(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-16
(45)【発行日】2023-01-24
(54)【発明の名称】ガラス物品の製造方法、及び薄板ガラスの加熱方法
(51)【国際特許分類】
C03C 17/245 20060101AFI20230117BHJP
C23C 14/54 20060101ALI20230117BHJP
C23C 16/46 20060101ALI20230117BHJP
H05B 3/10 20060101ALI20230117BHJP
【FI】
C03C17/245 Z
C03C17/245 A
C23C14/54 D
C23C16/46
H05B3/10 B
(21)【出願番号】P 2018217498
(22)【出願日】2018-11-20
【審査請求日】2021-08-23
(73)【特許権者】
【識別番号】000232243
【氏名又は名称】日本電気硝子株式会社
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】齊藤 隆義
【審査官】永田 史泰
(56)【参考文献】
【文献】国際公開第2013/018483(WO,A1)
【文献】実開昭63-129986(JP,U)
【文献】特開昭55-158487(JP,A)
【文献】特開平2-192686(JP,A)
【文献】特開平6-349813(JP,A)
【文献】欧州特許出願公開第0554538(EP,A2)
(58)【調査した分野】(Int.Cl.,DB名)
C03C15/00-23/00
C03B23/00-35/26
H05B3/00-3/86
C23C14/54
C23C16/46
(57)【特許請求の範囲】
【請求項1】
ガラスにより構成される加熱対象物を加熱する加熱工程を有するガラス物品の製造方法であって、
前記加熱工程は、
赤外線を放射する放射熱源と前記加熱対象物との間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記加熱対象物に吸収させることにより前記加熱対象物を加熱する工程であり、
前記変換部は、
前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、
Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備え、
前記変換部における前記加熱対象物側の表面の少なくとも一部は、前記赤外線放射部により構成され
、
前記Si元素を含有する物質は、ガラスであることを特徴とするガラス物品の製造方法。
【請求項2】
ガラスにより構成される加熱対象物を加熱する加熱工程を有するガラス物品の製造方法であって、
前記加熱工程は、
赤外線を放射する放射熱源と前記加熱対象物との間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記加熱対象物に吸収させることにより前記加熱対象物を加熱する工程であり、
前記変換部は、
前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、
Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備え、
前記変換部における前記加熱対象物側の表面の少なくとも一部は、前記赤外線放射部により構成され
、
前記変換部には、前記放射熱源から放射される赤外線を透過させる透過部分が設けられていることを特徴とするガラス物品の製造方法。
【請求項3】
前記赤外線吸収部は、黒体により構成されてなる請求項1
又は請求項2に記載のガラス物品の製造方法。
【請求項4】
前記加熱対象物は、厚さが0.3mm以下の薄板ガラスである請求項1~3のいずれか一項に記載のガラス物品の製造方法。
【請求項5】
前記ガラス物品は、前記薄板ガラスの表面に薄膜が形成された膜付きガラスであり、
前記薄板ガラスの表面にCVD法又はスパッタリング法により前記薄膜を形成する過程において、前記加熱工程により前記薄板ガラスを加熱する請求項4に記載のガラス物品の製造方法。
【請求項6】
前記赤外線放射部は、前記赤外線吸収部に接している請求項1~5のいずれか一項に記載のガラス物品の製造方法。
【請求項7】
厚さが0.3mm以下の薄板ガラスの加熱方法であって、
赤外線を放射する放射熱源と前記薄板ガラスとの間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記薄板ガラスに吸収させることにより前記薄板ガラスを加熱し、
前記変換部は、
前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、
Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備え
、
前記Si元素を含有する物質は、ガラスであることを特徴とする薄板ガラスの加熱方法。
【請求項8】
厚さが0.3mm以下の薄板ガラスの加熱方法であって、
赤外線を放射する放射熱源と前記薄板ガラスとの間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記薄板ガラスに吸収させることにより前記薄板ガラスを加熱し、
前記変換部は、
前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、
Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備え
、
前記変換部には、前記放射熱源から放射される赤外線を透過させる透過部分が設けられていることを特徴とする薄板ガラスの加熱方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラス物品の製造方法、及び薄板ガラスの加熱方法に関する。
【背景技術】
【0002】
特許文献1に開示されるように、ガラス基板の加熱方法として、ハロゲンランプ等の放射熱源から放射される赤外線をガラス基板に吸収させて加熱する技術が知られている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、赤外線を加熱対象物に吸収させて加熱する加熱方法を採用する場合に、加熱対象物がガラスにより構成されるものであると、赤外領域におけるガラスの吸収波長の範囲が狭いことから、放射熱源から放射される赤外線の大部分が加熱対象物に吸収されずに透過してしまう。そのため、放射熱源から放射された赤外線を効率的に加熱対象物の熱に変換することができず、加熱対象物を目的温度に加熱するために必要な消費電力が大きくなる。
【0005】
この発明は、こうした実情に鑑みてなされたものであり、その目的は、ガラスにより構成される加熱対象物を加熱する際の消費電力を低減することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するガラス物品の製造方法は、ガラスにより構成される加熱対象物を加熱する加熱工程を有するガラス物品の製造方法であって、前記加熱工程は、赤外線を放射する放射熱源と前記加熱対象物との間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記加熱対象物に吸収させることにより前記加熱対象物を加熱する工程であり、前記変換部は、前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備え、前記変換部における前記加熱対象物側の表面の少なくとも一部は、前記赤外線放射部により構成されている。
【0007】
上記構成によれば、ガラスに吸収される波長域の割合が大きく、ガラスに吸収されない波長域の割合が小さいスペクトルの赤外線が変換部から放射される。そのため、ガラスにより構成される加熱対象物は、変換部から放射される赤外線の大部分を透過させることなく吸収できる。これにより、変換部から放射される赤外線を効率的に加熱対象物の熱に変換することができ、加熱対象物の加熱に要する消費電力を低減できる。
【0008】
上記ガラス物品の製造方法において、前記赤外線吸収部は、黒体により構成されてなることが好ましい。赤外線吸収部を黒体により構成することによって、より効率的に赤外線を吸収させることができる。
【0009】
上記ガラス物品の製造方法において、前記赤外線放射部は、ガラスにより構成されてなることが好ましい。赤外線放射部をガラスにより構成することによって、変換部から放射される赤外線をより効率的に加熱対象物の熱に変換することができる。
【0010】
上記ガラス物品の製造方法において、前記加熱対象物は、厚さが0.3mm以下の薄板ガラスであることが好ましい。
薄板ガラスは、厚さのあるガラスと比較して、熱容量が小さいことから外部の温度の影響を受けて冷めやすい。そのため、薄板ガラスを目的温度に加熱した状態を保持する場合には、薄板ガラスに赤外線を照射して輻射熱により薄板ガラス自体を発熱させる方法が有効である。一方、赤外線を照射して薄板ガラスを加熱する場合、厚さが薄いことから赤外線の透過率が高くなり、消費電力に対する加熱効率が悪くなる。したがって、薄板ガラスの加熱に上記の加熱工程を適用した場合には、加熱対象物の加熱に要する消費電力を低減できる効果がより顕著に得られる。
【0011】
上記ガラス物品の製造方法において、前記ガラス物品は、前記薄板ガラスの表面に薄膜が形成された膜付きガラスであり、前記薄板ガラスの表面にCVD法又はスパッタリング法により前記薄膜を形成する過程において、前記加熱工程により前記薄板ガラスを加熱することが好ましい。
【0012】
CVD法又はスパッタリング法により薄膜を形成する場合、薄膜が形成される成膜対象物の温度を厳密に管理することが求められる。変換部により変換された赤外線により加熱対象物を加熱する上記の加熱工程は、目的温度までの加熱対象物の加熱、及び加熱状態からの降温をより短時間で行うことができるため、CVD法又はスパッタリング法により薄膜を形成する際の加熱方法として適している。
【0013】
上記ガラス物品の製造方法において、前記変換部には、前記放射熱源から放射される赤外線を透過させる透過部分が設けられていることが好ましい。
上記構成によれば、加熱時における加熱対象物の温度分布を容易に制御できる。
【0014】
上記ガラス物品の製造方法において、前記赤外線放射部は、前記赤外線吸収部に接していることが好ましい。
上記構成によれば、赤外線吸収部からの赤外線放射部への熱伝導が効率的に行われる。これにより、赤外線放射部(変換部)の加熱対象物側の表面の温度を早く高めることができ、応答性が向上する。
【0015】
上記課題を解決する薄板ガラスの加熱方法は、厚さが0.3mm以下の薄板ガラスの加熱方法であって、赤外線を放射する放射熱源と前記薄板ガラスとの間に、前記放射熱源から放射される赤外線のスペクトルを変換する変換部を配置し、前記変換部から放射される赤外線を前記薄板ガラスに吸収させることにより前記薄板ガラスを加熱し、前記変換部は、前記放射熱源から放射される赤外線を吸収して発熱する赤外線吸収部と、Si元素を含有する物質により構成され、前記赤外線吸収部からの熱伝導により加熱される赤外線放射部とを備える。
【0016】
上記構成によれば、変換部から放射される赤外線を効率的に薄板ガラスの熱に変換することができ、薄板ガラスの加熱に要する消費電力を低減できる。
【発明の効果】
【0017】
本発明によれば、ガラスにより構成される加熱対象物を加熱する際の消費電力を低減できる。
【図面の簡単な説明】
【0018】
【
図5】(a)は、変更例の変換部の正面図、(b)は、変更例の変換部の断面図。
【
図6】(a)は、変更例の変換部の正面図、(b)は、変更例の変換部の断面図。
【
図7】変換部における透過部分の位置と加熱対象物の温度分布との関係を示す説明図。
【発明を実施するための形態】
【0019】
以下、本発明を、薄板ガラスの表面に薄膜が形成された膜付きガラスの製造方法に具体化した一実施形態を説明する。
本実施形態の膜付きガラスの製造方法では、薄板ガラスを加熱するとともに、加熱されたガラス基板に対してCVD(Chemical Vapor Deposition)法又はスパッタリング法を用いた成膜処理を行い、薄板ガラスの主面に対して薄膜を形成するものである。上記薄膜としては、例えば、酸化インジウムスズ膜、フッ素ドープ酸化スズ膜、酸化亜鉛膜、アンチモンドープ酸化スズ膜等の金属酸化物膜が挙げられる。
【0020】
本実施形態の製造方法に用いられる薄板ガラスとしては、例えば、珪酸塩系ガラス、硼酸塩系ガラス、無アルカリガラス、リン酸塩系ガラス、結晶化ガラスが挙げられる。また、薄板ガラスは、5~8μmの波長の放射率が90%以上であるガラスであることが好ましい。珪酸塩系ガラス、無アルカリガラス、結晶化ガラスは、5~8μmの波長の放射率が90%以上であるため、好ましい。薄板ガラスの厚さは、0.3mm以下であり、0.2mm以下であることが好ましい。また、薄板ガラスの厚みの下限値は、例えば、3μmである。
【0021】
図1に示すように、本実施形態の製造方法では、長尺状の薄板ガラスGがロール状に巻き取られた第1ガラスロールR1から連続的に送り出される薄板ガラスGに対して、加熱装置10による加熱処理、及び成膜装置20による成膜処理が行われる。そして、成膜処理により薄膜が形成された膜付きガラスGa(ガラス物品)は、第2ガラスロールR2に巻き取られることで回収される。
【0022】
加熱装置10は、成膜装置20により薄膜が形成される成膜範囲A1を内側に含むように設定された加熱範囲A2にある薄板ガラスGを加熱可能な位置に配置される。本実施形態においては、成膜装置20の両側に2個の加熱装置10が配置されている。
【0023】
図2に示すように、加熱装置10は、一方側に開口11aを有するケーシング11と、ケーシング11内に配置された放射熱源12と、放射熱源12から放射された赤外線を開口11a側に向かうように集光する集光ミラー13とを備えている。放射熱源12としては、輻射熱を利用して加熱対象物を加熱する公知の放射熱源、例えば、ハロゲンランプ、キセノンランプ等の放射熱源を用いることができる。
【0024】
ケーシング11の開口11aには、放射熱源12から放射される赤外線のスペクトルを変換する変換部14が配置されている。変換部14は、Si元素を含有する物質により構成される板状の赤外線放射部15を備えている。赤外線放射部15を構成するSi元素を含有する物質としては、ガラス、窒化ケイ素、ムライト、ケイ酸アルミニウム、コーディエライト、ジルコンが挙げられる。また、ガラスとしては、例えば、珪酸塩系ガラス、無アルカリガラス、結晶化ガラスが挙げられる。
【0025】
また、赤外線放射部15を構成するSi元素を含有する物質は、加熱対象物である薄板ガラスGと近い放射特性(例えば、5~8μmの波長の放射率が90%以上)を有する物質であることが好ましく、薄板ガラスGと同じ放射特性を有する物質であることがより好ましい。また、赤外線放射部15を構成するガラスは、熱膨張が抑制されたガラス(例えば、熱膨張係数が60以下のガラス)であることが好ましい。
【0026】
赤外線放射部15は、放射熱源12からの赤外線が入射する側に位置する第1表面15aと、第1表面15aの反対側であって、加熱対象物(薄板ガラスG)側に位置する第2表面15bとを有する。第1表面15aと第2表面15bとの間の距離として規定される赤外線放射部15の厚さは、例えば、5mm以下であることが好ましく、2mm以下であることがより好ましい。
【0027】
赤外線放射部15の第1表面15aには、黒体により構成される赤外線吸収部16が設けられている。赤外線吸収部16は、赤外線放射部15の第1表面15aに黒体塗料を塗布することにより形成される膜状の部分であり、第1表面15aの表面全体に一様に設けられている。赤外線吸収部16の放射率は、例えば、90%以上であることが好ましく、95%以上であることがより好ましい。赤外線吸収部16を構成する黒体塗料は特に限定されるものではなく、公知の黒体塗料(例えば、ジャパンセンサー株式会社製JSC-3号)を用いることができる。また、赤外線吸収部16はカーボン等の黒色の物質から構成されてもよい。
【0028】
赤外線放射部15の第2表面15bは、外部に露出している。したがって、変換部14の加熱対象物側の表面の少なくとも一部は、赤外線放射部15の第2表面15bにより構成されている。
【0029】
次に、加熱装置10を用いた加熱処理(加熱工程)について説明する。
図3に示すように、加熱装置10の放射熱源12から放射された赤外線W1は、集光ミラー13により集光されて変換部14の赤外線吸収部16に吸収される。赤外線W1を吸収した赤外線吸収部16は、熱輻射により発熱する。赤外線吸収部16が発熱すると、赤外線吸収部16に接する赤外線放射部15が熱伝導により加熱され、加熱された赤外線放射部15の第2表面15bから、赤外線放射部15を構成するSi元素を含有する物質の放射特性に基づくスペクトルの赤外線W2が放射される。
【0030】
したがって、変換部14は、放射熱源12から放射される赤外線W1を吸収して、スペクトルの異なる赤外線W2を放射する。すなわち、変換部14は、放射熱源12から放射される赤外線W1のスペクトルを、赤外線放射部15を構成するSi元素を含有する物質の放射特性に基づくスペクトルに変換する。
【0031】
図1及び
図3に示すように、加熱装置10から赤外線W2が放射される範囲である加熱範囲A2に搬送された薄板ガラスGは、加熱装置10から放射される赤外線W2を吸収する。赤外線W2を吸収した薄板ガラスGは、熱輻射により発熱することにより、成膜処理に適切な温度(例えば、500~600℃程度)に加熱される。
【0032】
ここで、赤外線放射部15を構成するSi元素を含有する物質の放射特性に基づくスペクトルを有する赤外線W2は、ガラスに吸収される波長域の割合が大きく、ガラスに吸収されない波長域の割合が小さいスペクトルの赤外線である。例えば、赤外線W2の全波長域の放射輝度に対するガラスに吸収される波長域の放射輝度の割合は80%以上である。そのため、赤外線W2の大部分は、薄板ガラスGを透過することなく薄板ガラスGに吸収される。これにより、加熱装置10から放射される赤外線W2を薄板ガラスGの熱に効率的に変換できる。
【0033】
図1に示すように、加熱装置10により加熱された状態にある薄板ガラスGには、成膜範囲A1において、成膜装置20による成膜処理が行われる。成膜装置20としては、CVD法又はスパッタリング法を利用した成膜処理に適用される公知の成膜装置を用いることができる。
【0034】
薄膜が形成された膜付きガラスGaは、加熱装置10の加熱範囲A2を通過して、加熱装置10から赤外線W2が入射しない位置に達することにより温度が急速に低下する。加熱範囲A2を通過して温度が低下した膜付きガラスGaは、第2ガラスロールR2に巻き取られて回収される。
【0035】
次に、本実施形態の作用効果について記載する。
(1)ガラス物品の製造方法は、ガラスにより構成される加熱対象物(薄板ガラスG)を加熱する加熱工程を有する。加熱工程は、赤外線W1を放射する放射熱源12と加熱対象物との間に、放射熱源12から放射される赤外線W1のスペクトルを変換する変換部14を配置し、変換部14から放射される赤外線W2を加熱対象物に吸収させて発熱させることにより加熱対象物を加熱する工程である。変換部14は、放射熱源12から放射される赤外線W1を吸収して発熱する赤外線吸収部16と、Si元素を含有する物質により構成され、赤外線吸収部16からの熱伝導により加熱される赤外線放射部15とを備える。変換部14における加熱対象物側の表面の少なくとも一部は、赤外線放射部15により構成されている。
【0036】
上記構成によれば、ガラスに吸収される波長域の割合が大きく、ガラスに吸収されない波長域の割合が小さいスペクトルの赤外線W2が変換部14から放射される。そのため、ガラスにより構成される加熱対象物は、変換部14から放射される赤外線W2の大部分を透過させることなく吸収できる。これにより、変換部14から放射される赤外線W2を加熱対象物の熱に効率的に変換することができ、加熱対象物の加熱に要する消費電力を低減できる。
【0037】
(2)加熱対象物は、厚さが0.3mm以下の薄板ガラスである。
薄板ガラスは、厚さのあるガラスと比較して、熱容量が小さいことから外部の温度の影響を受けて冷めやすい。そのため、薄板ガラスを目的温度に加熱した状態を保持する場合には、薄板ガラスに赤外線を照射して輻射熱により薄板ガラス自体を発熱させる方法が有効である。一方、赤外線を照射して薄板ガラスを加熱する場合、厚さが薄いことから赤外線の透過率が高くなり、消費電力に対する加熱効率が悪くなる。したがって、薄板ガラスの加熱に上記の加熱工程を適用した場合には、加熱対象物の加熱に要する消費電力を低減できる効果がより顕著に得られる。
【0038】
(3)ガラス物品は、薄板ガラスGの表面に薄膜が形成された膜付きガラスGaである。ガラス物品の製造方法は、薄板ガラスGの表面にCVD法又はスパッタリング法により薄膜を形成する過程において、上記の加熱工程により薄板ガラスGを加熱している。
【0039】
CVD法又はスパッタリング法により薄膜を形成する場合、薄膜が形成される成膜対象物の温度を厳密に管理することが求められる。変換部14により変換された赤外線W2により加熱対象物を加熱する上記の加熱工程は、目的温度までの加熱対象物の加熱、及び加熱状態からの降温をより短時間で行うことができるため、CVD法又はスパッタリング法により薄膜を形成する際の加熱方法として適している。
【0040】
(4)赤外線放射部15は、赤外線吸収部16に接している。
上記構成によれば、赤外線吸収部16からの赤外線放射部15への熱伝導が効率的に行われる。これにより、赤外線放射部15の第2表面15b(変換部14の加熱対象物側の表面)の温度を早く高めることができ、応答性が向上する。
【0041】
(5)赤外線放射部15の厚さは、5mm以下である。
上記構成によれば、赤外線吸収部16からの熱伝導により、赤外線放射部15の第2表面15b(変換部14の加熱対象物側の表面)の温度を早く高めることができ、応答性が向上する。
【0042】
なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・変換部14の加熱対象物側の表面は、少なくとも一部が赤外線放射部15により構成されていればよく、Si元素を含有する物質以外の材質からなる部分が部分的に設けられていてもよい。
【0043】
・上記実施形態では、黒体塗料によって赤外線吸収部16が形成されていたが、黒体塗料以外の材料からなる赤外線吸収部16であってもよい。赤外線吸収部16を構成する他の材料としては、例えば、黒体テープ、炭化ケイ素等のセラミックが挙げられる。
【0044】
・赤外線放射部15の形状は、板状に限定されるものではなく、例えば、ブロック状やレンズ状等のその他の形状であってもよい。この場合、放射熱源12から赤外線W1が入射する側の面(第1表面15a)、及び加熱対象物に向かって赤外線W2を放射する側の面(第2表面15b)は、互いに反対を向く面でなくてもよい。
【0045】
また、赤外線放射部15は、膜状に形成されるものであってもよい。例えば、セラミックにより構成される板状の赤外線吸収部16を採用し、その赤外線吸収部16の表面に、粉末状のガラスを付着させてガラス質の皮膜を形成し、このガラス質の皮膜を赤外線放射部15としてもよい。
【0046】
・
図4に示すように、変換部14における赤外線放射部15と赤外線吸収部16との間に、赤外線吸収部16の熱を赤外線放射部15へ熱伝導可能な物質により構成される熱伝導部17を介在させてもよい。
【0047】
・変換部14には、放射熱源12から放射される赤外線W1を透過させる透過部分が設けられていてもよい。例えば、
図5(a),(b)及び
図6(a),(b)に示すように、赤外線放射部15の第1表面15aに対して、赤外線吸収部16が形成されていない部分を部分的に設ける。この場合、赤外線放射部15には、赤外線吸収部16が形成されていない部分に対応して、放射熱源12から入射した赤外線W1が透過する部分(透過部分18)が生じる。透過部分18を設けることにより、加熱時における加熱対象物の温度分布を容易に制御できる。例えば、加熱対象物の全体をより均一に加熱することや、加熱対象物の特定部位の温度を部分的に高めることができる。
【0048】
図7のグラフは、加熱装置10の変換部14として、透過部分18を設けない変換部14(試験例1)、透過部分18を設けた変換部14(試験例2及び試験例3)のいずれか一つを用いて加熱処理を行った場合の薄板ガラスGの温度分布を示したものである。試験例1は、第1表面15aの全体に赤外線吸収部16を設けた変換部14である。試験例2は、加熱対象物となる薄板ガラスGの中央部分に対応する部分に、赤外線吸収部16が形成されていない部分を複数、設けた変換部14である。試験例3は、加熱対象物となる薄板ガラスGの中央部分に対応する部分の全体に、赤外線吸収部16が形成されていない部分を設けた変換部14である。
【0049】
図7のグラフに示すように、試験例1の変換部14を用いた場合、薄板ガラスGは、両側の縁部と比較して中央部分の温度が高くなる。これに対して、試験例2及び試験例3の変換部14を用いた場合、赤外線吸収部16が形成されていない部分(透過部分18)に対応して、薄板ガラスGの中央部分に相対的に温度の低い部分が生じる。このように、透過部分18を設けることにより、加熱対象物の部分毎の温度を制御することが可能であり、透過部分18の位置を調整することにより、加熱対象物全体をより均一に加熱することや、加熱対象物の特定部分の温度を相対的に高くすること又は低くすることができる。
【0050】
・変換部14には、放射熱源12から放射される赤外線W1を第1パターンのスペクトルの赤外線W2に変換する第1変換部分と、第1パターンと異なるスペクトルの赤外線W2に変換する第2変換部分とが設けられていてもよい。例えば、赤外線放射部15の一部に、放射特性の異なるSi元素を含有する物質により構成される部分を設けて、放射特性の異なるSi元素を含有する物質の部分から当該物質の放射特性に基づく第2パターンのスペクトルの赤外線を放射させる。
【0051】
第1変換部分及び第2変換部分を備える変換部14を設けた場合にも、透過部分18を設けた場合と同様に、加熱時における加熱対象物の温度分布を容易に制御できる。また、第2変換部分を複数、設けてもよい。この場合、各第2変換部分から放射される赤外線のスペクトルは全て同じであってもよいし、異なっていてもよい。
【0052】
・加熱装置10と加熱対象物との間の領域の雰囲気は特に限定されるものではないが、水蒸気量が2g/m3以下の雰囲気(例えば、真空)であることが好ましい。上記領域を水蒸気量の少ない雰囲気にした場合には、加熱装置10の変換部14から放射される赤外線W2が上記領域に含まれる水蒸気に吸収されて、加熱対象物に達する赤外線W2が弱まることを抑制できる。これにより、変換部14から放射される赤外線W2を加熱対象物に効率的に吸収させて加熱対象物の熱に効率的に変換できる。その結果、加熱対象物の加熱に要する消費電力を低減できる効果がより大きく得られる。
【0053】
・加熱装置10の配置は特に限定されるものではないが、赤外線放射部15の加熱対象物側の表面と加熱対象物との距離が2~20mmとなるように配置することが好ましい。上記距離を2mm以上に設定することにより、加熱対象物を移動させる際に、加熱対象物と加熱装置10とが接触してしまうことを抑制できる。また、上記距離を20mm以下に設定することにより、加熱装置10と加熱対象物との間の領域に、変換部14から放射される赤外線W2を吸収する物質(例えば、水蒸気)が存在したとしても、上記領域を通過する際に赤外線W2が大きく減衰して加熱対象物の温度が上がり難くなってしまうことを抑制できる。
【0054】
・上記実施形態の膜付きガラスの製造方法では、厚さが0.3mm以下の薄板ガラスに対して薄膜を形成していたが、厚さが0.3mmを超えるガラス部材(加熱対象物)に対して薄膜を形成してもよい。
【0055】
・加熱装置10を用いた加熱処理(加熱工程)は、CVD法又はスパッタリング法により成膜する際に成膜対象物を加熱する加熱処理に限定されるものではなく、ガラスにより構成される加熱対象物を加熱する様々な加熱工程に適用できる。
【0056】
次に、上記実施形態及び変更例から把握できる技術的思想を以下に記載する。
(イ)前記変換部には、前記放射熱源から放射される赤外線を第1パターンのスペクトルの赤外線に変換する第1変換部分と、前記第1パターンと異なる第2パターンのスペクトルの赤外線に変換する第2変換部分とが設けられ、前記変換部における前記加熱対象物側の表面は、前記第1変換部分により構成される部分と、前記第2変換部分により構成される部分とを有する前記ガラス物品の製造方法。
【実施例】
【0057】
以下に実施例及び比較例を挙げ、上記実施形態をさらに具体的に説明する。なお、本発明はこれらに限定されるものではない。
(実施例1)
図3に示すように、赤外線W1を放射する放射熱源12と薄板ガラスGとの間に、放射熱源12から放射される赤外線W1のスペクトルを変換する変換部14を配置し、変換部14から放射される赤外線W2を薄板ガラスGに吸収させることにより薄板ガラスGを加熱する加熱試験を行った。そして、薄板ガラスGが600℃に加熱されるまでに放射熱源12が消費した電力を測定した。その結果を表1に示す。
【0058】
変換部14としては、
図3に示すように、板状の赤外線放射部15の放射熱源12側の表面(第1表面15a)の全体に黒体塗料を塗布してなる赤外線吸収部16を設けたものを用いた。また、加熱試験に用いた各部材の詳細は以下のとおりである。
【0059】
薄板ガラス:縦50mm×横300mm×厚さ50μmの無アルカリガラス
放射熱源 :ハロゲンランプ
赤外線放射部 :縦50mm×横350mm×厚さ1.5mmの結晶化ガラス
赤外線吸収部 :黒体塗料(ジャパンセンサー株式会社製JSC-3号)
(比較例1)
変換部14に代えて、板状の赤外線放射部15の放射熱源12側の表面(第1表面15a)、及び加熱対象物側の表面(第2表面15b)の両面の全体に、黒体塗料を塗布してなる赤外線吸収部16を設けたものを用いた。上記の点を除いて、実施例1と同様にして加熱試験を行い、薄板ガラスGが600℃に加熱されるまでに放射熱源12が消費した電力を測定した。その結果を表1に示す。
【0060】
(比較例2)
変換部14に代えて、赤外線吸収部16を設けていない板状の赤外線放射部15を用いた。上記の点を除いて、実施例1と同様にして加熱試験を行い、薄板ガラスGが600℃に加熱されるまでに放射熱源12が消費した電力を測定した。その結果を表1に示す。
【0061】
【表1】
表1に示すように、比較例1及び比較例2と比較して、実施例1の場合には、薄板ガラスGを目的温度に加熱するための消費電力が低くなる結果が得られた。比較例2の加熱試験においては、消費電力が4000Wを超えた時点で、薄板ガラスGの温度が600℃に達していなかったため、その時点で加熱試験を終了した。これらの結果から、放射熱源を利用して、ガラスにより構成される加熱対象物を加熱する場合に、放射熱源と加熱対象物との間に特定構造の変換部を配置することにより、消費電力を低減できることが分かる。
【符号の説明】
【0062】
G…薄板ガラス、Ga…膜付きガラス、W1,W2…赤外線、10…加熱装置、11…ケーシング、12…放射熱源、13…集光ミラー、14…変換部、15…赤外線放射部、15a…第1表面、15b…第2表面、16…赤外線吸収部、17…熱伝導部、18…透過部分、20…成膜装置。