材料420のアパーチャに向けて集束するように構成されてもよく、集束光の少なくとも一部は、検出器(複数可)412による検出のために発散光402bとしてアパーチャを通過してもよい。
【0063】
いくつかの実装形態では、LIDARデバイス400は、バイスタティック構成を有してもよい。例えば、
図4Cに示されるように、送信器450および受信器480は、互いに対して空間的にオフセットされた位置に配設され得る。例えば、図示されるように、放出光402aは、送信レンズ432の第1の空間位置から送信レンズ432を通って出て、受信光402bは、送信レンズ432の第1の空間位置から横方向に変位した(例えば、空間的にオフセットされている)受信レンズ430の第2の空間位置から受信レンズ430によって遮られる。
【0064】
いくつかの実装形態では、LIDARデバイス400は、LIDARデバイス400によって走査されたオブジェクトに対して移動するシステムに結合されてもよい。例えば、
図2を再び参照すると、システム200は、自動車、バス、電車、ボート、航空機、またはオブジェクト240に対して動く他の任意のタイプの移動車両などの移動車両を含み得るか、またはそれらに取り付けられ得る。この例では、LIDARデバイス400をシステム200に含み得る(例えば、
図2に示す様々な構成要素210、220、230、250、および/または270の代わりに、またはそれに加えて)。したがって、この例では、LIDARデバイス400は、オブジェクト240に対するシステム200の動きに応答してオブジェクト240に対して動き得る。
【0065】
これらの実装形態では、LIDARデバイス400の送信レンズ432は、オブジェクトを照明するための光を送信するように構成されてもよい。例えば、
図4Bに戻って参照すると、LIDAR400の送信レンズ432は、回転可能ミラー434を介して、LIDAR400から光402aを、オブジェクト240を照明する光202(
図2に示す)として向けることができる。さらに、この例では、通過光の一部が、オブジェクト240からLIDAR400に向かって反射して戻り得る。次に、回転可能ミラー434は、受信した光を受信レンズ430(
図4Cに示す)に向けて反射し、次に、受信レンズ430は、入射光を空間フィルタ420(すなわち、光学材料420)に向けて集束させる。
【0066】
III.例示的なアパーチャ配置
上記のように、いくつかのシナリオでは、光学走査センサ(LIDAR200、300、400など)を使用して取得した測定値は、光信号を放出する送信器の視線(LOS)と放出信号の反射を検出する受信器のLOSとの間のオフセットに関連する視差に影響され得る。一般に、視差は、2つの異なる視線に沿って見たオブジェクトの見かけ上の位置の変位または差である。
【0067】
例えば、送信レンズ432の場所から見たときのLIDAR400の環境におけるオブジェクトの第1の見かけの位置は、受信レンズ430の場所から見たときの同じオブジェクトの第2の見かけの位置とは異なり得る。2つの見かけの位置の間の変位の方向は、レンズ432および430の2つのそれぞれの位置の間の変位の方向に依存し得る。例えば、(レンズ432の視点からの)オブジェクトの第1の見かけの位置は、(レンズ430の視点からの)オブジェクトの第2の見かけの位置と比較して、x軸の方向にシフトしているように見え得る。
【0068】
追加的に、オブジェクトの2つの見かけの位置の間の変位の程度は、2つのレンズ430、432の場所の間の距離、ならびにLIDAR400とオブジェクトとの間の距離に依存し得る。例えば、オブジェクトまでの距離がレンズ430とレンズ432との間の距離(例えば、5ミリメートルなど)よりも実質的に大きい場合(例えば、1メートルより遠く離れているなど)、オブジェクトから伝播する光は、レンズ430、432の視点では実質的に同様の方向からであるように見え得る。したがって、「遠い」オブジェクトの見かけの位置(例えば、2つの視点間の距離と比較した場合の「遠い」)は、実質的に同様であり得る。一方、オブジェクトがLIDAR400の近くにある場合(例えば、1メートル未満離れている)、2つの見かけ上の位置の差は比較的大きくなり得る。例えば、「近い」オブジェクト(例えば、2つの視点間の距離と比較して「近い」)は、レンズ432の場所から見たときにシーンの右側にあるように見え、レンズ430の場所から見たときにシーンの左側にあるように見え得る。
【0069】
図5は、単一アパーチャ522を有する不透明材料520を示す。不透明材料520およびアパーチャ522は、それぞれ、不透明材料120およびアパーチャ122と同様であり得る。しかしながら、アパーチャ122とは異なり、アパーチャ522は、丸みを帯びた縁部を有する長方形の形状を有するように示されている。上記のように、アパーチャ522は、代替として、同様に異なる形状を有することができる。
【0070】
光学走査システム(例えば、システム100、LIDAR200、300、400など)の動作に対する視差の影響を説明する例示的なシナリオを以下に示す。このシナリオでは、不透明材料420の代わりに不透明材料520をLIDAR400で使用し得る。したがって、シナリオでは、不透明材料520の第1の軸582は、
図4Cに示されるx軸に平行であり得る。また、軸582に直交する(およびアパーチャ522の場所で軸582と交差する)不透明材料520の第2の軸584は、
図4Cに示されるz軸に平行となり得る。
【0071】
このシナリオでは、アパーチャ522は、レンズ430の光軸と交差するように位置決めすることができる。例えば、レンズ430の光軸は、
図5の軸531(
図5のページから
図4Cに示されるy軸に平行な方向に延在する)に対応してもよい。例えば、不透明材料520は、レンズ430の焦点面にまたはその近くに配設され得、したがって、アパーチャ522は、レンズ430の「焦点」または光軸531が焦点面と交差するレンズ430の焦点と整列されてもよい。したがって、輪郭502cは、レンズ430が「遠い」オブジェクト(例えば、LIDAR400から1メートルより遠く離れているなど)からの光を集束させる不透明材料520の領域に対応し得る。例えば、シナリオでは、放出光402aは、遠いオブジェクトで反射し、光軸531に実質的に平行な方向からレンズ430に戻り得る。したがって、
図5に示すように、アパーチャ522の場所は、送信器450によって照明される環境の領域内の遠視野オブジェクト(例えば、LIDAR400から1メートルよりも遠くに離れている)から反射された光の比較的大きな部分を受信するように選択し得る。
【0072】
図示の実施形態では、アパーチャ522は、輪郭502c内に適合するように成形されている。代替の実施形態では、アパーチャ522は、輪郭502cのより大きな部分と重なり合うように、および/または輪郭502cのすべてと重なり合うように成形することができる。
【0073】
このシナリオでは、視差のために、「近い」オブジェクト(例えば、LIDARまでの距離が1メートルまたは他の閾値距離にあるオブジェクト)で反射する放出光402aの部分は、焦点面よりもレンズ430までの距離が長い像面に向かって、レンズ430により集束され得る。例えば、輪郭502dは、レンズ430が「近い」オブジェクトからの放出光402aの反射を投影する不透明材料520の領域を表してもよい。図示されるように、輪郭502dによって示される投影光は、(輪郭502cによって示される投影光と比較して)一次アパーチャ522とあまり整列されない。例えば、輪郭502dの位置は、(輪郭502cに対して)水平方向にシフトするように示されている。
【0074】
また、図示されるシナリオでは、輪郭502dによって示される視差シフトされた光は、空間フィルタ520の表面のより広い領域にわたって投影され得る。例えば、投影光は、焦点面(または空間フィルタ520が位置する他の面)でぼやけて見えることがある(例えば、焦点が合っていないなど)。
【0075】
上記のように、輪郭502cと輪郭502dとの間の視差シフトの方向は、送信レンズ432の位置と受信レンズ430の位置との間の差(すなわち、
図4Cのx軸および
図5の軸582によって示されるx方向における)に基づき得る。例えば、不透明材料520がLIDAR400の代わりにLIDAR300とともに使用されるシナリオでは、輪郭502cと輪郭502dとの間の視差シフトは、LIDAR300の送信器350の位置と受信器380の位置との間の異なる(垂直)変位により、代わりに、異なる方向(例えば、垂直軸584などに沿って)に沿って起こり得る。
【0076】
図5のシナリオを続けると、輪郭502eは、別の「近い」オブジェクト(輪郭502dに関連付けられたオブジェクトよりもLIDAR400に近い)からの光がレンズ430によって投影される不透明材料520の領域に対応し得る。したがって、空間フィルタ520が位置する平面における視差歪みの程度(例えば、位置シフト、像ぼかしなど)は、反射オブジェクトとLIDARとの間の距離に基づいて変化し得る。例えば、このシナリオでは、(輪郭502cに対する)輪郭502eの歪みの範囲は、輪郭502dよりも大きくなり得る(輪郭502eに関連付けられたオブジェクトは、輪郭502dに関連付けられたオブジェクトよりもLIDARに近いため)。追加的に、
図5に示すように、輪郭502eは、一次アパーチャ522とさえ交差しないような方法でシフトされてもよい。
【0077】
視差により、このシナリオでは、「近い」オブジェクトからの反射光のより小さな部分がアパーチャ522を通過する(「遠い」オブジェクトからの反射光の一部がアパーチャ522を通過することと比較して)。
【0078】
したがって、光学走査システム(例えば、システム100、LIDAR200、300、400など)に対する視差の影響を軽減するための例示的な実施形態が本明細書で開示される。
【0079】
図6は、例示的な実施形態による、複数のアパーチャ622、624、625、626、628、629を画定する不透明材料620を示す。不透明材料620は、不透明材料120、420、520のいずれかと同様であり得、システム100および/またはLIDARデバイス200、300、400などの光学システムとともに使用され得る。さらに、アパーチャ622、624、625、626、628、629は、アパーチャ122および522のいずれかと同様に実装され得る。また、軸682、684、および631は、それぞれ、
図5の軸582、584、および531と同様であり得る。
【0080】
図示されるように、不透明材料620は、単一のアパーチャではなく、一次アパーチャ622および1つ以上の二次アパーチャ624、625、626、628、629を含む複数のアパーチャを画定している。この配置により、本明細書のデバイスまたはシステムは、不透明材料620を使用して、(例えば、レンズ130、230、330、430などからの)集束光を、複数のアパーチャのうちの少なくとも1つを通って、1つ以上の光検出器(例えば、アレイ110、検出器112、検出器(複数可)412など)に向けて通過させることができる。そのために、図示されるように、二次アパーチャ624、625、626、628、629は、一次アパーチャ622の位置と比較して、軸の外(例えば、焦点の外の位置)に位置決めされる。したがって、例えば、「近い」オブジェクトによって反射された光が、視差のために、受信レンズ(例えば、レンズ430)によって、一次アパーチャ622と重なり合わない透明材料620の領域(例えば、
図5において輪郭502dおよび502eとして記載された領域)上に集束(および/または投影)されるシナリオにおいては、歪んだ集束光の一部(複数可)は、依然として、二次アパーチャを介して光検出器(複数可)(例えば、アレイ110、検出器(複数可)112、412など)へと通過することができる。したがって、不透明材料620は、システム100、および/またはLIDAR200、300、400などの動作における視差の影響を軽減するための本明細書の例示的な実施形態である。
【0081】
いくつかの例では、複数のアパーチャ622、624、625、626、628、629のうちの少なくとも1つを通過した発散光を受信する光検出器(複数可)(例えば、アレイ110、検出器(複数可)112、412など)の断面積は、複数のアパーチャの断面積の合計よりも大きくてもよい。したがって、例えば、本明細書のシステムは、不透明材料620を使用して、複数のアパーチャのうちの1つ以上を通過した発散光を検出するために利用可能な検出領域を増やしながら、ノイズの検出を低減し得る。
【0082】
いくつかの例では、様々なアパーチャのサイズを変化させて、不透明材料620を通過する光の量を制御することができる。
【0083】
第1の例では、一次アパーチャのサイズは、1つ以上の二次アパーチャの各二次アパーチャのそれぞれのサイズよりも大きい。例えば、図示されるように、一次アパーチャ622は、二次アパーチャ624、625、626、628、629のそれぞれより大きくなり得る。
【0084】
第2の例では、一次アパーチャは、第1のサイズを有し、1つ以上の二次アパーチャの第1の二次アパーチャは、第2のサイズを有し、1つ以上の二次アパーチャの第2の二次アパーチャは、第3のサイズを有する。例えば、図示されるように、一次アパーチャ622は、二次アパーチャ624、625、626の第2のサイズよりも大きい第1のサイズを有し、二次アパーチャ628、629は、第2のサイズよりもさらに小さい第3のサイズを有する。
【0085】
代替的に、第3の例では、一次アパーチャは、第1のサイズを有してもよく、各二次アパーチャは、第2の(同じ)サイズを有してもよい。したがって、図示されていないが、すべての二次アパーチャ624、625、626、628、629は、代替的に、一次アパーチャ622の第1のサイズよりも小さい同じ(第2の)サイズを有することができる。
【0086】
第4の例では、第2の例の変形として、第1の二次アパーチャは、一次アパーチャまでの第1の距離にあってもよく、第2の二次アパーチャは、第1の距離よりも大きい一次アパーチャまでの第2の距離にあってもよく、第1の二次アパーチャの第2のサイズは、第3のサイズよりも大きくてもよい。例えば、図示されるように、二次アパーチャ624は、二次アパーチャ629の(第3の)サイズよりも大きい(第2の)サイズを有し、一次アパーチャ622と二次アパーチャ629との間の(第2の)距離よりも一次アパーチャ622までの(第1の)距離が短い。したがって、この配置では、LIDARに「近い」オブジェクトに関連付けられている視差の場合、一次アパーチャにより近い他の二次アパーチャもまた「近い」オブジェクトから反射された視差シフトされた集束光の一部を送信する可能性があるため、追加の二次アパーチャを小さくして、光検出器に送信されるノイズの量を減らすことができる。
【0087】
一実施形態では、一次アパーチャ622は、水平に(すなわち、軸682の方向に)250μmの幅および垂直に(すなわち、軸684の方向に)100μmの長さを有してもよく、二次アパーチャ624、625、626は、60μmの直径を有してもよく、二次アパーチャ628、629は、40μmの直径を有してもよい。また、この実施形態では、一次アパーチャ622の位置と二次アパーチャ624、625、626、628、629のそれぞれの位置との間のそれぞれの距離は、275μm、425μm、575μm、725μm、および875μmであってもよい。代替の実施形態では、様々なアパーチャのサイズおよび位置は、上記の例示的なサイズおよび位置とは異なっていてもよい。
【0088】
いくつかの例では、二次アパーチャは、アパーチャを使用するシステムにおける視差シフトの予想される方向に従って配置することができる。
【0089】
LIDAR送信器がシーンを照射するために光を放出し、放出光の反射が受信レンズ(例えば、レンズ130、230、330、430など)によって不透明材料620に向けて集束される第1の例では、1つ以上の二次アパーチャは、受信レンズの位置に対するLIDAR送信器の位置に基づいて、不透明材料に配置されてもよい。例えば、
図4Cを再び参照すると、不透明材料620は、LIDARデバイス400とともに使用するように構成され得る。この例では、受信レンズ430の位置は、送信器460の位置に対して正のx軸方向(例えば、
図6の軸682)に沿って変位している。したがって、この例では、二次アパーチャ624、625、626、628、629は、x軸(すなわち、軸682)の同様の方向に沿ってオフセット位置に配置され得る(例えば、その特定のLIDAR配置における視差シフトの予想される経路に従って光を捕捉するように)。
【0090】
代替的または追加的に、第2の例では、一次アパーチャは、不透明材料の特定の側面までの所与の距離にあってもよく、1つ以上の二次アパーチャのそれぞれは、不透明な素材の特定の側面までの所与の距離よりも大きくてもよい。例えば、
図6に示されるように、一次アパーチャ622は、不透明材料620aの側面620aまでの所与の距離にあり、二次アパーチャ624、625、626、628、629のそれぞれは、側面620aまでの所与の距離よりも大きい。
【0091】
図7は、例示的な実施形態による、複数のアパーチャ722、724、725、728、729を画定する別の不透明材料720を示す。不透明材料720は、不透明材料120、420、520、620のいずれかと同様であり得、システム100および/またはLIDARデバイス200、300、400などのような光学システムとともに使用され得る。さらに、アパーチャ722、724、725、728、729は、アパーチャ122および522のいずれかと同様に実装され得る。また、軸782、784、および731は、それぞれ、
図5の軸582、584、および531と同様であり得る。
【0092】
図示されるように、不透明材料720は、一次アパーチャ722および1つ以上の二次アパーチャ724、725、728、729を含む複数のアパーチャを画定している。上記のように、複数のアパーチャは、様々な方法で配置することができる。
【0093】
いくつかの例では、不透明材料720の一次アパーチャは、垂直軸および垂直軸に直交する水平軸を有してもよい。これらの例では、1つ以上の二次アパーチャの第1の二次アパーチャは、一次アパーチャの水平軸の上方に位置決めされ得、1つ以上の二次アパーチャの第2の二次アパーチャは、水平軸の下方に位置決めされ得る。例えば、図示されるように、軸784は、一次アパーチャ722の垂直軸に対応してもよく、軸782は、一次アパーチャ722の水平軸に対応してもよい。この場合、図示されるように、第1の二次アパーチャ724は、水平軸782の上方に位置決めされ、第2の二次アパーチャ728は、水平軸782の下方に位置決めされる。
【0094】
追加的または代替的に、いくつかの例では、空間フィルタ(例えば、不透明材料720など)は、垂直軸と水平軸との間の第1の線形配置における少なくとも2つの二次アパーチャ、および垂直軸と水平軸との間の第2の線形配置における少なくとも2つの他の二次アパーチャを含んでもよい。例えば、図示される実施形態では、二次アパーチャ724および725は、軸782の上方に位置決めされ、二次アパーチャ728および729は、軸782の下方に位置決めされる。例えば、二次アパーチャ724、725、728、729のうちの1つ以上は、必ずしも
図6の二次アパーチャ624、625、626、628、629について示される線形配置である必要はなく、輪郭502dおよび/または502e(
図5に示される)と依然として重複してもよい。他の二次アパーチャ配置が可能である。
【0095】
また、いくつかの例では、二次アパーチャは、不透明な素材720を採用するシステム(例えば、システム100、LIDAR200、300、400など)の光学要素によって集束された周囲光(または他のバックグラウンドノイズ)の影響を受けにくい場所で選択することができる。例えば、
図4Cを再び参照すると、不透明材料420の代わりに不透明材料720がLIDAR400で使用されるシナリオを考える。このシナリオでは、送信器450(および/または受信器480)および/またはLIDAR400の1つ以上の他の構成要素(例えば、レンズ430、432など)の光キャビティは、送信光ビーム402a(および/または受信光ビーム402)の一部をそらさせ得る(例えば、散乱したり、偏向したり、反射したりする)。その結果、そらされた光は、レンズ430によって一次アパーチャ722から離れて(例えば、一次アパーチャ722と重ならない不透明材料720の領域に向かってなど)集束され得る。また、このシナリオでは、そのような(そらされた)ノイズ信号の場所は、レンズ430によって空間フィルタ720に向けて集束されるとき、軸782に沿っていると予想され得る。したがって、不透明材料を介して送信されるノイズ信号の量を低減しながら不透明材料720を介して視差シフト光信号の送信を可能にするために、二次アパーチャ724、725、728、729は、ノイズ信号が一次アパーチャ722から離れてそらされる予想される場所から離れて配置することができる。
【0096】
いくつかの実装形態では、不透明材料720は、そこに入射する集束光の1つ以上の部分を、空間フィルタ720を通って、通過させる(例えば、受信レンズ430などによって集束される)空間フィルタ720として構成されてもよい。
【0097】
これらの実装形態では、一次アパーチャ722は、LIDARデバイスまでの閾値距離よりも大きい距離にある、集束光に関連するオブジェクト(例えば、入射光を反射してシステム200のLIDARデバイスへと戻す
図2のオブジェクト240など)に基づいて、空間フィルタ720を通って、集束光の少なくとも閾値部分を通過させるように(例えば、受信レンズ430の焦点軸に沿って)配置される一次ピンホール722として構成され得る。例えば、
図5を再び参照すると、閾値距離よりも大きい距離にある(例えば、LIDARデバイスから1メートルよりも遠くに離れている)オブジェクトからの反射光は、輪郭502cと実質的に同様な空間フィルタ520の領域に集束され得る。このようにして、集束光の少なくとも閾値部分(例えば、一次ピンホール522と重なる輪郭502cの部分)は、一次ピンホール522を通過し得る。一実施形態では、一次ピンホール522を通過する閾値部分は、集束光の少なくとも約85%(例えば、87%、89%など)である。他の閾値部分も可能である。
【0098】
これらの実装形態では、二次アパーチャ724、725、728、729は、LIDARデバイスへの閾値距離未満の距離にあるオブジェクト(例えば、オブジェクト240)に基づいて、空間フィルタ720を通って、集束光の1つ以上の部分を通過させるように配置された二次ピンホール724、725、728、729として構成され得る。例えば、
図5を再び参照すると、オブジェクトが空間フィルタ720のLIDARデバイスに近づくにつれて、焦点面上のオブジェクトの像は、輪郭502dに対応し得る。また、オブジェクトがさらに近くなるにつれて、その像は輪郭502eなどに対応し得る。したがって、この例では、オブジェクトの範囲(すなわち、オブジェクトとLIDARデバイスとの間の距離)に応じて、オブジェクトの視差シフト像の一部(複数可)が、二次ピンホール724、725、728、および/または729のうちの1つ以上と重なり始め得る。このようにして、二次ピンホール(複数可)は、空間フィルタ720を通ってそこに入射する(視差シフトされた)集束光のそれぞれの部分を通過させることができる。
【0099】
いくつかの例では、空間フィルタ720は、そこに入射する集束光の一部(例えば、空間フィルタ720を含むLIDARデバイスによって走査されたオブジェクトから受信した反射光パルス)を選択するように構成される。これらの例では、選択された部分の強度は、オブジェクトとLIDARシステムとの間の距離に関連付けられ得る。
【0100】
第1の例では、オブジェクトが閾値距離よりも大きい第1の距離範囲内にある場合、オブジェクトまでの距離が増加するにつれて、選択された部分の強度は減少し得る。一実施形態では、選択された部分の強度は、1/R
2倍だけ減少し得る(Rは、LIDARとオブジェクトとの間の距離である)。例えば、オブジェクトが第1の距離範囲内の任意の距離にある場合、反射光パルスは、一次ピンホールが位置する空間フィルタ720のほぼ同じ領域(例えば、
図5の輪郭502cと同様に)に向けて、LIDARによって集束され得る。上記のように、比較的遠くにあるオブジェクトを走査するとき、視差シフトは最小限であると予想される。
【0101】
第2の例では、オブジェクトが閾値距離よりも短い第2の距離範囲内にある場合、オブジェクトまでの距離が減少するにつれて、選択された部分の強度は減少し得る。例えば、オブジェクトが第2の距離範囲内の任意の距離にある場合、反射光パルスは、
図5の輪郭502dおよび502eによって示される視差シフト位置など、空間フィルタ720上の視差シフト位置に向けて集束され得る。その結果、(視差のために)反射光パルスのより小さな部分(またはまったくない部分)が一次ピンホール722と重なり得る。
【0102】
したがって、いくつかの実装形態では、二次ピンホール724、725、728、729のサイズおよび/または位置は、オブジェクト距離を、空間フィルタによって選択された集束光部分の信号強度と関連付けるように構成することができる。例えば、(第2の距離範囲でオブジェクトによって反射された)空間フィルタの表面上の視差シフトされた集束光の予想される場所(例えば、輪郭502d、502e)および他の特性(例えば、スポットサイズ、強度分布など)を計算(例えば、送信器と受信器の相対位置などのLIDARの光学特性に基づいてシミュレートするなど)または測定(例えば、測定値を収集中にLIDARの近くのオブジェクトを移動することで)することができる。この情報に基づいて、オブジェクトが第2の距離範囲内にあるときに、二次ピンホールのサイズおよび/または場所を調整して、所望のLIDARシステムの応答挙動を実現できる。一実装形態では、第2の距離範囲内にあるオブジェクトに基づいて、空間フィルタ720によって選択された集束光部分の強度は、オブジェクトとLIDARとの間の距離の減少に応じてオブジェクトとして減少し得る。
【0103】
第3の例では、オブジェクトが、閾値距離よりも短い(および第2の距離範囲とは異なる)第3の距離範囲内の任意の距離にある場合、空間フィルタからの選択された部分の強度は、所定の強度(または所与の強度からの閾値許容誤差内)に対応する。例えば、LIDARシステムは、オブジェクトが第3の距離範囲内の任意の距離にあるときに「平坦な」または「一定の」システム応答を提供するように構成され得る。
【0104】
図8は、例示的な実施形態による、LIDARシステム応答の概念図である。
【0105】
図8では、横軸に沿った値は、LIDARによって走査されたオブジェクト(または「ターゲット」)までの距離(または「範囲」)を表している。説明の便宜上、横軸の範囲値は、d倍にスケーリングされている。一実施形態では、dは1ミリメートルに対応する。この実施形態では、水平軸の100の範囲は、100d=100ミリメートルの距離に対応し得る。他の実施形態では、dは、異なるスケーリング係数に対応してもよい。
【0106】
図8では、縦軸に沿った値は、LIDARが対応する範囲に位置するオブジェクトを走査したときに予想されるLIDARシステム応答を表している。例えば、
図8に示される概念的なLIDARシステム応答は、それぞれ、対応する送信信号パワー(例えば、LIDARシステムに反射して戻された、対応する放出光パルスの強度)に対する受信された信号パワー(例えば、LIDARシステムによって検出される反射光パルスの強度)の(スケーリングされた)比率を表してもよい。説明の便宜上、
図8で表されるシステム応答は、0~100の値に対応するようにスケーリングされている。
【0107】
いくつかの例では、放出光パルスは、LIDARシステムによって検出される対応する反射光パルスの一部よりも実質的に多い数のエネルギーの光子を有してもよい。一例では、放出光パルス内の光子の数は、1兆個を超える光子であってもよく、対応する反射光パルスからLIDARシステムによって検出される光子の数は、数千から数百万の範囲の光子であってもよい。他の例も可能である。
【0108】
図8に示されるシステム応答および範囲値は必ずしも正確ではなく、例として示されるように図示されるだけであることに留意されたい。したがって、本開示の範囲内のいくつかの例示的なLIDARシステムは、示されているものとは異なるLIDARシステム応答(および/または異なる走査範囲)を有してもよい。
【0109】
いくつかの例では、LIDARシステム応答を測定または特性評価できる(例えば、製造テストの一部として、キャリブレーション中など)。他の例では、LIDARシステム応答を、様々なLIDAR構成要素(LIDAR送信器、LIDAR受信器、空間フィルタ、ピンホール、レンズ、ミラーなど)の相対位置、および/または様々なLIDAR構成要素の光学特性(例えば、送信および/または受信レンズの焦点距離、光検出器の感度など)などのLIDARシステムの光学特性に基づいてコンピュータを使用して計算またはシミュレーションできる。
【0110】
図8は、シングルピンホール空間フィルタ(例えば、不透明材料520と同様)を備えたLIDARシステム、マルチピンホール空間フィルタ(例えば、不透明材料720と同様)を備えた別のLIDARシステムの概念的なLIDARシステム応答を示す。
【0111】
図示されるように、両方の空間フィルタは、それぞれのLIDARから離れた閾値距離(例えば、1000d)よりも遠くに離れて位置するオブジェクトを走査するときに、同様のLIDARシステム応答に関連付けられ得る。上記のように、これらの「遠い」範囲で走査されたオブジェクトは、視差の影響を受けにくいことがある。例えば、両方のLIDARのシステム応答(例えば、1000dを超える距離)は、オブジェクトまでの実際の距離と均一な関係にあると予想される(例えば、システム応答は、LIDARとオブジェクトとの間の距離の二乗に反比例し得る)。
【0112】
さらに、図示されるように、両方の空間フィルタは、より近い走査範囲で比較的低いLIDARシステム応答に関連付けられている(例えば、LIDARが1000d未満の距離でオブジェクトを走査しながら)。これらのより低いシステム応答値は、上述の視差シフト効果が原因である可能性があり、これにより、照明されたオブジェクトからの戻り光信号が空間フィルタ上のシフト位置(例えば、輪郭502d、502e)に(少なくとも部分的に)集束される。
【0113】
図示されている例では、マルチピンホール空間フィルタ(例えば、不透明材料720)を備えたLIDARは、シングルピンホール空間フィルタ(例えば、不透明材料520)を備えたLIDARと比較して、近距離のターゲット(例えば、1000d未満の距離にあるオブジェクト)を走査するときに、LIDARシステム応答(例えば、検出する能力)が向上したものであり得る。これは、10d~1000d離れて位置するオブジェクトを走査したときのマルチピンホール空間フィルタ搭載LIDARの全体的に高いシステム応答値(シングルピンホール搭載LIDARと比較して)によって
図8に示されている。例えば、
図8のシナリオでは、マルチピンホール空間フィルタのLIDARは、200d離れたオブジェクトからの信号(例えば、約40のシステム応答)を検出し、一方、シングルピンホール空間フィルタの他のLIDARは、同じ(200d)範囲からの信号(例えば、システム応答=0)を検出しなかった。
【0114】
いくつかの例では、本明細書のLIDARシステム(例えば、LIDAR200、300、400など)は、複数のシステム応答構成のうちの1つに従ってオブジェクト(例えば、オブジェクト240)を走査するように構成されてもよい。
【0115】
第1の例では、LIDARシステムは、オブジェクトが閾値距離よりも大きいLIDARシステムからの第1の距離範囲内にあることに基づいて、第1のシステム応答構成に従ってオブジェクトを走査してもよい。例えば、
図8のシナリオでは、第1の距離範囲は、LIDARシステムから1000d(例えば、1000ミリメートルなど)の例示的な閾値距離よりも大きい走査範囲間隔に対応し得る。この例では、LIDARシステムは、第1のシステム応答構成(例えば、オブジェクトまでの距離の二乗に反比例するシステム応答など)に従ってオブジェクトを走査し得る。したがって、第1のシステム応答構成に従って動作している間、LIDARシステムは、LIDARシステムからオブジェクトまでの距離を示す出力を提供するように構成され得る。
【0116】
いくつかの実装形態では、LIDARシステムは、オブジェクトが第1の距離範囲内の距離にあることに基づいて、LIDARシステムからオブジェクトまでの距離を示す強度を有するオブジェクトからの集束光の少なくとも一部を通過させるように構成された空間フィルタ(例えば、不透明材料720)を含んでもよい。例えば、空間フィルタの一次ピンホール(例えば、一次アパーチャ522、622、722など)は、LIDARの受信レンズの焦点軸に沿って位置決めされて、「遠視野」範囲(例えば、
図8の例では1000ミリメートルより遠く離れている)から信号を受信することができる。
【0117】
第2の例では、LIDARシステムは、オブジェクトが閾値距離よりも短い第2の距離範囲内にあることに基づいて、第2のシステム応答構成に従ってオブジェクトを走査してもよい。例えば、
図8に示すように、LIDARシステムは、400~1000の範囲の間隔内に位置するオブジェクトのオブジェクト距離に応じて変化するシステム応答を提供し得る(例えば、オブジェクトまでの距離が増加するにつれてシステム応答が増加する)。これを容易にするために、空間フィルタの二次アパーチャの位置および/またはサイズは、LIDARシステム(および/またはその1つ以上の構成要素)の光学特性に基づいてもよい。例えば、
図7を再び参照すると、二次アパーチャ724、725、728、729のサイズおよび/または位置は、LIDARシステムまでの第2の距離範囲内に位置するオブジェクトから集束された光の予想される視差シフト光路(例えば、輪郭502eおよび502d)に基づくことができる。
【0118】
第3の例では、LIDARシステムは、オブジェクトがLIDARシステムからの第3の距離範囲内にあることに基づいて、第3のシステム応答構成に従ってオブジェクトを走査してもよい。
【0119】
いくつかの実装形態では、第3の距離範囲は、閾値距離未満であり、かつ/または第2の範囲距離未満であってもよい。例えば、
図8に示すように、マルチピンホール空間フィルタのLIDARは、200~400の範囲の間隔でオブジェクトを走査するときに、ほぼ一定またはフラットなシステム応答を提供してもよい。したがって、この例では、LIDARは、200~400の範囲の間隔内の任意の距離にあるオブジェクトを走査するときに、ほぼ一定の受信信号を出力するように構成され得る。したがって、第3のシステム応答構成では、LIDARシステムは、光検出器によって捕捉された反射信号の一部が、第3の距離範囲内の実際のオブジェクト距離に関係なく、十分に高い(例えば、システム応答値が少なくとも38)ことを確実にすることができる。例えば、第3のシステム応答構成により、LIDARシステムは、オブジェクト(例えば、200~400の範囲の間隔)の近くを走査するときに、戻り光パルスをバックグラウンドノイズから区別することを可能にし得る。
【0120】
他の実装形態では、(「平坦な」または「一定の」システム応答に関連する)第3の距離範囲は、代替的に、閾値距離よりも大きく、および/または代替的に、第2の距離範囲よりも大きくすることができる。したがって、例の中で、二次ピンホールのサイズおよび/または位置は、異なる方法で変化させて、異なるLIDAR走査範囲で異なるタイプのLIDARシステム応答を達成することができる。
【0121】
いくつかの例では、LIDARシステムの複数のシステム応答構成は、LIDARシステムのアプリケーション(例えば、車載LIDAR、ロボットプラットフォーム搭載LIDAR、屋内環境で使用されるLIDAR、屋外環境で使用されるLIDAR、車両の上面や車両の前面など、システムの特定の部分に取り付けられたLIDARなど)に従って選択することができる。例えば、車両で使用されるLIDARシステムは、屋内設定で使用されるLIDARシステムとは異なるシステム応答構成(例えば、特定の走査範囲に対するシステム応答挙動)を有してもよい。
【0122】
いくつかの例では、本明細書のシステム(例えば、システム100、LIDAR200、300、400など)は、制御信号(および/または他の入力)に基づいて複数のシステム応答構成の1つ以上を調整するように構成されてもよい。制御信号は、例えば、コントローラ(例えば、コントローラ270)または別のコンピューティングデバイスによって提供することができる。
【0123】
一例では、システム100は、(例えば、アクチュエータなどを介して)空間フィルタ120をレンズ130に向かって、レンズ130から離れて、および/または水平に(例えば、レンズ130の焦点面に沿って)移動して、レンズ130に対するその上の1つ以上のアパーチャ(例えば、アパーチャ122)の位置を調整してもよい。この例では、システム100の特定の走査範囲に対するシステム応答構成を調整し得る。代替的または追加的に、レンズ130および/または検出器アレイ110は、空間フィルタ120に対して移動されてもよい。
【0124】
別の例では、LIDAR200は、不透明材料220を、異なるシステム応答構成に関連する異なる不透明材料で置き換えてもよい。例えば、コントローラ270は、アクチュエータを操作して、レンズ230と検出器210との間に異なる数または配置のアパーチャを有する異なる空間フィルタ(
図2には図示せず)を挿入してもよい。
【0125】
図9は、例示的な実施形態による、車両を示す。車両900は、1つ以上のセンサシステム902、904、906、908、および910を含み得る。1つ以上のセンサシステム902、904、906、908、および910は、システム100、LIDAR200、300、および/または400と同様または同一であり得る。
【0126】
センサシステム902、904、906、908、および910のうちの1つ以上は、車両900の周りの環境を光パルスで照明するように、所与の平面に垂直な軸(例えば、z軸)を中心に回転するように構成され得る。反射光パルスの様々な側面(例えば、飛行時間の経過、偏光など)の検出に基づいて、環境に関する情報を決定し得る。
【0127】
例示的な実施形態では、センサシステム902、904、906、908、および910は、車両900の環境内の物理的オブジェクトに関連し得るそれぞれの点群情報を提供するように構成されてもよい。車両900およびセンサシステム902、904、906、908、および910は、特定の特徴を含むものとして示されているが、他のタイプのシステムが本開示の範囲内で企図されることを理解されたい。
【0128】
いくつかの実装形態では、空間フィルタ(不透明材料)120、220、420、520、620、および/または720のうちの1つ以上は、レンズ(例えば、レンズ130、230、330、430など)の焦点面に配設されてもよい。代替的に、他の実装形態では、本明細書のシステムは、異なる場所に配設されたこれらの空間フィルタのいずれかを含んでもよい。例えば、空間フィルタ(複数可)は、システムの特定の距離(例えば、LIDARシステムの最も明確な検出範囲)にあるシーンの一部に関連する共役面で、および/またはとりわけ、レンズからの過焦点距離に関連する像平面に沿って、レンズの焦点面に平行に、レンズの焦点面の近くに代替的に配設することができる。
【0129】
したがって、いくつかの例では、本明細書のLIDARシステム(例えば、LIDAR200、300、400など)は、LIDARシステムの所定の最大走査範囲構成に関連する受信レンズ(例えば、受信レンズ130、230、および/または430)の共役面にまたはその近くに配設された不透明材料(例えば、空間フィルタ120、220、420、520、620、および/または720)を含んでもよい。例として
図2を再び参照すると、LIDAR200は、LIDAR200までの30メートルの例示的な所定の最大走査範囲内にある環境の領域を繰り返し走査するように構成され得る。この例では、空間フィルタ220は、その最大走査範囲である30メートルに関連するレンズ230の共役面にまたはその近くに配設され得る。他の例も可能である。
【0130】
IV.例示的な方法
図10は、例示的な実施形態による方法1000のフローチャートである。方法1000は、例えば、システム100、LIDARデバイス200、300、400、不透明材料520、620、720、および/または車両900とともに使用できる方法の実施形態を提示する。方法1000は、ブロック1002~1008のうちの1つまたは複数によって図示のように、1つまたは複数の操作、機能、またはアクションを含み得る。ブロックは連続した順序で示されているが、これらのブロックは、いくつかの例では、並行に、かつ/または本明細書で説明された順序とは異なる順序で実行され得る。また、様々なブロックは、より少ないブロックに組み合わされ、追加のブロックに分割され、かつ/または所望の実装に基づいて除去されてもよい。
【0131】
ブロック1002において、方法1000は、シーンに対して配設されたレンズ(例えば、レンズ130)により、シーンからの光(例えば、光102)をレンズの焦点面に向けて集束させることを含む。
【0132】
ブロック1004において、方法1000は、レンズの焦点面に配設された不透明材料内に画定された複数のアパーチャのうちの少なくとも1つを通って集束光を通過させることを含む。例えば、
図7を再び参照すると、不透明材料720は、レンズ130、330、および/または430のいずれかの焦点面に配設され得る。この例では、レンズによって集束された光は、複数のアパーチャ722、724、725、728、729のうちの1つ以上と(少なくとも部分的に)重なる領域(例えば、
図5に示される領域502c、502d、502eのいずれかと同様な)の不透明材料720の表面に投射され得る。したがって、この例では、1つ以上のアパーチャは、不透明材料720を介してその上に投影された集束光の一部(複数可)を通過させ得る。
【0133】
ブロック1006において、方法1000は、1つ以上の光検出器(例えば、アレイ110、光検出器112、光検出器210、光検出器412など)によって、複数のアパーチャのうちの少なくとも1つを通って通過した発散光(例えば、発散光102)を捕捉することを含む。
【0134】
ブロック91008において、方法1000は、1つ以上の光検出器によって、捕捉された光を検出することを含む。例えば、
図1に示すように、アレイ110の光検出器は、そこに入射する光102の強度を示す出力信号を提供し得る。別の例として、
図4Cを再び参照すると、単一の光検出器412が代わりに出力信号を提供してもよい。
【0135】
V.結論
上記の詳細な説明は、添付の図面を参照して、開示されたシステム、デバイス、および方法の様々な特徴および機能を説明している。本明細書では様々な態様および実施形態が開示されているが、他の態様および実施形態も明らかであろう。本明細書で開示された様々な態様および実施形態は、例示のみを目的とするものであり、限定することを意図するものではなく、真の範囲は以下の特許請求の範囲によって示される。