IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テキサス インスツルメンツ インコーポレイテッドの特許一覧

<>
  • 特許-レーダーシステムにおけるノイズ測定 図1A
  • 特許-レーダーシステムにおけるノイズ測定 図1B
  • 特許-レーダーシステムにおけるノイズ測定 図2A
  • 特許-レーダーシステムにおけるノイズ測定 図2B
  • 特許-レーダーシステムにおけるノイズ測定 図2C
  • 特許-レーダーシステムにおけるノイズ測定 図3A
  • 特許-レーダーシステムにおけるノイズ測定 図3B
  • 特許-レーダーシステムにおけるノイズ測定 図4
  • 特許-レーダーシステムにおけるノイズ測定 図5
  • 特許-レーダーシステムにおけるノイズ測定 図6
  • 特許-レーダーシステムにおけるノイズ測定 図7
  • 特許-レーダーシステムにおけるノイズ測定 図8
  • 特許-レーダーシステムにおけるノイズ測定 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-17
(45)【発行日】2023-01-25
(54)【発明の名称】レーダーシステムにおけるノイズ測定
(51)【国際特許分類】
   G01S 7/40 20060101AFI20230118BHJP
   G01S 13/34 20060101ALI20230118BHJP
【FI】
G01S7/40 108
G01S13/34
【請求項の数】 14
(21)【出願番号】P 2020507551
(86)(22)【出願日】2018-08-08
(65)【公表番号】
(43)【公表日】2020-10-22
(86)【国際出願番号】 US2018045877
(87)【国際公開番号】W WO2019032752
(87)【国際公開日】2019-02-14
【審査請求日】2021-08-09
(31)【優先権主張番号】62/542,665
(32)【優先日】2017-08-08
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/057,152
(32)【優先日】2018-08-07
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【弁護士】
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】サマラ ストリーキラン
(72)【発明者】
【氏名】クリシュナンシュ ダンドゥ
(72)【発明者】
【氏名】ロス クラク
【審査官】▲高▼場 正光
(56)【参考文献】
【文献】国際公開第2016/031108(WO,A1)
【文献】国際公開第2016/168334(WO,A1)
【文献】米国特許出願公開第2017/0153318(US,A1)
【文献】COOPER, Ken B. 外1名,“Residual phase noise and transmit/receive isolation in a submillimeter-wave FMCW radar”,2014 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM,2014年07月10日,4 Pages,<doi: 10.1109/MWSYM.2014.6848268 >
【文献】SARKAS, I. 外4名,“Second generation transceivers for d-band radar and data communication applications”,2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM,2010年07月23日,Pages 1328-1331,<doi: 10.1109/MWSYM.2010.5517925 >
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - G01S 7/42
G01S 13/00 - G01S 13/95
JSTPlus(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
レーダーシステムであって、
トランスミッタであって、増幅された信号を生成するために局部発振(LO)信号を増幅するように構成される第1の増幅器を含む、前記トランスミッタと、
前記増幅された信号を位相シフトするように構成される可変位相シフタと、
レシーバであって、
前記LO信号に基づいてI信号を生成し、前記LO信号に基づいてQ信号を生成するように構成されるIQ生成器と、
レシーバ信号を生成するためにループバックされた信号を増幅するように構成される第2の増幅器と、
ベースバンドI信号を生成するために前記レシーバ信号と前記I信号とを混合するように構成される第1のミキサーと、
ベースバンドQ信号を生成するために前記レシーバ信号と前記Q信号とを混合するように構成される第2のミキサーと、
ノイズ電力推定器であって、
前記ベースバンドI信号に基づいて各々が複数の位相のそれぞれの1つに対応する前記ベースバンドI信号のIノイズ値を測定し、
前記ベースバンドQ信号に基づいて各々が前記複数の位相のそれぞれの1つに対応する前記ベースバンドQ信号のQノイズ値を測定し、
前記Iノイズ値と前記Qノイズ値との最大ノイズ値を判定し、
前記Iノイズ値と前記Qノイズ値との最小ノイズ値を判定し、
前記最大ノイズ値に基づいて無相関位相ノイズを計算し、
前記最小ノイズ値に基づいて振幅ノイズを計算する、
ように構成される、前記ノイズ電力推定器と、
を含む、前記レシーバと、
前記増幅された信号を前記トランスミッタから前記レシーバへ前記ループバックされた信号として誘導するように構成される導波路ループバックと、
を含む、レーダーシステム。
【請求項2】
請求項1に記載のレーダーシステムであって、
前記可変位相シフタが前記導波路ループバックの一部である、レーダーシステム。
【請求項3】
請求項1に記載のレーダーシステムであって、
前記可変位相シフタが前記トランスミッタの一部である、レーダーシステム。
【請求項4】
請求項3に記載のレーダーシステムであって、
前記ノイズ電力推定器が、
前記複数の位相を判定し、
前記複数の位相に対応する複数の位相シフト表示を前記可変位相シフタに送信する、
ように更に構成される、レーダーシステム。
【請求項5】
請求項4に記載のレーダーシステムであって、
前記ノイズ電力推定器が、
前記最小ノイズ値に対応する最小ノイズ位相シフトを判定し、
ノイズを低減するための前記最小ノイズ位相シフトを示す最小ノイズ位相シフト表示を前記可変位相シフタに送信する、
ように更に構成される、レーダーシステム。
【請求項6】
請求項1に記載のレーダーシステムであって、
前記ノイズ電力推定器が、位相シフトインジケータを前記可変位相シフタに送信するように更に構成され、前記位相シフトインジケータが、前記複数の位相に対して5度より小さいステップに対応する、レーダーシステム。
【請求項7】
方法であって、
増幅器によって局部発振(LO)信号を増幅することと、
レーダーシステムの可変位相シフタによって前記増幅されたLO信号に位相シフトを設定して増幅されてループバックされた位相シフトされたレーダー信号として提供することと、
プロセッサによってベースバンドI信号に対するIノイズ値を測定することであって、前記Iノイズ値の各々が前記増幅されてループバックされて位相シフトされたレーダー信号の複数の位相のそれぞれの1つに対応する、前記Iノイズ値を測定することと、
前記プロセッサによってベースバンドQ信号に対するQノイズ値を測定することであって、前記Qノイズ値の各々が前記増幅されてループバックされて位相シフトされたレーダー信号の複数の位相のそれぞれの1つに対応する、前記Qノイズ値を測定することと、
前記Iノイズ値と前記Qノイズ値との最大ノイズ値を判定することと、
前記Iノイズ値と前記Qノイズ値との最小ノイズ値を判定することと、
前記最大ノイズ値に基づいて無相関位相ノイズを判定することと、
前記最小ノイズ値に基づいて振幅ノイズを判定することと、
を含む、方法。
【請求項8】
請求項に記載の方法であって、
前記プロセッサが前記レーダーシステムのノイズ電力推定器である、方法。
【請求項9】
請求項に記載の方法であって、
前記レーダーシステムの増幅器の入力における電力値を測定することと、
前記増幅器の入力における前記電力値と、前記最大ノイズ値と、前記レーダーシステムのレシーバのレシーバ利得とに基づいて、総無相関位相ノイズを判定することであって、前記レシーバが前記増幅器を含む、前記総無相関位相ノイズを判定することと、
を更に含む、方法。
【請求項10】
請求項に記載の方法であって、
局部発振器(LO)信号の位相ノイズを測定することと、
前記レーダーシステムの導波路ループバックの遅延と、前記LO信号の前記位相ノイズと、オフセット周波数とに基づいて、シンセサイザ無相関位相ノイズを判定することと、
を更に含む、方法。
【請求項11】
請求項10に記載の方法であって、
前記総無相関位相ノイズに基づいて及び前記シンセサイザ無相関位相ノイズに基づいてミリメートル波(mmwave)ノイズを判定することを更に含む、方法。
【請求項12】
請求項10に記載の方法であって、
前記振幅ノイズを判定することが、前記増幅器の入力における前記ノイズ値と、前記レシーバ利得とに基づく、方法。
【請求項13】
請求項に記載の方法であって、
前記最小ノイズ値に対応する最小ノイズ位相シフトを選択することを更に含む、方法。
【請求項14】
請求項7に記載の方法であって、
前記位相シフトを設定することが、前記位相シフトに対しいて5度より小さいステップを設定することを含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願はノイズ測定に関し、より詳細には、レーダーシステムにおけるノイズ測定に関する。
【背景技術】
【0002】
先進の安全機能に推進されて、オートモティブ産業は、自動車に配備されるセンサやそれに対応するコンピューティング能力の使用を増加させている。衝突警報及び回避、アダプティブクルーズコントロール、車線維持、並びに自動駐車などの多くの応用例において、意思決定及び始動には、周囲をリアルタイムに正確に知覚することが必要である。自動車の周囲についての情報を把握するために、レーダーシステムが用いられ得る。
【0003】
レーダーシステムにおいて、トランスミッタがレーダー信号を送信する。その後、レシーバが、送信された信号のエコーを受信する。エコーは、範囲、速度、ターゲットの大きさ、ターゲットの形状、及び角度方向を含め、オブジェクトを感知するために用いられる。受信されたエコー信号は、例えば、振幅ノイズ、無相関位相ノイズ、及び相関位相ノイズなどのノイズを含む。レーダーシステムにおいて、振幅ノイズ及び無相関位相ノイズを測定することが望ましい。
【発明の概要】
【0004】
或る実施形態のレーダーシステムが、増幅された信号を生成するため、局部発振器(LO)信号を増幅するための電力増幅器(PA)を含むトランスミッタを含む。また、レーダーシステムはレシーバを含み、レシーバは、LO信号に基づいてI信号を生成し、LO信号に基づいてQ信号を生成するためのIQ生成器と、レシーバ信号を生成するため、ループバックされた信号を増幅するための低ノイズ増幅器(LNA)とを含む。また、レシーバは、ベースバンドI信号を生成するため、レシーバ信号及びI信号を混合するための第1のミキサーと、ベースバンドQ信号を生成するため、レシーバ信号及びQ信号を混合するための第2のミキサーとを含む。また、レーダーシステムは、増幅された信号を、ループバックされた信号として、トランスミッタからレシーバへ誘導するための導波路ループバックを含む。
【0005】
レーダーシステムにおけるノイズを測定する或る実施形態の方法が、レーダーシステムの可変位相シフタの位相シフトを設定すること、及び、測定されたI信号を生成するため、プロセッサによって、位相シフトを有する、増幅されループバックされ位相シフトされたレーダー信号のベースバンドI成分を測定することを含む。また、この方法は、測定されたQ信号を生成するため、プロセッサによって、位相シフトを有する、増幅されループバックされ位相シフトされたレーダー信号のベースバンドQ成分を測定することを含む。
【0006】
或る実施形態のレーダーシステムが、電力増幅器(PA)、及び、電力増幅器に結合される可変位相シフタを含む。また、レーダーシステムは、低ノイズ増幅器(LNA)と、PA及びLNAを結合する導波路ループバックとを含む。また、レーダーシステムは、LNAに結合される第1の周波数ミキサー、LNAに結合される第2の周波数ミキサー、並びに、第1の周波数ミキサー及び第2の周波数ミキサーに結合されるIQ生成器を含む。
【図面の簡単な説明】
【0007】
図1A】或る例示のレーダーシステムにおける振幅ノイズ及び位相ノイズの例を図示する。
図1B】或る例示のレーダーシステムにおける振幅ノイズ及び位相ノイズの例を図示する。
【0008】
図2A】リフレクタの無い例示のレーダーシステムを図示する。
図2B】リフレクタの無い例示のレーダーシステムを図示する。
図2C】リフレクタの無い例示のレーダーシステムを図示する。
【0009】
図3A】リフレクタを備える例示のレーダーシステムを図示する。
図3B】リフレクタを備える例示のレーダーシステムを図示する。
【0010】
図4】振幅ノイズ及び無相関位相ノイズを測定するための導波路ループバックを備える例示のレーダーシステムを図示する。
【0011】
図5】導波路ループバックを備える或る例示のレーダーシステムにおけるノイズのグラフを図示する。
【0012】
図6】振幅ノイズ及び無相関位相ノイズを測定するための導波路ループバックを備える別の例示のレーダーシステムを図示する。
【0013】
図7】導波路ループバックを備えるレーダーシステムにおいて振幅ノイズ及び位相ノイズを測定する例示の方法のフローチャートを図示する。
【0014】
図8】導波路ループバックを備えるレーダーシステムにおいて振幅ノイズ及び位相ノイズを測定する別の例示の方法のフローチャートを図示する。
【0015】
図9】例示のコンピューティングデバイスを図示する。
【発明を実施するための形態】
【0016】
レーダーシステムなどのシステムは、振幅ノイズ(AN)、無相関位相ノイズ(UPN)、及びsynthノイズとしても知られる相関位相ノイズを含む、種々のタイプのノイズを含む。ノイズを含む信号の一例は、
V(t)=A(1+ΔA)cos(ωt+φ(t)+φ(t))
であり、ここで、V(t)は信号であり、Aは信号の振幅であり、ΔAは振幅ノイズであり、ωはキャリア周波数であり、tは時間であり、φは無相関位相ノイズであり、φは相関位相ノイズである。
【0017】
図1A及び図1Bは、或る例示のレーダーシステムにおける振幅ノイズ及び位相ノイズの例を図示する。図1Aは、例示のレーダーシステムの振幅ノイズ102を示すグラフ100を図示する。アジレント(Agilent)(商標)5052Bシグナルソースアナライザ(商標)が、振幅ノイズ102を測定する。VDI(商標)ヘッドによって制限される1MHzオフセット及びノイズフロアの状態で測定されると、振幅ノイズ102は-136dBc/Hzである。異なるレーダーシステムが、異なる量の振幅ノイズを有し得る。上述したように、測定は、ダウンコンバージョンのために用いられるVDIのヘッドのノイズフロアによって制限されるので、アジレント(商標)5052Bシグナルソースアナライザ(商標)によって測定される振幅ノイズは、システム振幅ノイズの真の表示ではない。
【0018】
図1Bは、相関位相ノイズ112及び無相関位相ノイズ114を含む位相ノイズを示すグラフ110を図示する。アジレント(商標)5052Bシグナルソースアナライザ(商標)が、相関位相ノイズ112を測定した。相関位相ノイズが無相関位相ノイズを支配するので、無相関位相ノイズ114は測定され得ず、従って、導出または計算される。
【0019】
レーダーシステムにおいて、振幅ノイズ及び無相関位相ノイズが、性能にとって特に重要であり得る。有限の送信(TX)/受信(RX)隔離に起因して、バンパー反射が、TX振幅ノイズ及び無相関位相ノイズがレシーバに漏れることを引き起こし得、これが、受信されるノイズフロアを劣化させる。また、大きな信号条件下の受信は、ノイズフロアがフリッカーアップコンバージョンによってひどく劣化されることを引き起こし得る。こうした問題の重要性を理解するため及びノイズを低減するために、レーダーシステムにおける振幅ノイズ及び無相関位相ノイズを正確に測定することが望ましい。
【0020】
レーダーシステムの一つのタイプは、連続波(CW)レーダーシステムである。CWレーダーシステムにおいて、トランスミッタが連続波無線エネルギーを送信し、レシーバがオブジェクトからの反射を受信する。送信が連続的なので、CWレーダーは、ドップラーシフトを用い、電力を最大化する。CWレーダーは、変調されなくてもよく又は周波数変調されてもよい。変調されないCWレーダーは、オブジェクトの動きを検出するが、オブジェクトの距離を測定することはできない。周波数変調された連続波(FMCW)レーダーは、オブジェクトの距離及び速度を判定するための短/中/長レンジ測定レーダーである。FMCWレーダーにおいて、送信信号は、のこぎり歯パターンの時間-周波数特性を有する線形FMCWチャープシーケンスである。FMCWレーダーは、先進運転支援システム(ADAS)において有用である。FMCWレーダーシステムにおいて、所定の安定した周波数の送信信号は、変調信号により、一定の時間期間にわたって周波数が変化する。受信信号と送信信号との間の周波数差は、遅延と共に、及びそれゆえ距離と共に、増加する。
【0021】
或る例示のレーダーシステムは、振幅ノイズ及び無相関位相ノイズを測定するために導波路ループバックを用いる。或る例は、外部機器を必要とすることなく、振幅ノイズ及び無相関位相ノイズを測定する。或る実施形態は、ミリメートルレンジの波長のレーダー信号を送信するFMCWレーダー通信トランシーバによって用いられる。
【0022】
図2A図2Cは、リフレクタが存在しないFMCWレーダーシステムの特性を図示する。図2Aは、リフレクタ126を含まないレーダーシステム120を図示する。レーダーシステム120は、局部発振器(LO)133、電力増幅器(PA)122、TXアンテナ124、RXアンテナ128、低ノイズ増幅器(LNA)130、及び周波数ミキサー132を含む。LO133はLO信号134を生成する。LO信号134は、
LO=sin(ωt+φ
の形式であり、ここで、tは時間であり、ωはキャリア周波数であり、φはLO133の位相ノイズである。PA122は、LO信号134を増幅して、増幅された信号136を生成する。PA122は、例えば複数のバッファを含む5段PAである、多段PAであり得る。PAの複数の段が利得及び帯域幅を増加させる一方で、適切な入力及び/又は出力インピーダンス整合を維持する。例示のレーダーシステムのための出力電力、無相関PN、及び振幅ノイズの値が図2Bに示される。図2Bは、増幅された信号136におけるノイズを示すグラフ140を図示する。増幅された信号136の送信された電力(P)148は10dBmである。無相関位相ノイズ142は、送信された電力148から-140dBc/Hzである、差146である。無相関位相ノイズ142は-130dBm/Hzであり、周波数144でピークを有する。TXアンテナ124は、増幅された信号136を送信する。或る例において、TXアンテナ124は、波長の割に比較的大きなアンテナサイズを有する高利得狭帯域幅アンテナである。これらの値は、例示のレーダーシステムに基づく例であり、異なるレーダーシステムでは異なり得る。
【0023】
RXアンテナ128は受信信号138を受信する。反射がないとき、受信信号138はノイズのみを含む。図2Cは、受信信号138のグラフ152を図示する。グラフ152は、オブジェクト154、Pを示し、これは、レーダーが対象の単一オブジェクトを見ているときのレーダー動作からの信号である。オブジェクト154は、14dBのRXノイズフロア156を備える、-164dBm/HzのRXノイズを有する。
【0024】
LNA130は受信信号138を増幅して、増幅された受信信号139を生成する。LNA130は、信号対ノイズ比(SNR)を著しく劣化させることなく、低電力受信信号を増幅する。LNA130は、例えば3段LNAである、多段LNAであり得る。増幅された受信信号139は、
RX=sin(ωt+φ
の形式であり、ここで、tは時間であり、ωは受信信号の周波数であり、φは受信信号の位相ノイズである。その後、周波数ミキサー132は、増幅された受信信号139をLO信号134と合成して、ビート周波数信号である合成信号131を生成する。合成信号131は、
sin((ω-ω)t+(φ-φ))
の形式であり、ここで、tは時間であり、ωはキャリア周波数であり、ωは受信信号の周波数であり、φはLO133の位相ノイズであり、φは受信信号の位相ノイズである。合成信号131は、例えば、フィルタ、アナログ‐デジタルコンバータ(ADC)、及びデジタル信号プロセッサ(DSP)(図示せず)によって、デジタル化され得、その後処理され得る。各オブジェクトに対応するビート周波数信号は、レーダートランシーバからのオブジェクトの距離に比例する周波数を有するトーンである。オブジェクトは、ビート周波数信号の高速フーリエ変換(FFT)を用いること及びノイズフロアから突出するピークを識別することによって、識別され得る。また、移動するオブジェクトの場合、ビート周波数信号は、レーダートランシーバとオブジェクトとの間の相対速度に依存するドップラー成分を有する。ドップラー信号は、チャープにわたり第2のFFTを行うことによって得られる。
【0025】
図3A及び図3Bは、リフレクタのあるFMCWレーダーシステムの特性を図示する。図3Bは、リフレクタ162を備えるレーダーシステム160を図示する。PA122は、LO133によって生成されたLO信号134を増幅して、増幅された信号136を生成する。その後、TXアンテナ124は、増幅された信号136を送信信号として送信する。送信信号は、例えば車両のバンパーといった、強力なリフレクタであるリフレクタ162によって反射される。RXアンテナ128は、反射された信号を受信し、受信信号164を生成する。LNA130は、受信信号164を増幅して、増幅された受信信号166を生成する。周波数ミキサー132は、増幅された受信信号166をLO信号134と合成して、合成信号168を生成する。
【0026】
RXアンテナ128は、受信信号164を受信する。図3Bは、受信信号164の電力を示すグラフ170を図示する。線172が、-10dBmである最大の受信電力(PR)を図示する。線172は、距離174又は-140dBc/Hzであり、-150dBm/HzであるUPNより上にある。線176が、14dBである受信されたノイズフロア(RX NF)を図示する。また、受信電力を図示する曲線178が、オブジェクトによって反射された受信電力を示すピーク171を有する。-140dBc/hzのノイズが送信信号からキャリーオーバーされ、-150dBm/Hzのノイズフロアを引き起こす。従って、RX NFは24dBである。比較として、強力なリフレクタがないとき、RXのノイズフロアは、システム振幅/無相関位相ノイズに起因して10dB低い。小さなオブジェクトのための最大検出可能レンジと、小さなオブジェクトを、その小さなオブジェクト近辺に一層大きなオブジェクトがある状態で検出する能力に関して、この10dBの劣化は、レーダーシステムにひどく影響する。小さなオブジェクトを検出する能力とは、例えば、10cmのバンパー及び-20dBの反射係数を有する、100mの距離にあるオートバイの検出である。
【0027】
図4は、振幅ノイズ及び無相関位相ノイズを測定するためのFMCWレーダーシステムである、レーダーシステム180を図示する。レーダーシステム180は、トランスミッタ181、ループバック及び位相シフタ186、並びにレシーバ218を含む。トランスミッタ181は、LO216及びPA184を含む。LO216は、LO(t)によって表されるLO信号200を生成する。LO信号は、
LO(t)=cos(ωt+φc(t))
であり、ここで、ωはLOのキャリア周波数であり、tは時間であり、φcはLOの相関位相ノイズである。
【0028】
PA184は、信号LO(t)を増幅して、PA(t)によって与えられる増幅された信号202を生成する。PA184は、振幅ノイズ及び無相関位相ノイズをこの信号に付加する一方、この信号を増幅する。増幅された信号202は、
PA(t)=APA(1+ΔAPA)cos(ωt+φupa(t)+φ(t))
によって与えられ、ここでAPAはPA信号の振幅であり、tは時間であり、ΔAPAはPA184からの振幅ノイズであり、ωはLO216のキャリア周波数であり、φupaはPA184の無相関位相ノイズであり、φcはLO216の相関位相ノイズである。
【0029】
ループバック及び位相シフタ186は、可変位相シフト及び遅延τを有しており、信号を、トランスミッタ181のPA184からレシーバ218のLNA188へループさせる。ループバック及び位相シフタ186は、信号を、トランスミッタ181からレシーバ218へ、所定の遅延及び所定の可変位相シフトで誘導する。ループバックされた信号204は、Pin_lnaの電力を有して、LNA188に入る。
【0030】
レシーバ218は、LNA188、IQ生成器182、周波数ミキサー190、及び周波数ミキサー192を含む。LNA188は、ループバックされた信号204を増幅して、レシーバ信号206を生成する。LNA188は、SNRを著しく劣化させることなく低電力受信信号を増幅する。LNA188は、例えば2、3、4、又は5段LNAである、多段LNAであり得る。また、LNA188は、バッファ及び他の要素を含み得る。レシーバ信号206は、
RX(t)=A(1+ΔA)cos(ω(t-τ)-θ+φ(t)+φ(t-τ))
によって与えられ、ここで、Aは信号振幅であり、ΔAは振幅ノイズであり、tは時間であり、τはループバック及び位相シフタ186の遅延であり、ωはキャリア周波数であり、θはループバック及び位相シフタ186からの位相シフトであり、φuは無相関位相ノイズであり、φcは相関位相ノイズである。
【0031】
信号振幅Aは、A=APALGによって与えられ、ここで、APAは増幅された信号202の振幅であり、Gは、トレース損失を含むレシーバ218の利得であり、Lはループバック及び位相シフタ186における損失である。レーダーシステムには、一定値であるGの値が知られている。RX(t)の振幅ノイズΔAは、PA184の振幅ノイズΔAPAと同じである。また、RX(t)の無相関位相ノイズは、
φ(t-τ)=φ(t)=φupa(t)+φlna(t)
によって与えられ、ここで、φupaはPA184の無相関ノイズであり、φlnaはLNA188の無相関位相ノイズである。
【0032】
IQ生成器182は、LO(t)であるLO信号200のために、LO(t)である同相(I)信号210と、LO(t)である直交(Q)信号208とを生成する。Q信号208は、
LO(t)=sin(ωt+φ(t))
によって与えられる信号であり、ここで、ωはLO216のキャリア周波数であり、tは時間であり、φはLO216の相関位相ノイズである。同様に、I信号210は、
LO(t)=cos(ωt+φ(t))
によって与えられる。
【0033】
周波数ミキサー192は、I信号210をレシーバ信号206と合成して、
BB(t)=A(1+ΔA)cos(ωτ+θ+φ(t)+φ(t)-φ(t-τ))
によって与えられる、BB(t)であるベースバンドI信号212を生成し、ここで、Aは信号振幅であり、ΔAは振幅ノイズであり、tは時間であり、τはループバック及び位相シフタ186の遅延であり、ωはキャリア周波数であり、θはループバック及び位相シフタ186からの位相シフトであり、φは無相関位相ノイズであり、φは相関位相ノイズである。同様に、周波数ミキサー190は、Q信号208をレシーバ信号206と合成して、
BB(t)=A(1+ΔA)sin(ωτ+θ+φ(t)+φ(t)-φ(t-τ))
によって与えられる、BB(t)である信号ベースバンドQ信号214を生成し、ここで、Aは信号振幅であり、ΔAは振幅ノイズであり、tは時間であり、τはループバック及び位相シフタ186の遅延であり、ωはキャリア周波数であり、θはループバック及び位相シフタ186からの位相シフトであり、φは無相関位相ノイズであり、φは相関位相ノイズである。ループバック及び位相シフタ186は、ユーザによって調節され得る可変位相シフタを含む。
【0034】
ループバック及び位相シフタ186を構成することによって、(ωτ+θ)の値は変更され得る。或る例において、位相ノイズと振幅ノイズを分離するために、ループバック及び位相シフタ186の位相シフトは、ωτ+θ=0であるように選択される。位相シフトにおけるこの条件により、Iチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)cos(ωτ+θ+φ(t)+φ(t)-φ(t-τ))
によって与えられる。ωτ+θ=0のとき、Iチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)cos(φ(t)+φ(t)-φ(t-τ))
である。(φ(t)+φ(t)-φ(t-τ))の値が非常に小さな値なので、
cos(φ(t)+φ(t)-φ(t-τ))=1である。従って、Iチャネルのベースバンド出力は、BB(t)≒A(1+ΔA)であり、これは振幅ノイズのみである。
【0035】
同様に、Qチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)sin(ωτ+θ+φ(t)+φ(t)-φ(t-τ))
によって与えられる。ωτ+θ=0のとき、Qチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)sin(φ(t)+φ(t)-φ(t-τ))
である。(φ(t)+φ(t)-φ(t-τ))の値が非常に小さな値なので、
sin(φ(t)+φ(t)-φ(t-τ))=(φ(t)+φ(t)-φ(t-τ))
である。
従って、Qチャネルのベースバンド出力は、おおよそ、
A(1+ΔA)(φ(t)+φ(t)-φ(t-τ))
である。
【0036】
同等に、Qチャネルのベースバンド出力は、おおよそ、
A(φ(t)+φ(t)-φ(t-τ))+ΔA(φ(t)+φ(t)-φ(t-τ))
である。ΔAと(φ(t)+φ(t)-φ(t-τ))の両方が小さな数なので、この2つの乗算は非常に小さな数である。従って、Qチャネルのベースバンド出力は、おおよそ、A(φ(t)+φ(t)-φ(t-τ))であり、これは位相ノイズである。この例では、振幅ノイズは、AN=ΔA=ΔAPAによって与えられ、ここで、ΔAPAはPA184の振幅ノイズである。また、この例では、位相ノイズは、PN=φ(t)+φ(t)-φ(t-τ)である。また、この例では、ベースバンドI信号が位相ノイズのみを有し、ベースバンドQ信号が振幅ノイズのみを有する。
【0037】
別の例において、ループバック及び位相シフタ186の位相シフトは、ωτ+θ=90°であるように選択される。そうすると、振幅ノイズは、BB(t)上にあり、位相ノイズはBB(t)上にある。Iチャネルのベースバンド出力は、おおよそ、A(φ(t)+φ(t)-φ(t-τ))である。
また、Qチャネルのベースバンド出力は、おおよそ、A(1+ΔA)である。この例では、ベースバンドI信号は位相ノイズのみを有し、ベースバンドQ信号は振幅ノイズのみを有する。前述の例で示されるように、位相シフトにおける90°回転毎に、振幅ノイズ条件及び位相ノイズ条件は、IチャネルとQチャネルとの間で交互になる。
【0038】
種々の位相シフトにわたってベースバンドIノイズレベル及びベースバンドQノイズレベルを測定するために、ループバック及び位相シフタ186の位相シフトは、規則的な間隔で、例えば5度未満のステップで変更され得る。いくつかの実施形態において、例えば1度である、位相シフトにおける一層小さなステップが用いられ得る。ベースバンドIチャネル及びベースバンドQチャネルの、dBFs/Hz単位でのノイズ電力スペクトル密度は、位相シフトに対してプロットされる。Iチャネル或いはQチャネルに対するノイズ電力スペクトル密度(PSD)の最大はNmaxであり、ノイズPSDの最小はNminである。
【0039】
無相関位相ノイズは、
UPNtotal=Pin_lna-Nmax+10-G-6
によって与えられ、ここで、Pin_lnaはループバックされた信号204における電力であり、NmaxはPSDの最大であり、10は、dbMからdbFsへの変換を表し、Gは、レシーバの入力におけるノイズを得るために減算され、振幅ノイズ又は位相ノイズなどの両側波帯ノイズに対してトーンをダウンコンバートするときの2のスケールファクタに起因して、6が減算される。また、振幅ノイズは
AN=Pin_lna-Nmin+10-G-6
によって与えられる。
【0040】
シンセサイザ無相関位相ノイズは、
UPNSYNTH=PNSYNTH+20 log10(2sin(ωτ/2))
によって与えられ、ここで、PNSYNTHは、LO信号200の測定された位相ノイズであり、ωはLO信号216の周波数であり、τは、ループバック及び位相シフタ186によってもたらされる遅延である。
【0041】
UPNtotalは、UPNSYNTH及びUPNmmwaveに起因する総ノイズ電力である。mmwave無相関位相ノイズは、
UPNmmwave=UPNtotal-UPNSYNTH
によって計算され得る。
【0042】
下記の表1は、例示のレーダーシステムに対する位相シフト、位相値、Iノイズ値、Qノイズ値、及びI+jQノイズ値を図示する。また、図5は、I値、Q値、及び、I+jQノイズ値対位相シフトのためのグラフ220を図示する。曲線222がIノイズ値を示し、曲線224がQノイズ値を示し、曲線226がI+jQノイズ値を示す。Iチャネル上又はQチャネル上のノイズPSDの最大Nmaxは位相ノイズに対応し、Iチャネル上又はQチャネル上のノイズPSDの最小Nminは振幅ノイズに対応する。Nmaxの値は-125.03dBFs/Hzであり、Nminの値は-108.4dBFs/Hzである。この例では、Pin_lnaは-13.333dBmであり、78GHzのキャリア周波数ωを有する。測定された統合されたノイズ値PNSYNTHは-92dBc/Hzである。また、振幅APAの値は8dBmである。LNA250に対して42dBの利得設定の状態で、レシーバ導波路ポートにおいて測定される、トレース損失を含む利得Gは、36dBである。また、範囲は、50ΜΗ/μsの傾斜及び2ギガヘルツ帯域幅チャープに対して0.2622であると測定される。ランプテストによって測定された遅延τは1.748nsである。
CF=20 log10(2sin(πfτ))
によって与えられる相関関数(CF)は、-39.19dBである。これにより、-131.19dBc/HzのUPNSYNTHの値が導かれる。LNAにおける振幅ノイズは-151.63dBm/Hzであり、LNAにおける無相関位相ノイズは-135dBm/Hzである。ノイズ折り返し係数は、ベースバンドにおいて1MHzまで折り返す他のキャリア上のノイズであり、6である。また、dBFs/HzからdBm/Hzへの変換係数は10である。振幅ノイズは-144.296dBc/Hzである。総無相関位相ノイズは-127.666dBc/Hzであり、synth無相関位相ノイズは-131.19dBc/Hzであり、mmwave無相関位相ノイズは-130.217dBc/Hzである。
【0043】
或る例において、図4に図示されるレーダーシステム180に類似するレーダーシステム上でシミュレーションが行われる。このシミュレーションでは、φは-92dBc/Hzである。PA振幅APAは8dBmであり、PA振幅ノイズの値ΔAPAは-144.5dBc/Hzであり、PAのための無相関位相ノイズの値φupaは-140dBc/Hzであり、相関ノイズの値φは-92dBc/Hzである。ループバック248において、損失Lは-21.3dBであり、遅延τは1.7nsである。従って、APALの値は-13.3dBmであり、APALΔAPAの値は-157.18dBm/Hzである。LNA188において、UPNLNAは-143.5dBm/Hzであり、CFは-39.19dBである。また、APALφUPAは-153.3dBm/Hzであり、APALφは-105.3dBm/Hzである。また、利得Gは36.6であり、レシーバ及びIQ生成器の低ノイズフロアは30.5である。レシーバ信号206は、
RX(t)=A(1+ΔA)cos(ω(t-τ)-θ+φ(t)+φ(t-τ))
によって与えられ、ここで、A=APALGであり、ΔA=ΔAPAである。また、
φ(t-τ)=φ(t)=φupa(t)+φlna(t)
である。振幅ノイズは、-125.2dBFs/Hzであると計算され、無相関位相ノイズは、-108.4dBFs/Hzであると計算される。その後、統合されたUPNは、111.9dBFs/Hzであると計算され、mmwave UPN は、-110.9dBFs/Hzであると計算される。
【0044】
図6はレーダーシステム240を図示する。レーダーシステム240は、トランスミッタ241、ループバック248、及びレシーバ278を含む。レーダーシステム240において、外部LO(図示せず)と、位相シフタ244である内部位相シフタとが用いられる。例えば20GHz外部LOである低位相ノイズLOである外部LOが、入力LO信号258を生成する。外部LOの使用は、相関位相ノイズを低減又はなくし、無相関位相ノイズの測定の精度を改善する。局部LOが用いられるとき、少量の間で減算が行われ、場合によっては、無相関位相ノイズの計算において大きな誤差となる。トランスミッタ241は、位相シフタ244及びPA246を含む。内部可変位相シフタである位相シフタ244は、入力LO信号258を位相シフトして、LO信号262を生成する。また、位相シフタ244は、ノイズ電力推定器256から制御信号260を受信する可変位相シフタである。PA246は、LO信号262を増幅して、PA(t)で示される増幅された信号264を生成する。
【0045】
ループバック248は、ループバックされた信号266を、トランスミッタ241からレシーバ278へループさせる。ループバック248は、所定の遅延τを有する。
【0046】
レシーバ278は、LNA250、IQ生成器242、周波数ミキサー252、周波数ミキサー254、及びノイズ電力推定器256を含む。LNA250は、ループバックされた信号266をループバック248から受信し、ループバックされた信号266を増幅して、RX(t)で示されるレシーバ信号268を生成する。
【0047】
IQ生成器242は、LO信号258から、LO(t)であるI信号272及びLO(t)であるQ信号270を生成する。その後、周波数ミキサー254は、I信号272をレシーバ信号268と合成して、BBであるベースバンドI信号276を生成する。同様に、周波数ミキサー252は、Q信号270をレシーバ信号268と合成して、BBであるベースバンドQ信号274を生成する。
【0048】
ノイズ電力推定器256は、複数の位相シフトのためにベースバンドI信号276及びベースバンドQ信号274を測定する。各位相シフトに対し、ノイズ電力推定器256は、Iノイズ値及びQノイズ値を測定し、I+jQノイズ値を判定する。ここで、IはIノイズ値であり、QはQノイズ値である。また、ノイズ電力推定器256は、位相シフトをステップスルーするため又は最適の位相シフトを選択するために、制御信号260を用いて位相シフタ244の位相シフトを制御する。また、ノイズ電力推定器256は、最大ノイズ、最大ノイズに対応する位相シフト、最小ノイズ、及び最小ノイズに対応する位相シフトを判定する。ノイズ電力推定器256は、最高SNRを有する位相シフトを見つけるために、種々の位相シフトを繰り返し(cycle through)得る。
【0049】
他の実施形態において、位相シフタ244によってデジタル位相シフトが行われる。位相シフトを信号に適用するために、デジタル位相シフタがデジタルにプログラムされる。
【0050】
種々の位相シフトにわたってベースバンドIノイズレベル及びベースバンドQノイズレベルを測定するために、ループバック及び位相シフタ186の位相シフトは、規則的な間隔で、例えば5度未満のステップで変更され得る。いくつかの実施形態において、例えば1度である、位相シフトにおける一層小さなステップが用いられ得る。ベースバンドIチャネル及びベースバンドQチャネルの、dBFs/Hz単位でのノイズ電力スペクトル密度は、位相シフトに対してプロットされる。ノイズPSDの最大はNmaxであり、ノイズPSDの最小はNminである。
【0051】
前の例と同様に、BB(t)及びBB(t)のための式が、図6によって図示されるレーダーシステム240のために導出され得る。Iチャネルのベースバンド出力の値は、
BB=A(1+ΔA)cos(ωτ+θ+φ(t))
によって与えられる。ωτ+θ=0のとき、Iチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)cos(φ(t))
によって与えられる。φ(t)が非常に小さな値なので、cos(φ(t))の値はおおよそ1である。従って、Iチャネルのベースバンド出力は、おおよそ、A(1+ΔA)であり、これは振幅ノイズのみである。
【0052】
同様に、Qチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)sin(ωτ+θ+φ(t))
である。ωτ+θ=0のとき、Qチャネルのベースバンド出力は、
BB(t)=A(1+ΔA)sin(φ(t))
である。φ(t)が非常に小さな値なので、
sin(φ(t))≒φ(t)
である。従って、Qチャネルのベースバンド出力は、おおよそ
A(1+ΔA)(φ(t))
である。Qチャネルのベースバンド出力は、その後、
A(φ(t))+ΔA(φ(t))
によって概算され得る。ΔA及びφ(t)がいずれも小さな数なので、この2つの小さな数の乗算は非常に小さい。その後、Qチャネルのベースバンド出力はAφ(t)としてさらに概算され得、これは位相ノイズのみである。
【0053】
ωτ+θ=90°のとき、Iチャネルのベースバンド出力は、おおよそ、Aφ(t)であり、Qチャネルのベースバンド出力は、おおよそ、A(1+ΔA)である。
【0054】
無相関位相ノイズは、
UPNtotal=Pin_lna-Nmax+10-G-6
によって与えられ、ここで、Pin_lnaは、ループバックされた信号204における電力であり、NmaxはPSDの最大であり、10はdBmからdBFsへの変換を表し、Gは、レシーバの入力におけるノイズを得るために減算され、振幅ノイズ又は位相ノイズなどの両側波帯ノイズに対してトーンをダウンコンバートするときの2のスケールファクタに起因して、6が減算される。また、振幅ノイズは、
AN=Pin_lna-Nmin+10-G-6
によって与えられる。LO信号が外部信号によって供給されるので、PNSYNTHは無視してよく、それゆえ、SYNTHからの無相関位相ノイズも無視してよい。シンセサイザ無相関位相ノイズはUPNSYNTH~0によって与えられる。この場合の総無相関位相ノイズは、mmwave無相関位相ノイズであり、
UPNmmwave=UPNtotal
によって与えられる。
【0055】
図7は、或るFMCWレーダーシステムにおいてノイズを測定する例示の方法のためのフローチャート280を図示する。ブロック281において、レーダーシステムは可変位相シフタの位相シフトを設定する。これは、ノイズ電力推定器が制御信号を可変位相シフタに送ることによって、又は、可変位相シフタの位相シフトを手動で若しくは自動で調節することによって、成され得る。
【0056】
ブロック282において、レーダーシステムがLO信号を生成する。LO信号は、レーダーシステムのトランスミッタに埋め込まれたLOによって、局所的に生成され得る。別の例において、LO信号は外部で生成され、入力LO信号と呼ばれ得る。LO信号は相関位相ノイズを有し得る。
【0057】
ブロック284において、レーダーシステムのトランスミッタのPAが、LO信号を増幅して、増幅された信号を生成する。或る実施形態において、PAは多段PAであり、例えば2段PA、3段PA、4段PA、5段PA、6段PA、又はより多数の段を備えるPAである。PAは、バッファ及び他の要素を含み得る。また、PAは、利得と共に、振幅ノイズ及び無相関位相ノイズを生成し得る。
【0058】
ブロック286において、レーダーシステムの位相シフタが、増幅された信号の位相を所定の位相シフトによってシフトして、位相シフトされた信号を生成する。或る実施形態において、位相シフタは調節可能であり、複数の所定の位相シフト値が用いられる。いくつかの実施形態において、LO信号を生成するレーダーシステムのトランスミッタにおいて、ブロック284における増幅の前に位相シフトが行われる。他の実施形態において、ブロック284における増幅の後に位相シフトが行われ、増幅は、レーダーシステムの導波路ループバックにおいて、トランスミッタの外の位相シフタによって行われる。一例において、位相シフタはアナログ位相シフタである。別の例において、位相シフタはデジタル位相シフタである。
【0059】
ブロック288において、導波路ループバックが、位相シフトされた信号を、レーダーシステムのトランスミッタからレーダーシステムのレシーバに、ループバックされた信号として、mmwave導波路ループバックを用いてループバックさせる。ループバックされた信号は、所定の位相シフトと共に所定の遅延を有する。また、導波路ループバックは、損失を信号に導入する。
【0060】
ブロック290において、レーダーシステムのレシーバのLNAが、ブロック288において生成されたループバックされた信号を増幅して、レシーバ信号を生成する。LNAは多段LNAであり得る。例えば、LNAは、2段LNA、3段LNA、4段LNA、5段LNA、又はより多数の段を備えるLNAであり得る。LNAは、バッファなどの付加的要素を含み得る。LNAは、付加的な利得と共に、付加的な無相関位相ノイズを信号に導入する。
【0061】
ブロック292において、IQ生成器が、I成分をLO信号から分離してI信号を生成する。また、IQ生成器は、Q成分をLO信号から分離して、Q信号を生成する。
【0062】
ブロック298において、周波数ミキサーが、ブロック290においてLNAによって増幅されたレシーバ信号を、ブロック292において生成されたQ信号と混合して、ベースバンドQ信号を生成する。その後、ブロック302において、システムは、ベースバンドQ信号を、測定されたQ信号として測定する。測定は、レーダーシステムによって、例えばレーダーシステムのノイズ電力推定器によって行われ得る。別の例において、信号は、外部から、例えば信号アナライザによって、測定される。
【0063】
同様に、ブロック294において、別の周波数ミキサーが、ブロック290からのレシーバ信号を、ブロック292において生成されたI信号と混合して、ベースバンドI信号を生成する。その後、ブロック296において、レーダーシステムは、ベースバンドI信号を、測定されたI信号として測定する。測定は、レーダーシステムによって、例えばレーダーシステムのノイズ電力推定器によって、行われ得る。別の例において、信号は、外部から、例えば信号アナライザによって、測定される。
【0064】
ブロック306において、レーダーシステムはノイズ分析を行う。例えば、レーダーシステムは、ベースバンドQ信号対位相シフト値をプロットし得る。また、レーダーシステムは、ベースバンドI信号対位相シフトをプロットし得る。また、システムは、付加的な分析を行い得る。例えば、レーダーシステムは、最大及び最小のIノイズ値及びQノイズ値を計算し得る。これらの値から、レーダーシステムは、振幅ノイズ及び無相関位相ノイズを計算し得る。一例において、レーダーシステムが、ブロック296からの測定されたI信号とブロック302からの測定されたQ信号とに基づいて、総ノイズを判定する。総ノイズは、I+jQと等しく、ここで、Iは測定されたI信号であり、Qは測定されたQ信号である。一実施形態において、分析は、レーダーシステムによって、例えばノイズ電力推定器の一部として行われる。別の例において、分析は、外部から、例えば汎用コンピュータ上で、又はデジタル信号プロセッサ(DSP)などの特化されたコンピューティングデバイス上で行われる。
【0065】
ブロック308において、レーダーシステムは、測定されたI信号及び測定されたQ信号に基づいて位相シフトを調節する。一実施形態において、位相シフトは手動で調節される。別の例において、位相シフトは、自動で、例えば、ノイズ電力推定器が可変位相シフタのために制御信号を生成することによって、調節される。位相シフタは、ノイズの最大及び最小を見つけるために、複数のステップをステップスルーされ得る。例えば、位相は、例えば1度、2度、3度、又は4度のステップである5度未満の増分でステップされる。一実施形態において、最小ノイズに対する位相シフトをより良好に判定するために、一層小さな位相のステップがノイズ最小近辺で用いられる。最小ノイズに対する位相が判定されると、その位相が、性能を改善するために用いられ得る。
【0066】
図8は、或るレーダーシステムにおいてノイズを判定する例示の方法のためのフローチャート310を図示する。ブロック312において、レーダーシステムは、可変位相シフタのための位相シフト値を設定する。一実施形態において、位相シフト値は手動で設定される。別の例において、位相シフト値は、自動で、例えば、ノイズ電力推定器による位相シフト制御信号出力に基づいて、又は別の制御信号によって、設定される。
【0067】
ブロック314において、レーダーシステムは、ベースバンドI信号及びベースバンドQ信号を別個に測定する。レーダーシステムは、ループバックされた信号を、レーダーシステムのトランスミッタからレーダーシステムのレシーバへ、所定の遅延及び所定の可変位相シフトでループバックする。レーダーシステムは、ループバックされた信号を、LO信号から生成されるI信号及びQ信号を用いて変調する。レーダーシステムは、ベースバンドI信号を、ベースバンドQ信号とは別個に測定する。レーダーシステムは、測定されたI信号及び測定されたQ信号を、例えばADCを用いて、アナログからデジタルに変換し得る。レーダーシステムは、デジタル信号を、例えばDSPを用いて又は汎用コンピュータによって、処理し得る。また、レーダーシステムは、測定されたI信号及び測定されたQ信号を、後の分析のためにメモリに記憶し得る。また、レーダーシステムは、その他の測定を成し得る。例えば、レーダーシステムは、Pin_lnaの値を得るために、LNAの入力における電力レベルを測定し得る。また、レーダーシステムは、LO信号の位相ノイズを測定し得る。また、レーダーシステムは、τの値を測定し得る。
【0068】
ブロック316において、レーダーシステムは、付加的なベースバンドI信号及びベースバンドQ信号を測定するために用いられる付加的な位相値があるかどうかを判定する。一例において、レーダーシステムは、位相シフト値をステップスルーする。位相シフト値は、5度より小さいステップで調節され得る。一実施形態において、位相シフトステップは動的に調節される。例えば、一層大きなステップが初期的にとられ、一層小さなステップが、予測される最小又は最大の近辺で用いられ得る。付加的な位相シフト値があるとき、次の位相遅延値を設定するために、レーダーシステムはブロック312に戻る。他方、付加的な位相遅延値がないとき、レーダーシステムはブロック318に進む。
【0069】
ブロック318において、レーダーシステムはノイズ分析を行う。例えば、ブロック296を用いてIチャネル上で計算されるノイズと、ブロック302を用いてQチャネル上で計算されるノイズとから、種々の遅延値で、ノイズの最小(Nmin)、最小ノイズ値に対応する位相シフト、ノイズの最大(Nmax)、及び最大ノイズ値に対応する位相シフトが判定される。Nminの値は振幅ノイズに対応し、Nmaxの値は無相関位相ノイズに対応する。振幅ノイズは、式
AN=Pin_lna-Nmin+10-G-6
を用いて計算され得、ここで、Pin_lnaは、LNAの入力におけるノイズ値であり、Gは利得であり、Nminは最小ノイズである。
【0070】
また、無相関位相ノイズは、式
UPNtotal=Pin_lna-Nmax+10-G-6
に基づいて計算される。統合された位相ノイズは、
であると判定され得、ここで、τは遅延であり、ωoffsetはオフセット周波数であり、φは相関位相ノイズである。相関位相ノイズはPAの入力において測定され得る。また、mmwave無相関位相ノイズは、
UPNmmwave=UPNtotal-UPNSYNTH
であると判定され得る。或る例において、レーダーシステムは、総ノイズをI+jQであると計算し得、ここで、Iは測定されたI信号であり、Qは測定されたQ信号である。
【0071】
図9は、コンピューティングデバイス380のブロック図を図示する。コンピューティングデバイス380は、分析及び制御工程を行うために用いられ得る。例えば、コンピューティングデバイス380は、フローチャート310のブロック312、316、及び318を行うために用いられ得る。少なくとも一つの例において、コンピューティングデバイス380は汎用コンピュータである。他の例において、コンピューティングデバイス380は、特定用途向け集積回路(ASIC)など、特定のタスク又はタスクのセットを実行するプログラムされたマシンである。別の例において、コンピューティングデバイス380は、埋め込まれた命令を備えるマイクロコントローラである。コンピューティングデバイス380は、DSPであり得る。コンピューティングデバイス380は、データ及びマシン読出し可能命令を記憶するためのメモリ382を含む。メモリ382は、測定値などのその他の情報を記憶し得る。また、コンピューティングデバイス380は、メモリ382にアクセスし、マシン読出し可能命令を実行する、処理ユニット384を含む。メモリ382は、非一時的コンピュータ読出し可能記憶媒体である。いくつかの例において、メモリ382は、ランダムアクセスメモリなどの揮発性メモリ、ハードディスクドライブ、ソリッドステートドライブ、若しくはフラッシュメモリなどの不揮発性メモリ、又はそれらの組み合わせである。
【0072】
また、コンピューティングデバイス380は、I/Oデバイス381との相互作用のために入力/出力(I/O)インターフェース383を含む。I/Oデバイス381は、モニタ、タッチスクリーンディスプレイ、マウス、キーボード、プリンタ、又は、信号アナライザ若しくはコントローラなどのその他のI/Oデバイスであり得る。処理ユニット384は、例えばx86、ARM、又はDSPである、一つ又は複数のプロセッサコアとして実装される。或る実施形態において、コンピューティングデバイス380は、ネットワーク388上で通信するためのネットワークインターフェース386を含む。実施形態には、ネットワークを介して通信する複数のコンピューティングデバイスが含まれ得る。ネットワークインターフェース386は、ネットワークインターフェースカード(NIC)として実装され得る。いくつかの例において、ネットワーク388は、パブリックネットワーク、プライベートネットワーク、又はそれらの組み合わせとして実装され得る。いくつかの例において、コンピューティングデバイス380はクラウドコンピューティングにおいて実装される。
【0073】
特許請求の範囲内で、説明される実施形態における改変が可能であり、他の実施形態が可能である。
図1A
図1B
図2A
図2B
図2C
図3A
図3B
図4
図5
図6
図7
図8
図9