(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-18
(45)【発行日】2023-01-26
(54)【発明の名称】攪拌機
(51)【国際特許分類】
B01F 27/271 20220101AFI20230119BHJP
B01F 23/41 20220101ALI20230119BHJP
B01F 23/53 20220101ALI20230119BHJP
【FI】
B01F27/271
B01F23/41
B01F23/53
(21)【出願番号】P 2021163810
(22)【出願日】2021-10-05
(62)【分割の表示】P 2017508377の分割
【原出願日】2016-03-23
【審査請求日】2021-10-05
(31)【優先権主張番号】P 2015061360
(32)【優先日】2015-03-24
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】595111804
【氏名又は名称】エム・テクニック株式会社
(74)【代理人】
【識別番号】100086346
【氏名又は名称】鮫島 武信
(72)【発明者】
【氏名】榎村 眞一
【審査官】中村 泰三
(56)【参考文献】
【文献】国際公開第2014/010094(WO,A1)
【文献】仏国特許出願公開第02679789(FR,A1)
【文献】西独国特許出願公告第01048465(DE,B)
【文献】特開平07-096167(JP,A)
【文献】特開2002-091072(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A01J 11/16
B01F 23/40-57、27/000-96
B02C 18/00、19/10、23/36
(57)【特許請求の範囲】
【請求項1】
支持管と、
前記支持管により支持されており、吸入室及び吸入口を含み、吸入口を通じて被処理流動体を吸入室へ吸入する構成である処理部と、
複数の羽根を備えると共に回転するローターと、 前記支持管の中心軸に向かって先細りし、前記ローターの周囲に敷設されたスクリーンとを備え、
前記スクリーンは、その周方向に複数のスリットと、隣り合う前記スリット同士の間に位置するスクリーン部材とを備え、
前記処理部は中空のハウジングであり、
前記処理部に前記スクリーンを備え、前記処理部内に前記ローターを有し、
前記羽根は、その最外周面に先端部を有しており、
前記羽根の先端部と前記スリットとは、前記スリットの長さ方向において互いに重なり合う同一位置にある一致領域を備え、
前記ローターと前記スクリーンとのうち少なくともローターが回転することによって、前記ローターと前記スクリーンとが相対的に回転することにより、被処理流動体が前記スリットを通じて断続ジェット流として前記スクリーンの内側から外側に吐出する攪拌機において、
前記断続ジェット流が発生する前記ローターと前記スクリーンとの関係において、下記の条件1と条件2とを充足し、かつ、前記一致領域における前記ローターの回転軸と直交する面における前記羽根の断面積の総和(Y)と前記一致領域における前記スクリーン内の空間の断面積(Z)との関係が
0.34≦Y/Z≦0.6であることを特徴とする攪拌機。
(条件1) 前記一致領域における、
前記羽根の前記先端部の回転方向の幅(b)と、
前記スリットの周方向の幅(s)と、
前記スクリーン部材の周方向の幅(t)と、
の関係が、
b≧2s+t
である。
(条件2)前記一致領域における、
前記羽根の前記先端部の回転方向の幅(b)と
前記スクリーンの最大内径(c)との関係が、
b≧0.1c である。
【請求項2】
前記羽根は、前記一致領域における前記スクリーン内の空間内にて回転する回転軸から放射状に伸びていることを特徴とする請求項1に記載の攪拌機。
【請求項3】
前記スクリーンの内部に前記被処理流動体を導入する導入口から、軸方向に遠ざかるに従って、前記スクリーンの径が小さくなるものであることを特徴とする請求項1又は2に記載の攪拌機。
【請求項4】
Y/Z≦0.5であることを特徴とする請求項1~3の何れかに記載の攪拌機。
【請求項5】
前記スリットの周方向の幅(s)が0.2~4.0mmであることを特徴とする請求項1~4の何れかに記載の攪拌機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は攪拌機、特に、被処理流動体の乳化、分散或いは混合処理に用いる攪拌機の改良に関するものである。
【背景技術】
【0002】
攪拌機は、流体の乳化、分散或いは混合処理を行う装置として、種々のものが提案されているが、今日においては、ナノ粒子等の粒子径の小さな物質を含む被処理流動体を良好に処理することが求められている。
例えば、広く知られた攪拌機の一種としてビーズミルやホモジナイザーが知られている。
【0003】
ところが、ビーズミルでは、粒子の表面の結晶状態が破壊され、傷つけられることによる機能低下が問題となっている。また異物発生の問題も大きい。
高圧ホモジナイザーでは、機械の安定稼働の問題や大きな必要動力の問題等が解決されていない。
また、回転式ホモジナイザーは、従来プレミキサーとして用いられていたが、ナノ分散やナノ乳化を行うには、さらにナノ化の仕上げのために仕上げ機を必要とする。
【0004】
(特許文献に関して)
これに対して、特許文献1乃至3の攪拌機を本発明者は提案した。この攪拌機は、複数の羽根を備えたローターと、ローターの周囲に敷設されると共に複数のスリットを有するスクリーンとを備えるものである。ローターとスクリーンとは、相対的に回転することによって、スリットを含むスクリーンの内壁と羽根との間の微小な間隙において被処理流動体のせん断が行われると共に、スリットを通じて断続ジェット流としてスクリーンの内側から外側に被処理流動体が吐出されるものである。
【0005】
この種の攪拌機は、特許文献2の「<従来の技術>」に示されていたように、羽根車(即ちローター)の回転数を調整することによって、攪拌条件を変化させていた。そして、特許文献2に係る発明では、ローターの羽根先と、スクリーンの内壁との間のクリアランスを任意の幅に選択することを可能とした攪拌機を提案するものであり、これによって、流体に応じた能力の向上最適化を図るものであった。また、特許文献3にあっては、断続ジェット流の周波数Z(kHz)を特定の値よりも大きくすることによって、急激に微粒子化の効果が大きくなるとの知見を得て、これに基づき、従来の攪拌機では不可能であった領域の微粒子化を可能とする攪拌機を提案するものであった。
【0006】
これらの特許文献では、いずれもローターの羽根先の周方向の幅と、スクリーンに設けられるスリットの周方向の幅とは、一定の条件下(具体的には、両者の幅が略等しいか、ローターの羽根先の幅の方が少し大きい程度で固定した条件下)で、スクリーンの内壁との間のクリアランスを変更したり、断続ジェット流の周波数Z(kHz)を変更したりすることで、その発明がなされたものであった。
【0007】
これまでの本願出願人の開発により、断続ジェット流により、速度界面で液-液間のせん断力が発生することによって、乳化、分散或は混合の処理が行われることが知られており、この液-液間のせん断力が、被処理流動体の微細化、特に、ナノ分散やナノ乳化等の極めて微細な分散や乳化を実現する点で有効に作用することは推測されているが、未だその作用は十分に解明されていないのが現状である。
【0008】
(本発明の経緯)
本発明の発明者は、特許文献1~3に示された装置によって、被処理流動体の微細化を促進し、より微細の分散や乳化を実現することを試みたところ、まず、スリットを含むスクリーンの内壁と羽根との間の微小な間隙において被処理流動体のせん断が行われる点からすると、せん断の効率化を図るためには、単位時間当たりのせん断回数を増やすことが有効であると考えられるため、単位時間当たりのせん断回数を増やす視点から検討を行った。
【0009】
そのための手段としては、これらの特許文献に示されるようにローターの回転数(羽根の先端部の回転周速度)を変化させることが知られているが、ローターの回転数(羽根の先端部の回転周速度)を一定とする条件下では、スリットの幅を小さくしてスリットの数を増やすか、或いは、ローターの羽根の枚数を増やすことが有効であると考えられる。
【0010】
ところが、断続ジェット流を発生させる場合には、スリットの幅を大きくし過ぎるとスリットを通過する被処理流動体の圧力が低下し、他方、スリットの幅を小さくし過ぎるとスリットを通過する被処理流動体の流量が低下してしまうため、断続ジェット流が良好に発生しないおそれがある。その結果、スリットの幅を小さくしてスリットの数を増やすことには限度がある。
【0011】
他方、ローターの羽根の枚数を増やすことを検討した場合、羽根の幅を同一に保った状態でローターの羽根の枚数を増やすと、羽根同士の間の空間容積が低くなり、羽根による被処理流動体の吐出量が低下してしまうため、羽根の幅を小さくして羽根の枚数を増やすことになる。このように、羽根の幅を小さくして羽根の枚数を増やして試験を行ったところ、予測に反して、被処理流動体の微細化を促進することができなかった。
【0012】
そこで、単位時間当たりのせん断回数を増やすことではなく、断続ジェット流による液-液間のせん断力に着目し、このせん断力を高めることで、被処理流動体の微細化を促進することを検討した。
【0013】
この断続ジェット流による液-液間のせん断力の発生メカニズムを検討した結果を、
図6を参照して説明する。ローターの回転により羽根12が回転移動すると、羽根12の回転方向の前面側では、被処理流動体の圧力が上昇する。これによって、羽根12の前面側に位置するスリット18から被処理流動体が断続ジェット流となって吐出される。その結果、スクリーン9の外側の被処理流動体と、断続ジェット流となって吐出される被処理流動体との間に液-液間のせん断力が発生する。従って、吐出する断続ジェット流の流速を高めることにより、液-液間のせん断力を高めることはできるが、ローターの回転数を早めるのにも機械的な限度がある。
【0014】
そこでさらに研究を進めると、羽根12の回転方向の後面側では、被処理流動体の圧力が低下することにより、後面側に位置するスリット18から被処理流動体が吸い込まれる現象が生じていることが判明した。その結果、スクリーン9の外側では、単に静止している被処理流動体に対して、スリット18からの被処理流動体の断続ジェット流が吐出するのではなく、正逆の流れ(吐出と吸込)が発生しており、両流れの界面における相対的な速度差によって、被処理流動体同士の間に液-液間のせん断力が生じるものであると考えられるに至った。
【0015】
この視点に立って、
図6(C)(D)に示す従来例を検討し直すと、羽根12同士の間の空間を大きくする等の観点から、羽根12の厚みは機械的強度等が許す範囲で薄くされ、その先端部21の幅も小さ設定さくれている。そのため、吐出と吸込の変化の周期が短くなり、頻繁に行われるが、吐出と吸込との状態変化に被処理流動体が十分に追従していない可能性があることが判明した。
【先行技術文献】
【特許文献】
【0016】
【文献】特許第2813673号公報
【文献】特許第3123556号公報
【文献】特許第5147091号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
本発明は、断続ジェット流の作用によって被処理流動体に加えられるせん断をより効率的になすことができる攪拌機の提供を目的とする。
また、このせん断が効率的になされる結果、ナノ分散やナノ乳化等の極めて微細な分散や乳化を実現することができる攪拌機の提供を目的とする。
【課題を解決するための手段】
【0018】
本発明は、断続ジェット流によって生じる被処理流動体の正逆の流れ(スリットからの吐出と吸込)の界面における相対的な速度差を高めるという新たな視点から、攪拌機の改良を試みた結果生まれた発明である。具体的には、被処理流動体の正逆の流れの相対的速度差を高めることができるスクリーンと、スクリーンに設けられたスリットと、ローターの羽根と、羽根の先端との関係を見いだし、本発明を完成させたものである。
【0019】
しかして、本発明は、複数の羽根を備えると共に回転するローターと、ローターの周囲に敷設されたスクリーンとを備え、スクリーンは、その周方向に複数のスリットと、隣り合うスリット同士の間に位置するスクリーン部材とを備え、羽根の先端部とスリットとは、前記スリットの長さ方向において互いに重なり合う同一位置にある一致領域を備え、ローターとスクリーンとのうち少なくともローターが回転することによって、ローターとスクリーンとが相対的に回転することにより、被処理流動体がスリットを通じて断続ジェット流としてスクリーンの内側から外側に吐出する攪拌機を改良するものである。
【0020】
本発明は、下記の条件1と条件2とを同時に満たす攪拌機を提供する。
(条件1)
一致領域における、
羽根の先端部の回転方向の幅(b)と、
スリットの周方向の幅(s)と、
スクリーン部材の周方向の幅(t)と、
の関係が、
b≧2s+t
である。
(条件2)
一致領域における、
羽根の先端部の回転方向の幅(b)と
スクリーンの最大内径(c)との関係が、
b≧0.1c
である。
【0021】
前述のように、
図6(C)(D)に示す従来例にあっては、吐出と吸込との状態変化に被処理流動体が十分に追従していない可能性がある。本発明者は、この点に着目することによって、羽根(特にその先端部)とスクリーンとスリットとの関係を前記の条件1と条件2とを充足するように特定することによって、吐出と吸込との状態変化に対する被処理流動体の追従性を向上させ、被処理流動体の正逆の流れ(吐出と吸込)の界面における相対的な速度差を高めて、液-液間に発生するせん断力を従来よりも大きくすることできることを知見して、本発明を完成させたものである。
【0022】
本発明の作用は必ずしも全てが解明されたものではないが、
図6(A)(B)を参照して、本発明者が考える本発明の作用をより詳しく説明する。本発明の攪拌機にあっては、羽根12の先端部の幅が広くなっているため、吐出と吸込の間に被処理流動体が静止する期間が発生し、吐出と吸込の状態変化が緩やかに行われる結果、羽根12の動きとこれに伴うスリット18の開閉の変化に、被処理流動体が良好に追従する。これによって、被処理流動体の正逆の流れ(吐出と吸込)の界面における相対的な速度差が大きくなり、被処理流動体同士の間に発生するせん断力を大きくすることができたものである。
【0023】
この被処理流動体の正逆の流れ(吐出と吸込)の速度を直接測定することは困難であるが、後述の実施例で示すように、本発明の実施に係る攪拌機にあっては、従来の攪拌機に比して、被処理流動体の微粒子化を顕著に促進することができたことが確認された。
【0024】
本発明において、スリットの周方向の幅は、断続ジェット流が発生することを条件に変更することができるが、スリットの周方向の幅(s)は、0.2~4.0mmが好ましく、0.5~2.0mmであることがより好ましい。
【0025】
スクリーンは、その内部に被処理流動体を導入する導入口から、軸方向に遠ざかるに従って、羽根及びスクリーンの径が小さくなるものとして実施することが好ましい。
【0026】
軸方向におけるスリットと導入口との関係を考量すると、導入口に近いところではスリットからの吐出量が多く、逆に、導入用の開口から遠いところはスリットからの吐出量が減る傾向にある。そのため、導入口から、軸方向に遠ざかるに従って、羽根及びスクリーンの径が小さくなるように構成することで、スクリーンの軸方向での吐出量を、均一化できる。これによって、キャビテーションの発生を抑制し、機械故障を低減することができる。
【0027】
複数のスリットは、周方向に同一の幅であり、且つ、周方向に等間隔に形成されたものとすることにより、周方向において、より均一な条件で被処理流動体の処理をなすことができる。但し、幅の異なるスリットを複数用いることを妨げるものではなく、複数のスリット間の間隔が不均一なものとして実施することを妨げるものではない。
【0028】
スクリーンは回転しないものとすることによって、個々の制御において、ローターの回転数のみを考慮しておけばよいが、逆に、スクリーンはローターと逆方向に回転させることにより、ナノ分散やナノ乳化等の極めて微細な分散や乳化に適したものとすることができる。
【0029】
なお、羽根の大きさは、条件1及び条件2を満たす限り種々変更して実施することができるが、羽根同士の間の空間の容積が少なくなり過ぎると処理量が低下するおそれも生じるため、前記ローターの回転軸と直交する面における前記羽根の断面積の総和が、前記スクリーン内の空間の断面積よりも小さいものとすることが好ましい。ここで、前記回転軸と直交する面における前記羽根の断面積の総和を下記特定式1、2におけるYとし、前記回転軸と直交する面におけるスクリーン内の空間の断面積を下記の特定式1、2におけるZとしたとき、YとZとが下記特定式2を満たすことが好ましい。特定式1のXは、前記回転軸の外周面とスクリーンの内周面とにより規定される領域の、前記回転軸と直交する断面の面積をいう。そして、X、Y、Zともに前記一致領域におけるものをいう。
X-Y=Z (特定式1)
Y<Z (特定式2)
前記一致領域における複数の断面のうちの少なくとも1箇所の断面において特定式2を満たすことが好ましく、全ての断面において特定式2を満たすことがより好ましい。
【0030】
また、本願は、下記のように捉えることもできる。
本発明は、複数の羽根を備えると共に回転するローターと、ローターの周囲に敷設されたスクリーンとを備え、スクリーンは、その周方向に複数のスリットと、隣り合うスリット同士の間に位置するスクリーン部材とを備え、羽根の先端部とスリットとは、ローターの回転軸の軸方向位置において互いに同一位置にある一致領域を備え、ローターとスクリーンとのうち少なくともローターが回転することによって、ローターとスクリーンとが相対的に回転することにより、被処理流動体がスリットを通じて断続ジェット流としてスクリーンの内側から外側に吐出する攪拌機において、下記の条件1と条件2とを同時に満たす攪拌機を提供する。
(条件1)
一致領域における、
羽根の先端部の回転方向の幅(b)と、
スリットの周方向の幅(s)と、
スクリーン部材の周方向の幅(t)と、
の関係が、
b≧2s+t
である。
(条件2)
一致領域における、
羽根の先端部の回転方向の幅(b)と
スクリーンの最大内径(c)との関係が、
b≧0.1c
である。
【発明の効果】
【0031】
本発明は、断続ジェット流に関してさらに研究を進め、断続ジェット流の作用によって被処理流動体に加えられるせん断をより効率的になすことができる攪拌機を提供することができたものである。
また、前記せん断が効率的になされる結果、ナノ分散やナノ乳化等の極めて微細な分散や乳化を実現することができる攪拌機を提供することができたものである。
更に、粒子径の分布が狭く、粒子径の揃った粒子を得ることができる攪拌機を提供することができたものである。
【図面の簡単な説明】
【0032】
【
図1】本発明の実施の形態に係る攪拌機の使用状態を示す正面図である。
【
図3】本発明の他の実施の形態に係る攪拌機の使用状態を示す正面図である。
【
図4】本発明のさらに他の実施の形態に係る攪拌機の使用状態の正面図である。
【
図5】本発明のさらにまた他の実施の形態に係る攪拌機の使用状態の正面図である。
【
図6】(A)本発明を適用した実施の形態に係る攪拌機の要部拡大図、(B)同作用を示す要部拡大図、(C)従来例の攪拌機の要部拡大図、(D)同作用を示す要部拡大図である。
【
図7】本発明を適用した実施の形態に係る攪拌機の要部断面図である。
【
図8】本発明の実施例及び比較例の試験装置の説明図である。
【
図9】本発明の実施例1A及び比較例1Aの試験結果のグラフである。
【
図10】本発明の実施例1B及び比較例1Bの試験結果のグラフである。
【
図11】本発明の実施例2の試験結果のグラフである。
【発明を実施するための形態】
【0033】
以下、図面に基づき、本発明の実施の形態を説明する。
まず、
図1、
図2を参照して、本発明を適用することができる攪拌機の一例の基本的な構造を説明する。
この攪拌機は、乳化、分散或は混合等の処理を予定する被処理流動体内へ配される処理部1と、処理部1内に配置されたローター2とを備えるものである。
【0034】
処理部1は、中空のハウジングであり、支持管3に支持されることによって、被処理流動体を収納する収容容器4或は被処理流動体の流路に配設される。この例では、処理部1は支持管3の先端に設けられ、収容容器4の上部から内部下方へ挿入されたものを示しているが、この例に限定するものではなく、例えば、
図3に示すように、処理部1が支持管3によって収容容器4底面から上方突出するように支持されるものであっても実施可能である。
【0035】
処理部1は、被処理流動体を外部から内部へ吸入する吸入口5を有する吸入室6と、吸入室6に導通する攪拌室7とを備える。攪拌室7は、複数のスリット18を有するスクリーン9によって、その外周が規定されている。
【0036】
なお、本明細書においては、スクリーン9は、空間であるスリット18と、スリット18同士の間に位置する実際の部材であるスクリーン部材19とから構成されているものとして説明する。従って、スクリーン9とは、複数のスクリーン部材19に形成されたスリット18を含む全体を意味し、スクリーン部材19とは、隣り合うスリット18同士の間に位置する1本1本の実在する部材を意味する。
【0037】
この吸入室6と攪拌室7とは、隔壁10によって区画されると共に、隔壁10に設けられた導入用の開口11を介して導通している。但し、この吸入室6や隔壁10は、必須のものではなく、例えば、吸入室6を設けずに攪拌室7の上端全体が導入用の開口となって、収容容器4内の被処理流動体が攪拌室7内に直接導入されるものであってもよく、また、隔壁10を設けずに、吸入室6と攪拌室7とが区画されない一つの空間を構成するものであってもよい。
【0038】
前記ローター2は、周方向に複数枚の羽根12を備えた回転体であり、羽根12とスクリーン9との間に微小なクリアランスを保ちつつ、回転する。ローター2を回転させる構造には種々の回転駆動構造が採用できるが、この例では、回転軸13の先端にローター2が設けられ、攪拌室7内に回転可能に収容されている。より詳しくは、回転軸13は、支持管3に挿通され、さらに、吸入室6、隔壁10の開口11を通って攪拌室7に達するように配設されており、その先端(図では下端)にローター2が取り付けられている。回転軸13の後端は、モータ14等の回転駆動装置に接続されている。モータ14は数値制御等の制御系統を有するもの或はコンピュータの制御下に置かれるものを用いることが好適である。
【0039】
この攪拌機は、ローター2が回転することによって、回転する羽根12がスクリーン部材19の内壁面を通過する際、両者間に存在する被処理流動体に加えられるせん断力によって、乳化、分散或は混合がなされる。これと共に、ローター2の回転によって、被処理流動体に運動エネルギーが与えられ、この被処理流動体がスリット18を通過することで、さらに加速されて、断続ジェット流を形成しながら攪拌室7の外部に流出する。この断続ジェット流により、速度界面で液-液間のせん断力が発生することでも乳化、分散或は混合の処理が行われる。
【0040】
スクリーン9は、断面円形の筒状をなす。このスクリーン9は、例えば、円錐形の表面形状のように、導入用の開口11から遠ざかるに従って(
図2の例では下方に向かうに従って)、漸次その径が小さくなるようにすることが望ましい。軸方向に一定径とした場合には、導入用の開口11に近いところ(
図2では上方)ではスリット18からの吐出量が多く、逆に、遠いところは吐出量が減る(
図2では下方)。その結果、コントロールできないキャビテーションが発生する場合があり、機械故障に繋がる恐れがある。
【0041】
スリット18は、回転軸13の軸方向に(図の例では上下方向)に直線状に伸びるものを示したが、スパイラル状等、湾曲して伸びるものであってもよい。また、スリット18の形状は、必ずしも細長い空間である必要はなく、多角形や円形や楕円形等であってもよい。また、周方向において、スリット18は等間隔に複数個が形成されているが、間隔をずらして形成することもでき、複数種類の形状や大きさのスリット18を設けることを妨げるものでもない。
スリット18は、そのリード角を適宜変更して実施することができる。図示したように、回転軸13と直交する平面と、スリット18の伸びる方向とのなすリード角が、90度である上下方向に直線状に伸びるものの他、所定のリード角を備えたスパイラル状のもの等、上下方向に湾曲して伸びるものであってもよい。
【0042】
ローター2の羽根12は、横断面(回転軸13の軸方向に直交する断面)において、ローター2の中心から放射状に一定の幅で直線状に伸びるものとすることができる他、外側に向かうに従って漸次幅が広くなるものであってもよく、湾曲しながら外側に伸びるものであってもよい。
また、これらの羽根12は、その先端部21のリード角は適宜変更することができる。例えば、回転軸13と直交する平面と、先端部21の伸びる方向とのなすリード角が、90度である上下方向に直線状に伸びるものの他、所定のリード角を備えたスパイラル状のもの等、上下方向に湾曲して伸びるものであってもよい。
【0043】
これらの個々の構成部材の形状は、羽根12の先端部とスリット18とが、スリット18の長さ方向において互いに重なり合う同一位置にある一致領域を備えるものである。そして、ローター2の回転によって、この一致領域における羽根12とスクリーン部材19との間で被処理流動体のせん断が可能なものであり、且つ、羽根12の回転に伴いスリット18を通過する被処理流動体に、断続ジェット流が生ずるように運動エネルギーを与えることができるものである。
【0044】
スクリーン9と羽根12とのクリアランスは、前記のせん断と断続ジェット流が生ずる範囲で適宜変更できるが、通常約0.2~4.0mmであることが望ましい。また、このクリアランスは、
図2に示すような全体がテーパ状のスクリーン9を用いた場合には、攪拌室7とローター2との少なくとも何れか一方を軸方向に移動可能としておくことで、容易に調整することができる。
また、攪拌機の他の構造としては、
図4及び
図5に示すものも採用することができる。
【0045】
まず
図4の例では、収容容器4内の被処理流動体の全体の攪拌均一化を行なうために、収容容器4内に別個の攪拌装置を配置したものである。具体的には、収容容器4内全体の攪拌のための攪拌翼15を、攪拌室7と同体に回転するように、設けることもできる。この場合、攪拌翼15と、スクリーン9を含む攪拌室7とは、共に回転させられる。その際、攪拌翼15及び攪拌室7の回転方向は、ローター2の回転方向とは、同一であってもよく、逆方向であってもよい。即ち、スクリーン9を含む攪拌室7の回転は、ローター2の回転に比して、低速の回転(具体的には、スクリーンの回転の周速度が0.02~0.5m/s程度)となるため、前記のせん断や断続ジェット流の発生には実質的に影響がない。
また、
図5の例は、攪拌室7を支持管3に対して回動可能とし、攪拌室7の先端に、第2モータ20の回転軸を接続したものであり、スクリーン9を高速回転可能とするものである。このスクリーン9の回転方向は、攪拌室7の内部に配置されたローター2の回転方向とは逆方向に回転させる。これによって、スクリーン9とローター2との相対的回転速度が増加する。
【0046】
前述の攪拌機において、本発明は次のように適用される。
本発明に係る攪拌機については、断続ジェット流により、速度界面で液-液間のせん断力が発生することによって、乳化、分散或は混合の処理が行われる。その際、本発明の実施の形態に係る攪拌機にあっては、例えば、
図6(A)(B)及び
図7に示すローター2及びスクリーン9を用いることができる。この例のローター2及びスクリーン9にあっては、スクリーン9におけるせん断作用が発揮される一致領域(即ち、羽根12の先端部21とスクリーン9のスリット18とが、スリット18の長さ方向にて、互いに重なり合う同一位置にある領域)において、次の第1条件と第2条件との両条件を満たすものである。
【0047】
(第1条件)
羽根12の先端部21の回転方向の幅(b)と、
スリット18の周方向の幅(s)と、
スクリーン部材19の周方向の幅(t)との関係が、
b≧2s+tの条件を満たすものである。
言い換えれば、ローター2における羽根12の先端部21の回転方向の幅が、隣り合う2つのスリット18の両端縁間の距離よりも大きく設定されているものである。
(第2条件)
羽根12の先端部21の回転方向の幅(b)と、
スクリーン9の最大内径(c)との関係が、
b≧0.1cの条件を満たすものである。
言い換えれば、羽根12の先端部21は、スクリーン9の最大内径に対して、所定の比率以上に設定されているものである。
【0048】
本願発明に係る攪拌機は、前述の通り、一致領域において、上記の第1条件と第2条件との両条件を満たすものである。ローター2の回転軸の軸方向位置については、一致領域であればどの位置であってもかまわないが、少なくとも回転軸13の軸方向位置がスクリーン9の最大内径となる位置において、第1条件と第2条件との両条件を満たすことが好ましい。
【0049】
ローター2及びスクリーン9がこの2つの条件を満たすことで、この攪拌機にあっては、速度界面で液-液間のせん断力を大きくすることができ、ナノ分散やナノ乳化等の非常に微細な分散や乳化を実現する点で、極めて有効であることが知見され発明が完成されたものである。
【0050】
この断続ジェット流の作用について、
図6(C)(D)に示す従来例と対比しつつ説明する。
まず、前述したように、断続ジェット流は、羽根12の回転によって発生するものであるが、これをより詳しく説明すると、羽根12の回転方向の前面側では、被処理流動体の圧力が上昇する。これによって、羽根12の前面側に位置するスリット18から被処理流動体が断続ジェット流となって吐出される。他方、羽根12の回転方向の後面側では、被処理流動体の圧力が低下することにより、後面側に位置するスリット18から被処理流動体が吸い込まれる。その結果、スクリーン9の外側では、被処理流動体に正逆の流れ(吐出と吸込)が生じ、両流れの界面における相対的な速度差によって、被処理流動体同士に液-液間のせん断力が生じるものである。
【0051】
図6(C)(D)に示す従来例にあっては、羽根12の先端部21の幅が狭いため、吐出と吸込との状態変化に被処理流動体が追従し難い結果、被処理流動体の正逆の流れ(吐出と吸込)の界面における相対的な速度差が比較的小さな状態となっており、そのせん断力も小さくなっていた。
【0052】
他方、
図6(A)(B)に示す本発明の実施の形態にあっては、羽根12の先端部21の幅が広くなっているため、吐出/吸込の間に被処理流動体が静止する期間が発生する。これにより、スリット18の羽根12による開閉の変化に、被処理流動体が良好に追従し、被処理流動体の正逆の流れ(吐出と吸込)の界面における相対的な速度差が大きくなり、被処理流動体同士の間に発生するせん断力を大きくすることができたものである。これを良好に実現する条件が、前記の第1条件及び第2条件である。
【0053】
(一致領域について)
羽根12の先端部21とスリット18とは、スリット18の長さ方向において互いに重なり合う同一位置にある一致領域を少なくとも備える。通常、羽根12の長さはスリット18の長さ以上に設定されており、スリット18の全長において羽根12はスリット18とは互いに重なり合う同一位置にあるが、羽根12の長さをスリット18の長さよりも短くして実施することもできる。本発明において、羽根12とスリット18との関係を規定する場合、特に説明のない限り、一致領域における関係を意味する。
【0054】
(スクリーンについて)
スクリーン9は、前述の通り、テーパ形等の径が変化するものとしても、実施することができる。本発明において、内径が変化する場合、特に説明のない限り、最大内径とは、一致領域におけるスクリーン9の最大内径を意味する。
【0055】
(スリット及びスクリーン部材について)
スリット18は、ローター2の回転軸の軸方向と平行に伸びるものであってもよく、スパイラル状に伸びるもの等、軸方向に対して角度を有するものであってもよい。何れの場合にあっても、本発明において、特に説明がない限り、スリット18の周方向の幅(s)とは、一致領域におけるスクリーン9の周方向(言い換えればローター2の回転軸の軸方向に対して直交する方向)の長さを言う。ローター2の回転軸の軸方向位置にあっては、一致領域であればどの位置であってもかまわないが、少なくとも回転軸13の軸方向位置がスクリーン9の最大内径となる位置であることが好ましい。このスリット18の周方向の幅(s)は、0.2~4.0mmが好ましく、0.5~2.0mmであることがより好ましいが、断続ジェット流が発生することを条件に適宜変更して実施することができる。
【0056】
スクリーン部材19の周方向の幅(t)(言い換えると、隣り合うスリット18同士の間の周方向の距離)は、適宜変更して実施することができるが、スリット18の周方向の幅(s)の0.1~10倍が好ましく、より好ましくは0.5~2倍程度とする。スクリーン部材19の周方向の幅(t)を大きくしすぎると、せん断回数が少なくなり処理量の低下につながり、小さすぎるとスリット18が連続してしまうのと実質的に同じことになったり、機械的強度が著しく低下したりする場合がある。
【0057】
(ローターについて)
ローター2は、前述のとおり、複数枚の羽根12を有する回転体である。一致領域において、羽根12の先端部21は、条件1と条件2とを充足するものとすることによって、本発明の作用効果を発揮する。なお、羽根12の先端部21の幅を大きくし過ぎると、羽根12と羽根12との間の空間の容積が少なくなり過ぎ、処理量を徒に低下させる等の問題が生じるおそれがある。この点からすると、スクリーン9の内径によっても変化するが、ローター2は、回転軸13の外周面とスクリーン9の内周面とにより規定される領域において、回転軸13と直交する面における羽根12の断面積の総和が、スクリーン9内の空間の断面積よりも小さく設定することが好ましい。上述したように、一致領域において、回転軸13と直交する面における羽根12の断面積の総和を下記特定式1、2におけるYとし、同じく一致領域において、回転軸13と直交する面におけるスクリーン9内の空間の断面積を下記の特定式1、2におけるZとしたとき、YとZとが下記特定式2を満たすことが好ましい。特定式1のXは、一致領域において、回転軸13の外周面とスクリーン9の内周面とにより規定される領域の、回転軸13と直交する断面の面積をいう。
X-Y=Z (特定式1)
Y<Z (特定式2)
一致領域における複数の断面のうちの少なくとも1箇所の断面において特定式2を満たすことが好ましく、全ての断面において特定式2を満たすことがより好ましい。
そして、
図2に示すように、導入用の開口11から遠ざかるに従って(
図2の例では下方に向かうに従って)、漸次その径が小さくなるスクリーン9を用い、回転軸13と直交する面の軸方向位置が、一致領域におけるスクリーン9の最大内径となる位置であるとき、Y/Zが0.2以上1未満であることが好ましく、Y/Zが0.34以上0.6以下あることがより好ましく、Y/Zが0.34以上0.5以下であることが更に好ましい。Y/Zは、回転軸13の径、羽根12の径、羽根12の回転方向の幅、スクリーン9の内径等に基づいて算出することができる。
【0058】
(好ましい適用条件)
本発明の条件1及び条件2を適用できると共に、現在の技術力で量産に適すると考えられるスクリーン9、スリット18、ローター2の数値条件は、下記の通りである。
スクリーン9の最大内径:30~500mm(但し前記の一致領域における最大径)
スクリーン9の回転数:15~390回/s
スリット18の本数:20~500本
ローター2の最大外径:30~500mm
ローター2の回転数:15~390回/s
もちろん、これらの数値条件は一例を示すものであり、例えば、回転制御等の将来における技術進歩に伴い、前記の条件以外の条件を採用することを、本発明は除外するものではない。
【実施例】
【0059】
以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。しかし、本発明は下記の実施例に限定されるものではない。
【0060】
(実施例1及び比較例1)
実施例1(即ち、実施例1Aと実施例1B)及び比較例1(即ち、比較例1Aと比較例1B)として、本発明における第1の実施の形態(
図1、
図2)に係る攪拌機を用いて、2種の被処理流動体に対する処理試験(実施例1A・比較例1Aと実施例1B・比較例1B)を行った。
顔料の分散処理を行った実施例1A・比較例1Aにあっては、被処理流動体として、銅フタロシアニン/ドデシル硫酸ナトリウム/純水=2/0.2/97.8(重量比)を用いた。
樹脂類の乳化処理を行った実施例1B・比較例1Bにあっては、被処理流動体として、メタクリル酸メチルモノマー/アクアロンKH-10/純水=10/1/89(重量比)を用いた。但し、アクアロンKH-10は、第一工業製薬製の界面活性剤である。
【0061】
前記被処理流動体を
図8に示す試験装置中のポンプにて、外部容器(スターラを備えた1Lトールビーカー)内の予備混合品を、攪拌機を保有した処理容器(350cc)に導入し、処理容器内を液封とし、さらにポンプにて処理容器内に被処理流動体を導入することによって、吐出口より、被処理流動体を吐出させ、処理容器と外部容器との間を循環させながら、攪拌機のローターを、20000rpmで回転させることによりスクリーンから吐出させて微粒子化処理を、表1の条件で行った。なお、いずれの例でもスクリーンは回転させないものとした。
なお、表1に記載のスリット幅とスクリーン部材の幅は、回転軸13と直交する面の軸方向位置が、一致領域におけるスクリーン9の最大内径となる位置におけるスリット幅とスクリーン部材の幅である。
実施例1にあっては、前述の条件1と条件2とを共に充足するのに対して、比較例1にあっては条件1と条件2とを共に充足しないものであった。
実施例1
(条件1)3.6>2×0.8+1.19=2.79
(条件2)3.6>0.1×30.4=3.04
比較例1
(条件1)2.4<2×0.8+1.19=2.79
(条件2)2.4<0.1×30.4=3.04
実施例1及び比較例1について、最長の処理時間45分後までの複数点で計測した粒子の粒子径(D50、D90)及び粒子径の変動係数(C.V.)を
図9及び
図10に示す。粒子径の変動係数とは、得られる粒子の均一さの度合いを表す指標となるものであり、粒子の粒子径分布における平均粒子径(D50)と標準偏差とから、変動係数(C.V.)(%)=標準偏差÷平均粒子径(D50)×100の式にて求められる。この変動係数の値が小さいほど得られる粒子の粒子径の分布は狭く、粒子としての均一性が高い。
図9及び
図10に見られるように、実施例1にあっては、比較例1に比して、処理時間に応じて粒子径及び粒子径の変動係数が顕著に低下することが明らかになった。
【0062】
(実施例2)
次に、実施例2によって、実施例1よりも大きな径のローター及びスクリーンでも、処理時間に応じて粒子径が顕著に低下するか否かを確認した。処理条件を表1に、試験結果を
図11にそれぞれ示す。処理装置は、処理量に応じて全体を大型化した(外部容器:攪拌装置を備えた300Lタンク、処理容器(8.5L)とした)点を除いて、実施例1と実質的に同じものとした。被処理流動体は、粉砕成分:デキストリン、分散媒:植物油を用いた。
この実施例2にあっても、表1から明らかなように、前述の条件1と条件2とを共に充足するものである。
実施例2
(条件1)11.3>2×1.1+1.90=4.10
(条件2)11.3>0.1×95.4=9.54
図11に見られるように、実施例2にあっても、処理時間に応じて粒子径(D50及びD90)が顕著に低下することが明らかになった。
【0063】
【符号の説明】
【0064】
1 処理部
2 ローター
3 支持管
4 収容容器
5 吸入口
6 吸入室
7 攪拌室
9 スクリーン
10 隔壁
11 開口
12 羽根
13 回転軸
14 モータ
15 攪拌翼
18 スリット
19 スクリーン部材
20 第2モータ
21 先端部