(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-16
(45)【発行日】2023-01-24
(54)【発明の名称】新規微生物及び該微生物を用いたウロリチン類の製造方法
(51)【国際特許分類】
C12N 1/20 20060101AFI20230117BHJP
C12P 17/06 20060101ALI20230117BHJP
A23L 33/10 20160101ALI20230117BHJP
【FI】
C12N1/20 A ZNA
C12P17/06
A23L33/10
(21)【出願番号】P 2018109242
(22)【出願日】2018-06-07
【審査請求日】2021-04-09
【微生物の受託番号】NPMD NITE P-02708
【微生物の受託番号】NPMD NITE BP-02376
(73)【特許権者】
【識別番号】000002901
【氏名又は名称】株式会社ダイセル
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(74)【代理人】
【識別番号】100131392
【氏名又は名称】丹羽 武司
(74)【代理人】
【識別番号】100126505
【氏名又は名称】佐貫 伸一
(74)【代理人】
【識別番号】100160945
【氏名又は名称】菅家 博英
(74)【代理人】
【識別番号】100123098
【氏名又は名称】今堀 克彦
(72)【発明者】
【氏名】工藤 眞丈
(72)【発明者】
【氏名】山本 浩明
(72)【発明者】
【氏名】山副 敦司
(72)【発明者】
【氏名】内野 佳仁
【審査官】小倉 梢
(56)【参考文献】
【文献】特開2017-192331(JP,A)
【文献】日本農芸化学会大会講演要旨集,2017年,3A04p04
【文献】Journal of Functional Foods,2018年,Vol. 45,p. 95-99,Available online 06 April 2018
(58)【調査した分野】(Int.Cl.,DB名)
C12N 1/00 - 1/38
C12P 17/00 - 17/18
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-0
2708)株。
【請求項2】
下記工程(a)を含む、第2のウロリチン類の製造方法。
工程(a):第1のウロリチン類を含有する溶液において、クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株に、第1のウロ
リチン類から第2のウロリチン類を生成させる工程であって、
前記第1のウロリチン類と前記第2のウロリチン類の組み合わせが、それぞれ、ウロリチンCとウロリチンAの組み合わせ又はイソウロリチンAとウロリチンBの組み合わせである、工程
【請求項3】
前記第1のウロリチン類と前記第2のウロリチン類の組み合わせが、それぞれ、ウロリチンCとウロリチンAの組み合わせである、請求項2に記載の製造方法。
【請求項4】
前記ウロリチンCが、ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料から生成させて得られるものである、請求項3に記載の製造方法。
【請求項5】
さらに下記工程(b1)を含み、前記工程(a)及び該工程(b1)が同一の系で行われる、請求項3または4に記載の製造方法。
工程(b1):ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料からウロリチンCを生成させる工程
【請求項6】
前記ウロリチンCの原料からウロリチンCを生成する能力を有する微生物が、ゴルドニバクター(Gordonibacter)属に属する微生物又はエガセラ(Eggerthella)属に属する微生物である、請求項4又は5に記載の製造方法。
【請求項7】
前記ゴルドニバクター(Gordonibacter)属に属する微生物が、ゴルドニバクター・パ
メラエアエ(Gordonibacter pamelaeae)に属する微生物、ゴルドニバクター・ウロリチ
ンファシエンス(Gordonibacter urolithinfaciens)に属する微生物、及びゴルドニバクター・フィーシホミニス(Gordonibacter faecihominis)に属する微生物からなる群から選択される1以上の微生物である、請求項6に記載の製造方法。
【請求項8】
前記ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)に属する微生物が
、ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)DSM 19378株
である、請求項7に記載の製造方法。
【請求項9】
前記ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物が、ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)DSM 27213株である、請求項7または8に記載の製造方法。
【請求項10】
前記エガセラ(Eggerthella)属に属する微生物が、エガセラ・エスピー(Eggerthella
sp.)DC 3563(NITE BP-02376)株である、請求項6~9のいずれか1項に記載の製造方法。
【請求項11】
前記ウロリチンCの原料が、エラグ酸及び/又はエラジタンニンである、請求項4~10のいずれか1項に記載の製造方法。
【請求項12】
気相が水素を含む環境下で工程(a)が行われる、請求項2~11のいずれか1項に記載の製造方法。
【請求項13】
前記気相における前記水素の割合が0.5%以上20%以下である、請求項12に記載の製造方法。
【請求項14】
前記ウロリチンCを含有する溶液が、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン及びそれらの類縁体からなる包接化合物の群から選択される1種以上をさらに含む、請求項3~13のいずれか1項に記載の製造方法。
【請求項15】
前記包接化合物が、前記ウロリチンCに対してモル比の総量で0.1当量以上5.0当量以下である、請求項14に記載の製造方法。
【請求項16】
前記工程(b1)において、前記ウロリチンCの原料を含有する溶液が、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン及びそれらの類縁体からなる包接化合物の群から選択される1種以上をさらに含む、請求項5~15のいずれか1項に記載の製造方法。
【請求項17】
前記包接化合物が、前記
ウロリチンCの原料の総量に対してモル比の総量で0.2当量以上10.0当量以下である、請求項16に記載の製造方法。
【請求項18】
下記工程(a1)及び(c)を含むウロリチンAを含む飲食品の製造方法。
工程(a1):ウロリチンCを含有する溶液において、クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株に、ウロリチンCか
らウロリチンAを生成させる工程
工程(c):前記工程(a1)で生成したウロリチンAと飲食品原料とを配合して飲食品とする工程
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規微生物及び該微生物を用いたウロリチン類の製造方法に関する。
【背景技術】
【0002】
ウロリチンAやウロリチンCに代表されるウロリチン類は、ザクロ、ラズベリー、ブラックベリー、クラウドベリー、イチゴ、クルミなどに含まれるエラジタンニン等に由来するエラグ酸の代謝物として知られている。
【0003】
エラジタンニンは加水分解性タンニンに分類され、摂取されると体内で加水分解され、エラグ酸に変換されることが知られている。また、果実等にはエラグ酸としても存在している。
これまでに、例えば、生体内におけるウロリチン類の生成については、ラットにおいて、ゲラニインなどのエラジタンニンからウロリチン類が生じることが、尿中のウロリチン類を分析することによって明らかにされている(非特許文献1)。
また、ヒトにおいて、プニカラジンを主としたエラジタンニンを含むザクロ抽出物を摂取後、尿中においてウロリチン類が検出され、特にウロリチンA及びウロリチンCが主要なエラグ酸代謝物であることが報告されている(非特許文献2)。
【0004】
これらのウロリチン類は、様々な生理活性を有することが知られており、医薬品、化粧品、飲食品の素材としての利用が期待されている。
例えば、ウロリチンAには抗酸化作用(非特許文献3)、抗炎症作用(非特許文献4)、抗糖化作用(非特許文献5)、マイトファジーの促進作用(非特許文献6)などの機能を有することが報告されており、抗老化機能を有する素材としての開発が期待されている。
【0005】
これらのウロリチン類を合成する方法としては、2-ブロモ-5-メトキシ安息香酸を出発原料として脱メチル化によって2-ブロモ-5-ヒドロキシ安息香酸とし、レゾルシノールと反応させることによってウロリチンAを得る方法などが報告されている(非特許文献7)。しかし、ウロリチン類を機能性食品(飲料、サプリメントを含む。)の素材として利用するには、このような化学合成法は適さない。
【0006】
一方、エラジタンニンやエラグ酸は体内に摂取された後、腸内微生物叢によって代謝されてウロリチン類に変換されることが知られている。近年、ウロリチン類の一種であるウロリチンCをエラグ酸から生成する腸内細菌としてゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物が分離、同定され、この腸内細菌を用いたエラグ酸の発酵によりウロリチンCを産生する方法が報告された(特許文献1、非特許文献8)。しかし、発酵液中のウロリチンCの蓄積濃度は2mg/L程度であり、また、ヒトの主要なエラグ酸代謝物であるウロリチンAは生産されない。
【0007】
ゴルドニバクター属に属するゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)に属する微生物もエラグ酸からウロリチンCを生産することが報告されているが、ウロリチンAを生産することは報告されていない。また、同微生物を含め、ウロリチン類の9位の水酸基を脱離して他のウロリチン類を産生する微生物は報告されていない(非特許文献9)。
【先行技術文献】
【特許文献】
【0008】
【非特許文献】
【0009】
【文献】J. Agric. Food Chem., 56, 393-400 (2008)
【文献】Mol. Nutr. Food Res., 58, 1199-1211 (2014)
【文献】Biosci. Biotechnol. Biochem., 76, 395-399 (2012)
【文献】J. Agric. Food Chem., 60, 8866-8876 (2012)
【文献】Mol. Nutr. Food Res., 55, S35-S43 (2011)
【文献】Nature Medicine, 22, 879-888 (2016)
【文献】J. Agric. Food Chem., 56, 393-400 (2008)
【文献】Food Func., 5, 8, 1779-1784 (2014)
【文献】Int. J. Syst. Evol. Microbiol., 68(5):1707-1712 (2018)
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、ウロリチン類の9位の水酸基を脱離して他のウロリチン類を製造する方法の提供を課題とする。
【課題を解決するための手段】
【0011】
前記課題を解決するために、本発明者らは鋭意検討した結果、ウロリチン類の9位の水酸基を脱離して他のウロリチン類を生成する能力を有する新規微生物を見出して、本発明を完成させた。本発明は以下の通りである。
【0012】
〔1〕クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P
-02708)株。
〔2〕下記工程(a)を含む、下記一般式(2)で表される第2のウロリチン類の製造方法。
工程(a):下記一般式(1)で表される第1のウロリチン類を含有する溶液において、クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株に、第1のウロリチン類から第2のウロリチン類を生成させる工程
【化1】
(式中、R
1乃至R
7は、それぞれ、水酸基、水素原子又はメトキシ基を表し、且つ、R
1乃至R
7のうち1つ以上は水酸基である。)
【化2】
(式中、R
1乃至R
7は、それぞれ、前記一般式(1)で表される第1のウロリチン類のR
1乃至R
7と同一である。)
〔3〕前記第1のウロリチン類と前記第2のウロリチン類の組み合わせが、それぞれ、ウロリチンM5とウロリチンEの組み合わせ、ウロリチンM6とウロリチンM7の組み合わせ、ウロリチンCとウロリチンAの組み合わせ、又はイソウロリチンAとウロリチンBの組み合わせである、〔2〕に記載の製造方法。
〔4〕前記第1のウロリチン類と前記第2のウロリチン類の組み合わせが、それぞれ、ウロリチンCとウロリチンAの組み合わせである、〔2〕または〔3〕に記載の製造方法。〔5〕前記ウロリチンCが、ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料から生成させて得られるものである、〔4〕に記載の製造方法。
〔6〕さらに下記工程(b1)を含み、前記工程(a)及び該工程(b1)が同一の系で行われる、〔4〕または〔5〕に記載の製造方法。
工程(b1):ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料からウロリチンCを生成させる工程
〔7〕前記ウロリチンCの原料からウロリチンCを生成する能力を有する微生物が、ゴルドニバクター(Gordonibacter)属に属する微生物又はエガセラ(Eggerthella)属に属する微生物である、〔5〕又は〔6〕に記載の製造方法。
〔8〕前記ゴルドニバクター(Gordonibacter)属に属する微生物が、ゴルドニバクター
・パメラエアエ(Gordonibacter pamelaeae)に属する微生物、ゴルドニバクター・ウロ
リチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物、及びゴルドニバクター・フィーシホミニス(Gordonibacter faecihominis)に属する微生物からなる群から選択される1以上の微生物である、〔7〕に記載の製造方法。
〔9〕前記ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)に属する微生
物が、ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)DSM 1937
8株である、〔8〕に記載の製造方法。
〔10〕前記ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物が、ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)DSM 27213株である、〔8〕または〔9〕に記載の製造方法。
〔11〕前記エガセラ(Eggerthella)属に属する微生物が、エガセラ・エスピー(Eggerthella sp.)DC 3563(NITE BP-02376)株である、〔8〕~〔10〕のいずれかに記載の製造方法。
〔12〕前記ウロリチンCの原料が、エラグ酸及び/又はエラジタンニンである、〔5〕~〔11〕のいずれかに記載の製造方法。
〔13〕気相が水素を含む環境下で工程(a)が行われる、〔2〕~〔12〕のいずれかに記載の製造方法。
〔14〕前記気相における前記水素の割合が0.5%以上20%以下である、〔13〕に記載の製造方法。
〔15〕前記ウロリチンCを含有する溶液が、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン及びそれらの類縁体からなる
包接化合物の群から選択される1種以上をさらに含む、〔4〕~〔14〕のいずれかに記載の製造方法。
〔16〕前記
包接化合物が、前記ウロリチンCに対してモル比の総量で0.1当量以上5.0当量以下である、〔15〕に記載の製造方法。
〔17〕前記工程(b1)において、前記ウロリチンCの原料を含有する溶液が、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン及びそれらの類縁体からなる
包接化合物の群から選択される1種以上をさらに含む、〔6〕~〔16〕のいずれかに記載の製造方法。
〔18〕前記
包接化合物が、前記エラグ酸及び/又はエラジタンニンの総量に対してモル比の総量で0.2当量以上10.0当量以下である、〔17〕に記載の製造方法。
〔19〕下記工程(a1)及び(c)を含むウロリチンAを含む飲食品の製造方法。
工程(a1):ウロリチンCを含有する溶液において、ウロリチンCからウロリチンAを生成する能力を有する微生物に、ウロリチンCからウロリチンAを生成させる工程
工程(c):前記工程(a1)で生成したウロリチンAと飲食品原料とを配合して飲食品とする工程
【発明の効果】
【0013】
本発明によれば、9位に水酸基を有するウロリチン類から該9位の水酸基を脱離して他のウロリチン類を製造する方法が提供できる。そして、本発明の製造方法により得られるウロリチン類を、化粧品、医薬部外品、医療用品、衛生用品、医薬品、飲食品(サプリメントを含む。)等に用いることにより、抗酸化、抗炎症、抗糖化、マイトファジーの促進作用などの効果を得ることが期待できる。また、9位に水酸基を有するウロリチン類から該9位の水酸基を脱離する能力を有する新規微生物の提供ができる。
【図面の簡単な説明】
【0014】
【
図1】本発明のクロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株を同定する際に行った系統解析の結果を示す図である。
【発明を実施するための形態】
【0015】
本明細書において、DSMとの文言から始まる菌株の受託番号は、DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) に保存されている微生物に付与された番号である。
【0016】
本発明は、新規微生物(第一の発明)とウロリチン類の製造方法(第二の発明)とウロリチン類を含む飲食品の製造方法(第三の発明)とを含む。
表1に、ウロリチン類の具体例を掲げる。
【0017】
【0018】
<1.新規微生物>
本発明の第一の発明は、新規微生物であるクロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株である。
当該菌株は、第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物であり、嫌気性の微生物である。当該菌株の菌学的性質は実施例に記載した通りである。
当該菌株の寄託について、出願人は、2018年5月8日付で、独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(〒292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に、NITE P-02708の受託番号で国内寄託された。
本明細書では、当該寄託菌株を「本菌株」と称することがある。
【0019】
<2.ウロリチン類の製造方法>
本発明の第二の発明であるウロリチン類の製造方法は、下記工程(a)を含むが、その他の工程を含んでもよい。
【0020】
(1)工程(a)
工程(a)は、下記一般式(1)で表される第1のウロリチン類を含有する溶液において、クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株に、第1のウロリチン類から下記一般式(2)で表される第2のウロリチ
ン類を生成させる工程である。
【0021】
【化3】
(式中、R
1乃至R
7は、それぞれ、水酸基、水素原子又はメトキシ基を表し、且つ、R
1乃至R
7のうち1つ以上は水酸基である。)
【0022】
【化4】
(式中、R
1乃至R
7は、それぞれ、前記一般式(1)で表される第1のウロリチン類のR
1乃至R
7と同一である。)
【0023】
第1のウロリチン類の具体例としては、ウロリチンC、ウロリチンD、ウロリチンM4、ウロリチンM5、ウロリチンM6、イソウロリチンA等が挙げられる。
第2のウロリチン類としては、前記第1のウロリチン類の9位の水酸基が脱離されていること以外は前記第1のウロリチン類と同一のものである。
本発明の第1のウロリチン類は、好ましくは、ウロリチンM5、ウロリチンM6、ウロリチンC、イソウロリチンAであり、このとき、本発明の第2のウロリチン類は、それぞれ、ウロリチンE、ウロリチンM7、ウロリチンA、ウロリチンBである。
【0024】
(第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物)
本発明の第二の発明における、第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物は、前記寄託菌株であるクロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株である。本発明の第二の発明における、第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物は、本菌株のみに限られず、本菌株と実質的に同等の菌株であってもよい。実質的に同等の菌株とは、第1のウロリチン類から第2のウロリチン類を生成する能力を有するクロストリジウム(Clostridium)属に属する微生物をいい、その16S rRNA遺伝子の塩基配列が、本菌株の16S rRNA遺伝子の塩基配列と97.5%以上、好ましくは98%以上、より好ましくは99%の相同性を有し、かつ、好ましくは本菌株と同一の菌学的性質を有する菌株である。さらに、第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物は、本発明の効果が損なわれない限り、本菌株又はそれと実質的に同等の菌株から、変異処理、遺伝子組換え、自然変異株の選択等によって育種された菌株であってもよい。このことは、本明細書に記載されている微生物すべてに適用される。
【0025】
(第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物の静止菌体)
本発明の第二の発明における、第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物は、その静止菌体を含む。静止菌体とは、培養した微生物から遠心分離等の操作により培地成分を取り除き、水や生理食塩水等の塩溶液、あるいは緩衝液で洗
浄し、洗浄液と同一の液に懸濁した菌体であって、増殖しない状態の菌体を指し、本発明の第二の発明においては、少なくとも、第1のウロリチン類から第2のウロリチン類を生成できる代謝系を有している菌体をいう。緩衝液としては、リン酸緩衝液、トリス-塩酸緩衝液、クエン酸-リン酸緩衝液、クエン酸緩衝液、MOPS緩衝液、酢酸緩衝液、グリシン緩衝液等が好ましい。緩衝液のpHや濃度は、常法に従い適宜調製したものを使用できる。
本明細書に記載されている微生物はいずれも静止菌体を含み、その定義は前記と同一である。
【0026】
(第1のウロリチン類を含有する溶液)
本発明の第二の発明における第1のウロリチン類を含有する溶液とは、該溶液において、本菌株に、第1のウロリチン類から第2のウロリチン類を生成させることができるものであれば特に制限されない。好ましくは培地であり、より好ましくは後述する「培地、及び培養による第2のウロリチン類の生成」欄に記載した培地である。また、本菌株が静止菌体である場合には、前述した塩溶液や緩衝液が好ましい。
尚、本明細書に記載されている「培地」とは、いずれも、最少培地を含む、微生物が増殖できる溶液をいい、微生物が増殖できない溶液、例えば、前述した塩溶液や緩衝液などを含まないものとする。
【0027】
該溶液へ第1のウロリチン類を添加する場合には、第2のウロリチン類の生成前に添加しても、その途中で添加してもよく、また、一括添加、逐次添加、連続添加でもよい。
溶液中の第1のウロリチン類の含有量は、通常0.01g/L以上、好ましくは0.1g/L以上、より好ましくは1g/L以上である。一方、通常100g/L以下、好ましくは20g/L以下、より好ましくは10g/L以下である。
【0028】
(培地、及び培養による第2のウロリチン類の生成)
工程(a)では、前記溶液が培地であることが好ましい。該培地は特に限定されないが、例えば、Oxoid社製のANAEROBE BASAL BROTH(ABB培地)、Oxoid社製のWilkins-Chalgren Anaerobe Broth(CM0643)、日水製薬株式会社製のGAM培地、変法GAM培地、ブレインハートインヒュージョン培地等を使用することができる。
【0029】
また、これらの培地に第1のウロリチン類から第2のウロリチン類を生成する酵素を誘導する誘導物質を添加することが好ましい。誘導物質としては、第1のウロリチン類、第2のウロリチン類、第1のウロリチン類及び第2のウロリチン類以外のウロリチン類、第1のウロリチン類の前駆体、第2のウロリチン類の前駆体、エラグ酸、エラグ酸の前駆体であるエラジタンニン等が挙げられる。誘導物質は1種でも2種以上であってもよい。また、誘導物質の前駆体から誘導物質を生産可能な微生物と、該誘導物質の前駆体とを混合培養し、誘導物質を培地中で生成させてもよい。具体的には、例えば、誘導物質としてウロリチンCを考えた場合に、エラグ酸(誘導物質であるウロリチンCの前駆体)からウロリチンC(誘導物質)を生産可能な微生物と、エラグ酸(誘導物質であるウロリチンCの前駆体)とを混合培養し、ウロリチンCを培地中で生産させてもよい。また、先のように、誘導物質の前駆体(すなわち、エラグ酸)自体が誘導物質であってもよい。
【0030】
また、培地に水溶性の有機物を炭素源として加えることができる。水溶性の有機物として、以下の化合物を挙げることができる。すなわち、グルコース、アラビノース、ソルビトール、フラクトース、マンノース、スクロース、トレハロース、キシロースなどの糖類;グリセロールなどのアルコール類;吉草酸、酪酸、プロピオン酸、酢酸、ギ酸、フマル酸などの有機酸類などを挙げることが出来る。
【0031】
炭素源としての培地に加える有機物の濃度は、効率的に発育させるために適宜調節する
ことができる。一般的には、0.1~10wt/vol%の範囲から添加量を選択することができる。
【0032】
前記の炭素源に加えて、培地に窒素源を加えることができる。窒素源としては通常の発酵に用いうる各種の窒素化合物を用いることができる。
好ましい無機窒素源として、アンモニウム塩、硝酸塩などを、より好ましくは、硫安、塩化アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、硝酸カリウム及び硝酸ソーダなどを挙げることが出来る。
また、有機窒素源としては、アミノ酸類、酵母エキス、ペプトン類(例えばポリペプトンN、大豆ペプトンなど)、肉エキス(例えばエールリッヒカツオエキス、ラブ-レムコ末、ブイヨンなど)、魚介類エキス、肝臓エキス、消化血清末、魚油などを挙げることが出来る。
【0033】
さらに、炭素源や窒素源に加えて、例えば、ビタミンなどの補因子や各種の塩類等の無機化合物を培地に加えることによって、増殖や活性を増強できる場合もある。たとえば無機化合物、ビタミン類、脂肪酸など、動植物由来の微生物増殖補助因子として以下のものを挙げることができる。
【0034】
無機化合物 ビタミン類
リン酸二水素カリウム ビオチン
硫酸マグネシウム 葉酸
硫酸マンガン ピリドキシン
塩化ナトリウム チアミン
塩化コバルト リボフラビン
塩化カルシウム ニコチン酸
硫酸亜鉛 パントテン酸
硫酸銅 ビタミンB12
明ばん チオオクト酸
モリブデン酸ソーダ p-アミノ安息香酸
塩化カリウム ビタミンK
ホウ酸等
塩化ニッケル
タングステン酸ナトリウム
セレン酸ナトリウム
硫酸第一鉄アンモニウム
酢酸ナトリウム三水和物
硫酸マグネシウム七水和物
硫酸マンガン四水和物
【0035】
また、培地中に、システイン、シスチン、硫化ナトリウム、亜硫酸塩、アスコルビン酸、グルタチオン、チオグリコール酸、ルチンなどの還元剤や、カタラーゼ、スーパーオキシドムターゼなどの活性酸素種を分解する酵素を添加することにより生育が良好になる可能性がある。
【0036】
培養中の気相、水相としては、空気もしくは酸素を含まないことが好ましく、例えば、窒素及び/又は水素を任意の比率で含むことや、窒素及び/又は二酸化炭素を任意の比率で含むことが挙げられ、水素を含む気相や水相であることが好ましい。気相における水素の割合は、第2のウロリチン類の生成が促進されることから、通常0.5%以上、好ましくは1.0%以上、より好ましくは2.0%以上であり、一方、通常100%以下、好ましくは20%以下、より好ましくは10%以下である。
培養中の気相や水相をこのような環境にする方法は特に制限されないが、例えば、培養前に前記ガスで気相を置換する方法、これに加えて、培養中も培養器の底部から供給する及び/又は培養器の気相部に供給する方法、培養前に前記ガスで水相をバブリングするなどの方法をとることが出来る。前記水素は、水素ガスをそのまま用いてもよい。また、培地にギ酸及び/又はその塩などの水素の原料を添加し、微生物の作用により培養中に水素を生成してもよい。
【0037】
通気量としては、0.005~2vvmが挙げられ、0.05~0.5vvmが好ましい。また、混合ガスはナノバブルとして供給することもできる。
培養温度は、20℃~45℃、より好ましくは25℃~40℃、さらに好ましくは30℃~37℃が好ましい。
培養器の加圧条件は、生育できる条件であれば特に限定されるものではないが、0.001~1MPaの範囲、好ましくは0.01~0.5MPaを挙げることができる。
培養時間としては、通常8~340時間、好ましくは12~170時間、より好ましくは16~120時間を挙げることが出来る。
【0038】
また、培養液に界面活性剤、吸着剤、包接化合物などを添加することにより、第2のウロリチン類の生成を促進できる場合がある。
界面活性剤としては、例えば、Tween 80等が挙げられ、0.001g/L以上10g/L以下程度添加することが出来る。
吸着剤としては、例えば、セルロース及びその誘導体;デキストリン;三菱化学株式会社製の疎水吸着剤であるダイアイオンHPシリーズやセパビーズシリーズ;オルガノ株式会社製のアンバーライトXADシリーズなどを挙げることができる。
【0039】
包接化合物としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、クラスターデキストリン(高度分岐環状デキストリン)のほか、これらの類縁体でもよく、例えば、メチル-β-シクロデキストリン、トリメチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンなどを挙げることができる。この中で、γ-シクロデキストリンが最も効果的である場合がある。また、2種以上の包接化合物を共存させることにより、第2のウロリチン類の生成を更に促進できる場合がある。
添加量としては、第1のウロリチン類に対し、モル比の総量で、通常0.1当量以上、好ましくは0.5当量以上、より好ましくは1.0当量以上であり、一方、通常5.0当量以下、好ましくは2.5当量以下、より好ましくは2.0当量以下である。
【0040】
(静止菌体による第2のウロリチン類の生成)
本菌株が静止菌体である場合の溶液は、前記培地の代わりに、前述した「第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物の静止菌体」欄に記載した塩溶液や緩衝液が好ましい。その他の条件については、前記「培地、及び培養による第2のウロリチン類の生成」欄の記載が援用される。
【0041】
(第1のウロリチン類)
本発明の第二の発明における第1のウロリチン類は、どのような方法により調製されたものでもよい。例えば、化学合成法や発酵法により合成したものが挙げられる。本発明の第二の発明で製造される第2のウロリチン類を飲食品として利用する場合には、飲食品もしくは飲食品素材を原料にして、発酵法や酵素法により調製した第1のウロリチン類を利用することが望ましい。
【0042】
化学合成法としては、非特許文献7の方法を挙げることができる。
発酵法としては、第1のウロリチン類の原料を含有する溶液において、第1のウロリチ
ン類の原料から第1のウロリチン類を生成する能力を有する微生物に、第1のウロリチン類の原料から生成させて得られるものが挙げられる。
【0043】
(工程(a)の前に含んでもよい工程)
発酵法により第1のウロリチン類を生成後、該第1のウロリチン類を分離及び/又は精製して、工程(a)の第1のウロリチン類として工程(a)に適用することも可能であるが、分離及び/又は精製せず、該第1のウロリチン類を含む溶液をそのまま、又は、希釈もしくは濃縮後に、工程(a)の第1のウロリチン類として工程(a)に適用することもできる。
【0044】
すなわち、本発明の第二の発明は、前記工程(a)の前に、該工程(a)が行われる系とは別の系で行われる、下記工程(pre-a´)及び(pre-a´´)をこの順に含んでもよく、又は、下記工程(pre-a´)及び(pre-a´´´)をこの順に含んでもよい。
工程(pre-a´):第1のウロリチン類の原料を含有する溶液において、第1のウロリチン類の原料から第1のウロリチン類を生成する能力を有する微生物に、第1のウロリチン類の原料から第1のウロリチン類を生成させる工程
工程(pre-a´´):工程(pre-a´)で生成した第1のウロリチン類を分離及び/又は精製し、該分離及び/又は精製された第1のウロリチン類を、工程(a)の第1のウロリチン類として、工程(a)に適用する工程
工程(pre-a´´´):工程(pre-a´)で生成した第1のウロリチン類を含む溶液をそのまま又は希釈もしくは濃縮後に、工程(a)の第1のウロリチン類として、工程(a)に適用する工程
【0045】
(2)工程(b)
本発明の第二の発明であるウロリチン類の製造方法は、前記工程(a)に加えて、さらに下記工程(b)を含み、前記工程(a)及び該工程(b)が同一の系で行われることが好ましい。
工程(b):第1のウロリチン類の原料を含有する溶液において、第1のウロリチン類の原料から第1のウロリチン類を生成する能力を有する微生物に、第1のウロリチン類の原料から第1のウロリチン類を生成させる工程
【0046】
(同一の系)
工程(a)及び(b)が同一の系で行われるとは、工程(b)において、第1のウロリチン類の原料を含有する溶液において、第1のウロリチン類の原料から第1のウロリチン類を生成する能力を有する微生物により、第1のウロリチン類の原料から第1のウロリチン類が生成されてから、該生成された第1のウロリチン類が工程(a)の第1のウロリチン類としてそのまま用いられて、工程(a)において第2のウロリチン類が生成されるまでの一連の流れが、同一の系で連続して行われることをいう。すなわち、工程(b)と工程(a)の間に、例えば、工程(b)で生成した第1のウロリチン類を分離及び/又は精製する工程などを含まないことをいう。
【0047】
具体的には、第1のウロリチン類の原料から第1のウロリチン類を生成する能力を有する微生物と本菌株とを同じ培養液に植菌し、培養することにより、第2のウロリチン類を生成することなどが挙げられる。両微生物は同一の微生物でもよいし、異なる微生物でもよい。
尚、第1のウロリチン類がウロリチンCである場合、前記工程(b)を工程(b1)と読み替えるものとする。
【0048】
(第1のウロリチン類の原料)
第1のウロリチン類の原料は、どのような方法により調製されたものでもよい。また、第1のウロリチン類の原料の原料、さらにはその原料、それ以降についても同様である。
第1のウロリチン類の原料としては、例えば、化学合成法や発酵法により合成したものが挙げられる。本発明の第二の発明で製造される第2のウロリチン類を飲食品として利用する場合には、発酵法や酵素法により得られた第1のウロリチン類の原料を利用することが望ましい。
化学合成法としては、非特許文献7の方法を挙げることができる。
発酵法としては、第1のウロリチン類の原料の原料を含有する溶液において、第1のウロリチン類の原料の原料から第1のウロリチン類の原料を生成する能力を有する微生物に、第1のウロリチン類の原料の原料から生成させて得られる第1のウロリチン類の原料が挙げられる。
【0049】
(その他の工程)
本発明の第二の発明は、例えば、得られた第2のウロリチン類を定量する工程を含んでもよい。定量方法は常法に従うことができる。例えば、培養液に、必要に応じてギ酸などの酸を添加した酢酸エチルを加えて、激しく撹拌した後に遠心し、酢酸エチル層を取り出す。必要に応じて同様の操作を数回行い、それら酢酸エチル層を合わせてウロリチン類抽出液を得る。この抽出液をエバポレーターなどを用いて減圧下に濃縮、乾固し、メタノールに溶解させる。これをポリテトラフルオロエチレン(PTFE)膜などの膜を使用して濾過し、不溶物を除去したものを高速液体クロマトグラフィー定量する。高速液体クロマトグラフィーの条件としては、例えば以下が挙げられるが、これに限定されない。
【0050】
[高速液体クロマトグラフィー条件]
カラム:Inertsil ODS-3(250×4.6mm)(GL Science社製)
溶離液:水/アセトニトリル/酢酸=74/25/1
流速:1.0mL/min
カラム温度:40℃
検出:305nm
【0051】
また、本発明の第二の発明は、前記工程で得られた第2のウロリチン類を精製する工程や、濃縮する工程を含んでもよい。精製工程における精製処理としては、熱等による微生物の殺菌;精密濾過(MF)、限外濾過(UF)などによる除菌;固形物、高分子物質の除去;有機溶媒やイオン性液体などによる抽出;疎水性吸着剤、イオン交換樹脂、活性炭カラム等を用いた吸着、脱色といった処理を行うことができる。また、濃縮工程における濃縮処理としては、エバポレーター、逆浸透膜等による濃縮が挙げられる。
さらに、第2のウロリチン類を含む溶液は、凍結乾燥、噴霧乾燥などにより粉末化することもできる。粉末化においては、ラクトース、デキストリン、コーンスターチ等の賦形剤を添加することもできる。
【0052】
<好ましい一実施態様>
以下では、本発明の好ましい一実施態様を記載する。
本実施態様は、第1のウロリチン類がウロリチンCであり、第2のウロリチン類がウロリチンAである場合の態様である。
すなわち、下記工程(a1)を含む、ウロリチンAの製造方法である。
工程(a1):ウロリチンCを含有する溶液において、クロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株に、ウロリチンCからウロリチンAを生成させる工程
【0053】
(培地、及び培養によるウロリチンAの生成)
本実施態様における包接化合物としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、クラスターデキストリン(高度分岐環状デキストリン)のほか、これらの類縁体でもよく、例えば、メチル-β-シクロデキストリン、トリメチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンなどを挙げることができる。特に、γ-シクロデキストリンが最も効果的であり、α-シクロデキストリン、β-シクロデキストリン、メチル-β-シクロデキストリン、トリメチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンも効果を有している。また、2種以上の包接化合物を共存させることにより、ウロリチンAの生成を更に促進できる場合がある。
【0054】
(ウロリチンCの原料)
ウロリチンCの原料としては、例えば、エラグ酸;該エラグ酸の前駆体である、プニカラジン、ゲラニインなどのエラジタンニン;ウロリチンM5;ウロリチンCの前駆体である、ウロリチンDやウロリチンM6などが挙げられる。好ましくは、エラグ酸及び/又はエラジタンニンである。
エラグ酸やエラジタンニンを生産する植物としては特に制限はないが、例えば、ザクロ、ラズベリー、ブラックベリー、クラウドベリー、ボイセンベリー、イチゴ、クルミ、ゲンノショウコ等が挙げられる。このうち、エラグ酸及び/又はエラジタンニンを高含有していることから、ザクロ、ボイセンベリー、ゲンノショウコが好ましく、ザクロがより好ましい。
ウロリチンCの原料は、ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料からウロリチンCを生成させられるならばいずれでもよく、また、1種でも2種以上でもよい。
【0055】
(ウロリチンCを生成する能力を有する微生物)
本実施態様における、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物は、特に制限されない。例えば、ゴルドニバクター(Gordonibacter)属に属する微生物や、エガセラ(Eggerthella)属に属する微生物が好ましい。
ゴルドニバクター(Gordonibacter)属に属する微生物の中では、ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)に属する微生物や、ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物、ゴルドニバクター・フィーシホミニス(Gordonibacter faecihominis)に属する微生物がより好ましい。
さらに、ゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)に属する微生物であれば、DSM 19378株がさらに好ましく、ゴルドニバクター・ウロリチンファシエンス(Gordonibacter urolithinfaciens)に属する微生物であれば、DSM 27213株がさらに好ましい。
エガセラ(Eggerthella)属に属する微生物とは、エガセラ・エスピー(Eggerthella sp.)に属する微生物と同義であり、その中では、エガセラ・エスピー(Eggerthella sp.)DC 3563(NITE BP-02376)株がより好ましい。
以上の微生物は、属、種、株に拘らず、1種でも2種以上を用いてもよい。
尚、エガセラ・エスピー(Eggerthella sp.)DC 3563(NITE BP-02376)の受託番号が付与された菌株は、2016年11月11日付で、独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(〒292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に、ブダペスト条約に基づく国際寄託がなされたものである。
【0056】
(ウロリチンCを生成する能力を有する微生物の静止菌体)
ウロリチンCを生成する能力を有する微生物は、その静止菌体を含む。静止菌体については、前記「第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物の静止菌体」の記載が援用される。
【0057】
(ウロリチンCの原料を含有する溶液)
ウロリチンCの原料を含有する溶液とは、該溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料からウロリチンCを生成させることができるものであれば特に制限されない。好ましくは培地であり、より好ましくは前述した「培地、及び培養による第2のウロリチン類の生成」欄の培地である。静止菌体である場合には、前述した塩溶液や緩衝液が好ましい。
溶液中のウロリチンCの原料の含有量としては、通常0.01g/L以上、好ましくは0.1g/L以上、より好ましくは1.0g/L以上である。一方、通常100g/L以下、好ましくは20g/L以下、より好ましくは10g/L以下である。
【0058】
(培地、及び培養によるウロリチンCの生成)
ウロリチンCの原料を含有する溶液において、ウロリチンCの原料からウロリチンCを生成する能力を有する微生物に、ウロリチンCの原料からウロリチンCを生成させる場合、前記溶液は培地であることが好ましい。より好ましい培地や、培養条件等の詳細は、前述した「培地、及び培養による第2のウロリチン類の生成」欄の記載が援用される。
【0059】
前記同様、培養液に界面活性剤、吸着剤、包接化合物などを添加することにより、ウロリチンCの生成を促進できる場合がある。包接化合物としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、クラスターデキストリン(高度分岐環状デキストリン)のほか、これらの類縁体でもよく、例えば、メチル-β-シクロデキストリン、トリメチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンなどを挙げることができる。特に、γ-シクロデキストリンが最も効果的であり、α-シクロデキストリン、β-シクロデキストリン、メチル-β-シクロデキストリン、トリメチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンも効果を有している。また、2種以上の包接化合物を共存させることにより、
ウロリチンCの生成を更に促進できる場合がある。
添加量としては、ウロリチンCの原料の総量に対し、モル比の総量で、通常0.2当量以上、好ましくは1.0当量以上、より好ましくは2.0当量以上であり、一方、通常10.0当量以下、好ましくは5.0当量以下、より好ましくは4.0当量以下である。
【0060】
(静止菌体によるウロリチンCの生成)
ウロリチンCの原料からウロリチンCを生成する能力を有する微生物が静止菌体である場合の溶液は、培地の代わりに、前述した「第1のウロリチン類から第2のウロリチン類を生成する能力を有する微生物の静止菌体」欄に記載した塩溶液や緩衝液が好ましい。その他の条件については、前記「培地、及び培養による第2のウロリチン類の生成」欄の記載が援用される。
【0061】
<3.第2のウロリチン類を含む飲食品の製造方法>
本発明の第三の発明である、第2のウロリチン類を含む飲食品の製造方法は、前記工程(a)及び下記工程(c)を含むが、その他の工程を含んでもよい。尚、本発明の第三の発明で製造される飲食品は、サプリメントを含む。サプリメントとは、dietary supplementからなる飲食品区分の1つである。
【0062】
(1)工程(a)
工程(a)については、前述した本発明の第二の発明における工程(a)の記載が援用される。
【0063】
(2)工程(c)
工程(c)は、前記工程(a)で生成した第2のウロリチン類と飲食品原料とを配合し
て飲食品とする工程である。該飲食品は、常法に従い、通常用いられる飲食品原料と前記工程(a)で生成した第2のウロリチン類とを配合することにより製造され、その配合時期は特に制限されない。また、飲食品原料には食品添加物も含まれる。さらに、必要に応じて、瓶、袋、缶、箱、パック等の適宜の容器に封入することができる。
【0064】
本発明の第三の発明で製造される飲食品は、水、タンパク質、糖質、脂質、ビタミン類、ミネラル類、有機酸、有機塩基、果汁、フレーバー類等を主成分とするものであってよい。
タンパク質としては、例えば、全脂粉乳、脱脂粉乳、部分脱脂粉乳、カゼイン、大豆タンパク質、鶏卵タンパク質、肉タンパク質等の動植物性タンパク質、及びこれらの加水分解物、バターなどが挙げられる。
糖質としては、糖類、加工澱粉(デキストリンのほか、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等)、食物繊維などが挙げられる。
脂質としては、例えば、ラード、サフラワー油、コーン油、ナタネ油、ヤシ油、魚油、これらの分別油、水素添加油、エステル交換油等の植物性油脂などが挙げられる。
ビタミン類としては、例えば、ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビオチン、イノシトール、コリン、葉酸などが挙げられる。
ミネラル類としては、例えば、カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレン、乳清ミネラルなどが挙げられる。
有機酸としては、例えば、リンゴ酸、クエン酸、乳酸、酒石酸などが挙げられる。
これらの成分は、2種以上を組み合わせて使用してもよく、合成品であってもよい。
【0065】
本発明の第三の発明で製造される飲食品の全量に対する前記工程(a)で生成した第2のウロリチン類の含有量は、特に制限されないが、該飲食品を摂取した場合に、抗酸化、抗炎症、抗糖化、マイトファジー促進作用などの第2のウロリチン類による効果を得ることできる含有量であることが好ましい。
飲食品全量に対する第2のウロリチン類の含有量は、通常0.0001質量%以上、好ましくは0.001質量%以上、より好ましくは0.01質量%以上であり、また、通常10質量%以下、好ましくは1質量%以下、より好ましくは0.1質量%以下である。
【0066】
飲食品がサプリメントである場合、その形態は、固形物、ゲル状物、液状物の何れの形態であってもよく、例えば、各種加工飲食品、粉末、錠剤、丸剤、カプセル、ゼリー、顆粒等の形態にすることができる。さらに、必要に応じて、瓶、袋、缶、箱、パック等の適宜の容器に封入することができる。
【0067】
また、サプリメントには、デキストリン等の賦形剤、ビタミンC等の保存剤、バニリン等の嬌味剤、ベニバナ色素等の色素、単糖、オリゴ糖および多糖類(例、グルコース、フルクトース、スクロース、サッカロース、およびこれらを含有する糖質)、酸味料、香料、油脂、乳化剤、全脂粉乳、または寒天などの添加剤を配合していてもよい。これらの成分は、2種以上を組み合わせて使用してもよく、合成品であってもよい。
【実施例】
【0068】
以下、具体的な実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0069】
[実施例1]細菌の分離
ヒト糞便、変法GAM培地(日水薬品社製)10mL、及びエラグ酸10mgを、気相をH2:N2(80%/20%)ガスで置換したブチルゴム栓付き20mL容ガラス瓶に加え、37℃、1週間培養した。培養液を1020倍まで段階的に希釈し、前記条件でさ
らに培養を行った(希釈培養)。培養液1mlに対して等量のDMSOを用いて生成物を抽出し、後述する条件のHPLCでウロリチン類の分析を行った。ウロリチンAが検出された最も高次の希釈培養液について、前記方法で繰り返し希釈培養を複数回行い、ウロリチンAを生産する微生物の集積化を行った。集積培養液100μlを変法GAM寒天培地に塗布し、Anoxomatt(Advanced Instruments社製)を用いて37℃で3日間嫌気培養を行った。出現したコロニーを釣菌し、前記培地で培養し、ウロリチンCからウロリチンAを生成する微生物を分離した。
【0070】
[実施例2]ウロリチンA生成能の確認方法
得られた微生物を、前記の培地でゴルドニバクター・パメラエアエ(Gordonibacter pamelaeae)DSM 19378株と共培養した後、培養液5mLに対して等量の酢酸エチルでウロリチン類を抽出し、得られた酢酸エチル相を減圧濃縮し、乾固した。このようにして得た乾固物をメタノール0.5mLに再溶解し、HPLCによりウロリチン類の定量分析を行った。
【0071】
HPLCは以下に記載の条件で行った。DALTON PHARMA社製のウロリチン類を標品として用い、DMSOに溶解して用いた。
<HPLC分析条件>
カラム:Inertsil ODS-3(250×4.6mm)(GL Science社製)
溶離液:水/アセトニトリル/酢酸=74/25/1
流速:1.0mL/min
カラム温度:40℃
検出:305nm
【0072】
[実施例3]系統学的同定
得られた微生物について、細菌の系統学的分類に最も有効な分子マーカーとして利用されている、16SリボソームRNA遺伝子の塩基配列(16S rDNAの塩基配列)の相同性解析を行った。得られた微生物の16S rDNAの塩基配列をABI PRISM 3130 xl
Genetic Analyzer System(アプライドバイオシステムズ)にて解析した。決定した得られた微生物の16S rDNAの塩基配列を配列番号1とする。
微生物同定用DNAデータベースに対するBLAST相同性検索の結果、得られた微生物の16S rDNAの塩基配列は、クロストリジウム(Clostridium)属の16S rDNAの塩基配列に対して高い相同性(類似度)を示した。得られた微生物は、特に、クロストリジウム・ラバレンス(Clostridium lavalense)と相同性が最も高かった。相同性検索の結果を表2に示す。
【0073】
【0074】
得られた微生物とこれに近縁な種の16S rDNAの塩基配列を用いて系統樹の作製
を行ったところ、得られた微生物は既知種の中で単独のクラスターを形成したことから、クロストリジウム・ラバレンスとは異なる種であることが示唆された。系統解析の結果を
図1に示す。
【0075】
得られた微生物について、生化学的・生理学的性状テスト(API120AおよびAPI ZYM、ビオメリュー・ジャパン)および生育温度試験を行った。参考にした文献は、Syst. Appl. Microbiol., 29, 292-299 (2006)と、Int. J. Syst. Evol. Microbiol., 59, 498-503 (2009)である。得られた微生物とその近縁種について生化学的・生理学的性質を比較した結果を表3に示した。
【0076】
【0077】
得られた微生物は、クロストリジウム・ラバレンス(Clostridium lavalense)と16S rRNA遺伝子の塩基配列の相同性が99.0%であったが、系統解析、生化学的・生理学的試験による同定の結果、クロストリジウム・ラバレンスと異なる性質を持つことから、クロストリジウム属に属する微生物の新菌種と判断されたので、この単離菌株をクロストリジウム・エスピー(Clostridium sp.)DC 3656(NITE P-02708)株と名付けた。尚、種と16S rRNA遺伝子の塩基配列の相同性との関係についての知見としては、例えば、Microbiol. Today, 33, 152-155 (2006)などがある。
【0078】
[実施例4]
ABB培地(Oxoid社製)に、基質としてウロリチン骨格の9位に水酸基を有するウロリチンCを添加した後、加熱滅菌し、気相をN2:CO2:H2(80%/10%/
10%)ガスで置換したものを培地として用いた。ウロリチンCを終濃度1.0g/Lで含む該培地に、クロストリジウム・エスピーDC 3656株を植菌し、37℃で嫌気的に5日間培養した。培養終了後、培養液を前記の分析条件で分析した結果、9位に水酸基を有するウロリチン類であるウロリチンCから、該9位の水酸基が脱離したウロリチン類であるウロリチンAが89%のモル収率で生成した。
【0079】
[実施例5]
0.1%エラグ酸(SIGMA社製)を含むABB培地(Oxoid社製)に、クロストリジウム・エスピーDC 3656株及びゴルドニバクター・パメラエアエDSM 19378株を植菌し、実施例4と同様に培養した結果、5日間の培養により、添加したエラグ酸の83%がウロリチンAに変換された。
【0080】
[実施例6]
クロストリジウム・エスピーDC 3656株及びゴルドニバクター・ウロリチンファシエンスDSM 27213株を用いたこと以外は実施例4と同様に培養した結果、5日間の培養により、添加したエラグ酸の38%がウロリチンAに変換された。
【産業上の利用可能性】
【0081】
本発明によれば、9位に水酸基を有するウロリチン類から該9位の水酸基が脱離された他のウロリチン類を製造することができる。
製造されたウロリチン類は、化粧品、医薬部外品、医療用品、衛生用品、医薬品、飲食品(サプリメントを含む。)等は、抗酸化、抗炎症、抗糖化等のために用いられる。
【0082】
本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
【配列表】