(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-17
(45)【発行日】2023-01-25
(54)【発明の名称】スイッチング電源装置
(51)【国際特許分類】
H02M 3/28 20060101AFI20230118BHJP
【FI】
H02M3/28 H
H02M3/28 F
(21)【出願番号】P 2019060433
(22)【出願日】2019-03-27
【審査請求日】2022-02-15
(73)【特許権者】
【識別番号】000006220
【氏名又は名称】ミツミ電機株式会社
(74)【代理人】
【識別番号】100090033
【氏名又は名称】荒船 博司
(74)【代理人】
【識別番号】100093045
【氏名又は名称】荒船 良男
(72)【発明者】
【氏名】日向寺 拓未
(72)【発明者】
【氏名】佐藤 武史
(72)【発明者】
【氏名】加戸 稔
【審査官】遠藤 尊志
(56)【参考文献】
【文献】特開2009-273329(JP,A)
【文献】特表2018-504882(JP,A)
【文献】特開2018-057132(JP,A)
【文献】米国特許第09923475(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/00-3/44
(57)【特許請求の範囲】
【請求項1】
電圧変換用のトランスと、該トランスの二次側コイルと直列形態に接続された同期整流用MOSトランジスタと、前記同期整流用MOSトランジスタのドレイン電圧に基づいて該同期整流用MOSトランジスタをオン、オフ制御する二次側制御回路と、を有するスイッチング電源装置であって、
前記二次側制御回路は、
前記同期整流用MOSトランジスタのドレイン電圧のピーク期間を検出するピーク期間検出回路と、
前記ドレイン電圧のピーク期間の電圧に基づいてピーク期間を判定するための基準となる電圧を生成する判定基準電圧生成回路と、を備え、
前記ピーク期間検出回路は、前記同期整流用MOSトランジスタのドレイン電圧と前記判定基準電圧生成回路により生成された基準電圧とに基づいて、前記ドレイン電圧のピーク期間を検出し、
前記二次側制御回路は、前記ピーク期間検出回路により検出されたピーク期間に応じて前記同期整流用MOSトランジスタのターンオンタイミングを制御することを特徴とするスイッチング電源装置。
【請求項2】
前記判定基準電圧生成回路は、
入力された前記ドレイン電圧を電位の低い方へ所定量だけ引き下げるオフセット付与回路と、
前記オフセット付与回路により引き下げられた電圧を取り込んで保持するサンプルホールド回路と、
前記ピーク期間検出回路の検出信号を所定の時間だけ遅延させる信号遅延回路と、
を備え、前記サンプルホールド回路は前記信号遅延回路により遅延されたタイミングで取り込んだ電圧を保持することを特徴とする請求項1に記載のスイッチング電源装置。
【請求項3】
前記判定基準電圧生成回路は、前記オフセット付与回路の後段に設けられたローパスフィルタを備え、
前記サンプルホールド回路は、前記ローパスフィルタを通過した電圧を取り込んで保持するように構成されていることを特徴とする請求項2に記載のスイッチング電源装置。
【請求項4】
前記サンプルホールド回路は、サンプリング用のスイッチと該スイッチがオンされている間に前記ローパスフィルタを通過した電圧を取り込むコンデンサとを備え、
前記判定基準電圧生成回路は、前記サンプルホールド回路の前記コンデンサに保持されている電荷を放電させる放電回路を備え、前記放電回路は前記ピーク期間の経過後に前記コンデンサの電荷の一部を放電させるように構成されていることを特徴とする請求項3に記載のスイッチング電源装置。
【請求項5】
前記二次側制御回路は、
前記同期整流用MOSトランジスタのドレイン電圧のボトム期間を検出するボトム期間検出回路を備え、
前記ボトム期間検出回路によるボトム期間の開始時に前記同期整流用MOSトランジスタのターンオンを許可し、前記ピーク期間検出回路によるピーク期間の終了時から所定の時間経過した時点で前記同期整流用MOSトランジスタのターンオンを禁止させる信号を生成するように構成されていることを特徴とする請求項1~4のいずれかに記載のスイッチング電源装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電圧変換用のトランスを備えたスイッチング制御方式の直流電源装置に関し、例えばトランスの二次側に同期整流スイッチを設けた絶縁型DC-DCコンバータに利用して有効な技術に関する。
【背景技術】
【0002】
従来、スイッチング電源装置の1つとして、トランスの一次側コイルに間欠的に電流を流すためのスイッチング素子としてのMOSトランジスタ(絶縁ゲート型電界効果トランジスタ)および該素子をオン、オフ制御する制御回路(IC)を備え、一次側コイルに電流を流すことで二次側コイルに誘起された電流をダイオードにより整流し、コンデンサで平滑して出力するスイッチング電源装置(絶縁型DC-DCコンバータ)がある。
【0003】
しかしながら、二次側回路に整流用ダイオードを用いた絶縁型DC-DCコンバータにおいては、整流用ダイオードにおける損失が大きく効率を低下させる原因となる。そこで、二次側回路の整流用ダイオードの代わりに同期整流用のスイッチング素子(MOSトランジスタ)を設けるとともに、二次側制御回路によって二次側スイッチング素子の端子電圧(ソース・ドレイン間電圧)を検出して、ボディダイオードに順方向電流が流れるタイミングで二次側スイッチング素子をターンオン制御することによって、整流素子における損失を減らし高効率化を図るようにした技術がある(例えば特許文献1)。
【0004】
また、トランスを備えたスイッチング電源装置においては、一次側回路と二次側回路が電気的に絶縁されているため、一次側で異常があった場合に一次側回路から二次側回路へ異常の発生を知らせるには、フォトインタラプタのような絶縁型の信号伝達部品を設ける必要があり、部品の追加なしに信号を伝達することは難しい。
なお、一次側で異常があった場合に一次側制御回路が一次側のスイッチング素子のオン、オフ制御を停止することで、二次側回路の動作を停止させることはできる。ただし、この場合、二次側制御回路は一次側で異常があったことを把握して二次側回路の動作を停止するわけではない。そのため、一次側で、例えば入力電圧がACリップルで低下するような一次側の制御が停止に至らない異常があった場合、二次側回路はそのような一次側での異常を把握してオン、オフ制御を停止したり制御を変更したりすることは困難である。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第4862432号公報
【文献】特許第5115317号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
一方、二次側の同期整流用MOSトランジスタのソース・ドレイン間電圧VDSがピークを取る期間は、一次側スイッチのオン期間にほぼ等しくなるため、二次側のVDS波形から一次側の状態を間接的に知ることができる。これをもとに例えば一次側スイッチのオン期間に異常がみられるような場合に、二次側の同期整流用MOSトランジスタをオンしないなどの制御を行うことで、回路の安全性を高めることができる。なお、同期整流用MOSトランジスタのソース端子は、一般に二次側の接地点に接続されるので、以下の説明では、ソース・ドレイン間電圧を単にドレイン電圧と称する。
【0007】
しかし、ドレイン電圧VDSの振幅は電源の状態や一次側の入力電圧により変化するため、固定の基準値とVDSとの比較では、正確なVDSピーク期間の検出はできない。また、VDSのピーク期間の電圧を元に比較の基準値を作れば、様々な電源に対応ができるが、単純なダイオードと容量によるピークホールド回路を使用した場合には、ダイオードの順方向電圧Vfによりホールド電圧が低下するとともにVfは温度依存が大きいのでVDS振幅が小さいほど温度によるVfの変化の影響度が増すという問題点がある。
【0008】
また、上記の理由でVDSピーク期間を検出するための基準値が下がると、電流不連続期間の共振ピークなど、一次側オン期間以外の期間でのピークを拾ってしまい、正確なVDSピーク期間の検出ができなくなる。さらに、VDSにサージによる変動が乗ると、そのサージ分だけ基準値が引き上げられて、誤ったVDSピーク期間を検出してしまう。また、一次側の入力電圧がACリップルで低下したり入力電圧がオフしたりするとVDSピークが低下するため、基準値がVDSに合わせて変化できず、VDSピーク期間自体が見えなくなるといった問題点がある。
【0009】
さらに、回路の設計によっては、
図6のように、電流不連続期間のドレイン電圧VDSの共振波形のピークが一次側スイッチのオン期間に対応するVDSピーク期間Tpの検出用基準電位VDS_PHまで到達する場合もある。この共振ピークを二次側制御回路が一次側スイッチのオン期間とみなして一次側に異常なしと誤判定し、その後の共振ボトムで同期整流用MOSトランジスタのターンオンしきい値(VTH_ON)まで到達すると、正常でないタイミングt41,t42で同期整流用MOSトランジスタをオンしてしまうという問題点もある。
なお、二次側制御回路が異常を検出して二次側制御を中止するようにした発明として特許文献2に記載されているものがあるが、特許文献2の発明は、出力負荷検出回路を備え、出力負荷が小さいときは二次側制御を中止するというもので、ドレイン電圧ピーク期間を検出して一次側の異常を間接的に把握して二次側を制御するというものではない。
【0010】
この発明は上記のような問題点を解決するためになされたもので、その目的とするところは、電圧変換用のトランスおよび二次側同期整流素子を備えたスイッチング電源装置において、正確なドレイン電圧ピーク期間の検出を行うことで一次側での異常発生など一次側の動作状態を間接的に把握して、二次側同期整流素子のオン、オフ制御を行うことができるようにすることにある。
本発明の他の目的は、振幅の小さいドレイン電圧でもピーク期間を検出できるとともに、電流不連続期間の共振をドレイン電圧ピーク期間と誤って検出することがないようにすることにある。
本発明のさらに他の目的は、ドレイン電圧ピーク期間を検出するための好適な基準値を生成することができ、それによって正確なドレイン電圧ピーク期間の検出を行うことができるようにすることにある。
【課題を解決するための手段】
【0011】
上記目的を達成するため、この発明は、
電圧変換用のトランスと、該トランスの二次側コイルと直列形態に接続された同期整流用MOSトランジスタと、前記同期整流用MOSトランジスタのドレイン電圧に基づいて該同期整流用MOSトランジスタをオン、オフ制御する二次側制御回路と、を有するスイッチング電源装置であって、
前記二次側制御回路は、
前記同期整流用MOSトランジスタのドレイン電圧のピーク期間を検出するピーク期間検出回路と、
前記ドレイン電圧のピーク期間の電圧に基づいてピーク期間を判定するための基準となる電圧を生成する判定基準電圧生成回路と、を備え、
前記ピーク期間検出回路は、前記同期整流用MOSトランジスタのドレイン電圧と前記判定基準電圧生成回路により生成された基準電圧とに基づいて、前記ドレイン電圧のピーク期間を検出し、
前記二次側制御回路は、前記ピーク期間検出回路により検出されたピーク期間に応じて前記同期整流用MOSトランジスタのターンオンタイミングを制御するように構成したものである。
【0012】
上記構成のスイッチング電源装置によれば、二次側同期整流用MOSトランジスタのドレイン電圧のピーク期間の電圧に基づいてピーク期間を判定するための基準となる電圧を生成し、この判定基準電圧に基づいてドレイン電圧のピーク期間を検出するため、ドレイン電圧のピーク電圧が変動したりピーク電圧の振幅が小さくなったとしても正確にピーク期間を検出することができるとともに、電流不連続期間の共振期間をドレイン電圧ピーク期間と誤って検出することがない。また、二次側同期整流用MOSトランジスタのドレイン電圧のピーク期間は、一次側スイッチング素子の導通期間を反映しているため、検出されたピーク期間に応じて同期整流用MOSトランジスタのターンオンタイミングを制御することで、一次側の入力電圧の低下など一次側の異常な状態を間接的に把握して、二次側同期整流素子のオン、オフ制御を行うことができる。
【0013】
ここで、望ましくは、前記判定基準電圧生成回路は、
入力された前記ドレイン電圧を電位の低い方へ所定量だけ引き下げるオフセット付与回路と、
前記オフセット付与回路により引き下げられた電圧を取り込んで保持するサンプルホールド回路と、
前記ピーク期間検出回路の検出信号を所定の時間だけ遅延させる信号遅延回路と、
を備え、前記サンプルホールド回路は前記信号遅延回路により遅延されたタイミングで取り込んだ電圧を保持するように構成する。
【0014】
上記のような構成によれば、入力されたドレイン電圧を電位の低い方へ所定量だけ引き下げた電圧がピーク期間を判定するための基準電圧となるので、ドレイン電圧のピーク期間を確実に検出することができる。また、引き下げられた電圧を取り込むサンプルホールド回路は信号遅延回路により遅延されたタイミングで取り込んだ電圧を保持しそれがピーク期間を判定するための基準電圧となるので、ピーク期間の開始直後のサージ部分を除いた電圧を保持することができ、それによってサージの影響を受けないピーク期間判定用の基準電圧を得ることかでき、精度の高いピーク期間の検出が可能となる。
【0015】
また、望ましくは、前記判定基準電圧生成回路は、前記オフセット付与回路の後段に設けられたローパスフィルタを備え、
前記サンプルホールド回路は、前記ローパスフィルタを通過した電圧を取り込んで保持するように構成する。
かかる構成によれば、ローパスフィルタによってドレイン電圧の変化が緩やかになるため、ピーク期間の終了のタイミングを検出してサンプルホールド回路を動作させて取り込んだ電圧を保持させる際に、保持する電圧の落ち込みを抑制し、ドレイン電圧の変化速度に影響されない精度の高いピーク期間判定用の基準電圧を得ることかできる。
【0016】
さらに、望ましくは、前記サンプルホールド回路は、サンプリング用のスイッチと該スイッチがオンされている間に前記ローパスフィルタを通過した電圧を取り込むコンデンサとを備え、
前記判定基準電圧生成回路は、前記サンプルホールド回路の前記コンデンサに保持されている電荷を放電させる放電回路を備え、前記放電回路は前記ピーク期間の経過後に前記コンデンサの電荷の一部を放電させるように構成する。
かかる構成によれば、サンプルホールド回路ホールド用のコンデンサの電荷を、スイッチング毎に所定量ずつ放電することができ、それによってドレイン電圧VDSのピーク電圧が低下する場合にも、速やかにその電圧低下に追随して判定基準電圧VDS_PHを変化させることができるとともに、急激な落ち込みを抑制して判定基準電圧を適切な値に維持することができる。
【0017】
また、望ましくは、前記二次側制御回路は、
前記同期整流用MOSトランジスタのドレイン電圧のボトム期間を検出するボトム期間検出回路を備え、
前記ボトム期間検出回路によるボトム期間の開始時に前記同期整流用MOSトランジスタのターンオンを許可し、前記ピーク期間検出回路によるピーク期間の終了時から所定の時間経過した時点で前記同期整流用MOSトランジスタのターンオンを禁止させる信号を生成するように構成する。
かかる構成によれば、特に電流不連続期間において誤ったタイミングで二次側同期整流素子がオンされて逆流が流れるのを防止することができる。
【発明の効果】
【0018】
本発明によると、二次側に同期整流素子を備えたスイッチング電源装置において、正確なドレイン電圧ピーク期間の検出を行うことで一次側での異常発生など一次側の動作状態を間接的に把握して、二次側同期整流素子のオン、オフ制御を行うことができる。また、振幅の小さいドレイン電圧でもピーク期間を検出できるとともに、電流不連続期間の共振期間をドレイン電圧ピーク期間と誤って検出することがない。さらに、ドレイン電圧ピーク期間を検出するための好適な基準値を生成することができ、それによって正確なドレイン電圧ピーク期間の検出を行うことができるという効果がある。
【図面の簡単な説明】
【0019】
【
図1】本発明を適用して有効な二次側同期整流方式のスイッチング電源装置の構成例を示す回路構成図である。
【
図2】実施形態のスイッチング電源装置を構成する二次側制御回路の構成例を示すブロック図である。
【
図3】実施形態の二次側制御回路を構成するピーク検出判定回路の具体例を示す回路構成図である。
【
図4】実施形態の二次側制御回路における通常動作時および入力電圧低下時の各部の信号の変化を示すタイミングチャートである。
【
図5】実施形態の二次側制御回路におけるドレイン電圧の共振の幅と振幅が大きい時の各部の信号の変化を示すタイミングチャートである。
【
図6】二次側同期整流方式のスイッチング電源装置における電流不連続期間の、振幅の大きな共振を含むドレイン電圧の変化の様子を示す波形図である。
【発明を実施するための形態】
【0020】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
図1は、本発明を適用した同期整流方式のスイッチング電源装置の一実施形態を示す。
この実施形態におけるスイッチング電源装置は、一次側コイルLpと二次側コイルLsおよび補助巻線Laを有する電圧変換用のトランス10を備え、該トランス10の一次側にNチャネルMOSトランジスタからなるスイッチング素子SWおよびその制御回路(一次側制御回路)11を設け、二次側に同期整流素子としてのMOSトランジスタS0およびその制御回路(二次側制御回路)20を設けた絶縁型DC-DCコンバータとして構成されている。この実施形態では、トランス10に、二次側コイルLsの極性が一次側コイルLpと逆極性のものが使用されており、フライバックコンバータとして動作するように構成されている。
【0021】
一次側のスイッチング素子SWはトランス10の一次側コイルLpと直列に接続されている。一次側制御回路11および二次側制御回路20は、各々1個の半導体チップ上に半導体集積回路(IC)として、または1つのパッケージ内に実装された半導体装置として構成されている。トランス10の補助巻線Laの端子間にはダイオードD1とコンデンサC1とが直列に接続され、補助巻線Laに誘起された電圧をダイオードD1で整流しコンデンサC1で平滑することで、一次側制御回路11の電源電圧Vcc1を生成して一次側制御回路11の電源端子に供給する。
また、この実施例のDC-DCコンバータは、一次側制御回路11に接続され二次側の回路からのフィードバック信号を受ける受光用のフォトトランジスタPTを備え、一次側制御回路11はフィードバック信号に応じてスイッチング素子SWのスイッチング周波数またはデューティ比を変化させて、負荷や入力電圧の変動に対応するように構成されている。
【0022】
一方、トランス10の二次側には、二次側コイルLsの一方の端子と出力端子OUT2との間に接続された同期整流用MOSトランジスタS0と、二次側で生成された電圧を電源電圧とし同期整流用MOSトランジスタS0のドレイン電圧を検出してトランジスタS0のオン、オフ制御信号を生成する二次側制御回路20と、出力端子OUT1-OUT2間に接続され出力電圧VOUTを安定化させる平滑コンデンサC2と、を備える。同期整流用MOSトランジスタS0と、二次側制御回路20を、1つのパッケージに集積化してもよい。なお、出力端子OUT1-OUT2間に接続された可変抵抗LDは、負荷の一例もしくは負荷を等価的に記載したものを表わしている。
【0023】
出力端子OUT1には二次側制御回路20の電源端子VCCが接続されており、出力電圧VOUTが二次側制御回路20に電源電圧Vcc2として供給される。また、二次側制御回路20の電源電圧は、トランス10の補助巻線に誘起された電圧を整流して供給するように構成しても良い。
また、トランス10の二次側には、出力端子OUT1-OUT2間に、フィードバック用のフォトダイオードPDおよび誤差アンプE-AMPが接続されている。誤差アンプE-AMPは出力電圧VOUTのレベルに比例した電流をフォトダイオードPDに流すように構成されている。
【0024】
また、二次側のフォトダイオードPDと一次側のフォトトランジスタPTは、絶縁型信号伝達手段としてのフォトインタラプタを構成しており、二次側のフォトダイオードPDから発せられた光が一次側のフォトトランジスタPTにより受光されて光の強度に応じたフィードバック信号が生成され、一次側制御回路11はこのフィードバック信号に応じてスイッチング素子SWを制御する。
【0025】
二次側制御回路20は、二次側スイッチング素子としての同期整流用MOSトランジスタS0のドレイン端子に配線を介して接続される外部端子(ドレイン電圧検出端子)P1の電圧VDSを監視し、所定のタイミングで同期整流用MOSトランジスタS0をオンまたはオフさせる制御信号(ゲート駆動電圧)VGを生成して、外部端子P2を介してトランジスタS0のゲート端子へ出力する。
具体的には、同期整流用MOSトランジスタS0のドレイン電圧VDSは一次側スイッチング素子SWのターンオン/ターンオフに連動しており、一次側スイッチング素子SWがオンの時にVDSはピークを取り、一次側スイッチング素子SWがオフして二次側に電流が流れる期間はVDSがボトムになる。そこで、二次側制御回路20は、VDSを監視し、VDSがボトムになる期間だけ、同期整流用MOSトランジスタS0をオンさせる制御を行うように構成されている。
【0026】
ところで、前述の通り、VDSのピーク期間は一次側スイッチング素子SWのオン期間に相当する。従って、VDSのピーク期間を検出すれば、二次側から一次側スイッチング素子SWのオン期間を検出することができることになる。また、多くの電源方式で、一次側のターンオン期間の長さは、二次側の負荷電流に比例しており、負荷が重いほど一次側のターンオン期間は長くなるので、VDSのピーク期間を元に、二次側制御回路による制御を最適化することができる。たとえばピーク期間が短い場合は軽負荷とみなし、ゲート駆動電圧VGの出力電圧を下げて二次側制御回路のドライブ損失を抑え、電源装置の消費電力を減らしたり、ピーク期間が極端に短い時は異常状態と判断して同期整流用MOSトランジスタS0の駆動を止めるといった制御を行うことができる。
【0027】
図2には、上記のような制御を実行可能な二次側制御回路20の構成例が示されている。
図2に示されているように、二次側制御回路20は、同期整流用MOSトランジスタS0のドレイン端子が接続されるドレイン電圧検出端子P1の電圧VDSと所定のしきい値電圧Vth_on(例えば-200mV)とを比較するコンパレータなどからなるオンタイミング検出回路21、ドレイン電圧検出端子P1の電圧VDSと所定のしきい値電圧Vth_off(例えば0~-150mV)とを比較するコンパレータなどからなるオフタイミング検出回路22を備える。
ここで、オンタイミング検出回路21の判定しきい値Vth_onは、同期整流用MOSトランジスタS0のボディダイオードに電流が流れ始めたことを確実に検出できるように、ボディダイオードの順方向電圧を考慮した電圧に設定される。
【0028】
また、二次側制御回路20は、ドレイン電圧VDSのピーク期間Tpおよびボトム期間Tb(
図4参照)を検出してイネーブル信号ENを生成するピーク検出&判定回路23と、オンタイミング検出回路21の出力ON_SIGとオフタイミング検出回路22の出力OFF_SIGとピーク検出&判定回路23から出力されるイネーブル信号ENに基づいて同期整流用MOSトランジスタS0をオン、オフ制御する信号を生成するオン・オフ制御回路24と、生成されたオン、オフ制御信号を受けてゲート駆動電圧VGを外部端子P2より出力するゲートドライバ回路25を備えている。オン・オフ制御回路24の前段にオフタイミング検出信号OFF_SIGとイネーブル信号ENとを入力とするANDゲートを設けて、イネーブル信号ENによりオフタイミング検出信号OFF_SIGのオン・オフ制御回路24への入力を許可したり禁止したりするように構成しても良い。
【0029】
図3には、上記ピーク検出&判定回路23の構成例が示されている。
図3に示されているように、ピーク検出&判定回路23は、ドレイン電圧VDSのピーク期間Tpを検出するピーク検出部23Aと、ボトム期間Tbを検出して同期整流用MOSトランジスタS0のターンオンすなわちゲート駆動電圧VGを生成するゲートドライバ回路25のソース側スイッチのオンを許可するイネーブル信号ENを生成するイネーブル判定部23Bとから構成される。
【0030】
このうち、ピーク検出部23Aは、ドレイン電圧検出端子P1の電圧VDSに対して例えば数10mV~数100mVのマイナスのオフセットを付与するオフセット付与回路31と、オフセット付与後のドレイン電圧VDS’の波形を鈍らせるためのローパスフィルタ(LPF)32と、サンプリング用スイッチS1とコンデンサC1とからなるサンプルホールド回路33および放電回路34と、サンプルホールド回路33に取り込まれた電圧と端子P1のドレイン電圧VDSとを比較してピーク期間Tpを検出するコンパレータ35と、コンパレータ35の出力(パルス)の立ち上がりのみを遅延させるディレイ回路36を備える。ディレイ回路36による遅延時間は、
図4に示すドレイン電圧VDS’の波形のサージ部分SGの幅に対応するように決定される。
【0031】
オフセット付与回路31によりマイナスのオフセットが付与されたドレイン電圧VDS’をサンプルホールド回路33でホールドした電圧をピーク期間の判定のための基準電圧VDS_PHとして、ドレイン電圧VDSを入力とするコンパレータ35の反転入力端子に印加されることで、ピーク期間のレベルが変化したとしてもそのピーク期間のレベルよりも数10mV~数100mV低い電圧をピーク期間判定基準電圧とすることができる。そのため、電源の状態が変わっても正確なVDSピーク期間の検出が安定して行えるとともに、基準電圧VDS_PHはドレイン電圧VDSとの電位差が小さいため、電流不連続期間の共振など、振幅の小さいVDS入力によりコンパレータ35が応答することを防止できる。
【0032】
サンプルホールド回路33のサンプリング用スイッチS1は、コンパレータ35の出力をディレイ回路36で遅延した信号によってオン、オフ制御され、スイッチS1がオフされた時点のドレイン電圧VDS”をコンデンサC1に保持する。このように、遅延信号によってドレイン電圧VDS”をサンプルホールド回路33に保持することによって、ドレイン電圧VDSの上昇直後のサージ部分をサンプリングしないようにして、正確なピーク期間判定基準電圧VDS_PHを生成することができる。
【0033】
また、オフセット付与回路31とサンプルホールド回路33との間にローパスフィルタ32を設けているため、ドレイン電圧VDSに含まれる高周波成分を除去できるとともに、ドレイン電圧VDSの波形を鈍らせることができ、それによってドレイン電圧VDSの立ち上がり時にはVDSに加算されるサージ電圧を抑え、VDSの立下り時には立下り波形の傾斜を緩やかにして、サンプル解除タイミングでのVDS低下を抑える。つまり、サンプルホールド回路33に保持されるピーク電圧の落ち込みを防止することができる。
放電回路34は、サンプルホールド回路33のコンデンサC1の電荷を転送する電荷転送用スイッチS2と、転送された電荷を保持するコンデンサC2と、コンデンサC2の充電電荷を放電させる放電用スイッチS3とから構成され、スイッチS2とS3はイネーブル判定部23Bからの信号によってオン、オフ動作される。
【0034】
イネーブル判定部23Bは、ドレイン電圧検出端子P1の電圧VDSと所定の電圧Vrefとを比較してボトム期間Tbを検出するためのコンパレータ37と、該コンパレータ37の出力の立ち上がりに同期してパルスを生成するワンショットパルス生成回路38と、ピーク検出部23Aのコンパレータ35の出力を遅延させるディレイ回路39と、該ディレイ回路39で遅延された信号と上記ボトム検出用コンパレータ37の出力信号の論理積をとるANDゲートG1を備える。そして、ANDゲートG1の出力が、ゲート駆動電圧VGを生成するゲートドライバ回路25のシンク側スイッチのオンすなわち同期整流用MOSトランジスタS0のターンオフを許可するイネーブル信号ENとして、オン・オフ制御回路24へ供給される。ディレイ回路39による遅延時間は、二次側同期整流MOSトランジスタS0に電流が流れる、通常のスイッチング動作において、ドレイン電圧VDSがピークから10%程度に下がるまでに要する時間を考慮して決定される。
【0035】
また、コンパレータ37の出力が前記放電回路34の電荷転送用スイッチS2の制御信号として供給され、ワンショットパルス生成回路38の出力が前記放電回路34の放電用スイッチS3の制御信号として供給されるように構成されている。そのため、放電回路34は、VDSのピーク期間にはスイッチS2をオンさせて放電回路34のコンデンサC2をサンプルホールド回路33に接続して、コンデンサC2の電位をC1の電位と同一の電位にするとともに、VDSのボトム期間にはスイッチS3をオンさせてコンデンサC2の電荷を放電してリセットする。
そして、次にスイッチS2をオンさせた際に、コンデンサC1の電荷の一部がC2に移動して、C1のホールド電位はコンデンサC1とC2との容量比に応じて低下する。上記のような動作をスイッチングサイクル毎(パルス毎)に実行して、ホールド電圧を徐々に放電することで、ピーク期間のドレイン電圧VDSが低下するように状況においてVDS_PHが固定されるのを回避して、速やかに追従して変化させることができる。
【0036】
次に、
図4および
図5のタイミングチャートを用いて、ピーク検出&判定回路23の動作について説明する。このうち、
図4は通常動作時および入力電圧低下時のもの、
図5はドレイン電圧の共振の幅と振幅が大きい時のものである。
図4および
図5において、(a)は同期整流用MOSトランジスタS0のドレイン電圧VDS、(b)はスイッチS1をオン、オフさせるディレイ回路36の出力、(c)はボトム期間検出用のコンパレータ37の出力、(d)は放電回路34をリセットさせるワンショットパルス生成回路38の出力パルス、(e)はピーク期間検出用のコンパレータ35の出力、(f)はコンパレータ35の出力を遅延させるディレイ回路39の出力、(g)はANDゲートG1から出力されるイネーブル信号ENの変化をそれぞれ示す。また、サンプルホールド回路33に保持され、ピーク期間検出用のコンパレータ35に供給される判定基準電圧VDS_PHは
図4(a)において、破線Dで示されている。
【0037】
先ず、
図4を用いて、ドレイン電圧VDSピーク期間Vpの検出動作とピーク期間検出用の基準電圧VDS_PHの調整動作を説明する。なお、
図4の左側半分(t1~t9)には電流不連続モード(DCM)で動作している時(軽負荷時)のタイミングチャート、右側半分(t10~t20)には電流連続モード(CCM)で動作している時(重負荷時)に一次側の入力電圧が低下した場合のタイミングチャートが示されている。
図4(a)に示されているように、ドレイン電圧VDSが上昇してタイミングt1でボトム期間検出用のしきい値Vrefを超えると(c)に示すようにコンパレータ37の出力がローレベルに変化する(なお、この時点でサンプルホールド回路33のスイッチS1はオフし、コンデンサC2はリセットされている)。
【0038】
すると、放電回路34の転送用スイッチS2がオンされて、コンデンサC1の電荷の一部がコンデンサC2へ転送されて、コンデンサC1に保持されている判定基準電圧VDS_PHが、C1に対するC2の比率に応じてC1/(C1+C2)に低下する(
図4(a)の破線参照)。
その後、ドレイン電圧VDSが上昇して判定基準電圧VDS_PHを超えると、(e)に示すようにピーク期間検出用のコンパレータ35の出力がハイレベルに変化する(t2)。そして、ディレイ回路36の遅延時間deley1後にディレイ回路36の出力がハイレベルに変化する(t3)。すると、サンプルホールド回路33のスイッチS1がオンされて、コンデンサC1とC2の充電が開始され、VDS_PHがVDS’まで上昇する。
【0039】
ピーク期間検出用のコンパレータ35の出力がハイレベルに変化(t2)してから、ディレイ回路39の遅延時間deley2が経過すると、ディレイ回路39の出力がハイレベルに変化する。その後、タイミングt4でピーク期間Tpが終了してドレイン電圧VDSが立ち下がると、ピーク期間検出用のコンパレータ35の出力とディレイ回路36の出力がローレベルに変化し、サンプルホールド回路33のスイッチS1がオフされて、コンデンサC1の充電電圧が判定基準電圧VDS_PHとしてホールドされる。また、このタイミングt4でボトム期間検出用のコンパレータ37の出力がハイレベルに変化し、放電回路34の転送用スイッチS2がオフされるとともに、ワンショットパルス生成回路38によりパルスが生成され、そのパルスによって放電回路34の放電用スイッチS3がオンされて、コンデンサC2の電荷がリセットされる。
【0040】
また、このとき(t4)、ボトム期間検出用のコンパレータ37の出力とディレイ回路39の出力が共にハイレベルになることで、ANDゲートG1の出力であるイネーブル信号ENがハイレベルに変化し、ディレイ回路39の出力がローレベルになるタイミングt5でイネーブル信号ENがローレベルに変化する。
イネーブル信号ENがハイレベルの期間に、
図2のオンタイミング検出回路21が検出信号ON_SIGを出力すれば、同期整流用MOSトランジスタS0のターンオンが許可されてオンするが、タイミングt5でイネーブル信号ENがローレベルに変化した後に、オンタイミング検出回路21が検出信号ON_SIGを出力した場合には、同期整流用MOSトランジスタS0はターンオンしない。タイミングt6~t10の期間の動作は、上記タイミングt1~t5の期間の動作と同じであるので、説明を省略する。
【0041】
その後、負荷が重くなって電流連続モード(CCM)へ移行した場合には、t11~t15の期間のように、ドレイン電圧VDSに電流不連続期間の共振は見られなくなるが、回路の動作としてはほぼ同じである。
図1のようなフライバック方式の電源において、一次側の入力電圧が低下すると、タイミングt14~t16の期間のように、ドレイン電圧VDSのピークも低下し判定基準電圧VDS_PHに到達しなくなるため、ピーク期間検出用のコンパレータ35の出力がハイレベルに変化しなくなり、ディレイ回路39の出力(パルス)もイネーブル信号ENも生成されなくなる。その結果、同期整流用MOSトランジスタS0はターンオンしないこととなる。
【0042】
そして、放電回路34の放電動作によって、サンプルホールド回路33により生成されるピーク期間の判定基準電圧VDS_PHが徐々に低下するため、VDS>VDS_PHの期間が発生するようになり、サージなどでピーク期間検出用のコンパレータ35の出力が変化するようになる。ただし、サージ期間はディレイ回路36の遅延時間Delay1より短いため、サンプルホールド回路33にコンデンサC1にはサージ期間の電圧は取り込まれず、通常と同様のサンプリングを実施する。
一方、ピーク期間検出用のコンパレータ35にはサージ分が見えるため、コンパレータ35の出力とディレイ回路39の出力は変化するが、ボトム期間検出用のコンパレータ37の出力のハイレベルとディレイ回路39の出力のハイレベルが重なる期間だけイネーブル信号ENがハイレベルになり、同期整流用MOSトランジスタS0のターンオンが許可される。従って、負荷が少しでもあれば、ドレイン電圧VDSのサージ後のピーク期間だけが検出されてターンオンが許可されるため、動作上問題はない。
【0043】
次に、
図5のタイミングチャートを用いて、一次側の入力電圧が非常に小さい状態など、ドレイン電圧VDSのピークが電流不連続期間の共振振幅とほぼ等しい値になった場合におけるピーク検出&判定回路23の動作について説明する。
図5の期間Trに示すように、ドレイン電圧VDSの共振の振幅がピーク期間の判定基準電圧VDS_PHを超えるようになると、ピーク期間検出用のコンパレータ35の出力(e)がハイレベルに変化する(タイミングt22)という現象が発生する。この場合、t24~t26の間におけるVDSの立下りでオンタイミング検出回路21が検出信号ON_SIGを出力するが、同期整流用MOSトランジスタS0のターンオンは防止する必要がある。
【0044】
図3のピーク検出&判定回路23においては、VDSの共振波形が立ち上がるタイミングt21でボトム期間検出用のコンパレータ37の出力(c)がローレベルに変化する。すると、放電回路34の電荷転送用スイッチS2がオンされて、サンプルホールド回路33のコンデンサC1の電荷が放電回路34のコンデンサC2へ転送されて、基準電圧VDS_PHが容量比分だけ低下する。その後、タイミングt22でVDSが基準電圧VDS_PHを超えると、ピーク期間検出用のコンパレータ35の出力(e)がハイレベルに変化し、ディレイ回路36の遅延時間deley1経過後(タイミングt23)にサンプリング信号(b)がハイレベルに変化してスイッチS1がオンして、基準電圧VDS_PHはVDS入力に合わせた電圧へ変化する(t23~t24)。
【0045】
その後、ドレイン電圧VDSが低下して基準電圧VDS_PH以下になると、ピーク期間検出用のコンパレータ35の出力(e)がローレベルに変化する(タイミングt24)。すると、サンプリング信号(b)がローレベルに変化してスイッチS1がオフされ、コンデンサC1の充電電圧である基準電圧VDS_PHがホールドされる。
続いて、t24からディレイ回路39の遅延時間Delay2後に、ディレイ回路39の出力(f)がローレベルに変化するようになる(タイミングt25)が、この時点でVDSは低下しきらず、ボトム期間検出用のコンパレータ37の出力(c)がローレベルのため、同期整流用MOSトランジスタS0のターンオンを許可するイネーブル信号ENが出力されない。
【0046】
そのため、タイミングt24~t26のドレイン電圧VDSの立下りでオンタイミング検出回路21が検出信号ON_SIGを出力したとしても、同期整流用MOSトランジスタS0がターンオンされないようにすることができる。
タイミングt27以降の動作は、
図4を用いて説明したタイミングt2~t6の動作と同じであるので、詳しい説明は省略するが、t30~t31の期間では、VDSの立下りが速いため、ディレイ回路39の出力(f)がハイレベルの間に、ボトム期間検出用のコンパレータ37の出力(c)がハイレベルに変化する。そのため、同期整流用MOSトランジスタS0のターンオンを許可するイネーブル信号ENが出力され、その間にオンタイミング検出回路21が検出信号ON_SIGを出力すると、同期整流用MOSトランジスタS0がターンオンされることとなる。
【0047】
以上説明したように、上記実施形態の二次側制御回路においては、二次側同期整流用MOSトランジスタS0のドレイン電圧VDSにオフセットを持たせたピーク期間の電圧をホールドして判定基準電圧VDS_PHを生成し、ドレイン電圧VDSと比較することで、VDSのピーク期間を検出することができる。ここで、VDSのピーク期間は一次側スイッチング素子のオン期間に相当するため、二次側で一次側スイッチの状態を間接的に検出できる。そして、この検出結果をもとに入力電圧の低下などの異常状態の発生を検出し、二次側同期整流用MOSトランジスタS0のオン・オフ制御を実行することが可能である。
【0048】
また、上記実施形態の二次側制御回路においては、ピーク期間の判定基準電圧VDS_PHを、二次側同期整流用MOSトランジスタS0のドレイン電圧VDSのピークホールド値をもとにして生成しているので、VDSのピーク期間の電圧に応じて判定基準電圧VDS_PHを変化させることができ、幅広いVDS入力範囲に対応することが可能である。また、入力されたドレイン電圧VDSから所定のオフセットを引いた電圧をピークホールドして判定基準電圧VDS_PHとしているため、振幅の小さいVDSでもピーク期間を確実に検出できるとともに、VDSのピーク電圧は電流不連続期間の共振波形の最大値より一般的に高いため、この共振期間の波形をVDSピーク期間と誤検出しにくくなる。
【0049】
さらに、ドレイン電圧VDSのピークをホールドするサンプルホールド回路33として、ダイオードと容量の回路構成を避けてスイッチと容量の回路構成を採用しているため、ダイオードの順方向電圧Vfによるホールド電圧の落ち込みを低減できる。また、ダイオードの順方向電圧Vfは温度依存性を有するため、温度変化で判定基準電圧VDS_PHが変動するおそれがあるが、ダイオードの代わりにMOSトランジスタのようなスイッチを使用することで、温度変化の影響を回避して安定した制御動作が可能になる。
【0050】
また、ピーク期間検出用のコンパレータ35の後段にディレイ回路36を設けて、サンプルホールド回路33がVDSサージの発生期間を避けたタイミングでホールドを実施しているので、サージのピークホールド値すなわち判定基準電圧VDS_PHへの影響を抑えることができる。
また、上記実施形態の二次側制御回路においては、判定基準電圧VDS_PHを生成するサンプルホールド回路33に放電回路34を接続して、ホールド用のコンデンサC1の電荷を、スイッチング毎に所定量ずつ放電するように構成されているため、ドレイン電圧VDSのピーク電圧が低下する場合にも、速やかにその電圧低下に追随して判定基準電圧VDS_PHを変化させ、適切な値に維持できる。
【0051】
さらに、VDSのピーク期間の検出信号にディレイを持たせ、VDSのボトム検出信号との論理和をとって、二次側同期整流用MOSトランジスタS0のターンオンを許可するイネーブル信号ENを生成しているため、電流不連続期間における同期整流用MOSトランジスタS0の誤ったターンオンを防止することができる。すなわち、電流不連続期間では、本来は一次側スイッチング素子SWも二次側同期整流用MOSトランジスタS0もターンオフしている期間であるが、回路の異常動作などでVDSが乱れ、このVDSにオンタイミング検出回路21が反応して二次側同期整流用MOSトランジスタS0をターンオンさせると逆流するおそれがあるが、上記実施形態では、ピーク期間検出用のコンパレータ35の後段にディレイ回路39を設けてその遅延時間Delay2の間だけ同期整流用MOSトランジスタS0のターンオンを許可するイネーブル信号ENを生成するようにしているため、VDSがピークからボトムに変化するまでの時間が長い電流不連続期間では、逆流を防止できる。
【0052】
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではない。例えば、上記実施形態におけるオフセット付与回路は、オペアンプを使用したレベル変換回路でもよいし、オペアンプを使用せずにダイオードの順方向電圧などの素子の特性を利用したレベルシフト回路であっても良い。また、上記実施形態では、オフセット付与回路31の後段にローパスフィルタ32を設けているが、オフセット付与回路31とローパスフィルタ32の順序は逆でも良いし、ローパスフィルタ32を省略した構成とすることも可能である。ピーク期間検出用のコンパレータ35の非反転入力端子側に、VDSを所定量プラス側へ持ち上げるオフセット付与回路を設けるようにしても良い。
【0053】
さらに、本発明に係る二次側同期整流制御回路は、
図1に示すようなフライバック方式のスイッチング電源装置(DC-DCコンバータ)に限定されるものではなく、例えばハーブブリッジ方式など他の方式のDC-DCコンバータにも適用可能である。また、一次側にインダクタとコンデンサからなる電流共振回路を設けたLLC共振コンバータにも適用することが可能である。
【符号の説明】
【0054】
10……トランス、11……一次側制御回路、20……二次側制御回路、21……オンタイミング検出回路、22……オフタイミング検出回路、23……ピーク検出&判定回路、24……オン・オフ制御回路、25……ゲートドライバ回路、31……オフセット付与回路、32……ローパスフィルタ、33……サンプルホールド回路(判定基準電圧生成回路)、34……放電回路、35……ピーク期間検出用のコンパレータ(ピーク期間検回路)、36……ディレイ回路、37……ボトム期間検出用のコンパレータ(ボトム期間検回路)、38……ワンショットパルス生成回路、39………ディレイ回路(信号遅延回路)、S0……同期整流用MOSトランジスタ