IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大王製紙株式会社の特許一覧 ▶ ダイオーエンジニアリング株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-26
(45)【発行日】2023-01-10
(54)【発明の名称】古紙パルプ原料の製造方法及び処理方法
(51)【国際特許分類】
   D21B 1/08 20060101AFI20221227BHJP
   B02C 18/06 20060101ALI20221227BHJP
   B02C 18/14 20060101ALI20221227BHJP
   B02C 18/22 20060101ALI20221227BHJP
   B02C 21/00 20060101ALI20221227BHJP
   B02C 23/00 20060101ALI20221227BHJP
   B02C 23/02 20060101ALI20221227BHJP
   B02C 23/10 20060101ALI20221227BHJP
【FI】
D21B1/08
B02C18/06 Z
B02C18/14 Z
B02C18/22
B02C21/00 D
B02C23/00 D
B02C23/02
B02C23/10
【請求項の数】 5
(21)【出願番号】P 2018245531
(22)【出願日】2018-12-27
(65)【公開番号】P2020105655
(43)【公開日】2020-07-09
【審査請求日】2021-12-20
(73)【特許権者】
【識別番号】390029148
【氏名又は名称】大王製紙株式会社
(73)【特許権者】
【識別番号】592094519
【氏名又は名称】ダイオーエンジニアリング株式会社
(74)【代理人】
【識別番号】110002321
【氏名又は名称】弁理士法人永井国際特許事務所
(72)【発明者】
【氏名】杉浦 大介
【審査官】藤原 敬士
(56)【参考文献】
【文献】特開2006-104633(JP,A)
【文献】特開2003-300210(JP,A)
【文献】特開2003-265977(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D21B 1/00 - 1/38
B02C 9/00 - 13/31
B02C 18/00 - 25/00
D21C 1/00 - 11/14
D21D 1/00 - 99/00
D21F 1/00 - 13/12
D21G 1/00 - 9/00
D21H 11/00 - 27/42
D21J 1/00 - 7/00
(57)【特許請求の範囲】
【請求項1】
外側紙袋内にプラスチック袋が設けられた包装袋から古紙パルプを製造する方法であって、
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕し、
破砕された少なくとも紙分を多軸破砕装置により破砕処理し、
破砕した破砕物を古紙パルプ製造工程に供給する原料とする、
ことを特徴とする古紙パルプ原料の製造方法。
【請求項2】
外側紙袋内にプラスチック袋が設けられた包装袋から古紙パルプを製造する方法であって、
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕する1軸破砕工程と、
前記1軸破砕工程で破砕された少なくとも紙分を集合してベールとするベール工程と、
前記ベール工程でのベールを多軸破砕装置により破砕処理する多軸破砕工程と、
破砕した破砕物を古紙パルプ製造工程に供給する原料とする原料化工程と、
を有することを特徴とする古紙パルプ原料の製造方法。
【請求項3】
外側紙袋内にプラスチック袋が設けられた包装袋から古紙パルプを製造する方法であって、
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕する1軸破砕工程と、
前記1軸破砕工程からの破砕された少なくとも紙分を多軸破砕装置により破砕処理する多軸破砕工程と、
破砕した破砕物を古紙パルプ製造工程に供給する原料とする原料化工程と、
を有することを特徴とする古紙パルプ原料の製造方法。
【請求項4】
さらに、
前記破砕した破砕物について、ハイパースペクトルカメラにより測光した吸光度スペクトルに基づき、セルロース成分又は樹脂成分が支配的であるか否かを弁別する弁別工程と、
を有し、
前記弁別工程で弁別したセルロース成分を古紙パルプ製造工程に供給する原料とする、
請求項1~3のいずれか1項に記載の古紙パルプ原料の製造方法。
【請求項5】
さらに、
前記破砕した破砕物を大きさ基準で分離する分離工程と、
前記分離工程で分離された大サイズ分について、ハイパースペクトルカメラにより測光した吸光度スペクトルに基づき、セルロース成分又は樹脂成分が支配的であるか否かを弁別する弁別工程と、
を有し、
前記弁別工程で弁別したセルロース成分を古紙パルプ製造工程に供給する原料とする、
請求項1~3のいずれか1項に記載の古紙パルプ原料の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、包装袋から古紙パルプ原料を製造する製造方法及び処理方法に関するものである。
【背景技術】
【0002】
近年、生活の多様化やインターネットによる通信販売などの活発化により、耐久性のある包装材料の需要が増している。例えばクラフト紙などは、衝撃に対する耐久性を有するため、クラフト紙を材料とした包装袋が市中において流通し、使用量が増加している。
特に好適に用いられる「重袋」は、「重包装袋」又は「多重紙袋」ともいう。例えば、全国クラフト紙袋工業組合のホームページに各種の製品が示されている。
【0003】
使用量の増加に伴って包装袋の回収・再利用化が望まれ、包装袋の材料であるクラフト紙は、例えば、リサイクルにより段ボール古紙パルプの原料とすることができ、また、製品としてのクラフト紙の製造原料とすることもできる。
さらに、包装袋の内層がプラスチックフィルムからなるものがあり、この樹脂フィルムは樹脂資源に利用可能である。
【0004】
製紙工場では、市中から回収されたプラスチックフィルムを有しない包装袋においては、再生処理設備で古紙パルプ化された後、再び抄紙され段ボールに代表されるリサイクル再生紙として利用できる。しかしながら、プラスチックフィルムが内層となっている包装袋は製紙過程での種々の品質低下要因となるので、その受け入れをすることができないでいた。
【0005】
また、古紙の回収企業にとっては、包装袋の回収後にクラフト紙とプラスチックフィルムとの分別を行うことなく、分別しない状態で製紙工場に販売できることが望ましいが、製紙工場では、前述のように、包装袋は製紙過程での種々の品質低下要因となるので、クラフト紙とプラスチックフィルムが分別されていない状態の包装袋の受け入れはできない。
【0006】
もちろん、包装袋を受け入れて焼却処分する方法も考えられるが、焼却によるエネルギー回収量は低く、包装袋を有用資源として考えた場合には、焼却は避けるべきである。
【0007】
現状では、包装袋の回収企業では、包装袋をクラフト紙とプラスチックフィルムに人手により分離し、クラフト紙を、例えば段ボール原紙に再生できる古紙として(圧縮)梱包し、古紙ベールの状態で製紙工場に納入している。
【0008】
このクラフト紙とプラスチックフィルムの人手による分離は、人件費コストが嵩み、包装袋回収の費用対効果は低いものである。この包装袋の回収に係る人件費コストが、製紙工場にとっては受け入れクラフト紙に係るコストの高騰につながっている。また、作業環境からも見直す必要性が高い。
【0009】
現在、クラフト紙とプラスチックフィルムの分離には多くの技術的課題が残されており、結局、古紙の回収業者はやむなく人海戦術による分離を行っている状況にある。
【0010】
ところで、古紙の選別手段としては、風力、比重、磁力、対象物の大きさ等を選別基準とすることが知られている。
しかし、この種の選別は異物除去には有効であるが、プラスチックフィルムがクラフト紙袋に内層され包装袋として一体化したものの分離除去には有効ではない。特に、クラフト紙とプラスチックフィルムが部分的に接着された包装袋には不向きな場合がある。
【0011】
特許文献1には、ラミネート古紙にアルカリを添加して大きなフレーク状に離解した後、タワー内で熟成し、次いで、スラリー濃度を10%以下に希釈して異物を除去する技術が開示されている。この技術は、ラミネートフィルムを微細化せずに古紙からはがし、はがれたラミネートフィルムはスクリーン等で分離除去するものである。
しかし、特許文献1はサイズの小さいミルクカートンなどを対象とし、包装袋の処理に際しては、サイズが大きいほか、プラスチックフィルムがクラフト紙と積層されているものではないために、離解装置で処理することはできない。
【0012】
なお、後述する2種の破砕装置を使用する観点から特許文献2を予め挙げておく。特許文献2は2軸破砕装置で破砕したものを、後に1軸破砕装置で破砕するものである。
【先行技術文献】
【特許文献】
【0013】
【文献】特開平4-163385号公報
【文献】特開2002-355575号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
そこで、本発明が解決しようとする主たる課題は、包装袋を解砕処理し、最終的にクラフト紙成分回収して古紙パルプ製造工程に供給する原料とすることにより、資源の有効利用を図ることにある。
他の課題は、人手に頼ることなく、可能な限り処理を自動化することにある。
【課題を解決するための手段】
【0015】
上記課題を解決した本発明は、外側紙袋内にプラスチック袋が設けられた包装袋から古紙パルプを製造する方法に係るものである。
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕し、
破砕された少なくとも紙分を多軸破砕装置により破砕処理し、
破砕した破砕物を古紙パルプ製造工程に供給する原料とする。
【0016】
例えば、1軸破砕装置と多軸破砕装置との設置位置が離れている場合には、ベール工程を付加して、1軸破砕工程で破砕され、破砕された少なくとも紙分を集合してベールとし、このベールを(ベール用結束具を分離し)多軸破砕装置により破砕処理するようにすることもできる。
この場合、次の工程を有する構成とすることができる。
包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕する1軸破砕工程。
前記1軸破砕工程で破砕され、破砕された少なくとも紙分を集合してベールとするベール工程。
前記ベール工程でのベールを多軸破砕装置により破砕処理する多軸破砕工程。
破砕した破砕物を古紙パルプ製造工程に供給する原料とする原料化工程。
【0017】
他方、1軸破砕装置と多軸破砕装置とを近接し、1軸破砕工程と多軸破砕工程とを連続化できる。
この場合、次の工程を有する構成とすることができる。
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕する1軸破砕工程。
前記1軸破砕工程からの破砕された少なくとも紙分を多軸破砕装置により破砕処理する多軸破砕工程。
破砕した破砕物を古紙パルプ製造工程に供給する原料とする原料化工程。
【0018】
本発明に係る1軸破砕工程の後に多軸破砕工程で破砕する構成は、次の構成と組み合せることにより、技術的特徴がより明確となる。
すなわち、次の実施の形態である。
さらに、
前記破砕した破砕物を大きさ基準で分離する分離工程と、
前記分離工程で分離された大サイズ分について、ハイパースペクトルカメラにより測光した吸光度スペクトルに基づき、セルロース成分又は樹脂成分が支配的であるか否かを弁別する弁別工程と、
を有し、
前記弁別工程で弁別したセルロース成分を古紙パルプ製造工程に供給する原料とする。
【0019】
ここで、分離工程を省略することもでき、破砕した破砕物を直接的に弁別工程に供給することもできる。
【0020】
紙分とプラスチック(樹脂)分との分離については、アルカリ液などを用いることなく、乾式で分離するのは難しい。しかるに、ハイパースペクトルカメラにより測光した吸光度スペクトルに基づき、セルロース成分又は樹脂成分が支配的であるか否かを弁別する弁別工程を経ることにより容易に乾式での分離が可能となる。
【0021】
他方で、前記の弁別工程において、セルロース成分(クラフト紙袋由来分)又は樹脂成分(プラスチック袋由来分)が多い場合、弁別機上で重なる機会が多くなり、弁別精度が低下する。
そこで、1軸破砕工程の後に多軸破砕工程で破砕することにより、細かくし、もって弁別機上で重なる機会が少なくなり、弁別精度の低下を防止できる。
【0022】
本発明では1軸破砕工程の後に多軸破砕工程で破砕する。この点、2軸破砕装置で破砕したものを、後に1軸破砕装置で破砕する特許文献2のものと相違する。
1軸破砕装置での破砕の挙動は言葉で表現しづらいが、概要、1軸破砕装置では、包装袋における、外側紙袋内にプラスチック袋に対して、紙袋分を掻き剥がすように破砕するものである。包装袋では上端部又は下端部が紙バンドや接着剤で固定されている、あるいは糸縫いがなされており、かかる固定部から紙袋分を掻き剥がすように分離しながら破砕するものである。
1軸破砕装置で破砕に伴う細分又は金属片などは分離できる。
【0023】
1軸破砕装置としては、1軸で破砕するものであればその破砕装置の構成は特に制限されるものではなく、公知の破砕装置を利用できる。破砕を目的とした回転するドラム状のローター表面に取り付けられた回転刃と本体の固定刃との噛み合いでせん断破砕される1軸せん断破砕装置が好適に用いられる。
さらに、単純に破砕室内に被破砕物を投入しただけでは原料を噛み込みにくいため、プッシャーと呼ばれる押込み装置で効率よく破砕を継続させる構造のものがさらに好適に用いられる。
前記破砕サイズは、ローター下側に設置されたスクリーン(分散した円形孔スリット状の孔が並列している態様などのスクリーン)の目開きにより規定することができる。ローター回転数などの制限はないが、それぞれ、20~1000rpm程度が好ましい。
【0024】
その後、多軸破砕装置で破砕する。この多軸破砕装置では、紙袋分及びプラスチック袋分の全体を細かく破砕するものである。
【0025】
多軸破砕装置としては、破砕軸が二軸以上であればよく、二軸破砕装置、三軸破砕装置、四軸破砕装置などが挙げられるが、装置コストやメンテナンスコスト等を考慮すると二軸破砕装置が最も好ましい。
【0026】
1軸破砕装置又は多軸破砕装置において、あるいはそれらの間において、重力選別、風力選別や磁力選別などの選別機(手段)によって、混入の可能性のある金属類等の異物、あるいは過度の細分を分離・除去することも可能である。
【発明の効果】
【0027】
本発明によると、包装袋を解砕し、解砕物を人手に頼ることなく大きさ基準で分離して、残分から古紙を回収して資源の有効利用を図ることができる。
【図面の簡単な説明】
【0028】
図1】包装袋の梱包品の処理形態の概要フロー図である。
図2】包装袋の梱包品の他の処理形態の概要フロー図である。
図3】1軸解砕装置概要説明図である。
図4】2軸解砕装置の正面図である
図5】2軸解砕装置の平面図である。
図6】2軸解砕装置の解砕刃の斜視図である。
図7】投入フィーダーの平面図である。
図8】投入フィーダーの要部斜視図である。
図9】投入フィーダーの要部平面図である。
図10】投入フィーダーから仕分け装置までの全体を示す正面図である。
図11】弁別装置例の概要斜視図である。
図12】弁別装置例の概要説明図である。
図13】古紙パルプ製造設備例の概要フロー図である。
図14】他の古紙パルプ製造設備例の概要フロー図である。
図15】2軸解砕装置のA-A断面図である。
図16】(a)(b)解砕刃の別の実施形態の側面図である。
図17】圧縮梱包品のままの解砕工程の説明図である。
図18】搬送ディスクの他の実施形態を示す図である。
図19】搬送ディスクの他の実施形態を示す図である。
図20】(a)(b)搬送ディスクの位相のずれの説明図である。
図21】紙の近赤外線反射波の波長強度分布図である。
図22】PEの近赤外線反射波の波長強度分布図である。
図23】PPの近赤外線反射波の波長強度分布図である。
図24】PSの近赤外線反射波の波長強度分布図である。
図25】PETの近赤外線反射波の波長強度分布図である。
図26】PVCの近赤外線反射波の波長強度分布図である。
図27】投入フィーダーの設置角度の説明図である。
図28】投入フィーダーの別の形態を示す図である。
図29】揺動機構の説明図である。
図30】他の搬送ディスクの他の実施形態を示す図である。
図31】他の搬送ディスクの他の実施形態を示す図である。
図32】弁別装置例の変形例の概要説明図である。
【発明を実施するための形態】
【0029】
次に、本発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例に過ぎない。
【0030】
包装袋の形態、層数、その順序は、最外層が紙袋でその内側にプラスチック袋が設けられたものである限り限定はなく、外側紙袋内と内側紙袋との間にプラスチック袋が設けられたもの、さらに紙袋とプラスチック袋とを順に4層にしたものなどのものもある。紙袋としてはクラフト紙が好ましい。
内部には、米、砂糖、セメント、肥料、化学品、硝安油剤爆薬等が封入される。
【0031】
プラスチック袋の材質に限定はなく、例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、エチレン・酢酸ビニル共重合体、アイオノマー樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等の樹脂又はこれら樹脂の複合体からなる、プラスチックフィルムの厚さは特に制限されないが、例えば厚さ10~30μmからなるものが一般的である。また、このプラスチックフィルムには所謂ラミネート加工された樹脂も含まれる。プラスチックフィルムは、1層又は複数層で構成されてよく、防湿性、透気性、強度性等を備えたものであってもよい。この包装袋を構成する複数層の各層間はホットメルト等の接着手段で接着されていてもよいし、接着手段で接着されていなくてもよい。
【0032】
本発明の包装袋からなる圧縮梱包品(ベール)の処理の形態例を図1に示してある。しかし、必要ならば、圧縮梱包品でなく、包装袋をバラの状態で解砕処理することもできる。
ここでは、圧縮梱包品について解砕処理する図1に従って処理の概要を予め概説する。
圧縮梱包品1は、例えばフォークリスト2によって、投入コンベア3に搬送され、投入コンベア3から1軸解砕装置10に投入される。
圧縮梱包品1は、例えば番線で結束されているので、1軸解砕装置10に至る前の適宜の時点で、あるいは1軸解砕装置10内で番線などの結束具を除去できる。
しかしながら、前述のように、本実施形態に搬入される包装袋は、圧縮梱包品1の状態で投入コンベア3に搬送されなくてもよい。例えば、フレコンパックに詰められた状態やバラ積みされた状態で搬送されてもよい。この状態であっても、包装袋は、投入コンベア3に搬送され、投入コンベア3から1軸解砕装置10に投入される。
【0033】
(圧縮梱包品)
圧縮梱包品1 は、所定量の包装袋をベーラー(圧縮梱包機)により120~150kg/cm3程度の圧力で加圧、固形化されて番線等の結束具により梱包して形成される。重量は約1000~1500Kgであり、体積は高さ1~2m×幅1~2 m×縦1~2 m程度である。
【0034】
(1軸破砕装置)
1軸破砕装置10としては、1軸で破砕するものであればその破砕装置の構成は特に制限されるものではなく、公知の破砕装置を利用できる。
例えば、図3に基本構造を示すように、ケーシング内に、破砕を目的とした回転するドラム状のローター10A表面に取り付けられた回転刃10aと本体の固定刃10Bとの噛み合いでせん断破砕される1軸せん断破砕装置が好適に用いられる。
さらに、単純に破砕室内に被破砕物を投入しただけでは原料を噛み込みにくいため、プッシャーと呼ばれる押込み装置10Cで効率よく破砕を継続させる構造のものがさらに好適に用いられる。
前記破砕サイズは、例えばローター10Aの下側又は背側に設置されたスクリーン10Dの目開きにより規定することができる。ローター回転数などの制限はないが、それぞれ、20~1000rpm程度が好ましい。
【0035】
1軸破砕装置10において解砕された解砕物は、コンベア4によりベーラー5に送られ、圧縮梱包される。この過程で、例えばコンベア4に磁選機(図示せず)を設けて金属物を除去するなどの工程を設けてもよい。
【0036】
ベーラー5で圧縮梱包された圧縮梱包品は、例えばフォークリスト2により前コンベア6に送られ、圧縮梱包品の番線などの異物7の除去がなされた後、投入コンベア8により2軸解砕装置20に投入される。
【0037】
2軸解砕装置20の構造に限定はないが、実施の形態の2軸解砕装置20は、軸芯回りに回転する実質的に平行な少なくとも2本の第1支持軸20A及び第2支持軸20Aを有し、各支持軸に、径方向外側に突出する解砕刃が前記軸芯方向に間隔を空けて複数設けられ、解砕刃は、少なくとも外周部に鉤状部を有し、かつ、軸芯方向に沿う解砕刃群の鉤状部の位置が軸芯回り方向に相違しており、解砕刃を有する前記支持軸がケーシング内に配置されている構造である。
【0038】
支持軸20Aの回転により解砕刃20Bも回転する。解砕刃20Bの少なくとも外周部に鉤状部20Cを有しているので、他方の支持軸20A又は解砕刃20Bとの間で留まっている被解砕物に対し、鉤状部20Cが引っかかり、続く回転により、当該解砕刃20Bと対向する支持軸20Aの隣接する解砕刃20Bとの間で剪断力が作用し、包装袋からなる梱包品の破断がなされる。かかる破断又は切り裂きがなされあるいは繰り返される結果、細分化がなされる。
一方で、両支持軸20A間又は解砕刃20B間に被解砕物が長く留まるのは解砕効率の点 で避けるべきである。しかし、本発明の形態においては、軸芯方向に沿う解砕刃群の鉤状部20Cの位置が軸芯回り方向に相違している結果、支持軸20Aの回転に伴う解砕部位が軸芯方向に経時的に異なる(変化する)ので、被解砕物の破断又は切り裂きが軸芯方向に経時的に異なる(変化する)ようになり、かつ、被解砕物の滞留がなくなる。
他方で、解砕刃20Bを有する前記支持軸20Aがケーシング本体201内に配置されている、したがって、被解砕物及び解砕物の飛び散りが防止される。
被解砕物(包装袋からなる梱包品)は、ケーシング本体201の上方から投入され、解砕刃により解砕されて、解砕物となり、ケーシング本体201の下方に設置された搬送コンベア9に落下する。
上記の作用機序を伴う2軸解砕装置20によれば、梱包品の解砕に最適であることが判明している。
包装袋の解砕が適確になされれば、投入フィーダー30における残分をそのまま、あるいは同残分を選別手段により選別し、その選別物を、古紙パルプ製造工程に供給する。
しかしながら、投入フィーダー30による解砕物の分離を行わず、解砕物をそのまま、あるいは、選別手段により選別し、その選別物を、古紙パルプ製造工程に供給することもできる。古紙パルプ製造工程としては、一例にクラフト紙製造工程や段ボール用紙製造工程等がある。解砕物又は選別物のうちクラフト紙はクラフト紙製造工程に供給され、製品としてのクラフト紙が製造される。また、解砕物又は選別物のうちクラフト紙が段ボール用紙製造工程に供給されることで段ボールが製造される。また、解砕物又は選別物のうちプラスチックフィルムは樹脂フィルムに製造・加工され、又は工場内の発電用の原料として、再利用化される。
【0039】
第1支持軸20Aの鉤状部20Cの内側が向いている方向と、第2支持軸20Aの鉤状部20Cの内側が向いている方向とが、反対方向で相違していることが望ましい。
ここで、第1支持軸20A及び第2支持軸20Aの回転方向が同じ場合と、反対方向の場合とがあるが、いずれの場合においても、第1支持軸20Aの鉤状部20Cの内側が向いている方向と、第2支持軸20Aの鉤状部20Cの内側が向いている方向とが、反対方向で相違していると滞留が少なく破砕効率が高いことを知見している。
【0040】
本実施形態に係る2軸解砕装置20を図4図6に示す。2軸解砕装置20は、圧縮梱包品1を解砕(破砕)し、包装袋を分離、破断するものである。包装袋が、クラフト紙の層151、プラスチックフィルムの層152、これら以外の包装袋構成材料の層で構成されている場合は、これらの層それぞれが分離、破断されることになる。2軸解砕装置20のケーシング本体201内は解砕部203となっており、ケーシング本体201の上部にはホッパー202が備わる。ケーシング本体201下部は開放されている。
【0041】
解砕部203には、複数の解砕刃20Bを有する支持軸20A,20Aが、解砕部203の一方の内壁(ケーシング本体201の内壁)から対向するもう一方の内壁まで配されている。支持軸20Aの向きは、後の工程に備わる搬送コンベア9の搬送方向としてもよいし、幅方向としてもよい。
実施の形態では、支持軸は2本備わり、第1支持軸20A及び第2支持軸20A相互は、例えば、水平方向に離間している。しかしながら、支持軸の本数は3本以上の複数であってもよい。
【0042】
第1支持軸20A及び第2支持軸20Aのそれぞれは、それらの支持軸の軸芯を中心に独立して回転可能である。同支持軸20Aの回転速度は適宜調節することができる。そのため、最終的に製造される古紙パルプの単位時間当たりの製造量に合わせて支持軸20Aの回転速度を調節し、圧縮梱包品1の2軸解砕装置20への時間当たりの投入量を調節することができる。
なお、支持軸の本数を2本とすると、2軸解砕装置20は必要以上に大型化せず、設置に場所を採らない。また、2軸解砕装置20の大きさがコンパクトとなる。
また、支持軸20Aそれぞれの回転方向については、独立して、選択できる。そして、支持軸20Aの下部には、支持軸20Aに直交して水平方向に支持部材204が、支持軸20Aに離間して複数配されている。
支持軸20Aの回転方向を独立して選択できるようにすると、すなわち第1支持軸20A及び第2支持軸20Aを同方向に回転させる、逆方向に回転する操作を加えることによって、圧縮梱包品1又は解砕物を詰まらせないようにできる。また支持部材204が備わるので、解砕途中の包装袋が適度なサイズに解砕されるまで同支持部材204に留まる傾向を示す。そのため適度な大きさに解砕されない包装袋が塊のまま搬送コンベア9に落下するのを防止できる。
【0043】
支持部材204は、支持軸20Aの長手方向に離間する解砕刃20B,20Bとの中間に設けてもよいが、図示するように、一方の解砕刃20B寄りに接近させると、解砕刃20Bと支持部材との離間距離が短いものと、長いものが支持軸20Aの長手方向に交互にあらわれ、多様な解砕を行わせることができ望ましい。
【0044】
(解砕刃)
図6に示すように支持軸20Aに対して直角に解砕刃20Bが複数備わり、解砕刃20Bは支持軸20A方向に離間して配設されている。解砕刃20Bには鉤状部(フック部)20Cが解砕刃20Bの外方に突出して形成されている。
解砕刃20Bの鉤状部(フック部)20Cの数は適宜でよく、図15の例では6つ、図16の例では2つである。図16の例で示すように、鉤状部(フック部)20Cは解砕刃20Bの円周上の離れた位置に1つずつ合計2つ設けてもよく(図16(a))、また、いわゆる、錨型のように、2つの鉤状部(フック部)20C相互の向きを円周方向の反対側に向かうように設けてもよい(図16(b))。さらに解砕刃20Bの鉤状部(フック部)20Cの向きは全てが同方向のほか、あえて図15に変形例として示すように、鉤状部(フック部)20Cの向きが対向する形態を有していてもよい。
【0045】
解砕刃20Bの鉤状部(フック部)20Cにおける、中心20Qからの半径方向に沿う突出長hは解砕特性との関係で適宜選定できるが、圧縮梱包品1を対象とする実施の形態においては、15cm~80cm、特に25cm~60cmが好ましい。
【0046】
また、鉤状部(フック部)20Cの向き(鉤状部(フック部)20C先端と支持軸20Aの軸芯を結ぶ線に対し、凹陥している内側面(内側線)が回転に伴って移動する方向が、図6に示す、FR方向であってもよいし、BA方向であってもよい。
図示例では、解砕刃(20B1、20B2、20B3、20B4)はFR方向であり、解砕刃(20B5、20B6、20B7)はBA方向である。また、解砕刃(20B2´、20B3´、20B4´)はBA方向であり、解砕刃(20B5´、20B6´)はFR方向である。このように配置しておくと、支持軸20Aをどちら側に回転させても、圧縮梱包品1に鉤状部20Cが接触するので、解砕がスムーズに行われる。ここで、FR方向とは同図で支持軸20Aを左側から右側に見た場合に時計回りとなる方向であり、BA方向とは反時計回りとなる方向である。
【0047】
軸芯方向に沿う解砕刃20B,20B…群の鉤状部20Cの位置が軸芯回り方向に相違している。換言すると支持軸20Aを回転させたとき、隣り合う解砕刃20B,20B…それぞれの位相が異なるように配置されている。具体的には、支持軸20Aの軸芯方向の視線で(図6のA-A矢視)について、図15に示すように、隣接する解砕刃20B1及び解砕刃20B2の関係において、解砕刃20B1と中心20Qと解砕刃20B2のなす角度を所定の角度αとなるよう形成することができる。この角度αとしては、特に限定されないが、例えば10度~80度以内で適宜選択できる。
【0048】
別の実施形態として、支持軸20Aを3本以上並列させることもできる。その場合でも、隣り合う支持軸20Aそれぞれの解砕刃20B相互を最接近させたときに、その最接近する解砕刃20B相互の距離が離間するように、隣り合う支持軸20Aを並列させるようにする。
【0049】
圧縮梱包品1は搬送コンベア5により搬送され、2軸解砕装置20に投入される。解砕部203に導かれた圧縮梱包品1は、位相の異なる解砕刃20Bそれぞれの回転により力を受け、x方向及びy方向(図5参照)に転がりながら徐々に解砕される。そして、包装袋の分離と解砕・破断がなされる。
【0050】
解砕後の解砕物、具体的には、解砕後のクラフト紙やプラスチックフィルム、これら以外の包装袋構成材料のサイズは一様ではなく、大きいサイズのものや小さいサイズのものが混在した状態となる。具体的には、例えば解砕物の少なくとも50%以上のものが、最大幅500mm、最大面積25~10000cm2程度に解砕されているのが望ましい。解砕後のクラフト紙のサイズが小さすぎると、最終的に製造される古紙パルプの強度が小さいものとなり、品質の低下を招く原因となる。
適度なサイズに解砕された解砕物は、2軸解砕装置20の開放された下部から搬送コンベア9に落下する。
【0051】
(投入フィーダー)
2軸解砕装置20により解砕され細分化された解砕物は搬送コンベア9により、直接に弁別手段に供給する、あるいは古紙パルプ製造工程に供給するのではなく、好ましくは前記解砕物を大きさ基準で分離し、分離した残分を得て、この残分を弁別手段に供給する、あるいは古紙パルプ製造工程に供給する。
【0052】
この投入フィーダー30としては、回転軸30Aにその長手方向に沿って搬送ディスクが多数設けられた搬送軸が、平行に搬送方向に離間して多数設けられ、搬送ディスクは、その外周面がなす軌跡の各点と前記回転30Aの軸芯との離間距離が段階的に、大から小に変化し、その後小から大に変化する外周面を有するものである、形態が好適である。
また、搬送軸は、回転軸にその長手方向に沿って搬送ディスクが多数、等間隔で設けられている形態とすることもできる。
【0053】
搬送ディスクは、具体的に、その外周がなす形状が三角形、四角形、五角形及び六角形から選ばれる多角形その他の多角形の形態とすることができる。また、同多角形の各辺に膨らみを持たせた略多角形の形態とすることもできる。
図7及び図8の膨らみをもつ略三角形の形態を例にとると、その一つの外周面においては、その外周面がなす軌跡の各点と回転軸30Aの軸芯との離間距離が段階的に、角部から中央にかけて大から小に変化し、その後小から大に変化して他方の角部に至る。
【0054】
実施の形態における投入フィーダー30は、搬送コンベア9により搬送された解砕物の分別を行うものである。搬送された解砕物を、重量物PW、アンダーサイズPU、及びオーバーサイズPOに分別する。例えば、重量物PWには未解砕のクラフト紙が主に含まれる。アンダーサイズPUには細切れのクラフト紙やプラスチックフィルムが主に含まれる。オーバーサイズPOには比較的面積の大きいクラフト紙が主に含まれ、一部プラスチックフィルムも含まれることになる。投入フィーダー30は全体が下流側を上に向けた傾斜状態に設置されたものである。
【0055】
図7に示すように投入フィーダー30は、搬送方向(x方向)に多数の回転軸30Aを有する。そして、多数の回転軸30Aそれぞれは直交するy方向に離間しつつ延在している。
図8及び図9に示すように各回転軸30Aには多数の搬送ディスクが所定の間隔を空けて設けられ、搬送軸を構成している。搬送ディスクは一方のディスク面から突出部が形成されている。
図示の形態では、突出部は、搬送大ディスク30Cのディスク面に搬送小ディスク30Bが突出した形状をなし、一体化した形態、搬送ディスク(30B、30C)となっている。搬送大ディスク30Cと搬送小ディスク30B相互は、それぞれの中心(中点)を回転軸30Aの軸芯と一致させた形態となっている。しかしながら、これに限定されるものではない。例えば、搬送大ディスク30Cの中心(中点)と回転軸30Aの軸芯がずれており、かつ、搬送小ディスク30Bの中心(中点)と回転軸30Aの軸芯がずれている形態とすることもできる。
第1の回転軸30A1と第2の回転軸30A2は、x方向に並列させることができる。第1の回転軸30A1に設けられる搬送ディスク(30B、30C)は、左側に搬送小ディスク30Bが、右側に搬送大ディスク30Cが向くように形成され、これに対し、次の第2の回転軸30A2に設けられる搬送ディスク(30B、30C)は、右側に搬送小ディスク30Bが、左側に搬送大ディスク30Cが向くように形成され、x方向に隣接する搬送ディスク間で、図9に示すように、搬送小ディスク30Bと搬送大ディスク30Cとが対向するように配置されている。
搬送軸は、回転軸30Aにその長手方向に沿って搬送ディスク(30B、30C)が多数、等間隔で設けられている形態とすることもできる。しかしながら、これに限るものではない。
この態様では、第1の回転軸30Aと第2の回転軸30A、及び相互に近接する4体の搬送ディスク(30B、30C)間で挟まれた領域が間隙30D(図9参照)となる。
また、別の実施の形態として、搬送ディスク各々は、最大径が異なるディスクを複数重ねて一体化して形成されたものであり、最大径が異なるディスク各々の外周がなす形状が三角形、四角形、五角形及び六角形から選ばれる多角形である形態とすることもできる。
【0056】
図19図20に一例を示すように搬送小ディスク30B及び搬送大ディスク30Cは、外周の各辺に膨らみを持たせたほぼ多角形状とすることができる。例えば、三角形~六角形等、多角形とすることができ、これら多角形の各辺に膨らみを持たせるとより好ましい。膨らみを持たせると、隣り合う回転軸を回転させたとき、搬送ディスクの外周の角部から中央にかけて大から小への変化が膨らみを持たせない搬送ディスクよりも緩やかなものとなる。
【0057】
また、搬送大ディスク30Cを四角形、搬送小ディスク30Bを三角形とすることもできる。しかしながら、回転させたときにx方向に隣接する搬送ディスク(30B、30C)相互を接触しないように離間させて配置することは言うまでもない。
【0058】
搬送大ディスク30Cの方が搬送小ディスク30Bより大形であり、回転軸芯から搬送大ディスク30Cの外周面までの距離は、回転軸芯から搬送小ディスク30Bの外周面までの距離よりも長い。搬送ディスクの外周面に働く回転力は、この距離が長いほど大きい。紙類(搬送材料300)が搬送小ディスク30Bの外周面にある場合と、搬送大ディスク30Cの外周面にある場合では、搬送材料300が跳ね上がる力が異なることになる。よって、投入フィーダー30に投入された搬送材料300の各々は、投入フィーダー30において適宜分散化される。
【0059】
図18(a)に示すように搬送ディスクの別の実施形態として、搬送ディスク全体形態が凸型ではない多角形状、例えば、三角形や四角形などであってもよい。第1の回転軸30A1に設けられた多数の搬送ディスク30Eと第2の回転軸30A2に設けられた多数の搬送ディスク30E相互が搬送方向に対向して配されてもよい。なお、これら多数の搬送ディスク30Eの配列は第3の回転軸30A、第4の回転軸30A、・・・、第nの回転軸30Aについても同様に配されてもよい。
また、同図(b)に示すように第1の回転軸30A1に多数設けられた搬送ディスク30E1各々と、第2の回転軸30A2に多数設けられた搬送ディスク30E2各々とは相互に対向して配されていない形態であってもよい。例えば、第1の回転軸30A1に間隔を空けて設けられた搬送ディスク30E1各々に対して、その間隔に搬送ディスク30E2各々が配置されるようにしてもよい。
なお、これら多数の搬送ディスク30Eの配列は第3の回転軸30A、第4の回転軸30A、・・・、第nの回転軸30Aについても同様に配されてもよい。
【0060】
図30に示すように搬送ディスクの外周面に突起部26を複数突設させた態様とすることができる。突起部26を有することで、搬送材料300は搬送ディスクの角部のみならず突起部26においても、搬送ディスクの回転力により上方への跳ね上がり及びバウンドが効率よく起こり、搬送材料300の塊が解れ、密着された紙の分散化が促進される。また、図31(a)に示すように搬送ディスクの態様を一例として、膨らみのある三角形の各角部を切り欠いた形態とすることができる。搬送ディスクの他の形態として膨らみのある四角形、五角形、六角形の各々について各角部を切り欠いた形態とすることができる。さらに、図31(b)に示すように回転軸30Aが搬送ディスクの中心(中点)からずれており、搬送ディスクが偏心回転する形態とすることができる。この場合の、搬送ディスクの外周がなす形状は、三角形、四角形、五角形、六角形等の角形でもよいし、円形、楕円形でもよい。これらの形状の搬送ディスクを、回転軸30Aを中心に回転させると、これら搬送ディスクと回転軸30Aとの離間距離が最も長い外周部において、大きい回転力により搬送材料300を勢いよく跳ね上げることができる。
【0061】
(投入及び選別)
投入フィーダー30を稼働させると、多数の回転軸30Aは、図8に示す曲線矢印の向きに回転を継続する。回転速度については可変に調節することができる。搬送コンベア9により搬送された解砕物が、投入フィーダー30の上流側に導かれると、解砕物(搬送材料300)は搬送ディスク(30B、30C)の形状及び回転力により下流側上方へ跳ね上がり、バウンドしながら下流側に順次移動する。また、バウンドを繰り返すことで、搬送材料300は分散化され、投入フィーダー30の一部にのみ搬送材料300による負荷がかかるのを防止できる。すなわち、例えば図7図9に示す例では、ほぼ三角形の搬送ディスクが回転すると、外周面と回転軸芯との離間距離が変化するので、クラフト紙やプラスチックフィルムなどを跳ね上げながら投入フィーダー30の下流側に送り込む。
【0062】
(重量物PW)
本実施形態では搬送面37を、下流側を上に向けた傾斜状態に設置している。重量物PWは跳ね上がらない又は跳ね上がりが弱いので、搬送面37の上流端から下方に転がり落ち、下流端から下方に集められる。この重量物PWは、例えばフォークリフト2を用いて、再び1軸解砕装置10に投入される。
【0063】
(アンダーサイズPU)
重量物PWが除かれた搬送材料300のうち比較的、細切れのクラフト紙やプラスチックフィルム等(アンダーサイズPU)は、搬送過程で間隙30Dから重力により透過する。当該アンダーサイズPUのうちプラスチックフィルムは、例えば、集められ樹脂再生物の原料として再利用されたり、燃料として利用されたりする。また、細切れのクラフト紙は、集められ燃料として利用される。
【0064】
(オーバーサイズ)
さらにアンダーサイズPUが除かれた搬送材料300は、搬送面37の下流端に順次移動される。下流端から落下したこの搬送材料(オーバーサイズPO)は主に比較的面積の大きいクラフト紙からなり、その他多くはないがプラスチックフィルムも含まれる。これらオーバーサイズPOは次に続く弁別工程に導かれる。
オーバーサイズPOの分画は、適宜選択することができるが、例えば、25cm2分画基準とすることができる。
【0065】
包装袋から有色古紙を製造する工程では、有色古紙の原料とそれ以外のものの選別が必要である。当該包装袋からプラスチックフィルムを取り除いたものであっても、選別価値のないスクラップや縫い糸、細切れのクラフト紙やプラスチックフィルム等(例えば、数センチ四方のクラフト紙)が依然として解砕された解砕物に混在する。これらアンダーサイズPUは、優良な有色古紙を製造する工程の妨げとなる。
【0066】
従来は、人の手によりアンダーサイズPUを取り除いていたが、費用対効果の面で低いものであった。本実施形態に係る投入フィーダー30を用いることで、重量物PWはもちろん、アンダーサイズPUも排除される。そうすると、オーバーサイズPOに含まれるアンダーサイズPUを極力少なくすることができる。よって、次工程である弁別工程において質の高い有色古紙の原料を用いることができ、製造製品の品質向上につながる。
【0067】
また、1軸解砕装置10により適度なサイズに解砕された解砕物の中には、一部塊のままの状態や包装袋の小片が複数、一体化したままの状態のものも混在する場合がある。このような状態の解砕物でも投入フィーダー30により跳ね上がったりバウンドしたりすることで、塊が解れ、包装袋の一体化した小片が分散化される。そうして、重量物PW、アンダーサイズPU、オーバーサイズPOに分離される。
【0068】
ここで、搬送面37は水平に設置することもできるが、下流側をリフトアップさせ、傾斜させて配置することもできる。このとき、図27に示すように、傾斜角度θ2は10度~30度、好ましくは15度~25度とするとよい。搬送材料300は搬送ディスクの回転により下流側上方へ跳ね上がる(この場合の跳ね上がり角度を、図27(a)のθ1とする)。しかしながら、搬送面37を傾斜させると、搬送材料300の前方への跳ね上がりは鈍化し、搬送材料300は上方へより跳ね上がる。例えば、搬送面27を角度θ2だけ傾斜させた場合、跳ね上がり角度は、図27(b)のθ1+θ2となる。そうすると、搬送材料300の下流側(前方)への移動速度は小さくなるので、搬送材料300が搬送面37を通過する時間は長くなる。個々の搬送材料300は投入フィーダー30内に、より長い時間滞留して分離されることになる。
重量物PWは跳ね上がらない又は跳ね上がりが弱いので、搬送面37を傾斜させることで上流側から下方に転がり落ち、他の搬送材料300と分離される。結果として、搬送材料300は重量物PW、アンダーサイズPU、及びオーバーサイズPOに確実に分離される。なお、重量物PW、特に未解砕の重包装袋は再度1軸解砕装置10に投入される。
【0069】
搬送ディスクの回転速度及び、上記傾斜角度はそれぞれ独立に可変に調節可能である。同回転速度を調節することで搬送材料300の跳ね上がり具合が変わり、また同傾斜角度を調節することで搬送材料300が投入フィーダー30に滞留する時間が変わる。これら回転速度と傾斜角度を調節することで、投入フィーダー30の分離性能を適宜調節できる。よって、本パルプ原料となるクラフト紙の最適な分離が可能となる。なお、搬送ディスクは図8に示す曲線矢印方向に回転(順回転)でき、また逆方向にも回転(逆回転)できる。
【0070】
搬送ディスクの最大径は、9~70cmとするとよい。より好ましくは20~50cmがよく、9cmを下回ると、搬送方向に対向する搬送ディスク相互の間隔が密になり間隙30Dの大きさが小さくなるので、アンダーサイズPUの一部が間隙30Dから重力により透過しにくくなり、アンダーサイズPUとオーバーサイズPOが確実に分離されない。また、70cmを超えると、搬送方向に対向する搬送ディスク相互の間隔が疎になり間隙30Dの大きさが大きくなり過ぎ、オーバーサイズPOの一部も間隙30Dから落下してしまう。よって、所望の分離を行えない。
また、図18(a)において、回転軸30A相互の離間間隔38x、回転軸30Aに設けられた搬送ディスク相互の離間間隔38yは、分離対象物と所望の大きさ基準で分離できるよう適宜調節することができる。一例として、回転軸30A相互の離間間隔38xを45cm~65cm、回転軸30Aに設けられた搬送ディスク相互の離間間隔38yを40cm~60cmとすることができる。しかしながら、この範囲に限るものではない。
搬送ディスク(30B、30C)の回転速度は、100min-1~200min-1であることが好ましい。また、120min-1~180min-1であることがより好ましい。100min-1を下回ると搬送材料300が搬送ディスク(30B、30C)間に多量に挟まれる原因となり、搬送材料300の確実な分離が行われなくなる。200min-1を上回ると搬送ディスク(30B、30C)の回転力が大き過ぎ、搬送材料300の跳ね上がり及びバウンドが乱雑になったり、直ちに搬送面27の下流端に達してしまったりして確実な分離が行われなくなる。
搬送ディスクの回転速度については、投入フィーダー30の上流部、下流部で異なる回転速度にすることができる。例えば、投入フィーダー30の搬送方向の、中点より上流部に位置する搬送ディスクの回転速度を、中点より下流部に位置する搬送ディスクの回転速度よりも小さいものとするとよい。このようにすると、上流部においては回転速度が比較的小さいので、重量物PWとそれ以外(アンダーサイズPUとオーバーサイズPO(請求項における「残分」をいう。))を確実に分離できる。下流部においては回転速度が比較的大きいので投入フィーダー30に搬送材料300が留まる時間を短縮でき、効率的な処理速度を達成できる。
【0071】
なお、投入フィーダー30を稼働して、搬送材料300を分離する際に発生する粉塵等の飛散防止のために、投入フィーダー30に粉塵飛散防止手段を設けてもよい。粉塵飛散防止手段の例として、投入フィーダー30の上方に換気用フードを設け、搬送材料300が分離される過程で発生する粉塵等を換気手段により吸引することで粉塵の飛散を防止できる。換気手段としては、具体的に、投入フィーダー30の上方全体を覆うフードとフードに連結されたダクト、そしてダクトの先にフィルターを介して換気装置を設置するとよい。換気装置を起動させることで、搬送材料300から発生する粉塵等はフードに吸い込まれ、フィルターに集塵される。なおフィルターを備える位置はフードとダクトの連結部に設けることもできる。
【0072】
投入フィーダー30の幅方向の両端縁をケーシングで覆うことができる。ケーシングにより搬送材料300が幅方向の端縁から脱落するのを防止する効果がある。
また、別の実施形態として投入フィーダー30の幅方向の両端縁と上方を覆うケーシングを設けてもよい。搬送材料300が幅方向の端縁から脱落することを防止でき、搬送材料300から発生する粉塵等の投入フィーダー30外部への飛散を防止できる。
【0073】
さらに、別の実施の形態として、複数台の投入フィーダー30を直列に配置させた形態を提供できる。例えば、第1の投入フィーダー30は、搬送ディスクの回転速度を相対的に大きく設定し、第1の投入フィーダー30の搬送面37の傾斜角度を相対的に小さく設定する。第2の投入フィーダーは、第1の投入フィーダーの搬送面37の下流端に達した搬送材料300の投入を受けるものである。第2の投入フィーダー30は、同回転速度を相対的に小さく設定し、第2の投入フィーダー30の搬送面37の傾斜角度を相対的に大きく設定する。
第1の投入フィーダー30では搬送材料300の下流端までの到達時間が相対的に短い。第1の投入フィーダー30の搬送面37は傾斜しているので、重量物PWは跳ね上がらない又は跳ね上がりが弱く下流側に進まず、第1の投入フィーダーの上流から下方に転がり落ち、下流端から下方に集められる。一方、第1の投入フィーダーの回転速度は相対的に大きく搬送材料300は前方上方へ跳ね上げられ、下流端までの到達時間が短いため、アンダーサイズPUの一部は、間隙30Dから重力により透過される。しかしながら、残りのアンダーサイズPUは透過されずに第1の投入フィーダー30の下流端に達してしまう。結果としてアンダーサイズPUの一部とオーバーサイズPOが下流端に達する。この下流端に達したものを、「第1の残分」という。その後、これらオーバーサイズPOと一部のアンダーサイズPU(第1の残分)は第2の投入フィーダー30に投入される。
第2の投入フィーダー30では搬送材料300の滞留時間が相対的に長い。搬送材料300(主にオーバーサイズPOと一部のアンダーサイズPU)は第1の投入フィーダー30よりも時間をかけて分離されるので、この一部のアンダーサイズPUを確実に間隙30Dから力により透過させることになる。第2の投入フィーダーの搬送面37の下流端に達したオーバーサイズPOは、次の工程に投入される。
【0074】
他の実施の形態として、投入フィーダー30を揺動させる形態を提供できる。揺動させることで、搬送材料300は搬送ディスクの回転力と揺動による力を受け、より一層分離されやすくなる。投入フィーダー30の揺動については搬送方向(すなわち、前後方向)、上下方向、幅方向に揺動させてもよいし、回転の動作により揺動させてもよい。またこれらの動作を組み合わせた動作等種々の動作で揺動させることもできるが、これらの動作に限るものではない。
図29に示すように揺動機構として次の形態を一例として示すことができる。投入フィーダー30を揺動させるための揺動軸25が投入フィーダー30の下流部の幅方向の両側端から、それぞれ幅方向の外方に突出して備わる。同じく、揺動軸25が投入フィーダー30の上流部の幅方向の両側端から、それぞれ幅方向の外方に突出して備わる。これら4本の揺動軸を前後方向26(すなわち、図29に示す矢印26(x方向及び-x方向)に所定の振幅で動作させることにより投入フィーダー30を揺動させることができる。同様に、幅方向(y方向及び-y方向)に所定の振幅で動作させてもよい。さらに、投入フィーダー30を上下方向(z方向及び-z方向)に所定の振幅で揺動や上下動をさせてもよい。また、これら4本の揺動軸をxz平面上で円弧を描くように回転動作させることにより投入フィーダー30を揺動させることができる。別の揺動機構の形態として、投入フィーダー30全体を支持する支持部材を設け、この支持部材が揺動機構を有する形態とすることもできる。
【0075】
オーバーサイズPOは、例えば搬送コンベア9を介して投入フィーダー30に投入される。投入フィーダー30は分散化手段を、又は分散化手段の一部を構成することができる。
投入フィーダー30の一例は、下流側が下り傾斜の振動フィーダーである。この投入フィーダー30では下流側に落下する過程で、幅方向に分散されるとともに、オーバーサイズPOの重なりを解除して分散化(個別化)が図られる。
なお、搬送コンベア9及び投入フィーダー30を設けない態様とすることもできる。この場合、投入フィーダー30により分離されたオーバーサイズPOは、直接、弁別(分別)装置40に投入される。
【0076】
(弁別手段)
投入フィーダー30により分散されたオーバーサイズPOは、弁別(分別)装置40に投入される。
弁別(分別)装置40は、例えば、搬送コンベア41と、ハイパースペクトルカメラ43により材料を測定する材料測定手段とを有するのが望ましい。
また、個々の搬送物について、材料測定手段により測光した吸光度スペクトルに基づきセルロース成分が支配的であるか否かを判断する弁別手段45を有するのが望ましい。
ハイパースペクトルカメラ43は、搬送コンベア41の幅方向に設けても、搬送コンベア41の流れ方向に並べて設けても良いが、好ましくは、後工程におけるエアーによる吹き飛ばし仕分けとの連携動作精度を高め得る効果から、搬送コンベア41の幅方向に並列して設けることが好ましい。
【0077】
搬送コンベア41では投入されたオーバーサイズPOを、搬送方向に分散させる。搬送物を分散化するには、例えば、搬送コンベア41の搬送面を前後や上下、左右に振動するとよい。また、搬送面に対して、搬送面の上方(斜め上方を含む)や幅方向の端縁からもう一方の端縁へエアーを送風できるように図32に示すエアノズル59を備えてもよい。このように搬送面を振動させたり、搬送面にエアーを送風することで搬送物が好適に分散化され、ハイパースペクトルカメラ43による弁別が確実なものとなる。
【0078】
かかる弁別手段45による弁別により、セルロース成分が支配的である場合には、クラフト紙である、他方で、セルロース成分が支配的ではない場合(例えば、樹脂成分が支配的である場合)には、プラスチックフィルムである、として弁別し、その弁別信号に基づいて仕分けを行うことができる。
【0079】
「クラフト紙以外」のものとして、包装袋の内容物や包装袋に付随する粘着テープ類、ワッペン類、ファイルの金具、金属クリップ類、セロハン、発泡スチロール、縫い糸等のいわゆる禁忌品がある。
この禁忌品の例示のように、「クラフト紙以外」のものは禁忌品であり、古紙パルプ原料とすることができないので古紙処理系から除外する必要がある。
【0080】
また、例えば樹脂フィルムが貼合されたラミネート紙などを分別するためには、材料(材質)測定が必要となる。そこで、ハイパースペクトルカメラ43により材料(材質)を測定する。
ハイパースペクトルカメラ43は、可視光から短波赤外領域(SWIR)までの広い波長領域を細かい波長域で区分けし、それぞれの波長域での光強度(波長スペクトル)を取得することができる。例えば、近赤外線(750~1700nm近傍)領域も撮影可能である。符号46は可視光から近赤外領域までの波長をもつ光源である。
物質を構成している分子は、様々な運動をしており、運動している分子に光をあてると、運動状態に合わせて特定の波長の光のみが吸収される。吸収される赤外線領域の波長は、分子を構成する原子間距離と振動方向によって決まった値になり、分子の種類を的確に表す特徴的な波長分布になる。反射・吸収された波長分布(吸収スペクトル)を調べることによって、測定対象物がどのような分子を含んでいるかを知ることが可能である。かかる原理によって、材料(材質)を測定することができる。
【0081】
図21図26に吸収スペクトル分布例を示す。セルロースと樹脂類とは吸収スペクトル波長分布が明確に異なるので、クラフト紙とプラスチックフィルムとに弁別が容易となる。
ちなみに、セルロース成分が支配的である、すなわちクラフト紙である蓋然性が高い場合、近遠赤外線の反射波の強度波形が1440~1490nmの範囲に深い谷を有する波形として明確に現れる。
これに対し、樹脂成分が支配的である場合には、波形谷が1670nm近辺、1730nm近辺に現れ、しかも、谷部の波形も材質特有なものを示す。したがって、樹脂間でも材料(材質)の弁別が可能である。
【0082】
弁別(分別)装置40により弁別(分別)を行った搬送物について、搬送コンベア41の搬送速度との関係で、当該搬送物が、例えば搬送コンベア41から落下する過程で仕分け装置50を作動させる。
仕分けには人手により行うこともできるが、自動化手段を使用するのが望ましい。
実施の形態では、エアコンプレッサー(図示せず)からのエアーによる吹き飛ばし仕分けを行うようにしてある。
【0083】
すなわち、クラフト紙からなる古紙が搬送コンベア41の下流端に到達した場合には、第1エアノズル51を作動させ、第1回収容器53に回収し、プラスチックフィルムが搬送コンベア41の下流端に到達した場合には、第2エアノズル52を作動させ、第2回収容器54に回収する。クラフト紙からなる古紙でもなくプラスチックフィルムでもないものは、例えばエアノズルを作動させることなくそのまま搬送コンベア41の下流端から落下させ第3回収容器55に回収できる。
【0084】
ここで、搬送コンベア41の幅が広い場合には、幅方向に複数の搬送物が搬送されることになるので、上記エアノズルは幅方向に複数配置することができる。
また、回収の方向を図示例のように搬送方向に区分するほか、搬送コンベア41の下流部で幅方向外側に向けてエアーによる吹き飛ばしを行い仕分け及び回収を行うこともできる。また、エアーによる吹き飛ばしを搬送コンベア41上で行うようにしてもよい。
さらに、プラスチックフィルムを仕分け及び回収するために、搬送コンベア41の横方向外方に向けてエアーによる吹き飛ばしを行うこともできる。
プラスチックフィルムの比重はクラフト紙の比重よりも小さいことを利用し、搬送コンベア41でプラスチックフィルムのみをエアーにより吹き飛ばすと好ましい。エアーの風圧を適宜調節することで、クラフト紙を吹き飛ばさず、プラスチックフィルムを吹き飛ばすことが可能である。
さらに、搬送コンベア41で搬送されるクラフト紙とプラスチックフィルムのなりを判別するため、図32に示すように搬送コンベア41の幅方向端縁にハイパースペクトルカメラ43を別途設けても良い。
【0085】
クラフト紙からなる古紙は、製品となるクラフト紙や段ボール古紙パルプ用等の材料とすることができ、プラスチックフィルムは樹脂原料や燃料とすることができる。図1に回収されたクラフト紙からなる古紙311及び回収されたプラスチックフィルム312をベーラー13により梱包し、後に利用に供する形態を図示してある。
【0086】
上記のように回収されたクラフト紙からなる古紙11は、クラフト紙や段ボール古紙パルプ(WP)用材料とすることができる。
回収されたプラスチックフィルム12は、再び樹脂原料として、又は熱エネルギー用の燃料として利用できる。段ボール古紙パルプを製造する場合、既存の又は公知のパルプ製造設備で製造できるが、以下の実施の形態で製造するのが最適である。
【0087】
回収されたクラフト紙からなる古紙11により例えば段ボール用途の古紙パルプ(WP)を製造する一例を図13に示した。
この実施の形態を要すれば次のとおりである。
(1)回収されたクラフト紙からなる古紙の乾式の解砕工程
(2)高濃度パルパーによる離解工程
(3)リフラー型スクリーンによるスラッシング工程を含む粗選工程
(4)前段クリーナー、ホールスクリーン、スリットスクリーン、後段クリーナーの順の第2粗選工程
(5)脱水工程
(6)精選工程でのホールスクリーンリジェクトは、ローターと丸穴円筒バスケットからなる離解分散と、スリットスクリーン及び又はドラムスクリーンの精選リジェクト回収工程
を有するものである。
【0088】
具体例を説明すると、回収されたクラフト紙由来の古紙(ベール)13Aは必要に応じ乾式で解砕装置61により解砕される。
例えば35mm幅に裁断された解砕物は、高濃度パルパー62により好ましくは連続高濃度パルパー、より好ましくは蒸気を得ながら、又は、離解促進剤、アルカリ性薬品、ピッチ封鎖剤、脱墨剤等を添加して離解される。
上記の高濃度パルパーを用いた場合、強度の強いクラフト紙の離解が容易になる。さらに、クラフト紙とプラスチックフィルムが接着剤により接着されている原料が混入した場合、前記接着剤の異物を微細化できるため、クラフト紙とプラスチックフィルムが分離し易く、クラフト紙のみ原料として利用できる。
クラフト紙由来の古紙に含まれる重量異物は、分離機78により分離される一方で、タンク63に一旦貯蔵される。続いて、第1粗選工程を実施ためのフラッシュソーター(リフラー型スクリーン)からなる分別機64により異物分離を行い、タンク65に貯蔵される。その後、タンク67に送る。
続いて、前段クリーナー68により重量異物を除去し、ホールスクリーン69に送り、残存するプラスチックフィルムやラミネートなどを分離し、タンク72に貯蔵する。
その後、スリットスクリーン73により細かな異物除去を行い、タンク74に貯蔵する。
続いて、後段クリーナー75により、細かな異物除去を行い、フィルター76、例えばドラム式パルプレスフィルターにより脱水を図り、古紙パルプとしてタンク77に仮貯蔵する。
他方で、第1粗選工程でのホールスクリーン69のリジェクト分は、ローターと丸穴円筒バスケットからなる、離解と分別の両方の機能を有する離解分散機(コンビソーター)71に供給される。同離解分散機(コンビソーター)71ではリジェクト中の繊維分が回収される。
【0089】
弁別(分別)装置40は包装紙専用でなく、他の解砕済みの解砕物を得て弁別するようにしてもよく、この場合、クラフト紙由来の有色古紙のほか、白色古紙用として弁別することもできる。
【0090】
そこで、弁別回収された白色古紙は、例えば、図14のフローにより新聞古紙パルプ(NDIP)用途として製造することができる。
白色古紙80aは、パルパー80により離解され、ターボセパレーター81、高濃度クリーナー82及び粗選スクリーン83により粗選される、続いて、プレフローテーター84により脱墨された後、クリーナー85、スクリーン86により精選され、脱水機87により脱水される。その後、ホットディスパーザー88により異物除去を行い、過酸化水素タワー89にて漂白処理され、ポストフローテーター90により脱墨された後、脱水機91により脱水され、高濃度ポンプ92により高濃度タワー93から抄紙機(図示せず)へ送給される。
【0091】
本発明の包装袋からなる梱包品の処理方法の実施にあたり、上記の装置を使用することに限定されず、また、一部の工程を人力又は機器の併用による半自動で行うことができる。梱包品は圧縮梱包品に限定されない。さらに回収古紙の利用先、及び廃棄先は適宜選定でき、上記例に限定されない。
【0092】
クラフト紙は強度のある紙として包装用紙に広く使用されている。特に重量がかかる米、砂糖、セメント、肥料などの包装に使用されている重包装袋用クラフト紙は,繊維の長い針葉樹を用いて製造されているものがある。
【0093】
以下に、本発明に組み込みを行うことができる態様を列挙する。
[態様1]
分散化手段により分散された搬送物群を搬送コンベア上に乗せて搬送し、搬送コンベア上に対向して、ハイパースペクトルカメラを設置する古紙パルプ原料の製造方法。
【0094】
[態様2]
分散化手段により分散された搬送物群を搬送コンベア上に乗せて搬送し、搬送コンベア上に対向して、ハイパースペクトルカメラを設置するとともに、
搬送物群が搬送コンベア上から排出される時点で、排出搬送物をエアーで吹き付けて飛ばす分別ノズルを設け、前記判断基準に基づいて飛ばす位置を区別することにより仕分けを行う、
古紙パルプ原料の製造方法を提供できる。
【0095】
[態様3]
近遠赤外線の反射波の強度波形が1440~1490nmの範囲に深い谷を有する波形の場合を、セルロース成分が支配的であると弁別する、
古紙パルプ原料の製造方法を提供できる。
【0096】
[態様4]
2軸解砕装置は、
軸芯回りに回転する実質的に平行な少なくとも2本の第1支持軸及び第2支持軸を有し、
前記各支持軸に、径方向外側に突出する解砕刃が前記軸芯方向に間隔を空けて複数設けられ、
前記解砕刃は、少なくとも外周部に鉤状部を有し、かつ、前記軸芯方向に沿う解砕刃群の鉤状部の位置が軸芯回り方向に相違しており、
前記解砕刃を有する前記支持軸がケーシング内に配置されており、
前記梱包品を解砕する過程で、前記解砕刃が前記包装袋を切り裂く、
構成である。
【0097】
[態様5]
前記解砕物を分離する投入フィーダーは、
前記解砕物を大きさ基準で分離するものであり、
回転軸にその長手方向に沿って搬送ディスクが離間して多数設けられて搬送軸を形成し、
前記搬送軸が平行に搬送方向に離間して多数設けられて搬送面が形成され、かつ、この搬送面に間隙が形成され、
前記搬送ディスクは、その外周面がなす軌跡の各点と前記回転軸芯との離間距離が段階的に、大から小に変化し、その後小から大に変化する外周面を有し、
前記搬送面が水平面に対して上方に傾斜しており、
分離対象物を前記搬送面に沿って搬送する過程で、分離対象物の一部を、前記搬送面の間隙を重力で透過させ、透過しないものを前記残分とする、
構成である。
【0098】
[態様6]
前記投入フィーダーにより分離された前記残分はクラフト紙とポリチューブを有し、この残分について、下記の弁別工程を含む弁別工程と、
この弁別工程は、
(1)前記残分を搬送方向に分散させる分散化手段と、
(2)分散化手段により分散された搬送物群について、ハイパースペクトルカメラにより前記搬送物群の材料を測定する材料測定手段とを有し、
(3)個々の搬送物について、前記材料測定手段により測光した吸光度スペクトルに基づき、セルロース成分又は樹脂成分が支配的であるか否かを判断する弁別工程と、を有し、
前記弁別工程による判断基準に基づき仕分けを行う仕分け工程と、
を順に有し、
前記仕分け工程においては、(4)セルロース成分が支配的である場合には、前記クラフト紙である、(5)樹脂成分が支配的である場合には、前記プラスチックフィルムである、として仕分けを行う、
古紙パルプ原料の製造方法。
【0099】
他方で、図1の例は、例えば1軸破砕装置と多軸(2軸)破砕装置との設置位置が離れている場合には有効の例である。
【0100】
これに対し、1軸破砕装置と多軸(2軸)破砕装置とを近接し、1軸破砕工程と多軸(2軸)破砕工程とを連続化できる。
この場合、次の工程を有する構成とすることができる。
前記包装袋を1軸破砕装置により破砕処理して、紙袋及びプラスチック袋を破砕する1軸破砕工程。前記1軸破砕工程からの破砕された少なくとも紙分を多軸破砕装置により破砕処理する多軸破砕工程。
【0101】
実施の形態では、図2に示すように、包装袋の圧縮梱包品1は、例えばフォークリスト2によって、前コンベア6に送られ、圧縮梱包品の番線などの異物7の除去がなされた後、投入コンベア8により1軸解砕装置10に投入される。
1軸解砕装置10の破砕物は、搬送コンベア15、16によって投入コンベア8に送られ、2軸解砕装置20によって解砕されるものである。
2軸解砕装置20以降のフローは、図1の場合と同様とすることができる。
【産業上の利用可能性】
【0102】
各種包装袋を回収して資源の有効利用及び環境保全に役立たせることができる。
【符号の説明】
【0103】
1 圧縮梱包品
10 1軸解砕装置
20 2軸解砕装置
30 投入フィーダー
40 弁別(分別)装置
50 仕分け装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32