IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝エネルギーシステムズ株式会社の特許一覧

特許7204391酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
<>
  • 特許-酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置 図1
  • 特許-酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-05
(45)【発行日】2023-01-16
(54)【発明の名称】酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
(51)【国際特許分類】
   B01D 53/14 20060101AFI20230106BHJP
   B01D 53/52 20060101ALI20230106BHJP
   B01D 53/62 20060101ALI20230106BHJP
   B01D 53/78 20060101ALI20230106BHJP
   B01D 53/96 20060101ALI20230106BHJP
   C07C 317/28 20060101ALI20230106BHJP
   C01B 32/50 20170101ALI20230106BHJP
   C07D 295/088 20060101ALN20230106BHJP
   C07D 295/13 20060101ALN20230106BHJP
   C07D 211/58 20060101ALN20230106BHJP
   C07D 233/02 20060101ALN20230106BHJP
   C07D 333/48 20060101ALN20230106BHJP
【FI】
B01D53/14 210
B01D53/14 220
B01D53/52 200
B01D53/62 ZAB
B01D53/78
B01D53/96
C07C317/28
C01B32/50
C07D295/088
C07D295/13
C07D211/58
C07D233/02
C07D333/48
【請求項の数】 8
(21)【出願番号】P 2018173931
(22)【出願日】2018-09-18
(65)【公開番号】P2020044490
(43)【公開日】2020-03-26
【審査請求日】2021-02-12
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100082991
【氏名又は名称】佐藤 泰和
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100118876
【弁理士】
【氏名又は名称】鈴木 順生
(74)【代理人】
【識別番号】100187159
【弁理士】
【氏名又は名称】前川 英明
(72)【発明者】
【氏名】中野 義彦
(72)【発明者】
【氏名】鈴木 昭子
(72)【発明者】
【氏名】久保木 貴志
(72)【発明者】
【氏名】今田 敏弘
(72)【発明者】
【氏名】村井 伸次
(72)【発明者】
【氏名】吉村 玲子
(72)【発明者】
【氏名】佐野 健二
(72)【発明者】
【氏名】宇田津 満
【審査官】佐々木 典子
(56)【参考文献】
【文献】特表2006-527153(JP,A)
【文献】HEROVA D.,Ph.D.THESIS,MASARYK UNIVERSITY,2015年06月30日
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/14-53/18
53/34-53/84、
53/92、53/96
C01B 32/50
C07D 295/00-295/32、
233/00-233/96、
327/00-347/00、
211/00-211/98
C07B 31/00-61/00、
63/00-63/04
C07C 1/00-409/44
(57)【特許請求の範囲】
【請求項1】
下記の式(1a):
【化1】
[式中、
Rはそれぞれ独立に、水素であるか、非置換アルキルであり、Rのうちの二つが連結して環状構造を形成してもよく、
nはそれぞれ独立に1~4である。]
で表される脂肪族アミン化合物を含み、
前記酸性ガス吸収剤の全量を100質量%として、前記脂肪族アミン化合物の含有量が3~60質量%である、
酸性ガス吸収剤。
【請求項2】
前記非置換アルキルに含まれる炭素数が1~4である、請求項1に記載の酸性ガス吸収剤。
【請求項3】
前記nが1~3である、請求項1または2に記載の酸性ガス吸収剤。
【請求項4】
前記脂肪族アミン化合物が、下記の構造式:
【化2】
のいずれかを有するものである、請求項1~3のいずれか1項に記載の酸性ガス吸収剤。
【請求項5】
アミノアルコール又はピペラジン誘導体をさらに含む、請求項1~4のいずれか1項に記載の酸性ガス吸収剤。
【請求項6】
酸化防止剤、pH調整剤、消泡剤、及び防食剤からなる群から選択される少なくとも一つ追加添加剤をさらに含む、請求項1~5のいずれか1項に記載の酸性ガス吸収剤。
【請求項7】
酸性ガスを含有するガスと、請求項1~6のいずれか1項記載の酸性ガス吸収剤とを接触させて、酸性ガスを含むガスから酸性ガスを除去することを含む、酸性ガスの除去方法。
【請求項8】
酸性ガスを含有するガスと請求項1~6のいずれか1項に記載の酸性ガス吸収剤との接触によって、この酸性ガス吸収剤に酸性ガスを吸収させることにより酸性ガスを含有するガスから酸性ガスを除去する吸収器と、
この酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを脱離させて、この酸性ガス吸収剤を再生する再生器とを有し、
再生器で再生した酸性ガス吸収剤を吸収器にて再利用する酸性ガス除去装置である、酸性ガス除去装置。
【発明の詳細な説明】
【技術分野】
【0001】
実施形態は、酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置に関するものである。
【背景技術】
【0002】
近年、地球の温暖化現象の一因として二酸化炭素(CO)濃度の上昇による温室効果が指摘され、地球規模で環境を守る国際的な対策が急務となっている。COの発生は産業活動によるところが大きく、その環境への排出抑制の機運が高まっている。特に、石炭火力発電所や工場からのCO排出量の削減は急務となっている。またCO以外に硫化水素(HS)等の酸性ガスについても、排出量を削減することも臨まれている。
【0003】
そこで、CO等の酸性ガス排出量の削減方法として火力発電所等の高効率化による排出量の低減と共に、化学吸収剤による二酸化炭素の回収が大きな注目を浴びている。具体的な吸収剤としては、アミン化合物による吸収が古くから研究されている。しかし、化学吸収剤によるCO吸放出工程において、化学吸収剤を再生するために、吸収剤を加熱することがあり、それによって吸収剤に含まれるアミン化合物が放散することが知られている。大量のアミン化合物が大気中に放散すると、プラント周辺環境への影響が懸念されるため、一般的には水や酸などによるアミントラップが設けられ、放散が抑制されている。しかし、アミントラップを設ける必要が生じる上、アミントラップによって吸収剤放散の抑制が不十分である場合もある。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-121610号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
酸性ガスの吸収量が多く、かつ放散性が低い酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置を提供することである。
【課題を解決するための手段】
【0006】
実施形態による酸性ガス吸収剤は、スルホニルと、二つ以上のアミノとを有する脂肪族アミン化合物を含むものである。
【0007】
さらに実施形態による酸性ガスの除去方法は、酸性ガスを含有するガスと、酸性ガス吸収剤とを接触させて、酸性ガスを含むガスから酸性ガスを除去することからなるものである。
【0008】
さらに実施形態による酸性ガス除去装置は、酸性ガスを含有するガスと酸性ガス吸収剤との接触によって、この酸性ガス吸収剤に酸性ガスを吸収させることにより酸性ガスを含有するガスから酸性ガスを除去する吸収器と、
この酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを脱離させて、この酸性ガス吸収剤を再生する再生器とを有し、
再生器で再生した酸性ガス吸収剤を吸収器にて再利用する酸性ガス除去装置であるものである。
【図面の簡単な説明】
【0009】
図1】実施形態の酸性ガス除去装置の概略図。
図2】実施例1及び2、並びに比較例1の吸収性能を示すグラフ。
【発明を実施するための形態】
【0010】
以下、実施形態について詳細に説明する。
【0011】
以下の実施形態では、主として、酸性ガスが二酸化炭素である場合を例に説明するが、実施形態に係る酸性ガス吸収剤は、硫化水素等、その他の酸性ガスに関しても同様の効果を得ることができる。実施形態による酸性ガス吸収剤は、二酸化炭素、硫化水素等の酸化性ガスの吸収に適している。このうち、特に二酸化炭素の吸収に適しており、工場排ガスなどからの二酸化炭素回収システムに適している。
【0012】
実施形態による酸性ガス吸収剤は、スルホニルと、二つ以上のアミノとを有する脂肪族アミン化合物を含むものである。アミノは、1級、2級、3級のいずれであってもよいが、酸性ガスの吸収性の観点から、低級のアミノ基が多いことが好ましい。典型的には、一つ以上の1級アミノ又は2級アミノを含む。また、アミノを構成する窒素は、他のアミノの窒素と結合しないことが好ましい。
【0013】
また、スルホニルは-(O=S=O)-の構造をいう。実施形態においてスルホニルとは、炭素とのみ結合している基をいう。すなわち、-(O=S=O)-H、-(O=S=O)-O-、-(O=S=O)-NH-などの構造に含まれる-(O=S=O)-は実施形態においてスルホニルには含めない。そして、実施形態において、-(O=S=O)-H、-(O=S=O)-O-、又は(O=S=O)-NH-などの構造を含まないことが好ましい。これらの構造は、化合物の安定性や酸性ガスとの反応性を低下させることがあるためである。また式(1)の化合物が二つ以上のスルホニルが結合することもできるが、この場合にも二つのスルホニルが触接結合することは無い。
【0014】
スルホニルはアミン化合物の水溶性を高める作用を有するが、同様に水溶性を高めることができるヒドロキシ等に比べると安定性が高い。このため吸収剤を回収し再利用する場合に、化合物の損失が少ないという特徴がある。また、スルホニルを有する化合物は蒸気圧が高いため放散性が低い。
【0015】
また、脂肪族アミンとは、一般的には脂肪族基を有するアミン化合物をいうが、実施形態においては芳香族基を含まない、置換又は非置換の炭化水素基を有するアミン化合物をいう。したがって、置換基として前記したスルホニルの他、さらなるアミノ、カルボニル、ヒドロキシなどを含んでいてもよい。そして、実施形態においては、アミンとスルホニルが脂肪族基で連結された構造を有する。
【0016】
なお、ヒドロキシは、化合物の溶解度を改善する効果を有するので、実施形態による効果を損なわない範囲で含まれていてもよいが、化合物の安定性を低下させることがあるので、アミン化合物はヒドロキシを含まないことが好ましい。カルボキシ(-C(=O)OH)やスルホ(-SOH)などの酸基は、吸収剤のpHを下げ、酸性ガスの吸収を妨害するので、アミン化合物はこれらを含まないことが好ましい。
【0017】
実施形態に用いられるアミン化合物は、上記のような特徴を有するものであるが、下記の式(1a)又は(1b):
【化1】
で表されるものが好ましい。
【0018】
式中、Rはそれぞれ独立に、水素、非置換アルキル、又はスルホニル、アミノ、カルボニル、若しくはヒドロキシで置換された置換アルキルである。非置換アルキル又は置換アルキルは直鎖状又は分岐鎖状のいずれであってもよい。非置換アルキル又は置換アルキルに含まれる炭素数は、アミン化合物の溶解度を十分に維持するために過度に高くないことが好ましい。具体的には、非置換アルキル又は置換アルキルに含まれる炭素数は1~4であることが好ましい。また、Rはすべてが水素であることが好ましい。さらに、式(1)中の窒素が酸性ガスと反応して吸着するので、高い反応性と低い立体障害を達成するために、窒素に結合するRの少なくとも一つが水素であることが好ましい。
【0019】
Rのうちの二つが連結して環状構造を形成していてもよい。典型的には、二つのRがアルキレンによって連結されて、ピペラジンなどの環状ジアミン構造を形成する。
【0020】
nはそれぞれ独立に1~4の数であり、1~3であることが好ましい。
【0021】
式(1a)又は(1b)で表される化合物としては、以下のようなものを例示することができる。
【化2-1】
【0022】
【化2-2】
[式中、
R’はそれぞれ独立に、水素、非置換アルキル、又はスルホニル、カルボニル、アミノ、カルボニル、若しくはヒドロキシで置換された置換アルキルであり、
n’は2~4である。]
【0023】
また、以式(1a)又は(1b)で表される化合物としては、以下のものも例示することができる。
【化3-1】
【0024】
【化3-2】
【0025】
【化3-3】
【0026】
式(1a)又は(1b)で表されるアミン化合物のうち、特に好ましいものとして
1-(2-メチルスルホニル-エチル)ピペラジン
1-(2-メチルスルホニル-メチル)ピペラジン、及び
2,2’-イソプロピルアミノ-ジエチルスルホン
【化4】
が挙げられる。
【0027】
本実施形態に用いられるアミン化合物は、酸性ガスと反応して、酸性ガスを吸収し、必要に応じて吸収した酸素を放出することができるものである。アミン化合物が酸性ガスと反応するには、pKaが高いことが好ましい。具体的には、アミン化合物のpKaが7より大きいことが好ましく、pKaが8より大きいことがより好ましい。
【0028】
これらの化合物は、例えばアミン化合物とスルホニル化合物を原料として製造することができる。このように反応させて得られた化合物は精製してから吸収剤に用いることができるが、原料のアミン等を不純物として含んでいても、酸性ガス吸収能力を損なうものではない。
【0029】
これらの化合物の一種を単独で、又は二種以上を併用することができる。酸性ガス吸収剤に含まれる特定のアミン化合物の含有量は、3~60質量%であることが好ましく、5~50質量%であることがより好ましい。
【0030】
一般に、アミン成分の濃度が高い方が単位容量当たりの二酸化炭素の吸収量、脱離量が多く、また二酸化炭素の吸収速度、脱離速度が速いため、エネルギー消費の面やプラント設備の大きさ、処理効率の面においては好ましい。
【0031】
また、一般に、アミン成分の濃度が高すぎると、吸収剤の粘度の上昇などが起こることがあるが、特定の化合物は吸収剤の粘度は比較的低い傾向にある。特定のアミン化合物の含有量が60質量%以下の場合、十分に低い粘度を達成できる。また、特定のアミン化合物の含有量を10質量%以上とすることで、十分な二酸化炭素の吸収量、吸収速度を得ることができ、優れた処理効率を得ることができる。
【0032】
式(1)のアミン化合物の含有量が上記の範囲にある酸性ガス吸収剤は、二酸化炭素回収用として用いた場合、二酸化炭素吸収量及び二酸化炭素吸収速度が高いだけでなく、二酸化炭素脱離量が多く、かつ二酸化炭素脱離速度も高いため、二酸化炭素の回収を効率的に行える点で有利である。また、放散性が低いので、環境に放出される化合物も少ないので好ましい。
【0033】
本実施形態では、好ましくは、例えば特定のアミン化合物を含む水溶液を、酸性ガス吸収剤として用いることができる。このような酸性ガス吸収剤は、単位モル当たりの二酸化炭素吸収量や、酸性ガス吸収剤の単位体積当たりの二酸化炭素吸収量及び二酸化炭素吸収速度の点で特に好ましいものである。二酸化炭素吸収後に酸性ガスを分離するエネルギー(酸性ガス脱離エネルギー)も低下し、酸性ガス吸収剤を再生させる際のエネルギーを低減させることができる。
<任意成分>
実施形態による酸性ガス吸収剤は、特定の脂肪族アミン化合物を含むものであるが、必要に応じて任意成分を含むことができる。
【0034】
任意成分の一つとして、アミノアルコールが挙げられる。アミノアルコールの使用によって、酸性ガス吸収剤の例えば吸収量、放出量、吸収速度等の改良ないし向上を図ることが可能となる。
【0035】
好適なアミノアルコールとしては、例えば、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-アミノ-2-メチル-1,3-ジプロパノール、ジエタノールアミン、ビス(2-ヒドロキシ-1-メチルエチル)アミン、メチルジエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、トリエタノールアミン、ジメチルアミノ-1-メチルエタノール、2-メチルアミノエタノール、2-エチルアミノエタノール、2-プロピルアミノエタノール、n-ブチルアミノエタノール、2-(イソプロピルアミノ)エタノール、3-エチルアミノプロパノール、トリエタノールアミン、ジエタノールアミン等が挙げられる。これらの化合物の一種を単独で用いることができ、又は二種以上を併用することができる。
【0036】
これらの中でも、アルカノールアミン類としては、式(1)で表されるアミン化合物と酸性ガスとの反応性をより向上させる観点から、2-(イソプロピルアミノ)エタノール、2-アミノ-2-メチル-1-プロパノールからなる群より選ばれる少なくとも一種であることが好ましい。
【0037】
これらのアミノアルコールを用いる場合、その使用量は、式(1)で表されるアミン化合物の100体積%に対して、1~30体積%が好ましい。
【0038】
また、環状アミン化合物をさらに含むことができる。環状アミン化合物としてはアゼチジン、1-メチルアゼチジン、1-エチルアゼチジン、2-メチルアゼチジン、2-アゼチジルメタノール、2-(2-アミノエチル)アゼチジン、ピロリジン、1-メチルピロリジン、2-メチルピロリジン、2-ブチルピロリジン、ピペリジン、1-メチルピペリジン、2-エチルピペリジン、3-プロピルピペリジン、4-エチルピペリジン、ヘキサヒドロ-1H-アゼピン、ピペラジン、ピペラジン誘導体等が挙げられる。
【0039】
実施形態による吸収剤は、例えば、水等の溶媒を含んでいてもよい。溶媒として水を用いる時、その含有量は、好ましくは20~60質量%、特に好ましくは30~60質量%、である(酸性ガス吸収剤の全量を100質量%とする)。水の含有量がこの範囲内である場合、吸収剤の粘度の上昇を抑制し、また二酸化炭素を吸収する際における泡立ちを抑制する点で好ましい。
【0040】
また、任意成分には、例えば、酸化防止剤、pH調整剤、消泡剤、防食剤等が包含される。
【0041】
酸化防止剤の好ましい具体例としては、例えばジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、エリソルビン酸ナトリウム、亜硝酸ナトリウム、二酸化硫黄、2-メルカプトイミダゾール、2-メルカプトベンズイミダゾール等を挙げることができる。酸化防止剤を用いる場合、その含有量は、好ましくは0.01~1質量%、特に好ましくは0.1~0.5質量%、である(酸性ガス吸収剤の全量を100質量%とする)。酸化防止剤は、酸性ガス吸収剤の劣化を防止し、その寿命を向上させることができる。
【0042】
消泡剤の好ましい具体例としては、例えばシリコーン系消泡剤、有機系消泡剤を挙げることができる。消泡剤を用いる場合、その含有量は、好ましくは0.00001~0.001質量%、特に好ましくは0.0005~0.001質量%、である(酸性ガス吸収剤の全量を100質量%とする)。消泡剤は、酸性ガス吸収剤の泡立ちを防止し、酸性ガスの吸収効率や離脱効率の低下を抑制し、酸性ガス吸収剤の流動性ないし循環効率の低下等を防止することができる。
【0043】
防食剤の好ましい具体例としては、例えばリン酸エステル類、トリルトリアゾール類、ベンゾトリアゾール類を挙げることができる。防食剤を用いる場合、その含有量は、好ましくは0.00003~0.0008質量%、特に好ましくは0.00005~0.005質量%、である(酸性ガス吸収剤の全量を100質量%とする)。このような防食剤は、プラント設備の腐蝕を防止し、その寿命を向上させることができる。
【0044】
以上のとおり、本実施形態の酸性ガス吸収剤によれば、二酸化炭素等の酸性ガスの吸収量を高くすることができ、また反応促進剤の放散性を小さくすることができる。そして、酸性ガスの回収に必要とするエネルギーが少ない。さらに、極性基である水酸基を分子中に複数個有するアミン化合物を用いており、放散性が抑制されているので、反応装置外への放散が抑制されている。このことから、蒸気圧が低い反応促進剤を組み合わせて用いた際にも、長期間にわたって安定的に酸性ガスの処理を行うことができる。そして、酸性ガス(例えば、二酸化炭素(CO)、硫化水素(H2S)、硫化カルボニル(COS)に対して高い反応性を有しており、かつ水に対する溶解性に優れている。
【0045】
化合物と含む実施形態の酸性ガス吸収剤は、単位モル当たり酸性ガス(特に、二酸化炭素)の吸収量や、酸性ガス吸収剤の単位体積当たりの酸性ガス吸収量及び酸性ガス吸収速度がより一層向上したものである。かつ、吸収塔や再生塔から放出されるアミンの量を少なくすることができる。
【0046】
<酸性ガスの除去方法>
実施形態による酸性ガスの除去方法は、酸性ガスを含有するガスと、第一又は第二の酸性ガス吸収剤とを接触させ、酸性ガスを含むガスから酸性ガスを除去するもの、である。
【0047】
実施形態による酸性ガスの除去方法は、上述の実施形態による酸性ガス吸収剤へ対して酸性ガスを吸収させる工程(吸収工程)、及びこの酸性ガスを吸収した上述の実施形態による酸性ガス吸収剤から酸性ガスを脱離させる工程を、基本的な構成とする。
【0048】
即ち、実施形態による酸性ガスの除去方法の基本的な構成は、酸性ガス吸収剤に、酸性ガスを含有するガス(例えば、排ガス等)を接触させて、酸性ガス吸収剤に、酸性ガスを吸収させる工程(酸性ガス吸収工程)と、上記の酸性ガス吸収工程で得られた、酸性ガスが吸収された酸性ガス吸収剤を加熱して、酸性ガスを脱離して、除去する工程(酸性ガス分離工程)とを含む。
【0049】
酸性ガスを含むガスを、上記の酸性ガス吸収剤を含む水溶液に接触させる方法は、特に限定されないが、例えば、酸性ガス吸収剤中に酸性ガスを含むガスをバブリングさせて、吸収剤に酸性ガスを吸収させる方法、酸性ガスを含むガス気流中に酸性ガス吸収剤を霧状に降らす方法(噴霧ないしスプレー方式)、又は磁製や金属網製の充填材の入った吸収器内で酸性ガスを含むガスと酸性ガス吸収剤とを向流接触させる方法などによって行うことができる。
【0050】
酸性ガスを含むガスを水溶液に吸収させる時の酸性ガス吸収剤の温度は、通常、室温から60℃以下が好ましい。より好ましくは50℃以下、特に好ましくは20~45℃、である。低温度で行うほど、酸性ガスの吸収量は増加するが、処理温度の下限値は、プロセス上のガス温度や熱回収目標等によって決定することができる。酸性ガス吸収時の圧力は、通常、ほぼ大気圧である。吸収性能を高めるためより高い圧力まで加圧することもできるが、圧縮のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。
【0051】
酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを分離し、純粋な又は高濃度の二酸化炭素を回収する方法としては、棚段塔、スプレー塔、磁製や金属網製の充填材の入った再生塔内で液界面を広げて加熱する方法などが挙げられる。これにより、カルバミン酸アニオンや重炭酸イオンから酸性ガスが遊離して放出される。
【0052】
酸性ガス分離時の酸性ガス吸収剤の温度は、通常70℃以上であり、好ましくは80℃以上、より好ましくは90~120℃、である。温度が高いほど、酸性ガスの脱離量は増加するが、温度を上げると吸収剤の加熱に要するエネルギーが増すため、その温度はプロセス上のガス温度や熱回収目標等によって決定することができる。酸性ガス脱離時の圧力は、通常、1~3気圧程度とすることができる。
【0053】
酸性ガスを分離した後の酸性ガス吸収剤は、再び酸性ガス吸収工程に送られて循環使用(リサイクル)することができる。また、酸性ガス吸収の際に生じた熱は、一般的には水溶液のリサイクル過程において再生器に注入される水溶液の予熱のために熱交換器で熱交換されて冷却される。
【0054】
このようにして回収された酸性ガスの純度は、通常、95~99体積%程度と極めて純度が高いものである。この純粋な酸性ガス又は高濃度の酸性ガスは、化学品、又は高分子物質の合成原料、食品冷凍用の冷剤等として用いることができる。その他、回収した酸性ガスを、現在技術開発されつつある地下等へ隔離貯蔵することも可能である。
【0055】
上述した工程のうち、酸性ガス吸収剤から酸性ガスを分離して酸性ガス吸収剤を再生する工程が最も多量のエネルギーを消費する部分であり、この工程で、全体工程の約50~80%程度のエネルギーが消費されることがある。従って、酸性ガス吸収剤の再生工程における消費エネルギーを低減することにより、酸性ガスの吸収分離工程のコストを低減でき、排気ガスからの酸性ガス除去を、経済的に有利に効率良く行うことができる。
【0056】
本実施形態によれば、上記の実施形態の酸性ガス吸収剤を用いることで、酸性ガス脱離(再生工程)のために必要なエネルギーを低減することができる。このため、二酸化炭素の吸収分離工程を、経済的に有利な条件で効率良く行うことができる。
【0057】
また、上述した実施形態に係るアミン化合物は、従来より酸性ガス吸収剤として用いられてきた2-アミノエタノール等のアルカノールアミン類と比較して、炭素鋼などの金属材料に対し、著しく高い腐食防止性を有している。したがって、このような酸性ガス吸収剤を用いた酸性ガス除去方法とすることで、例えばプラント建設において、高コストの高級耐食鋼を用いる必要がなくなり、コスト面で有利である。
【0058】
<酸性ガス除去装置>
実施形態による酸性ガス除去装置は、酸性ガスを含有するガスと、第一又は第二の酸性ガス吸収剤とを接触させ、この酸性ガス吸収剤に酸性ガスを吸収させることにより酸性ガスを含有するガスから酸性ガスを除去する吸収器と、
この酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを脱離させて、この酸性ガス吸収剤を再生する再生器とを有し、
再生器で再生した酸性ガス吸収剤を吸収器にて再利用する酸性ガス除去装置である。
【0059】
図1は、実施形態の酸性ガス除去装置の概略図である。
この酸性ガス除去装置1は、酸性ガスを含むガス(例えば、排気ガス)と酸性ガス吸収剤とを接触させ、この酸性ガスを含むガスから酸性ガスを吸収させて除去する吸収器2と、酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを分離し、酸性ガス吸収剤を再生する再生器3と、を備えている。以下、酸性ガスが二酸化炭素である場合を例に説明する。
【0060】
図1に示すように、火力発電所等から排出される燃焼排ガス等の、二酸化炭素を含む排気ガスが、ガス供給口4を通って吸収器2下部へ導かれる。この排気ガスは、吸収器2に押し込められ、吸収器2上部の酸性ガス吸収剤供給口5から供給された酸性ガス吸収剤と接触する。酸性ガス吸収剤としては、上述した実施形態に係る酸性ガス吸収剤を使用する。
【0061】
また、この酸性ガス吸収剤には、上記のアミン系化合物、及び水などの溶媒の他に、二酸化炭素の吸収性能を向上させる含窒素化合物、酸化防止剤、pH調整剤等、その他化合物を任意の割合で含有していてもよい。
【0062】
このように、排気ガスが酸性ガス吸収剤と接触することで、この排気ガス中の二酸化炭素が酸性ガス吸収剤に吸収され除去される。二酸化炭素が除去された後の排気ガスは、ガス排出口6から吸収器2外部に排出される。
【0063】
二酸化炭素を吸収した酸性ガス吸収剤は、リッチ液ポンプ8により熱交換器7に送液され、さらに再生器3に送液される。再生器3内部に送液された酸性ガス吸収剤は、再生器3の上部から下部に移動し、この間に、酸性ガス吸収剤中の酸性ガスが脱離し、酸性ガス吸収剤が再生される。
【0064】
再生器3で再生した酸性ガス吸収剤は、リーン液ポンプ9によって熱交換器7、吸収剤冷却器10に送液され、酸性ガス吸収剤供給口5から吸収器2に戻される。
【0065】
一方、酸性ガス吸収剤から分離された酸性ガスは、再生器3上部において、還流ドラム11から供給された還流水と接触し、再生器3外部に排出される。
【0066】
二酸化炭素が溶解した還流水は、還流冷却器12で冷却された後、還流ドラム11において、二酸化炭素を伴う水蒸気が凝縮した液体成分と分離される。この液体成分は、回収酸性ガスライン13により酸性ガス回収工程に導かれる。一方、酸性ガスが分離された還流水は再生器3に送液される。
【0067】
本実施形態の酸性ガス除去装置1によれば、酸性ガスの吸収特性及び脱離特性に優れた酸性ガス吸収剤を用いることで、効率の高い酸性ガスの吸収除去を行うことが可能となる。
【実施例
【0068】
<実施例1>
式(1-01)で表される、1-(2-メチルスルホニル-エチル)ピペラジンを50質量%(2.60mol/L)となるように水に溶解させ、水溶液(以下、吸収剤と示す。)とした。この吸収剤を試験管に充填して40℃に加熱し、二酸化炭素(CO)10体積%、窒素(N)ガス90体積%含む混合ガスを流速400mL/minで通気して、試験管出口でのガス中の二酸化炭素(CO)濃度を赤外線式ガス濃度測定装置(を用いて測定し、吸収性能を評価した。
【0069】
<実施例2>
式(1-01)で表される、1-(2-メチルスルホニル-エチル)ピペラジンを30質量%(1.56mol/L)、式(R-01)で表されるメチルジエタノールアミンを20質量%(1.67mol/L)となるように水に溶解させ、吸収剤とした。
【0070】
<比較例1>
式(R-01)で表されるエチルジエタノールアミンを65質量%(4.91mol/L)となるように水に溶解させ、吸収剤とした。
【0071】
【化5】
【0072】
<評価結果>
実施例1及び2並びに比較例1で得られた結果は図1に示すとおりであった。実施例1の吸収剤は、吸収開始直後の吸収速度が高い。また実施例2の結果から、併用するアミン化合物(R-01)の量を調整することで吸収速度の調整が可能であることがわかった。さらに放散性は、スルホニルを含むアミン化合物を用いた実施例1及び2のほうが低かった。
【0073】
以上述べた少なくとも一つの実施形態の酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置によれば、二酸化炭素等の酸性ガスの高い吸収量と低い放散性とを両立することができる。
【0074】
以上の通り、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0075】
1…酸性ガス除去装置、2…吸収器、3…再生器、4…ガス供給口、5…酸性ガス吸収剤供給口、6…ガス排出口、7…熱交換器、8…リッチ液ポンプ、9…リーン液ポンプ、10…吸収剤冷却器、11…還流ドラム、12…還流冷却器、13…回収酸性ガス炭素ライン
図1
図2