(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-27
(45)【発行日】2023-01-11
(54)【発明の名称】プラズマ処理装置
(51)【国際特許分類】
H05H 1/46 20060101AFI20221228BHJP
【FI】
H05H1/46 M
H05H1/46 R
(21)【出願番号】P 2019012419
(22)【出願日】2019-01-28
(62)【分割の表示】P 2019504871の分割
【原出願日】2018-06-26
【審査請求日】2021-05-26
(31)【優先権主張番号】PCT/JP2017/023611
(32)【優先日】2017-06-27
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】PCT/JP2017/023603
(32)【優先日】2017-06-27
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018017556
(32)【優先日】2018-02-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000227294
【氏名又は名称】キヤノンアネルバ株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(74)【代理人】
【識別番号】100076428
【氏名又は名称】大塚 康徳
(74)【代理人】
【識別番号】100115071
【氏名又は名称】大塚 康弘
(74)【代理人】
【識別番号】100112508
【氏名又は名称】高柳 司郎
(74)【代理人】
【識別番号】100116894
【氏名又は名称】木村 秀二
(74)【代理人】
【識別番号】100130409
【氏名又は名称】下山 治
(74)【代理人】
【識別番号】100134175
【氏名又は名称】永川 行光
(72)【発明者】
【氏名】山崎 公司
(72)【発明者】
【氏名】井上 忠
(72)【発明者】
【氏名】田名部 正治
(72)【発明者】
【氏名】関谷 一成
(72)【発明者】
【氏名】笹本 浩
(72)【発明者】
【氏名】佐藤 辰憲
(72)【発明者】
【氏名】土屋 信昭
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2000-294543(JP,A)
【文献】特開2008-294465(JP,A)
【文献】特表2003-512526(JP,A)
【文献】特開2010-109157(JP,A)
【文献】実開昭53-141937(JP,U)
【文献】特許第6280677(JP,B2)
【文献】特許第6309683(JP,B2)
【文献】国際公開第2019/004190(WO,A1)
【文献】特開平02-156081(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
第1高周波電源と、
第1インピーダンス整合回路と、
前記第1インピーダンス整合回路を介して前記第1高周波電源に電気的に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有する第1バランと、
第2高周波電源と、
第2インピーダンス整合回路と、
前記第2インピーダンス整合回路を介して前記第2高周波電源に電気的に接続された第3不平衡端子、接地された第4不平衡端子、第3平衡端子および第4平衡端子を有する第2バランと、
接地された真空容器と、
前記第1平衡端子に第1ブロッキングキャパシタを介して電気的に接続され、前記第3平衡端子に第2ブロッキングキャパシタを介して電気的に接続された第1電極と、
前記第2平衡端子にブロッキングキャパシタを介することなく電気的に接続された第2電極と、
前記第4平衡端子にブロッキングキャパシタを介することなく電気的に接続された第3電極と、を備え
、
前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす、
ことを特徴とするプラズマ処理装置。
【請求項2】
前記第1電極および前記第2電極は、互いに対向するように配置されている、
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項3】
前記第3電極は、前記第1電極を取り囲むように配置されている、
ことを特徴とする請求項1又は2に記載のプラズマ処理装置。
【請求項4】
前記第3電極は、リング形状を有する、
ことを特徴とする請求項3に記載のプラズマ処理装置。
【請求項5】
前記第1電極は、対称軸に関して対称な形状を有し、前記第2電極は、前記対称軸に関して対称な形状を有し、前記第3電極は、前記対称軸に関して対称な形状を有する、
ことを特徴とする請求項1乃至4のいずれか1項に記載のプラズマ処理装置。
【請求項6】
前記第1電極、前記第2電極および前記第3電極が絶縁体を介して前記真空容器によって支持されている、
ことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。
【請求項7】
前記第1バランは、前記第1不平衡端子と前記第1平衡端子とを接続する第1コイルと、前記第2不平衡端子と前記第2平衡端子とを接続する第2コイルとを有する、
ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。
【請求項8】
前記第1バランは、前記第1平衡端子と前記第2平衡端子との間に接続された第3コイルおよび第4コイルを更に有し、前記第3コイルおよび前記第4コイルは、前記第3コイルと前記第4コイルとの接続ノードの電圧を前記第1平衡端子の電圧と前記第2平衡端子の電圧との中点とするように構成されている、
ことを特徴とする請求項7に記載のプラズマ処理装置。
【請求項9】
前記第2バランは、前記第3不平衡端子と前記第3平衡端子とを接続する第5コイルと、前記第4不平衡端子と前記第4平衡端子とを接続する第6コイルとを有する、
ことを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ処理装置。
【請求項10】
前記第2バランは、前記第3平衡端子と前記第4平衡端子との間に接続された第7コイルおよび第8コイルを更に有し、前記第7コイルおよび前記第8コイルは、前記第7コイルと前記第8コイルとの接続ノードの電圧を前記第3平衡端子の電圧と前記第4平衡端子の電圧との中点とするように構成されている、
ことを特徴とする請求項9に記載のプラズマ処理装置。
【請求項11】
前記第1電極は基板を保持し、前記プラズマ処理装置は、前記基板をエッチングするエッチング装置として構成されている、
ことを特徴とする請求項1乃至10のいずれか1項に記載のプラズマ処理装置。
【請求項12】
前記第2電極には、ガスを分配するガス分配部が組み込まれている、
ことを特徴とする請求項11に記載のプラズマ処理装置。
【請求項13】
前記第1電極はターゲットを保持し、前記第2電極は基板を保持し、前記プラズマ処理装置は、スパッタリングによって前記基板に膜を形成するスパッタリング装置として構成されている、
ことを特徴とする請求項1乃至10のいずれか1項に記載のプラズマ処理装置。
【請求項14】
前記第3平衡端子および前記第4平衡端子の側から前記第1電極および前記第3電極の側を見たときの前記第3平衡端子と前記第4平衡端子との間の抵抗成分をRp’とし、前記第3不平衡端子と前記第3平衡端子との間のインダクタンスをX’としたときに、1.5≦X’/Rp’≦5000を満たす、
ことを特徴とする請求項1乃至13のいずれか1項に記載のプラズマ処理装置。
【請求項15】
第1高周波電源と、
第1インピーダンス整合回路と、
前記第1インピーダンス整合回路を介して前記第1高周波電源に電気的に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有する第1バランと、
第2高周波電源と、
第2インピーダンス整合回路と、
前記第2インピーダンス整合回路を介して前記第2高周波電源に電気的に接続された第3不平衡端子、接地された第4不平衡端子、第3平衡端子および第4平衡端子を有する第2バランと、
接地された真空容器と、
前記第1平衡端子に第1ブロッキングキャパシタを介して電気的に接続され、前記第3平衡端子に第2ブロッキングキャパシタを介して電気的に接続された第1電極と、
前記第2平衡端子にブロッキングキャパシタを介することなく電気的に接続された第2電極と、
前記第4平衡端子にブロッキングキャパシタを介することなく電気的に接続された第3電極と、を備え、
前記第3平衡端子および前記第4平衡端子の側から前記第1電極および前記第3電極の側を見たときの前記第3平衡端子と前記第4平衡端子との間の抵抗成分をRp’とし、前記第3不平衡端子と前記第3平衡端子との間のインダクタンスをX’としたときに、1.5≦X’/Rp’≦5000を満たす、
ことを特徴とするプラズマ処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマ処理装置に関する。
【背景技術】
【0002】
2つの電極の間に高周波を印加することによってプラズマを発生し該プラズマによって基板を処理するプラズマ処理装置がある。このようなプラズマ処理装置は、2つの電極の面積比および/またはバイアスによってスパッタリング装置として動作したり、エッチング装置として動作したりしうる。スパッタリング装置として構成されたプラズマ処理装置は、ターゲットを保持する第1電極と、基板を保持する第2電極とを有し、第1電極と第2電極との間に高周波が印加され、第1電極と第2電極との間(ターゲットと基板との間)にプラズマが生成される。プラズマの生成によってターゲットの表面にセルフバイアス電圧が発生し、これによってターゲットにイオンが衝突し、ターゲットからそれを構成する材料の粒子が放出される。
【0003】
特許文献1には、接地されたチャンバと、インピーダンス整合回路網を介してRF発生源に接続されたターゲット電極と、基板電極同調回路を介して接地された基板保持電極とを有するスパッタリング装置が記載されている。
【0004】
特許文献1に記載されたようなスパッタリング装置では、基板保持電極の他、チャンバがアノードとして機能しうる。セルフバイアス電圧は、カソードとして機能しうる部分の状態およびアノードとして機能しうる部分の状態に依存しうる。よって、基板保持電極の他にチャンバもアノードとして機能する場合、セルバイアス電圧は、チャンバのうちアノードとして機能する部分の状態にも依存して変化しうる。セルフバイアス電圧の変化は、プラズマ電位の変化をもたらし、プラズマ電位の変化は、形成される膜の特性に影響を与えうる。
【0005】
スパッタリング装置によって基板に膜を形成すると、チャンバの内面にも膜が形成されうる。これによってチャンバのうちアノードとして機能しうる部分の状態が変化しうる。そのため、スパッタリング装置を継続して使用すると、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、プラズマ電位も変化しうる。よって、従来は、スパッタリング装置を長期にわたって使用した場合において、基板の上に形成される膜の特性を一定に維持することが難しかった。
【0006】
同様に、エッチング装置が長期にわたって使用された場合においても、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、これによってプラズマ電位も変化しうるので、基板のエッチング特性を一定に維持することが難しかった。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【0008】
本発明は、上記の課題認識に基づいてなされたものであり、長期間の使用においてプラズマ電位を安定させるために有利な技術を提供する。
【0009】
本発明の1つの側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、第1高周波電源と、第1インピーダンス整合回路と、前記第1インピーダンス整合回路を介して前記第1高周波電源に電気的に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有する第1バランと、第2高周波電源と、第2インピーダンス整合回路と、前記第2インピーダンス整合回路を介して前記第2高周波電源に電気的に接続された第3不平衡端子、接地された第4不平衡端子、第3平衡端子および第4平衡端子を有する第2バランと、接地された真空容器と、前記第1平衡端子に第1ブロッキングキャパシタを介して電気的に接続され、前記第3平衡端子に第2ブロッキングキャパシタを介して電気的に接続された第1電極と、前記第2平衡端子にブロッキングキャパシタを介することなく電気的に接続された第2電極と、前記第4平衡端子にブロッキングキャパシタを介することなく電気的に接続された第3電極と、を備え、前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす。
【図面の簡単な説明】
【0010】
【
図1】本発明の第1実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図4】電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係を例示する図。
【
図5A】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図5B】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図5C】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図5D】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図6A】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図6B】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図6C】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図6D】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
【
図8】本発明の第2実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図9】本発明の第3実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図10】本発明の第4実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図11】本発明の第5実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図12】本発明の第6実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図13】本発明の第7実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図14】本発明の第6実施形態のバランの機能を説明する図。
【
図15A】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図15B】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図15C】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図15D】1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図16A】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図16B】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図16C】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図16D】1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
【
図17】本発明の第8実施形態のプラズマ処理装置1の構成を模式的に示す図。
【
図18】本発明の第9実施形態のプラズマ処理装置1の構成を模式的に示す図。
【発明を実施するための形態】
【0011】
以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。
【0012】
図1には、本発明の第1実施形態のプラズマ処理装置1の構成が模式的に示されている。第1実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111とを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
【0013】
バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
【0014】
第1実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。また、第1実施形態では、第2電極111は、アノードであり、基板112を保持する。第1実施形態のプラズマ処理装置1は、ターゲット109のスパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第1電極106は、第1平衡端子211に電気的に接続され、第2電極111は、第2平衡端子212に電気的に接続されている。第1電極106と第1平衡端子211とが電気的に接続されていることは、第1電極106と第1平衡端子211との間で電流が流れるように第1電極106と第1平衡端子211との間に電流経路が構成されていることを意味する。同様に、この明細書において、aとbとが電気的に接続されているとは、aとbとの間で電流が流れるようにaとbとの間に電流経路が構成されることを意味する。
【0015】
上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極111が第2端子252に電気的に接続され、第1端子251が第1平衡端子211に電気的に接続され、第2端子252が第2平衡端子212に電気的に接続された構成としても理解されうる。
【0016】
第1実施形態では、第1電極106と第1平衡端子211(第1端子251)とがブロッキングキャパシタ104を介して電気的に接続されている。ブロッキングキャパシタ104は、第1平衡端子211と第1電極106との間(あるいは、第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、後述のインピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。あるいは、第2電極111と真空容器110との間に絶縁体108が配置されうる。
【0017】
プラズマ処理装置1は、高周波電源101と、高周波電源101とバラン103との間に配置されたインピーダンス整合回路102とを更に備えうる。高周波電源101は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。換言すると、高周波電源101は、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極111との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給するものとしても理解されうる。
【0018】
真空容器110の内部空間には、真空容器110に設けられた不図示のガス供給部を通してガス(例えば、Ar、KrまたはXeガス)が供給される。また、第1電極106と第2電極111との間には、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して高周波電源101によって高周波が供給される。これにより、第1電極106と第2電極111との間にプラズマが生成され、ターゲット109の表面にセルフバイアス電圧が発生し、プラズマ中のイオンがターゲット109の表面に衝突し、ターゲット109からそれを構成する材料の粒子が放出される。そして、この粒子によって基板112の上に膜が形成される。
【0019】
図2Aには、バラン103の一構成例が示されている。
図2Aに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。
【0020】
図2Bには、バラン103の他の構成例が示されている。
図2Bに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。また、
図2Bに示されたバラン103は、第1平衡端子211と第2平衡端子212との間に接続された第3コイル223および第4コイル224を更に有し、第3コイル223および第4コイル224は、第3コイル223と第4コイル224との接続ノード213の電圧を第1平衡端子211の電圧と第2平衡端子212の電圧との中点とするように構成されている。第3コイル223および第4コイル224は、同一巻き数のコイルであり、鉄心を共有する。接続ノード213は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
【0021】
図3を参照しながらバラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
【0022】
ISO[dB]=20log(I3/I2’)
図3において、Rp-jXpは、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104のリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、
図3において、Xは、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
【0023】
図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。本発明者は、バラン103を介して高周波電源101から第1電極106と第2電極111との間に高周波を供給する構成、特に、該構成において1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
【0024】
図5A~5Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。
図5Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。
図5Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。
図5Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。
図5Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。
図5A~5Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
【0025】
図6A~6Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。
図6Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。
図6Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。
図6Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。
図6Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。
図6A~6Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化しうることが理解される。
【0026】
ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.0、X/Rp=0.5)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極106と第2電極111との間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、
図6A~6Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
【0027】
図7を参照しながらRp-jXp(実際に知りたいものはRpのみ)の決定方法を例示する。まず、プラズマ処理装置1からバラン103を取り外し、インピーダンス整合回路102の出力端子230を本体10の第1端子251(ブロッキングキャパシタ104)に接続する。また、本体10の第2端子252(第2電極111)を接地する。この状態で高周波電源101からインピーダンス整合回路102を通して本体10の第1端子251に高周波を供給する。
図7に示された例では、インピーダンス整合回路102は、等価的に、コイルL1、L2および可変キャパシタVC1、VC2で構成される。可変キャパシタVC1、VC2の容量値を調整することによってプラズマを発生させることができる。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp-jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
【0028】
よって、インピーダンスが整合したときのインピーダンス整合回路102のインピーダンスRp+jXpに基づいて、Rp-jXp(実際に知りたいものはRpのみ)を得ることができる。Rp-jXpは、その他、例えば、設計データに基づいてシミュレーションによって求めることができる。
【0029】
このようにして得られたRpに基づいて、X/Rpを特定することができる。例えば、1.5≦X/Rp≦5000を満たすように、Rpに基づいて、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)Xを決定することができる。
【0030】
図8には、本発明の第2実施形態のプラズマ処理装置1の構成が模式的に示されている。第2実施形態のプラズマ処理装置1は、基板112をエッチングするエッチング装置として動作しうる。第2実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第2実施形態では、第2電極111は、アノードである。第2実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第2実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
【0031】
図9には、本発明の第3実施形態のプラズマ処理装置1の構成が模式的に示されている。第3実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備える。
図9に示された例では、プラズマ処理装置1は、第2電極111を昇降させる機構および第2電極111を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
【0032】
同様に、第2実施形態のプラズマ処理装置1も、第1電極106を昇降させる機構および第2電極106を回転させる機構の少なくとも一方を更に備えうる。
【0033】
図10には、本発明の第4実施形態のプラズマ処理装置1の構成が模式的に示されている。第4実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第4実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第3実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
【0034】
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
【0035】
第1組の第1電極106は、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。第1組の第2電極135は、第1電極106の周囲に配置される。第1組の第1電極106は、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極135は、第1バラン103の第2平衡端子212に電気的に接続されている。第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
【0036】
上記の構成は、第1組の第1電極106が第1端子251に電気的に接続され、第1組の第2電極135が第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に電気的に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
【0037】
第1組の第1電極106と第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104を介して電気的に接続されうる。ブロッキングキャパシタ104は、第1バラン103の第1平衡端子211と第1組の第1電極106との間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、第1インピーダンス整合回路102が、第1バラン103の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1組の第1電極106および第2電極135は、絶縁体132を介して真空容器110によって支持されうる。
【0038】
第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
【0039】
プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102を介して第1バラン103の第1不平衡端子201と第2不平衡端子202との間に高周波を供給する。換言すると、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極135との間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極106および第2電極135は、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
【0040】
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
【0041】
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極106および第2電極135の側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
【0042】
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極141および第2電極145の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
【0043】
図11には、本発明の第5実施形態のプラズマ処理装置1の構成が模式的に示されている。第5実施形態の装置1は、第4実施形態のプラズマ処理装置1に対して駆動機構114、314を追加した構成を有する。駆動機構114は、第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を備えうる。駆動機構314は、第2電極145を昇降させる機構を備えうる。
【0044】
図12には、本発明の第6実施形態のプラズマ処理装置1の構成が模式的に示されている。第6実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第6実施形態として言及しない事項は、第1乃至第5実施形態に従いうる。第6実施形態のプラズマ処理装置1は、複数の第1高周波供給部と、少なくとも1つの第2高周波供給部とを備えている。複数の第1高周波供給部のうちの1つは、第1電極106aと、第2電極135aと、第1バラン103aとを含みうる。複数の第1高周波供給部のうちの他の1つは、第1電極106bと、第2電極135bと、第1バラン103bとを含みうる。ここでは、複数の第1高周波供給部が2つの高周波供給部で構成される例を説明する。また、2つの高周波供給部およびそれに関連する構成要素を添え字a、bで相互に区別する。同様に、2つのターゲットについても、添え字a、bで相互に区別する。
【0045】
他の観点において、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452を有する。
【0046】
第1バラン103aは、第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211aおよび第2平衡端子212aを有する。第1バラン103aの第1不平衡端子201aおよび第2不平衡端子202aの側には、不平衡回路が接続され、第1バラン103aの第1平衡端子211aおよび第2平衡端子212aの側には、平衡回路が接続される。第1バラン103bは、第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211bおよび第2平衡端子212bを有する。第1バラン103bの第1不平衡端子201bおよび第2不平衡端子202bの側には、不平衡回路が接続され、第1バラン103bの第1平衡端子211bおよび第2平衡端子212bの側には、平衡回路が接続される。
【0047】
第2バラン303は、第1バラン103a、103bと同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
【0048】
第1電極106a、106bは、それぞれターゲット109a、109bを保持する。ターゲット109a、109bは、例えば、絶縁体材料または導電体材料でありうる。第2電極135a、135bは、それぞれ第1電極106a、106bの周囲に配置される。第1電極106a、106bは、それぞれ第1バラン103a、103bの第1平衡端子211a、211bに電気的に接続され、第2電極135a、135bは、それぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続されている。
【0049】
第1電極141は、基板112を保持する。第2電極145は、第1電極141の周囲に配置される。第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
【0050】
上記の構成は、第1電極106a、106bがそれぞれ第1端子251a、251bに電気的に接続され、第2電極135a、135bがそれぞれ第2端子252a、252bに電気的に接続され、第1端子251a、251bがそれぞれ第1バラン103a、103bの第1平衡端子211a、111bに電気的に接続され、第2端子252a、252bがそれぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続された構成として理解されうる。また、上記の構成は、第1電極141が第3端子451に電気的に接続され、第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
【0051】
第1電極106a、106bと第1バラン103a、103bの第1平衡端子211a、211b(第1端子251a、251b)とは、それぞれブロッキングキャパシタ104a、104bを介して電気的に接続されうる。ブロッキングキャパシタ104a、104bは、第1バラン103a、103bの第1平衡端子211a、211bと第1電極106a、106bとの間(あるいは、第1バラン103a、103bの第1平衡端子211a、211bと第2平衡端子212a、212bとの間)で直流電流を遮断する。ブロッキングキャパシタ104a、104bを設ける代わりに、第1インピーダンス整合回路102a、102bが、第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ104a、104bは、第2電極135a、135bと第1バラン103a、103bの第2平衡端子212a、212b(第2端子252a、252b)との間に配置されてもよい。第1電極106a、106bおよび第2電極135a、135bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
【0052】
第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ304は、第2電極145と第2バラン303の第2平衡端子412(第4端子452)との間に配置されてもよい。第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
【0053】
プラズマ処理装置1は、複数の第1高周波電源101a、101bと、複数の第1高周波電源101a、101bと複数の第1バラン103a、103bとの間にそれぞれ配置された第1インピーダンス整合回路102a、102bとを備えうる。第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102bを介して第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間に高周波を供給する。換言すると、第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102b、第1バラン103a、103bおよびブロッキングキャパシタ104a、104bを介して、第1電極106a、106bと第2電極135a、135bとの間に高周波を供給する。あるいは、第1高周波電源101a、101bは、第1インピーダンス整合回路102a、102b、第1バラン103a、103bを介して、本体10の第1端子251a、251bと第2端子252a、252bとの間に高周波を供給する。
【0054】
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。
【0055】
図13には、本発明の第7実施形態のプラズマ処理装置1の構成が模式的に示されている。第7実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第7実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第6実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
【0056】
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
【0057】
第1組の第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して基板112の側の空間と対向する。第1組の第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1組の第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
【0058】
第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
【0059】
上記の構成は、第1組の第1電極105aが第1端子251に電気的に接続され、第1組の第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
【0060】
第1組の第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104aを介して電気的に接続されうる。ブロッキングキャパシタ104aは、第1バラン103の第1平衡端子211と第1組の第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、ブロッキングキャパシタ104bを介して電気的に接続されうる。ブロッキングキャパシタ104bは、第1バラン103の第2平衡端子212と第1組の第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
【0061】
第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141、第2電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
【0062】
プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103、およびブロッキングキャパシタ104a、104bを介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
【0063】
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
【0064】
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
【0065】
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極127および第2電極130の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
【0066】
第7実施形態のプラズマ処理装置1は、第2組を構成する第1電極141を昇降させる機構および第2組を構成する第1電極141を回転させる機構の少なくとも一方を更に備えうる。
図13に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。また、
図13に示された例では、プラズマ処理装置1は、第2組を構成する第2電極145を昇降させる駆動機構314を備える。真空容器110と駆動機構114、314との間には、真空隔壁を構成するベローズが設けられうる。
【0067】
図14を参照しながら、
図13に示された第7実施形態のプラズマ処理装置1における第1バラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、第1乃至第5実施形態と同様に、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
【0068】
ISO[dB]=20log(I3/I2’)
図14において、Rp-jXp(=Rp/2-jXp/2+Rp/2-jXp/2)は、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104a及び104bのリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、
図14において、Xは、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
【0069】
第1実施形態の説明において参照した
図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。
図4の関係は、第7実施形態においても成り立つ。本発明者は、第7実施形態においても、1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極105aと第2電極105bとの間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
【0070】
図15(a)~
図15(d)には、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示されている。
図15(a)は、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図15(b)は、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図15(c)は、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図15(d)は、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図15(a)~
図15(d)より、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
【0071】
図16(a)~
図16(d)には、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。
図16(a)は、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図16(b)は、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図16(c)は、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図16(d)は、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。
図16(a)~
図16(d)より、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化することが理解される。
【0072】
ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.16、X/Rp=0.87)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極105aと第2電極105bの間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、
図16(a)~16(d)に例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
【0073】
図17には、本発明の第8実施形態のプラズマ処理装置1の構成が模式的に示されている。第8実施形態のプラズマ処理装置1は、第2実施形態のプラズマ処理装置1の変形例であり、基板112をエッチングするエッチング装置として動作しうる。
【0074】
第8実施形態のプラズマ処理装置1は、第1バラン(第1平衡不平衡変換回路)103と、第2バラン(第2衡不平衡変換回路)603と、真空容器110と、第1電極106と、第2電極111と、第3電極606とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン603と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111と、第3電極606とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子651、第4端子652を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第3電極606は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
【0075】
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
【0076】
第2バラン603は、第3不平衡端子601、第4不平衡端子602、第3平衡端子611および第4平衡端子612を有する。第2バラン603の第3不平衡端子601および第4不平衡端子602の側には、不平衡回路が接続され、第2バラン603の第3平衡端子611および第4平衡端子612の側には、平衡回路が接続される。第2バラン603は、第1バラン013と同様の構成を有しうる。
【0077】
第2バラン603は、例えば、
図2Aに示された構成または
図2Bに示された構成を有しうる。具体的には、第2バラン603は、第3不平衡端子601と第3平衡端子611とを接続する第5コイル(221)と、第4不平衡端子602と第4平衡端子612とを接続する第6コイル(222)とを有する。第5コイル(221)および第6コイル(222)は、同一巻き数のコイルであり、鉄心を共有する。あるいは、第2バラン603は、第3不平衡端子601と第3平衡端子611とを接続する第5コイル(221)と、第4不平衡端子602と第4平衡端子612とを接続する第6コイル(222)と、第3平衡端子611と第4平衡端子612との間に接続された第7コイル(223)および第8コイル(224)を有し、第7コイル(223)および第8コイル(224)は、第7コイル(223)と第8コイル(224)との接続ノード(213)の電圧を第3平衡端子611の電圧と第4平衡端子612の電圧との中点とするように構成される。第5コイル(221)および第6コイル(222)は、同一巻き数のコイルであり、鉄心を共有する。第7コイル(223)および第8コイル(224)は、同一巻き数のコイルであり、鉄心を共有する。接続ノード(213)は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
【0078】
第8実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第8実施形態では、第2電極111は、アノードである。第8実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第8実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。第2電極111には、エッチングガスを含むガスを分配する1又は複数のガス供給孔を含むガス分配部195が組み込まれていてもよい。
【0079】
上記のような構成に代えて、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。あるいは、第1平衡端子211と第1電極106とがブロッキングキャパシタを介して電気的に接続され、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。
【0080】
第1電極106および第2電極111は、互いに対向するように配置されうる。他の観点において、第1電極106および第2電極111は、第1電極106の少なくとも一部分と第2電極111の少なくとも一部分とが互いに対向するように配置されうる。第3電極606は、第1電極106を取り囲むように配置されうる。第3電極606は、リング形状を有しうる。
【0081】
第1電極106は、対称軸SAに関して対称な形状を有し、第2電極111は、対称軸SAに関して対称な形状を有し、第3電極606は、対称軸SAに関して対称な形状を有しうる。一例において、第1電極106は、対称軸SAに関して対称に配置された円形形状を有し、第2電極111は、対称軸SAに関して対称に配置された円形形状を有し、第3電極606は、対称軸SAに関して対称に配置されたリング形状を有しうる。リング形状は、例えば、円形リング形状または矩形リング形状でありうる。円形リング形状は、外側のエッジを規定する形状が円形であり、内側のエッジを規定する形状が円形である。矩形リング形状は、外側のエッジを規定する形状が矩形であり、内側のエッジを規定する形状が矩形である。
【0082】
第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側を見たときの第1平衡端子211と第2平衡端子212との間の抵抗成分をRpとし、第1不平衡端子201と第1平衡端子211との間のインダクタンスをXとする。このときに、1.5≦X/Rp≦5000を満すことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位を真空容器110の内面の状態に対して鈍感にするために有利である。
【0083】
また、第3平衡端子611および第4平衡端子612の側から第1電極106および第3電極606の側を見たときの第3平衡端子611と前記第4平衡端子612との間の抵抗成分をRp’とし、第3不平衡端子601と第3平衡端子611との間のインダクタンスをX’とする。このときに、1.5≦X’/Rp’≦5000を満たすことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位を真空容器110の内面の状態に対して鈍感にするために有利である。
【0084】
図18には、本発明の第9実施形態のプラズマ処理装置1の構成が模式的に示されている。第9実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、スパッタリングにより基板112に膜を形成するスパッタリング装置として動作しうる。
【0085】
第9実施形態のプラズマ処理装置1は、第1バラン(第1平衡不平衡変換回路)103と、第2バラン(第2衡不平衡変換回路)603と、真空容器110と、第1電極106と、第2電極111と、第3電極606とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン603と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111と、第3電極606とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子651、第4端子652を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第3電極606は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
【0086】
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
【0087】
第2バラン603は、第3不平衡端子601、第4不平衡端子602、第3平衡端子611および第4平衡端子612を有する。第2バラン603の第3不平衡端子601および第4不平衡端子602の側には、不平衡回路が接続され、第2バラン603の第3平衡端子611および第4平衡端子612の側には、平衡回路が接続される。第2バラン603は、第1バラン013と同様の構成を有しうる。
【0088】
第2バラン603は、例えば、
図2Aに示された構成または
図2Bに示された構成を有しうる。具体的には、第2バラン603は、第3不平衡端子601と第3平衡端子611とを接続する第5コイル(221)と、第4不平衡端子602と第4平衡端子612とを接続する第6コイル(222)とを有する。第5コイル(221)および第6コイル(222)は、同一巻き数のコイルであり、鉄心を共有する。あるいは、第2バラン603は、第3不平衡端子601と第3平衡端子611とを接続する第5コイル(221)と、第4不平衡端子602と第4平衡端子612とを接続する第6コイル(222)と、第3平衡端子611と第4平衡端子612との間に接続された第7コイル(223)および第8コイル(224)を有し、第7コイル(223)および第8コイル(224)は、第7コイル(223)と第8コイル(224)との接続ノード(213)の電圧を第3平衡端子611の電圧と第4平衡端子612の電圧との中点とするように構成される。第5コイル(221)および第6コイル(222)は、同一巻き数のコイルであり、鉄心を共有する。第7コイル(223)および第8コイル(224)は、同一巻き数のコイルであり、鉄心を共有する。接続ノード(213)は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
【0089】
第9実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。また、第9実施形態では、第2電極111は、アノードであり、基板112を保持する。第9実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第9実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
【0090】
上記のような構成に代えて、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。あるいは、第1平衡端子211と第1電極106とがブロッキングキャパシタを介して電気的に接続され、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。
【0091】
第1電極106および第2電極111は、互いに対向するように配置されうる。他の観点において、第1電極106および第2電極111は、第1電極106の少なくとも一部分と第2電極111の少なくとも一部分は、互いに対向するように配置されうる。第3電極606は、第1電極106を取り囲むように配置されうる。第3電極606は、リング形状を有しうる。
【0092】
第1電極106は、対称軸SAに関して対称な形状を有し、第2電極111は、対称軸SAに関して対称な形状を有し、第3電極606は、対称軸SAに関して対称な形状を有しうる。一例において、第1電極106は、対称軸SAに関して対称に配置された円形形状を有し、第2電極111は、対称軸SAに関して対称に配置された円形形状を有し、第3電極606は、対称軸SAに関して対称に配置されたリング形状を有しうる。リング形状は、例えば、円形リング形状または矩形リング形状でありうる。円形リング形状は、外側のエッジを規定する形状が円形であり、内側のエッジを規定する形状が円形である。矩形リング形状は、外側のエッジを規定する形状が矩形であり、内側のエッジを規定する形状が矩形である。
【0093】
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
【符号の説明】
【0094】
1:プラズマ処理装置、10:本体、101:高周波電源(第1高周波源)、102:インピーダンス整合回路(第1インピーダンス整合回路)、103:バラン(第1バラン)、104:ブロッキングキャパシタ、106:第1電極、107、108:絶縁体、109:ターゲット、110:真空容器、111:第2電極、112:基板、195:ガス分配部、201:第1不平衡端子、202:第2不平衡端子、211:第1平衡端子、212:第2平衡端子、251:第1端子、252:第2端子、221:第1コイル、222:第2コイル、223:第3コイル、224:第4コイル、SA:対称軸、501:高周波源(第2高周波源)、502:インピーダンス整合回路(第2インピーダンス整合回路)、601:第3不平衡端子、602:第4不平衡端子、603:バラン(第2バラン)、611:第3平衡端子、612:第4平衡端子、604:ブロッキングキャパシタ、606:第3電極