(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-06
(45)【発行日】2023-01-17
(54)【発明の名称】ESDデバイスのためのコンタクトアレイ最適化
(51)【国際特許分類】
H01L 21/822 20060101AFI20230110BHJP
H01L 27/04 20060101ALI20230110BHJP
H01L 21/82 20060101ALI20230110BHJP
H01L 21/329 20060101ALI20230110BHJP
H01L 29/866 20060101ALI20230110BHJP
【FI】
H01L27/04 H
H01L21/82 D
H01L21/82 P
H01L29/90 S
(21)【出願番号】P 2021172804
(22)【出願日】2021-10-22
(62)【分割の表示】P 2018568868の分割
【原出願日】2016-06-30
【審査請求日】2021-11-18
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】クン チェン
(72)【発明者】
【氏名】チャオ ウー
(72)【発明者】
【氏名】デニング ワン
(72)【発明者】
【氏名】リリー スプリンガー
(72)【発明者】
【氏名】アンディ ストラチャン
(72)【発明者】
【氏名】ガン シュエ
(72)【発明者】
【氏名】ヘ リン
【審査官】市川 武宜
(56)【参考文献】
【文献】特開2014-003108(JP,A)
【文献】特開2006-005338(JP,A)
【文献】特開2016-001696(JP,A)
【文献】特開平10-294476(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/822
H01L 21/82
H01L 21/329
H01L 27/04
H01L 29/866
(57)【特許請求の範囲】
【請求項1】
半導体製造の方法であって、
選択プロセス技術に従って半導体基板に静電放電(ESD)保護回路の一部としてアクティブエリアを形成することと、
前記アクティブエリアの上に誘電体層を形成することと、
前記アクティブエリアに重なるコンタクト開口を画定するために前記誘電体層をパターニングすることであって、前記コンタクト開口が、各々、前記ESD保護回路のESD保護パラメータに基づくサイズを有する、前記パターニングすることと、
前記誘電体層の上に堆積される金属層と前記アクティブエリアとの間に導電性経路を提供するために前記コンタクト開口を充填するように金属組成物を堆積することと、
を含み、
前記コンタクト開口がコンタクト層マスクを用いてアレイとして画定され、前記アレイが周辺環状領域と内部領域とを含み、前記周辺環
状領域に位置する前記コンタクト開口の各々が第1の開口サイズを有し、前記内部領域に位置する前記コンタクト開口の各々が前記第1の開口サイズより小さい第2の開口サイズを有する、方法。
【請求項2】
請求項1に記載の半導体製造
の方法であって、
前記ESD保護パラメータが、コンタクト放電パラメータ
と空隙放電パラメータ
と過渡電流密度パラメータ
とそれらの組み合わせ
とで構成されるグループから選択される電気的パラメータを含む、方法。
【請求項3】
請求項1に記載の半導体製造
の方法であって、
前記コンタクト開口を充填する前記金属組成物が、タングステンベースの組成物を含む、方法。
【請求項4】
請求項1に記載の半導体製造
の方法であって、
前記アレイが、如何なるコンタクト開口も有さない少なくとも
1つのコーナーを有する、方法。
【請求項5】
請求項
1に記載の半導体製造
の方法であって、
前記アレイが、前記アレイの周辺に沿って配置される連続的トレンチコンタクト開口によって囲まれる、方法。
【請求項6】
請求項
1に記載の半導体製造
の方法であって、
前記アレイが、多角形形状
と円形形状
と長円形状
とで構成されるグループから選択される形状を有する、方法。
【請求項7】
請求項1に記載の半導体製造
の方法であって、
前記アクティブエリアが、前記半導体基板に形成されるnウェル領域又はpウェル領域を含む、方法。
【請求項8】
集積回路であって、
選択プロセス技術に従って半導体基板に静電放電(ESD)保護回路の一部として形成されるアクティブエリア
と、
前記アクティブエリアの上の誘電体層
と、
前記誘電体層上に配置される金属層
と、
前記アクティブエリアと前記金属層との間に形成されるコンタクト構造
であって、
前記誘電体層を介してパターニングされて、前記アクティブエリアと前記金属層との間に導電性経路を提供するため
に金属組成物で充填されるコンタクト開口を有し、前記コンタクト開口の各々が、前記ESD保護回路のESD保護パラメータに基づくサイズを有する、
前記コンタクト構造と、
を含み、
前記コンタクト開口が周辺環状領域と内部領域とを含むアレイとして画定され、前記周辺環状領域に位置する前記コンタクト開口の各々が第1の開口サイズを有し、前記内部領域に位置する前記コンタクト開口の各々が前記第1の開口サイズより小さい第2の開口サイズを有する、集積回路。
【請求項9】
請求項
8に記載の集積回路であって、
前記ESD保護パラメータが、コンタクト放電パラメータ
と空隙放電パラメータ
と過渡電流密度パラメータ
とそれらの組み合わせ
とで構成されるグループから選択される電気的パラメータを含む、集積回路。
【請求項10】
請求項
8に記載の集積回路であって、
前記コンタクト開口を充填する前記金属組成物が、タングステンベースの組成物を含む、集積回路。
【請求項11】
請求項
8に記載の集積回路であって、
前記アレイが、如何なるコンタクト開口も有さない少なくとも
1つのコーナーを有する、集積回路。
【請求項12】
請求項
8に記載の集積回路であって、
前記アレイが、前記アレイの周辺に沿って配置される連続的トレンチコンタクト開口によって囲まれる、集積回路。
【請求項13】
請求項
8に記載の集積回路であって、
前記アレイが、多角形形状
と円形形状
と長円形状
とで構成されるグループから選択される形状を有する、集積回路。
【請求項14】
請求項
8に記載の集積回路であって、
前記アクティブエリアが、前記半導体基板に形成されるnウェル領域又はpウェル領域を含む、集積回路。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、半導体デバイス及びその製造方法の分野に関し、詳細には、以下に限定されないが、静電放電(ESD)保護回路におけるコンタクトアレイ最適化に関する。
【背景技術】
【0002】
以下はESD保護回路を製造する文脈において、制限なく、提供される。静電放電(ESD)は、半導体デバイスの設計、製造、及び利用における継続的な課題である。例えば、集積回路(IC)及び他の電子デバイスに対するESD曝露の主な源は、(例えば、「人体モデル」又はHBMと記載されるような)人体からのものである。この状況において、パッケージされたICが、(例えば、じゅうたんを歩くことで)静電帯電した人間によって保持される場合に電荷を得る。約0.6μCの電荷が、例えば、150pFの人体静電容量上に誘導され得、4kV又はそれ以上の静電位をもたらし、例えば、約100nsの間に数アンペアのピーク電流をICに放電する。ESDの第2の源は、(例えば、「マシンモデル」又はMMと記載されるような)金属の物体に由来するものであり、これは、一層大きな静電容量、一層低い内部抵抗、及び、HBM ESD源より著しく高い立ち上がり時間及び電流レベルを有する過渡事象によって特徴付けられる。第3の源は「デバイス帯電モデル」(CMD)と記載され、このモデルでは、IC自体が帯電し、HBM ESD源及びMM ESD源とは反対の方向に500psより少ない立ち上がり時間で、接地に放電する。また、セットトップボックス、オートモーティブシステム、モバイル及びハンドヘルドデバイス、ラップトップ及びデスクトップ等のような特定の応用例に専用の規格において、回路動作の間の異なるタイプの電気的オーバーストレスが定義される。
【0003】
ESD事象の間、電流は典型的に、ICチップ外に露出される一つ又は複数のピン又はパッド間で放電される。そのようなESD電流は、ICにおける脆弱な回路要素を介してパッドから接地へ流れ、この回路要素は、そのような電流を運ぶように設計されていない場合がある。ICデバイスにおけるESD事象の悪影響を低減又は軽減するために多くのESD保護技法が用いられてきた。典型的に、ICのための従来のESD保護方式は、接地へ向かう低インピーダンス経路を提供することによってデバイスのピン又はパッドから接地へESD電流を運ぶために周辺回路を用いる。このようにして、ESD電流は、チップにおける影響を受けやすい回路を介するのではなく、保護回路要素を介して流れる。
【0004】
微細化し続けるライン幾何形状を含め、ICの設計における進歩が起こり続けているので、ESD保護技法及び回路における改善も継続的に試みられている。
【発明の概要】
【0005】
以下は、本発明の一つ又は複数の態様の基本的な理解を提供するために、簡略化した概要を提示する。この概要は、本発明の包括的な全体像ではなく、本発明の主要又は重要な要素を識別することも、或いは、本発明の範囲を正確に叙述することも意図していない。むしろ、この概要の主な目的は、以降で提示される一層詳細な説明に対する前置きとして、本発明の幾つかの概念を簡略化した形で提示することである。
【0006】
一態様において、ESDデバイスプロセスフローにおいて作用する半導体製造方法の或る実施形態が開示される。請求される実施形態は、とりわけ、選択プロセス技術に従って、半導体基板においてESD保護回路の一部としてアクティブエリアを形成すること、及び、アクティブエリアの上に誘電体層を形成することを含む。複数のコンタクト開口に対応する特徴を有するコンタクトアレイ層マスクが提供され得、こういった特徴は選択的に改変される。誘電体層は、コンタクトアレイ層マスクを用いて、アクティブエリアに重なる少なくとも一部において複数のコンタクト開口を画定、形成、又はその他の様式でつくるためにパターニングされる。或る実施形態において、コンタクト開口は、各々、ESD保護パラメータ(例えば、過渡電流密度等に関する電気的パラメータ)に基づくサイズ及び/又は形状を有する。アクティブエリアと、誘電体層の上に堆積される金属層との間に導電性経路を提供するように、或る適切な金属組成物が、複数のコンタクト開口を充填するために堆積及び処理される。
【0007】
別の態様において、集積回路又はデバイスの或る実施形態が開示される。請求される実施形態は、とりわけ、選択プロセス技術に従って、半導体基板においてESD保護回路の一部として形成されるアクティブエリア、及び、アクティブエリアの上に形成される誘電体層を含む。誘電体層上に金属層が配置される。アクティブエリアと金属層との間にコンタクト構造が形成される。コンタクト構造は、アクティブエリアと金属層との間に導電性経路を提供するため、誘電体層を介してパターニングされ、金属組成物で充填されるコンタクト開口を有する。コンタクト開口は、各々、ESD保護回路のESD保護パラメータに基づくサイズを有する。一実装において、例えば、過渡電流密度パラメータ等を含む、動的な電流フローの少なくとも一つに関する向上したESD保護性能を提供するため、コンタクト開口は、選択的に(再)サイジング、(再)シェーピング、及びレイアウト等の少なくとも一つにおいて最適化され得る。
【図面の簡単な説明】
【0008】
本開示の実施形態が、添付の図面の図において例として図示されるが、限定の意図はない。図面において、同様の参照は同様の要素を示す。本開示における「或る(an)」又は「一(one)」実施形態に対する様々な参照は、必ずしも同じ実施形態に対するものではなく、そのような参照は、少なくとも一つを意味し得ることに留意すべきである。また、特定の特徴、構造、又は特性が、或る実施形態に関連して説明される場合、そのような特徴、構造、又は特性を他の実施形態に関連して適用することは、明示的に説明されていようとなかろうと、当業者の知識の範囲内にあることが提起される。
【0009】
添付の図面は、本開示の一つ又は複数の例示の実施形態を図示するため、本明細書の一部に組み込まれ、及びこれを形成する。添付の特許請求の範囲に関連して以下の詳細な説明を参照することにより、及び、添付の図面の図を参照することにより、本開示の種々の利点及び特徴が理解され得る。
【0010】
【
図1A】本発明の一つ又は複数の実施形態がなされ得るESD保護回路を有する、例示の集積回路、半導体デバイス、又はその一部の3次元断面図である。
【0011】
【
図1B】
図1Aの集積回路の一部の断面図であり、最適化されたコンタクトアレイ設計が本発明の或る実施形態に従って提供され得る、選択プロセス又は製造技術に従った例示のフローにおけるバックエンドオブライン(BEOL)プロセスステップを図示する。
【0012】
【
図2】本発明の或る実施形態に従った例示のプロセスのフローチャートである。
【0013】
【
図3】選択プロセス技術に従った従来のコンタクト開口アレイを図示する。
【0014】
【
図4A1】
図4A-1は、本発明の教示に従った、個々のコンタクト開口に用いられ得る例示の設計方式を図示する。
【0015】
【
図4A2】
図4A-2は、ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4B】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4C】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4D】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4E】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4F】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4G】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【
図4H】ESD保護性能を改善するための本発明の最適化されたコンタクト開口設計の例示の実施形態を図示する。
【0016】
【
図5】本発明の或る例示の実施形態に従った、コンタクト開口アレイの一部のSEM図の表現である。
【発明を実施するための形態】
【0017】
本発明は、添付の図を参照して説明される。図において、同様の参照数字は、概して、全体を通して同様の要素を参照するために用いられる。図は、一定の縮尺で描かれておらず、本発明を単に図示するために提供される。本発明の幾つかの態様が、例示のため、例示的な応用例を参照して後述される。多数の特定の詳細、関係、及び方法が、本発明の理解を提供するために述べられることを理解すべきである。しかし、本発明が、特定の詳細の一つ又は複数を伴わずに、又は、他の方法を用いて行われ得ることを当業者であれば容易に認識し得る。他の例において、本発明を不明瞭にすることを避けるため、よく知られた構造又は動作は詳細に示されていない。幾つかの行為が、異なる順で及び/又は他の行為又は事象と同時に生じ得るので、本発明は、行為又は事象の図示される順に限定されない。また、本発明に従った方法論を実装するために、全ての図示される行為又は事象が必要とされるわけではない。
【0018】
以下の説明において、添付の図面に対して参照がなされ得る。図面において、例えば、「上側」、「下側」、「頂部」、「底部」、「左側」、「右側」、「表側」、「裏側」、「垂直」、「水平」等など、何らかの方向性の用語が、図又は説明される図の例示の要素の方位に関して用いられ得る。実施形態の構成要素は、多くの異なる方位で配置され得るので、方向性の用語は説明の目的のために用いられており、決して限定するものではない。同様に、「第1」、「第2」等と呼ばれる特徴に対する参照は、任意の特定の順、重要性などを示すものではなく、そのような参照は、内容、実装等に応じて必要な変更を加えて交換され得る。本発明の範囲から逸脱することなく、更なる実施形態が用いられ得、構造的又は論理的変更がなされ得ることが理解される。本願において説明される種々の例示の実施形態の特徴は、特に具体的に記載がない限り、互いに組み合わされてもよい。
【0019】
本明細書において用いられるように、用語「結合される(coupled)」、「電気的に結合される(electrically coupled)」、「接続される(connected)」、又は「電気的に接続される(electrically connected)」は、要素が直接的に結合されなければならないこと、又は、共に接続されなければならないことを意味するものではない。「結合される」、「電気的に結合される」、「接続される」、又は「電気的に接続される」要素間に、介在要素が提供され得る。
【0020】
後述される例示の半導体デバイスは、Si、SiC、SiGe、GaAsのような半導体材料又は有機半導体材料を含み得、又はそれらから形成され得る。半導体材料は、例えば、これに限定されないがESD保護回路を含む、任意のタイプのICを含む半導体ウェハ又は半導体チップとして具体化され得る。また、半導体チップは、無機及び/又は有機材料を含み得、この無機及び/又は有機材料は、半導体ではなく、例えば、誘電体層、プラスチック、又は金属等などの絶縁体である。
【0021】
次に、図面を、より具体的には
図1Aを参照すると、コンタクトアレイ最適化方式を含む本発明の一つ又は複数の実施形態がなされ得るESD保護回路118を有する、例示の半導体デバイス又はその一部100の断面表現を図示する3次元図が示されている。一実装において、ESD保護回路118は、LR-LCダイオード(例えば、バックツーバック接続されるツェナーダイオード)を含む双方向性ダイオードとして形成され得、双方向性ダイオードは、種々のタイプの過渡電圧サプレッサ(TVS)デバイスの製造のために特定及び/又は標準化されたプロセス技術の類を用いて製造され得る。当業者が認識するように、そのようなプロセス技術は、ファウンドリ及び特定の製造プロセスに応じたプロセスステップの特定のシーケンスを含み得、そうしたステップは、一連のフロントエンドオブライン(FEOL)ステップ、及び、その後に続くバックエンドオブライン(BEOL)ステップのグループ、としてグループ化され得る。半導体デバイス100は、例えば、1×10
18cm
-3より大きい平均ドーパント密度を有するn型基板102を含み得る。基板102は、例えば、バルクシリコンウェハの一部であり得る。半導体デバイス100は、基板102上に配置される、例えばリンドープされた結晶シリコンといった、シリコンベースの半導体材料の軽くドープされたn型層104を含む。n型層104は、約1ミクロン~5ミクロンの厚さを有し得、1×10
16cm
-3より低い平均ドーパント密度を有し得る。n型層104は、基板102上に形成されるエピタキシャル層であり得る。また、半導体デバイス100は、n型層104上に配置される、例えば、ボロンドープされた結晶シリコンといった、シリコンベースの半導体材料の軽くドープされたp型層106を含む。p型層106は、3ミクロン~8ミクロンの厚さであり得、1×10
15cm
-3より低い平均ドーパント密度を有し得る。p型層106は、n型層104上に形成されるエピタキシャル層であり得る。
【0022】
一つ又は複数の隔離構造108が、LR-LCダイオード114のためのエリアを横方向に隔離し、半導体デバイス100の一部として形成される並列ダイオード116のためのエリアを横方向に隔離する。
図1Aに描かれるように、隔離構造108は、誘電体ライナー110と、誘電体ライナー110上の、ポリシリコンと呼ばれる多結晶シリコンのフィールドプレート112とを備える、ディープトレンチ隔離構造108であり得る。隔離構造108のためのその他の物理的形態が本例の範囲内にある。LR-LCダイオード114及び並列ダイオード116は双方向性ダイオード118の構成要素として形成されることを理解されたい。
【0023】
p型埋め込み層120が、p型層106からn型層104を介して基板102まで延在して、LR-LCダイオード114内に配置される。n型層104は、p型埋め込み層120における破線によって
図1Aに描かれている。p型埋め込み層120は、1×10
17cm
-3より大きいピークドーパント密度を有する。
図1Aに描かれるように、p型埋め込み層120は、LR-LCダイオード114にわたって横方向に延在し得る。n型領域122が、LR-LCダイオード114において、p型層106に配置される。n型領域122は、p型層106の頂部表面124まで延在するn型ウェル122であり得る。n型領域122は、p型層106に接する少なくともおよそ100ナノメートルの厚さの一層軽くドープされた外側部分126と、一層軽くドープされた外側部分126により囲まれる一層重くドープされた内側部分128とを含み得る。一層軽くドープされた外側部分126は、例として、1×10
16cm
-3~1×10
17cm
-3の平均ドーパント密度を有し得る。一層重くドープされた内側部分128は、例えば、1×10
17cm
-3~3×10
19cm
-3の平均ドーパント密度を有し得る。
【0024】
LR-LCダイオード114の第1のpn接合130が、p型埋め込み層120とn型基板102との間の境界に形成される。同様に、第2のpn接合132が、p型層106とn型領域122との間の境界に形成される。第1のpn接合130及び第2のpn接合132はバックツーバック直列接続である。例えばp型ウェル134であるp型領域134が、並列ダイオード116におけるp型層106に配置され、p型層106の頂部表面124まで延在する。或る例示の実施形態において、p型領域134とn型層104との間に少なくとも1ミクロンの垂直分離があり得る。p型領域134は、
図1Aに描かれるように並列ダイオード116にわたって延在し得、又は、隔離構造108から窪ませられ得る。p型領域134は、少なくとも1×10
17cm
-3の平均ドーパント密度を有し、並列ダイオード116に、所望の低抵抗コンタクトを提供し得る。並列ダイオード116の第3のpn接合136が、n型層104とp型層106の境界に形成される。LR-LCダイオード114におけるp型埋め込み層120は、並列ダイオード116内へ延在しない。下記で更に詳細に述べるように、双方向性ダイオード118の第1の端子138が、適切なコンタクト構造及びメタライゼーションを用いて、LR-LCダイオード114のn型領域122に、及び、並列ダイオード116のp型領域134に電気的に接続され得る。同様に、第2の端子140が基板102に電気的に接続され得、場合によって、さらに別の適切なコンタクト構造を含む。双方向性ダイオード118の動作の間、第2の端子140に対して第1の端子138上で正である電圧エクスカーションが、並列ダイオード116を順方向バイアスし、そえゆえ、並列ダイオード116を介してシャントされる。第2の端子140に対して第1の端子138上で負である電圧エクスカーションが、第2のpn接合132を順方向バイアスし、LR-LCダイオード114における第1のpn接合130において降伏を生じさせ、そえゆえ、LR-LCダイオード114を介してシャントされる。
【0025】
図1Bは、
図1Aの半導体デバイス又は集積回路100の一部の断面図であり、選択プロセス又は製造技術に従った或る例示のフローにおいて複数のバックエンドオブライン(BEOL)プロセスステップに関する付加的な詳細を示しており、最適化されたコンタクトアレイ設計が本発明の或る実施形態に従って提供され得る。上述のように、n型及びp型ウェル126/128及び134を含むアクティブエリアが、それぞれ、TVS半導体デバイス100の製造においてフロントエンドオブラインプロセスフロー(FEOL)に従って形成され得る。一般に、BEOLプロセスフローは、アクティブエリアを電気的に絶縁するために誘電体層(例えば、プリメタル誘電体又はPMD層)を提供することを含み得、この誘電体層は、その後、化学機械研磨(CMP)プロセスなどの既知の技術を用いて所望の厚さに処理され得る。アクティブエリアと金属層との間の電気的接続性が必要とされる場合、特定の設計ルールに適合する特徴を有するコンタクト層マスクが、アクティブエリアの上にある誘電体層を介する複数の孔又は開口をつくるために用いられ得、複数の孔又は開口は、適切な金属又は金属組成物で充填又はふさがれ得る。その後、メタライゼーション層が、例えば、物理/化学気相成長(P/CVD)などの技術を用いて形成され得る。幾つかのBEOLプロセスフローは一つ以上の金属層を含み得、各層が、その近隣の金属層から適切な絶縁(例えば、金属間誘電体層)によって分離され、ビア構造を介して相互接続され得る。外部周囲条件からの保護を提供するため、適切な厚さの最終パッシベーション層又は保護オーバーコート(PO)が集積回路の上に形成され得る。
【0026】
図1Bの例示の断面図に図示されるように、約数千オングストロームの厚さの誘電体層195が、既知の技術を用いてnウェル及びpウェルエリア128、134の上に形成され得る。例えば、誘電体層195は、厚さが約5,000~25,000オングストロームの膜を含み得、この膜は、窒化ケイ素、オキシナイトライド、酸化ケイ素等から選択される組成物の一つ又は複数の層を含む。参照数字191Aは、誘電体層195の一部においてパターニングされ、適切な金属でふさがれる複数のコンタクトホール(又は、より一般的には、開口)を有するコンタクトアレイ構造を指し、このコンタクトアレイ構造は、nウェルエリア128と金属層197の重複部分193Aとの間に配置される。同様に、参照数字191Bは、別の複数のふさがれたコンタクトホールを有する別のコンタクトアレイ構造を指し、この別のコンタクトアレイ構造は、pウェルエリア134と金属層197の別の重複部分193Bとの間に形成される。例示のプロセスフローに従って、誘電体層195に形成される複数のコンタクト開口を充填する金属組成物には、タングステン(W)やタングステンベースの組成物が含まれ得るが、他の金属、金属化合物、及び組成物も本発明の範囲内で用いられ得ることを理解すべきである。金属層197は、例えば、約1.5~5ミクロンといった適切な厚さであり得、或る例示の実装において、アルミニウム、銅等などの金属を用いて形成され得る。
【0027】
当業者であれば認識し得るように、コンタクト構造191A、191Bのためのコンタクトアレイ開口は、フォトレジスト、パターニング、エッチング、及びフォトレジスト除去等などの標準的なフォトリソグラフィプロセスを用いることによって誘電体層195に形成され得、この場合、アレイ開口に対応する特徴の適切なレイアウトを有するコンタクト層マスクが用いられ、こうしたアレイ開口は、それらのサイズ、形状、位置などの点で、或る特定のプロセスフローのために及び/又は或る特定のプロセスフローにおいて特定され得る。また、関連する特定のプロセスフローにおいて製造される半導体デバイスの物理的レイアウトもまた、機能的半導体ダイの満足な歩留まりが得られ得ることを保証するために、例えば、設計ルール、限界寸法又はCD等を含む、一連の推奨されるレイアウトパラメータによって特定され得る。
【0028】
従って、特定の半導体製造プロセスにしばしば特有である設計ルールが、特定のプロセスフローのためのマスクセットの正確性を検証するために、半導体デバイスの設計において用いられ得る。典型的に、設計ルールセットは、パーツの大部分が正確に働くことを保証するように、半導体製造プロセスにおけるばらつきを補償するための充分なマージンを保証するため、何らかの幾何学的及び接続性制約を特定する。最も基本的な設計ルールの幾つかには、線幅ルール(設計において任意の形状の最小幅を特定する)、間隔ルール(2つの隣り合う物体間の最小距離を特定する)、最小エリアルール(或る物体の最小エリアを特定する)等が含まれ得、これらのルールは、例えば、コンタクトアレイ層を含め、プロセスフローの単一層に関する。マスクセットの整合性を検証するため、デザインルールチェック(DRC)が、例えば、GDS、OASISなどの形式で提供されることのあるレイアウトファイルに基づいて用いられ得る。
【0029】
本発明の発明者は、例えば、ESD定格のための国際電気標準会議のIEC61000-4-2規格といった、適用可能な標準化ESD試験条件下での試験の際にデバイスのESD性能を向上させるために、上述した半導体デバイス100などのTVSデバイスのコンタクトアレイ層のコンタクト開口が、サイズ、形状、及びレイアウト等の点で有利に最適化され得る一方で、その製造において用いられる特定のプロセス技術に関連する設計ルールを依然として満たすことを見いだしている。次に
図2を参照すると、本発明の或る実施形態に従ったIC半導体デバイスを製造するための例示の最適化方法200のフローチャートが描かれている。ブロック202で、アクティブエリア(例えば、第1のアクティブエリア)が、選択プロセス技術に従って、半導体基板においてESD保護回路の一部として形成され得る。前述のように、そのようなアクティブエリアは、双方向性ダイオード構造の、例えば、nウェルエリア、pウェルエリア等を含み得る。ブロック204で、アクティブエリアの上に誘電体層が形成され得る。ブロック206で、コンタクト開口に対応する特徴を有するコンタクトアレイ層マスクが提供され得、こういった特徴は、下記で詳細に述べるように選択的に改変される。その後、アクティブエリアに重なる部分において複数のコンタクト開口を、画定、或いはその他の様式で形成するため、誘電体層は、改変された特徴(例えば、幾何学的物体の形状、配置等)を備えるコンタクトアレイ層マスクを用いてパターニングされ得る。ブロック208において述べるように、好ましくは、コンタクト開口は、各々、ESD保護パラメータ(例えば、過渡電流密度に関する電気的パラメータ等)に基づく形状及び/又はサイズを有する。アクティブエリアと、誘電体層の上に堆積される金属層との間に導電性経路を提供するために複数のコンタクト開口を充填するため、適切な金属組成物が堆積される。それゆえ、或る例示の実装において、ブロック210で述べるように標準的なESD定格試験において、例えば、過渡電流密度等を最大化するなど、向上したESD保護性能を提供するため、コンタクト開口は、サイズ、形状、及びレイアウトの少なくとも1つにおいて最適化され得る。
【0030】
次に、前述の方法論において用いられ得る改変されたコンタクトアレイ設計の種々の例示の実施形態を、本特許出願の残りの図面を参照することによってこれ以降に更に詳細に述べる。
【0031】
図3は、選択プロセス技術に従った従来のコンタクト開口アレイ300であり、ロー及びコラム整合されたアレイに配される、四角形状を有する複数の特徴302を図示する。或る典型的な実装において、コンタクト開口のサイズは、
図4A-1に図示されるように、0.43μ×0.43μmであり得る。当業者であれば、これらの特徴サイズが、半導体材料(これは、近接効果などを含むフォトリソグラフィ効果に起因して、異なるサイズ及び/又は形状のものであり得る)において実際に印刷される特徴ではなく、コンタクトアレイマスクに関連するレイアウトファイルにおける描かれたサイズを指し得ることが認識されるであろう。また、
図4A-1は、本発明の或る実施形態に従って個々のコンタクト開口のために用いられ得る二つの例示の設計方式を描く。一変形において、個々のコンタクト開口の形状は、依然として四角であり得るが、改変されたコンタクト開口405に示すように、拡大されたサイズを有し得る。開口のX方向寸法及びY方向寸法は、いずれも、選択量(例えば、ΔX、ΔY、又は両方)拡大され得、この場合、X及びY方向は、例えば、ウェハ平面等に関して、マスクのために提供される特定の基準軸に関して用いられ得る。一つの例示の実装において、改変されたコンタクト開口405が、約0.62μm×0.62μmのサイズを有し得る。別の変形において、個々のコンタクト開口は、選択プロセス技術において特定された従来のサイズと比べて、一方向において拡大され得るが他方向においては拡大されない可能性がある。別の変形において、X及びY方向寸法両方が拡大され得るが、量は異なり、それにより、例えば、改変されたコンタクト開口407に示すように、矩形幾何形状となる。この場合、X方向サイズは(X+ΔX)μmに増加される一方で、Y方向サイズは、X方向におけるサイズの倍数に増加され、すなわち、N(X+ΔX)μmである。当業者であれば、例えば、異なる幾何学的形状、寸法、X及びY座標の方位を入れ替えること等、本願において述べる教示の範囲内で、多くの更なる変形及び改変が個々のコンタクト開口に対して提供され得ることが明確に認識されるであろう。
【0032】
更に別の変形において、コンタクト開口アレイの全ての開口ではなく、サブセットのみが選択的に改変され得る。例えば、コンタクト開口がN×N又はN×Mアレイに配置される場合、開口の選択数のロー及び/又は選択数のコラムのみが、例えば拡大された形状を有して、改変され得る。好ましくは、そのような選択的サイズ拡大は、アレイの一つ又は複数の周辺端部に沿って配置される開口に対してのみ実装され得、それにより、アレイの内部領域の開口を改変されないままとする。更に別の変形において、コンタクト開口アレイのレイアウトは、アレイ(又は、多角形配置)のコーナー又は頂点から選択数の開口が総じて除去され得るように、すなわち、如何なるコンタクト開口も有さないように、改変され得、それにより、コンタクト構造に対する改変されたレイアウト配置となる。例えば、コンタクト開口の四角アレイにおいて、4つのコーナーの各々が(同数或いは異なる数の)コンタクト開口を有さないものであり得、そのため、実質的に八角形配置(又は何らかのその他の多角形配置)が例示のコンタクト構造に対して得られ得る。
【0033】
図4A-2~
図4Hは、半導体TVSデバイスのESD保護性能を潜在的に改善するための、上述の一つ又は複数の実装と組み合され得る最適化されたコンタクト開口設計の更に別の例示の実施形態を描く。
図4A-2のコンタクトアレイ実施形態400Aにおいて、各コンタクト開口406が、(例えば、
図4A-1のコンタクト開口特徴405と同様の)拡大された四角として示される。
図4Bは、コンタクトアレイ配置400Bを描いており、ここでは、周辺環形領域414(例えば、3つのコラム410A及び3つのロー410Bを含む)のコンタクト開口のサブセットが或る量だけ拡大され得、内部領域412の開口は別の量だけ拡大され得る。当業者であれば、このことを参照すれば、アレイ端部コンタクト開口を変更することが、アレイ400Bのすべてのコンタクト開口にわたる過渡電流分布に影響を及ぼし得ることが分かるであろう。
【0034】
図4Cに示すコンタクトアレイ配置400Cの更なる改変は、アレイのコーナーの各々が改変されており、コンタクト開口のサイズが拡大されている実施形態を例示するものである。特に、コーナーの三角翼形状エリア420A~420Dにおいて選択数のコンタクト開口が形成されておらず、それにより、或る数のコンタクト開口が、コンタクト開口グループ422A~422Dによって例示されるような三角翼形状の基底領域に残る。
図4Dは、同様のコンタクトアレイ配置400Dを描いており、アレイのそれぞれのコーナーはコンタクト開口を有さず、その結果のコンタクトアレイは、改変されたコンタクトアレイの周辺の周りに又は周辺に沿って形成され、それによりコンタクトアレイを囲む、連続的コンタクトトレンチ又は開口432において囲まれている。多角形連続的コンタクトトレンチ432が、改変されたコンタクトアレイの多角形レイアウトを囲むための
図4Dのコンタクトアレイ配置400Dにおいて図示される一方で、
図4Eにおいて、むしろ円のように成形される改変されたコンタクト開口アレイを囲む、円形連続的コンタクトトレンチ434が図示される。更なる実施形態において、配置400D、400Eのコンタクト開口302/406は、改変されない開口、及び/又は、前述したような拡大又は再成形された開口を含み得、この場合、コンタクト開口の改変されたアレイが、六角形、八角形、多角形、規則的/不規則的形状、円形又は実質的に円形形状、長円形又は実質的に長円形形状、又は楕円形状などの一つとして成形され得る。
【0035】
図4Fに示されるコンタクトアレイ配置400Fは、個々のコンタクト開口が、千鳥状のタイリングレイアウトで配置される矩形開口430として再形成されることを例示する。上述のように、そのような矩形開口(及び千鳥状)の方位は多くの方式で回転され得、その結果、異なる方位となる(例えば、水平方向又は垂直方向に整合される)。更なる実施形態において、そのような千鳥状アレイは、種々の形状の連続的コンタクトトレンチによっても囲まれ得、この場合、連続的コンタクトトレンチは、
図4D及び4Eに示す配置に類似のアレイの周辺に沿って配置される。
【0036】
更に別の実施形態において、コンタクト構造が、比較的少数のコンタクト開口として形成され得、こうしたコンタクト開口の各々は、例えば、円、長円、矩形、四角、多角形等の特定の幾何形状を有する連続的に延在する特徴として(例えば、連続的トレンチコンタクトとして)改変され得る。
図4Gにおいて、例えば、コンタクト配置400Gが、同心円形コンタクト438-1~438-Nとして提供される複数の連続的に延在するコンタクト「開口」を含むように示され、最も内側のコンタクト開口442は開口のままである。幾つかの他の変形において、そのような最も内側のコンタクト開口442は総じて除去され得、それにより、複数の同心円において配置されるコンタクトが提供される。
図4Hに示す関連する変形400Hにおいて、複数の連続的コンタクトトレンチ444-1~444-Mは一つの方位に延在され、その結果、複数の同心レーストラックを有する「レーストラック」コンタクト設計となる。明らかに、種々の他の幾何形状も本発明の範囲内に包含され得る。
【0037】
図5は、本発明の或る例示の実施形態に従って、アクティブエリア部502の上に配置される誘電体層部504を介して形成されるコンタクト開口アレイの断面部の走査電子顕微鏡(SEM)
図500の描出である。連続的コンタクトトレンチ506が、上述したトレンチ432又は434を例示し、連続的コンタクトトレンチ506は、コンタクト開口アレイの外側端部を表し得るコンタクト開口508-1~508-Nのコラム/ローを囲む。
【0038】
幾つかの例示の実装において、例えば、コンタクト開口サイズを0.43μm×0.43μmから0.62μm×0.62μmに変更することによって、本発明の改変されたコンタクトアレイ設計を有するウェハ分割に対して適用可能なIEC定格試験下で(例えば、IEC61000-4-2に従った、レベル4ESD保護下のコンタクト放電及び/又は空隙放電パラメータに関して)、ESD性能における3kV改善が、正及び負電圧方向の両方において観察されてきている。本発明の或る実施形態に従って一層大きなコンタクト開口エリアを提供することが、デバイスの全体的なコンタクトエリアの増加となり、それによりコンタクト抵抗(CRES)及びRC遅延を低下させ、また、(例えば、過渡帯電放出能力に関する)過渡電流密度パラメータを改善することを理解すべきである。例えば、コンタクト開口サイズを0.43μm×0.43μmから0.62μm×0.62μmまで増大させることによって見られる3kV ESD保護改善の結果、過渡電流密度(すなわち、一層高速な過渡電流放電)の約20%の増加となる。従来のコンタクトアレイを介する増加した電流フローが、損傷(例えば、コンタクト熱焼損)を生じさせ得る強い電解を、コーナー、端部等においてつくり得る一方で、本発明の拡大された開口は、こういった高電界を一層ロバストに管理及び補償し得、それにより、IEC定格を有利に改善する。同様に、コンタクトアレイ形状及びレイアウト(例えば、面取り、延伸コンタクト、トレンチコンタクト、円形コンタクト等)における改変も、電場の「端部」影響を改良することによって、IEC定格を改善する。
【0039】
また、個々の開口を交換するための延伸コンタクト及びトレンチなどの改変が、一層高い空間効率を提供する一方で、種々のBEOLフローのコンタクト/プラグ層処理において用いられる最新式のCMP技術との互換性を保つ。コンタクト抵抗を低減すること、それゆえRC遅延を低下させることによって、歩留まりに悪影響を及ぼすことなく一層高速なチップ動作速度を得ることもできる。また、当業者であれば、本願において開示されるコンタクトアレイ設計実施形態が、動的な高電流フロー、特にIEC過渡電流フローを有利に最大化し得、これにより高速及び高電力ESDデバイスの性能が向上されることを認識し得るであろう。
【0040】
種々の実施形態を詳細に示し及び説明してきたが、特許請求の範囲は、如何なる特定の実施形態又は例にも限定されない。上記の詳細な説明の如何なるものも、如何なる特定の構成要素、要素、ステップ、行為、又は機能も特許請求の範囲内に含まれなければならないように不可欠なものであることを示唆するものとして読まれるべきでない。単数形の要素に対する参照は、明示的にそのように述べられない限り、「1つ及び1つのみ」を意味することを意図せず、「一つ又は複数」を意味する。当業者に既知である、上述の実施形態の要素に対する全ての構造的及び機能的等価物が、参照により本願に明確に組み込まれ、本願の特許請求の範囲に包含されることが意図される。従って、当業者であれば、本願において説明される例示の実施形態が、下記の添付の特許請求の範囲の精神及び範囲内で種々の改変及び変更と共になされ得ることを認識し得るであろう。