(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-19
(45)【発行日】2023-01-27
(54)【発明の名称】ジェット燃料の熱酸化試験装置
(51)【国際特許分類】
B64F 5/60 20170101AFI20230120BHJP
G01N 25/00 20060101ALN20230120BHJP
【FI】
B64F5/60
G01N25/00 M
(21)【出願番号】P 2020547460
(86)(22)【出願日】2018-11-29
(86)【国際出願番号】 IB2018059477
(87)【国際公開番号】W WO2019106607
(87)【国際公開日】2019-06-06
【審査請求日】2021-11-19
(32)【優先日】2017-11-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520185155
【氏名又は名称】エーディーシステム エス・エー・エス
(74)【代理人】
【識別番号】100075410
【氏名又は名称】藤沢 則昭
(74)【代理人】
【識別番号】100135541
【氏名又は名称】藤沢 昭太郎
(72)【発明者】
【氏名】レピネイ・マーシャル
(72)【発明者】
【氏名】クリステン・ジーン
(72)【発明者】
【氏名】ルコルヌ・フロレンティン
【審査官】林 政道
(56)【参考文献】
【文献】米国特許出願公開第2012/0014409(US,A1)
【文献】特開2009-043080(JP,A)
【文献】特開2015-020161(JP,A)
【文献】特開昭63-140871(JP,A)
【文献】特開2002-174167(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B64F 5/60
G01N 25/00
G01N 33/22,33/28
G05D 23/00-23/32
(57)【特許請求の範囲】
【請求項1】
バスバーの温度を個別に制御して、熱酸化リグ内の加熱管の熱プロファイルを改善するための温度システムにおいて、前記温度システムは、
前記バスバーを前記熱酸化リグに固定する前記バスバーの基部に近接して配置されたヒートシンクと、
前記ヒートシンクと前記バスバーの前記基部との間に介在する冷却素子と、
強制対流装置と、
加熱管に近接して基部と反対側のバスバーの端部に配置される熱電対であって、前記バスバーの前記温度を測定する、熱電対と、
前記冷却素子及び前記強制対流装置に関連するコントローラであって、前記熱電対によって測定された前記温度に基づいて、前記冷却素子及び前記強制対流装置を制御するコントローラと、を備えることを特徴とする、温度システム。
【請求項2】
請求項1に記載の温度システムであって、前記バスバーは、ヒートパイプを受け入れる前記基部から延在する穴を含むことを特徴とする、温度システム。
【請求項3】
燃料サンプルを分析するための熱酸化リグであって、前記熱酸化リグは、
一対のバスバーによって支持されるスリーブ及び加熱管組立体を有する測定部を備え、
前記スリーブ及び加熱管組立体は、それぞれのバスバーに設けられたクランプ用の組立体内に固定され、
中空で、対向する端部が開口している前記スリーブと、
前記スリーブ内に固定され、気密封止された前記加熱管と、
開口した端部の間の前記スリーブ上に配置された燃料の入口及び燃料の出口と、
バスバーの温度を個別に制御して、熱酸化リグ内の加熱管の熱プロファイルを改善するための請求項1に記載の温度システムと、を備えることを特徴とする、熱酸化リグ。
【請求項4】
請求項3に記載の熱酸化リグであって、前記バスバーは、ヒートパイプを受け入れる前記基部から延在する穴を含むことを特徴とする、熱酸化リグ。
【請求項5】
請求項3に記載の熱酸化リグであって、前記熱酸化リグは、
前記測定部を通してサンプル容器から前記燃料の入口に燃料サンプルを運ぶポンプシステムを更に備え、前記ポンプシステムは、
第1及び第2のシリンジ組立体であって、それぞれのシリンジ組立体は、前記燃料サンプルを保持するための容積を画成する中空のバレルと、前記バレルの上端に配置された先端部と、前記バレルの下端に配置された開口した端部とを有し、それぞれのシリンジ組立体は入口弁と出口弁とを有す、第1及び第2のシリンジ組立体と、
それぞれが前記一方のバレルの容積の内部を滑動するように配置された一対のピストンであって、それぞれのピストンは、前記バレルの前記開口した端部を通って前記容積内に延在し、前記バレルの前記開口した端部に対して前記容積を密閉するように前記中空のバレルの内壁に接するヘッド部に連結された軸を有す、一対のピストンと、
一対のモータであって、前記それぞれのモータは前記一方のピストンに係合され、前記燃料サンプルの流量が一定に保たれるように独立して制御され、前記それぞれのモータは、前記ピストンが同時に加速及び減速するように、該当するピストンのストロークを制御する、一対のモータと、を備えることを特徴とする、熱酸化リグ。
【請求項6】
請求項5に記載の熱酸化リグであって、前記ポンプシステムは、
前記第1のシリンジ組立体の前記入口弁及び前記第2のシリンジ組立体の前記入口弁の両方に送り込むための共通の入口ラインを更に備えることを特徴とする、熱酸化リグ。
【請求項7】
請求項6に記載の熱酸化リグであって、前記共通の入口ラインは、前記燃料サンプルを保持するサンプル容器に接続されることを特徴とする、熱酸化リグ。
【請求項8】
請求項5に記載の熱酸化リグであって、前記ポンプシステムは、
前記第1のシリンジ組立体の前記出口弁及び前記第2のシリンジ組立体の前記出口弁の両方から受け入れるための共通の出口ラインを更に備えることを特徴とする、熱酸化リグ。
【請求項9】
請求項8に記載の熱酸化リグであって、前記燃料サンプルは、一定の流量で前記共通の出口ラインを通って運ばれることを特徴とする、熱酸化リグ。
【請求項10】
請求項5に記載の熱酸化リグであって、前記ポンプシステムは、
更に一対のボールねじ変速機を備え、前記それぞれのボールねじ変速機は、該当する前記モータと前記ピストンとの間に挿入されることを特徴とする、熱酸化リグ。
【請求項11】
請求項3に記載の熱酸化リグであって、前記熱酸化リグは、
スリーブ内に加熱管を配置するためのゲージを備え、
前記ゲージは、第1及び第2の端部を有する本体と、前記第1の端部から前記本体内部に向かって所定の長さで延在する穴とを備え、前記穴は、前記スリーブの開口した端部を受け入れる寸法の直径を有し、前記加熱管は、縮径部を挟んだ一対の肩部を備え、前記一対の肩部は、リップ部から前記縮径部に対して遠ざかる向きに延在し、前記一方の肩部は、前記スリーブの出口に近接して前記リップ部が配置されるように、前記スリーブを通って前記穴の前記長さ方向へと延在することを特徴とする、熱酸化リグ。
【請求項12】
請求項11に記載の熱酸化リグであって、前記ゲージの前記穴は、
前記本体よりも短い所定の長さで前記第1の端部から延在することを特徴とする、熱酸化リグ。
【請求項13】
請求項11に記載の熱酸化リグであって、前記ゲージは、
前記第1の端部から前記長さに等しい距離だけ離れた位置で前記穴に沿って放射状に配置された肩部を備えることを特徴とする、熱酸化リグ。
【請求項14】
請求項11に記載の熱酸化リグであって、前記穴は、
前記本体の前記第1の端部から前記第2の端部まで延在することを特徴とする、熱酸化リグ。
【請求項15】
請求項11に記載の熱酸化リグであって、前記本体の前記第1の端部に近接する前記穴の一部にねじが切られていることを特徴とする、熱酸化リグ。
【請求項16】
請求項3に記載の熱酸化リグであって、前記熱酸化リグは、
サンプル容器の中で燃料サンプルを曝気するための曝気システムを備え、前記曝気システムは、
ポンプと、
前記ポンプによって発生し、サンプル容器に注入される空気流を測定する流量計と、を有し、
前記ポンプは、前記流量計に関連付けられ、制御ループを介して自動的に前記空気流を一定流量に維持するコントローラを更に備えることを特徴とする、熱酸化リグ。
【請求項17】
請求項16に記載の熱酸化リグであって、前記曝気システムは、
前記空気流から水分を除去する空気乾燥剤を更に備えることを特徴とする、熱酸化リグ。
【請求項18】
請求項17に記載の熱酸化リグであって、前記曝気システムは、
前記空気乾燥剤を通過する前記空気流をサンプリングするように配置された湿度センサを更に備えることを特徴とする、熱酸化リグ。
【請求項19】
請求項16に記載の熱酸化リグであって、前記曝気システムの前記サンプル容器は、
前記サンプル容器中に配置された拡散器を更に備えることを特徴とする、熱酸化リグ。
【請求項20】
請求項
16に記載の熱酸化リグであって、前記曝気システムは、
前記ポンプを通過する前に前記空気流を濾過するフィルタを更に備えることを特徴とする、熱酸化リグ。
【請求項21】
請求項3に記載の熱酸化リグであって、加熱管をバスバーに固定する前記クランプ用の組立体は、
前記バスバーの端部に向かって延在し、前記バスバーの内面で終端する穴と、
前記バスバーの前記内面から前記端部まで延在する一対の突起であって、前記穴と共に延在する間隙を画成する突起と、
前記間隙内で軸方向に滑動するように配置されたプレートと、
前記穴内に配置され前記プレートに係合されたねじと、を備え、
前記ねじを回転させることで前記プレートが前記軸方向に平行移動することを特徴とする、熱酸化リグ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ジェット燃料熱酸化試験に関し、より詳細には、精度、効率、及び信頼性を向上させるためにジェット燃料熱酸化試験リグと共に使用され得る装置に関する。
【背景技術】
【0002】
本願は、2017年11月29日に出願された米国特許出願第15/826,272号の優先権を主張するPCT国際出願であり、その全体が参照により本願に組み込まれる。
【0003】
現代のジェットエンジンシステムは、ジェット燃料で稼働するガスタービンエンジンで構成される。通常の運転条件の下では、ジェット燃料は、燃料ノズル、燃料ノズル支持機構、熱交換器などのガスタービンエンジンの高温になる構成部品又は部分によって加熱される。現代のジェットエンジンシステムでは、ジェット燃料のヒートシンクとしての能力を活用して、油圧システム、電子システム、及び潤滑システムなどの様々な航空機システムの冷却が行われている。しかしながら、熱管理、ひいてはジェットエンジンシステム及び機体の性能は、(i)燃料システム冷却装置を作動させることと、空冷式を採用することによる性能、コスト、及び重量が犠牲になることとの微妙なバランス、又は(ii)システムを可能な限り高温で運転することと、許容できない熱の蓄積速度に関連した問題を引き起こすこととの微妙なバランスの上に成立している。従って、技術者は往々にして、現在利用可能な燃料の熱安定性を最大限に活用できるようにジェットエンジンシステムを設計する。
【0004】
エンジンシステム全体の性能が向上し、機体とエンジンの熱負荷が増加する傾向と、同時に燃料消費量を削減する傾向とによって、燃料システムの温度はさらなる上昇を強いられている。従って、多くの現代の高性能ジェットエンジンシステムは、熱ストレスにさらされた燃料を使用している。しかしながら、高温では、熱ストレスにさらされたジェット燃料中の安定性の低い種が酸化反応を起こして、ゴム質状、膠状、粒状、及びコークス状の堆積物を生成する可能性がある。その結果、フィルタの詰まり、熱交換器の効率の低下、制御ユニットの滑動する構成部品の固着やヒステリシス、インジェクタの汚れ、噴霧パターンの歪みなど、様々な問題を引き起こす可能性がある。例えば、熱ストレスにさらされたジェット燃料の酸化は、エンジン燃料ノズルを閉塞する堆積物又は粒子を発生させ、それにより、歪んだ燃料噴霧パターンによるエンジン高温部、特に燃焼器領域への損傷を引き起こし得る。従って、ジェット燃料の熱安定性は、現代のガスタービンエンジンの最適な性能を実現するために重要である。
【0005】
ジェット燃料の熱酸化を評価するための現在の規格は、American Society for Testing and Materials International(「ASTMインターナショナル」)によって制定された「航空機タービン燃料の熱酸化安定性のための標準試験法」で、D3241、IP323の番号が付与されている。この試験法は、作動中にジェット燃料がさらされる熱ストレス状態を模擬するもので、1970年代初頭に開発されたにもかかわらず、ジェット燃料の熱安定性を評価するための最良の方法であり続けている。より具体的には、D3241の試験法には、ジェット燃料が分解生成物を燃料システム内に堆積させる傾向を評価するための手順が定められている。D3241の試験法は、2つのフェーズで実行される。第1のフェーズは飛行機のエンジンの作動中に引き起こされる燃料状態を模擬し、第2のフェーズは第1のフェーズ中に形成される熱酸化堆積物を定量化する。
【0006】
それ以来、D3241の試験法を容易にするために、リグとして知られている様々な実験装置が開発されてきた。これらのリグは、実際のエンジンの作動中に遭遇する状態を模擬した状態の下で、ジェット燃料をサンプリングするためのアルミニウム製の加熱管を備える。
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、これらのリグは使用が難しく、測定部の内部に加熱管を取り付けたり、ジェット燃料のサンプルを準備したりするときに、かなりの専門知識が必要となる。更に、これらの既存のリグは、燃料サンプルを測定部に運ぶためのポンプシステムを含むが、往々にして漏れ、流量のばらつき、流れの微小な断続を生じ、運転と維持の金銭的負担が高い。加えて、これらの既存のリグには、試験結果とその再現性に影響を及ぼす旧式の温度制御システムが備えられている。
【課題を解決するための手段】
【0008】
本開示によれば、加熱管をスリーブ内に配置するためのゲージが提供される。ゲージは、第1及び第2の端部を有する本体と、第1の端部から本体内部に向かって所定の長さで延在する穴とを含んでよく、穴は、スリーブの開口した端部を受け入れる寸法の直径を有し、加熱管は、縮径部を挟んだ一対の肩部を含む。一対の肩部は、リップ部から縮径部に対して遠ざかる向きに延在するが、一方の肩部は、スリーブの出口に近接してリップ部が配置されるように、スリーブを通って穴の長さ方向へと延在する。
【0009】
実施例によっては、ゲージの穴は、本体よりも短い所定の長さで第1の端部から延在してもよい。実施例によっては、本体の第1の端部に近接した穴の一部にねじを切ってもよい。
【0010】
実施例によっては、ゲージは、第1の端部から長さに等しい距離だけ離れた位置で穴に沿って放射状に配置された肩部を更に含んでもよい。そうした例では、穴は、本体の第1の端部から第2の端部まで延在してもよい。
【0011】
又、本開示によれば、燃料サンプルを自動的に曝気するためのシステムが提供される。システムは、空気流を促進するためのポンプ、空気流を測定する流量計、及び空気流が注入されるサンプル容器を含んでもよく、ポンプは更に、流量計に関連付けられ、制御ループを介して自動的に空気流を一定流量に維持するコントローラを備える。
【0012】
実施例によっては、一定流量は1.5リットル/分である。実施例によっては、サンプル容器は、その内部に配置された拡散器を更に含み得る。実施例によっては、システムは、ポンプを通過する前に空気流を濾過するフィルタを更に含んでもよい。
【0013】
実施例によっては、システムは、空気流から水分を除去する空気乾燥剤を更に含んでもよい。そうした例では、システムは、空気乾燥剤を通過する空気流をサンプリングするように配置された湿度センサを更に含み得る。
【0014】
又、本開示によれば、熱酸化リグを通して燃料サンプルを運ぶためのポンプシステムが提供される。ポンプシステムは、第1及び第2のシリンジ組立体を含んでもよく、各シリンジ組立体は、燃料サンプルを保持するための容積を画成する中空のバレル、バレルの上端に配置された先端部、下端に配置された開口した端部を有し、各シリンジ組立体は入口弁と出口弁を有する。ポンプシステムは又、それぞれが一方のバレル容積の内部を滑動するように配置された一対のピストンを含んでもよく、各ピストンは、バレルの開口した端部を通って容積内に延在し、バレルの開口した端部に対して容積を密閉するように中空のバレルの内壁に接するヘッド部に連結された軸を有する。更に、ポンプシステムは一対のモータを含んでもよく、それぞれのモータは一方のピストンに係合され、燃料サンプルの流量が一定に保たれるように独立して制御され、それぞれのモータは、それぞれのピストンが同時に加速及び減速するように、それぞれのピストンのストロークを制御する。
【0015】
実施例によっては、ポンプシステムは、第1のシリンジ組立体の入口弁及び第2のシリンジ組立体の入口弁の両方に送り込むための共通の入口ラインを更に含んでもよい。これらの例では、共通の入口ラインは、燃料サンプルを保持するサンプル容器に接続されてもよい。
【0016】
実施例によっては、ポンプシステムは、第1のシリンジ組立体の出口弁及び第2のシリンジ組立体の出口弁の両方から受け入れるための共通の出口ラインを更に含んでもよい。これらの例では、燃料サンプルは、一定の流量で共通の出口ラインを通って運ばれてもよい。
【0017】
実施例によっては、ポンプシステムは、一対のボールねじ変速機を更に含んでもよく、それぞれのボールねじ変速機は、それぞれのモータとピストンとの間に挿入される。
【0018】
又、本開示によれば、バスバーの温度を個別に制御して、熱酸化リグ内の加熱管の熱プロファイルを改善するための温度システムが提供される。温度システムは、バスバーを熱酸化リグに固定するバスバーの基部に近接して配置されたヒートシンクを含んでもよい。温度システムは又、ヒートシンクとバスバーの基部との間に介在する冷却素子を含んでもよい。温度システムは又、強制対流装置を含んでもよい。温度システムは又、加熱管に近接して基部と反対側のバスバーの端部に配置された熱電対を含んでもよく、熱電対はバスバーの温度を測定する。温度システムは又、冷却素子及び強制対流装置に関連するコントローラを含んでもよく、コントローラは、熱電対によって測定された温度に基づいて、冷却素子及び強制対流装置を制御する。実施例によっては、バスバーは、ヒートパイプを受け入れる基部から延在する穴を含んでもよい。
【0019】
更に、本開示によれば、加熱管を熱酸化リグのバスバーに固定するためのクランプシステムが提供される。クランプシステムは、バスバーの端部に向かって延在しバスバーの内面で終端する穴を含んでもよい。クランプシステムは又、バスバーの内面から端部まで延在する一対の突起を含んでもよく、突起は穴と共に延在する間隙を画成する。クランプシステムは又、間隙内で軸方向に滑動するように配置されたプレートと、穴内に配置されプレートに係合されたねじとを含んでもよく、ねじの回転はプレートの軸方向の変位に変換される。
【図面の簡単な説明】
【0020】
以下の図は、本開示の特定の態様を例示するために掲載されたものであり、排他的な実施形態として見なされるべきではない。開示された主題は、本開示の範囲から逸脱することなく、形態及び機能において相応の修正、変更、組み合わせ、及び同等物の採用が可能である。
【0021】
【
図1】
図1Aは、本開示の原理を組み込み得る例示的なリグの斜視図である。
図1Bは、本開示の原理を組み込み得る例示的な測定部を示した、
図1Aの例示的なリグの詳細な斜視図である。
【
図2】
図2は、
図1Bのリグで利用される分解された測定部の側面図である。
【
図3】
図3Aは、
図1Bの測定部で利用されるスリーブ及び加熱管組立体の詳細な側面図であり、加熱管がスリーブ内に配置されているときの燃料の出口を示す。
図3Bは、
図3Aの燃料の出口の断面の側面図である。
【
図4】
図4A、4Bは、
図3Aのスリーブ及び加熱管組立体の側面図であり、加熱管をスリーブ内に配置するためのゲージの使用方法を示す。
図4Cは、
図4A及び4Bのゲージの断面の側面図であり、加熱管をスリーブ内に配置するために使用され得る。
【
図5】
図5は、燃料サンプルを曝気するために利用される、
図1Aのリグの様々な機能を示す概略図である。
【
図6】
図6Aは、手動による燃料サンプル曝気手順の例示的な作動を示す図である。
図6Bは、自動による燃料サンプル曝気手順の例示的な作動を示す図である。
【
図7】
図7は、一対のシリンジ構成を有するポンプシステムの例示的な作動を示す概略図である。
【
図8】
図8は、
図1Aのリグで利用される加熱システムの作動を示す図である。
【
図10】
図10は、個々のバスバーを独立して制御するバスバー冷却システムの例示的な作動を示す概略図である。
【
図11】
図11Aは、例えば
図1Bの下側のバスバーにおいて、スリーブ及び加熱管組立体をバスバーに固定するために利用され得るクランプシステムを示す概略図である。
図11Bは、スリーブ及び加熱管組立体をバスバーに固定するために利用され得る代替のクランプシステムを示す概略図である。
【発明を実施するための形態】
【0022】
本明細書に記載される実施形態は、リグ測定部のスリーブ内に加熱管を配置するための位置決めゲージを提供する。本明細書に記載される他の実施形態は、自動空気流制御を用いて燃料サンプルの自動曝気を提供する空気制御システムを提供する。更に、本明細書に記載される実施形態は、一対のシリンジ構成を有するポンプシステムを提供する。加えて、本明細書に記載される実施形態は、個々のバスバーを独立して制御する冷却システムを提供する。
【0023】
ASTMインターナショナルのジェット燃料の熱酸化試験(D3241、IP323)の標準試験法(以下、「試験法」という)は、2つのフェーズで実行される。第1のフェーズは飛行機のエンジンの作動中に引き起こされる燃料状態を模擬し、第2のフェーズは第1のフェーズ中に形成される熱酸化堆積物を定量化する。技術者は、作動中のガスタービンエンジンの燃料システムに生じる状態を模擬する装置を介して、第1のフェーズを実行する。本明細書においてリグと呼ばれる装置は、テストクーポンを保持し、燃料流をテストクーポン上に導く多管式熱交換器を一般的に備える測定部を含む。第2のフェーズは、熱酸化堆積物の厚さを原子レベルで測定する機器による、又は目視検査による、テストクーポンの検査で構成される。以下の開示は主に、試験法の第1のフェーズ及び熱酸化堆積物を形成するために第1のフェーズで使用されるリグに焦点を当てている。
【0024】
図1Aは、本開示の原理を組み込み得る例示的なリグ100の部分的な斜視図である。描かれたリグ100は、本開示の原理を適切に組み込むことができる試験リグの一例にすぎない。実際、本開示の範囲から逸脱することなく、リグ100の多くの代替の設計及び構成を採用することができる。
【0025】
図示された実施形態では、リグ100は、当該試験法を自動的に実行するように構成されている。しかしながら、ISO6249などの他の石油製品試験を自動的に実行するようにも構成し得る。図示されたように、リグ100は、サンプル容器102、廃棄物容器104、及び以下に説明するようにサンプル容器102と廃棄物容器104を流体的に相互接続する測定部110を含む。使用時に、技術者は、ジェット燃料サンプルSをサンプル容器102に配置し、リグ100を作動させて試験法を実行すると、リグ100はジェット燃料サンプルSを、サンプル容器102から測定部110を通して圧送し 、試験法が完了すると廃棄物容器104の中に圧送する。
【0026】
図1Bは、1つ以上の実施形態に係る、
図1Aの測定部110の詳細図である。図示されたように、測定部110は、その中に気密封止された(
図1Bの視野からは部分的に隠れている)加熱管114を備えたスリーブ112を含み得る。ここで、加熱管114は、一対のナット組立体136a、136bを介してスリーブ112内に固定されるが、本開示から逸脱することなく、他の組立体を利用して、加熱管114をスリーブ112内に固定してもよい。スリーブ112は中空であり、(
図1Bの視野からは隠れているが)その端部112a、112bのそれぞれで開口している。測定部110は又、開口した端部112a、112bの間のスリーブ112上に配置された燃料の入口116及び出口118を含む。燃料の入口116はサンプル容器102に流体接続され、燃料の出口118は廃棄物容器104に流体接続される。更に、測定部110は、燃料の出口118と廃棄物容器104との間に位置して燃料の出口118に近接して配置される試験フィルタ120を含む。
【0027】
図1Bは又、
図11Aを参照して以下で更に説明されるクランプシステムを介して測定部110を所望の方向に固定するように配置された、一対のジョー又はバスバー122a、122bを備えるリグ100を示した図である。しかしながら、例えば
図11Bを参照して説明されるように、代替のクランプシステムを利用してもよい。以下に説明するように、バスバー122a、122bは、制御された高アンペア数、低電圧の電流を加熱管114に供給し、それにより試験法の実行中、正確な温度の維持を可能にする。従って、バスバー122a、122bは、変圧器又は他の電源(図示せず)に直接的又は間接的に接続される。いくつかの実施形態では、バスバー122a、122bは、以下に説明するように、加熱管114の材料よりも熱伝導率が低い真鍮又は他の材料から作られる。更に、熱電対124は、以下に説明するように、測定部110の温度測定を提供するように構成される。
【0028】
図2は、分解されてリグ100から取り外されたときの測定部110の側面図を示す。図示されたように、スリーブ112は中空であり、燃料の入口116及び出口118は、燃料の入口116、燃料の出口118、及び開口した端部112a、112bにおいて互いに流体が連通するように、開口した端部112a、112bの間に配置される。
図2は又、試験法の前後に生じ得る、スリーブ112から引き出されたときの加熱管114を示す。図示されたように、加熱管114は、加熱管114の対向する端部134a、134bに配置された一対の肩部132a、132bの間に挟まれた縮径部130を含む。作動時に、加熱管114はスリーブ112内に挿入され、スリーブ112を通して、一対のクランプ用のナット組立体136a、136bを介してスリーブ112に固定され、例えば試験法を実行する前後に、技術者が加熱管114をスリーブ112から取り外すことを可能にする。図示された実施形態では、クランプ用のナット組立体136a、136bはそれぞれ、スリーブ112の開口した端部112aで加熱管114の肩部132aを固定し、開口した端部112bで肩部132bを固定するためのガスケット、ワッシャ、シール及びナットを含む。しかしながら、ナット組立体136a、136bは、本開示から逸脱することなく、同じ及び/又は異なる構成部品を用いて異なった構成を取り得ることが理解されよう。
【0029】
加熱管114は又、その内部容積の内部に配置された(図の視野からは隠れた)熱電対を含み、加熱管114は、加熱管114の一対の肩部132a、132bの該当する一方をクランプする一対のバスバー122a、122bを介して、コンダクタンスによって抵抗加熱される。いくつかの実施形態では、加熱管114は、バスバー122a、122bによって高温で制御されるアルミニウム(又は他の金属)製のクーポンであり、その上に燃料サンプルSが圧送される。
【0030】
上述したように、試験法の前、最中、及び後の様々な時点で、技術者は、スリーブ112及び加熱管114を組み立て又は分解する必要があり得る。例えば、試験法は、試験法を開始する前に、技術者が測定部110を正確に組み立てること(すなわち、漏れないように加熱管114をスリーブ112の内部に設置すること)、及び/又は試験法を終了した後に、技術者が測定部110を分解することを要求する場合があり得る。更に、試験法は、分解フェーズ中に特定の構成部品を洗浄し、すすぎ、乾燥することを技術者に要求する場合があり得る。正確な分析及び試験法の結果は、試験法の構成部品の適切な組み立て、分解、洗浄、すすぎ、乾燥に依存する。従って試験法のこうしたフェーズを適切に実行するには、技術者の高度な専門知識が必要であり、かなりの時間とリソースを消費し得る。
【0031】
図3A、3Bは、スリーブ112内で組み立てられ、クランプ用のナット組立体136a、136bを介してその中に固定された加熱管114の側面図を示す。試験法は、技術者が手作業で加熱管114を測定部110内に配置すべきことを規定している。より具体的には、試験法は、加熱管114がスリーブ112に対して正確に配置され、
図3A、3Bに示されるように、(加熱管114の)上側の肩部132aのリップ302が、燃料の出口118の開口部304の内側の真ん中に来るように、視覚で確認して調整されるべきであることを規定している。この構成により、燃料サンプルSは、燃料の出口118を通って、以下で説明するような差圧測定機器などの他の下流側の機器に流れ得る。
【0032】
上側の肩部132aのリップ302を燃料出口118の内側の真ん中に配置したならば、技術者は、例えばナット組立体136a、136bを介して、加熱管114をスリーブ112内に締め付けて固定する。スリーブ112内の加熱管114を締め付けることは、燃料サンプルSが流れる内部容積を密封するのに役立つが、結果として生じる締付力は、往々にして、スリーブ112に対して加熱管114の意図しない配置のずれを引き起こし、リップ部302が上述した適切な配置を維持することを阻害する。その結果、締め付け中のそのような変位を考慮又は予測して、加熱管114のリップ部302を事前に位置決めするために、極めて微細な調整が必要となる。従って、技術者は、加熱管114をスリーブ112内に適切に取り付けるために、高度な専門知識を必要とする。
【0033】
図4A、4Bは、1つ以上の実施形態に係る、スリーブ112に対して加熱管114を確実に位置決めするために利用され得る位置決めゲージ又はゲージ402を示す。ゲージ402は、測定部110の準備を行うために、燃料の出口118内のリップ部302の位置を視覚によって確認する必要を免れることのできない技術者を支援するための付属品として提供されてもよい。図示された実施形態では、ゲージ402は、その第1の端部404で開口し、第1の端部404の内部の穴406には、ゲージ402をスリーブ112の端部、例えば開口した端部112aに配置された複数のねじ408の上からねじ込むことができるように、ねじが刻まれている。いくつかの実施形態では、ゲージ402は、その第2の端部で開口し、同様に、又は異なるように配置されたねじを含む前述の第2の端部にねじを刻まれた穴を含むことができ、そうした構成によって、ゲージ402に様々な測定部110に対して使用できる能力を提供し得る。ゲージ402の本体は、本体を通して長さ方向に延在する中央の穴を含み、穴が延在する長さは、本体の長さに等しいか、それより短くてもよい。いくつかの実施形態では、穴は、本体よりも短い所定の長さで本体を通して延在し、そうした実施形態では、穴の内面に沿って肩部が設けられ、肩部132aの更なる軸方向の移動を阻止する当接部として機能し得る。
【0034】
図4Cは、1つ以上の実施形態に係る、ゲージ402の例を示す。図示された実施形態では、ゲージ402は、その第1の端部404で開口する本体410を含む。図示されたように、本体410は、第1の端部404から第2の端部414に向かって本体を通して延在する穴412を含むが、図示された実施形態では、第2の端部414は開口していない。従って、穴412は、第1の端部404を通して本体410内に延在するが、第1及び第2の端部404、414に挟まれた位置416で停止する。図示されたように、穴412は、本体410内に延在し当接部418で終端するねじを刻まれた内部の穴406を含む。穴412は又、当接部418がねじを刻まれた内部の穴406及びねじを刻まれていない内部の穴420に挟まれるように、当接部418から本体410内に延在する、ねじを刻まれていない内部の穴420を含むことが示されている。図示された実施形態では、当接部418は、ねじを刻まれた内部の穴406に比べてねじを刻まれていない内部の穴420の直径を小さくした肩部として設けられる。しかしながら、他の実施形態では、当接部418は、ねじを刻まれていない内部の穴420の直径に影響しても影響しなくてもよい突起、環状部、又はその他の構造として提供されてもよい。ここで、ねじを刻まれた内部の穴406は、本体410の第1の端部404に近接して配置され、スリーブ112の開口した端部112aのねじ408と噛み合うように配置された複数のねじ422を含み、ねじの刻まれていない内部の穴420は、本体410の当接部418及び第2の端部414に挟まれるように配置される。
【0035】
使用時に、技術者は、ゲージ402の第1の端部404を第1の方向D1に向けてスリーブ112の開口した端部112aに対向して配置し、そのねじを刻まれた内部の穴406を、スリーブ112の開口した端部112aのねじ408に被せてねじ込む。次に、技術者は、加熱管114を第2の方向D2に向けてスリーブ112の底部の開口した端部112bに挿入する。加熱管114をスリーブ112内に配置した後、技術者は、例えばナット組立体136bを介して、加熱管114をスリーブ112の下端の位置にクランプする。次に、技術者はゲージ402を取り外し、例えばナット組立体136aを介して、加熱管114をスリーブ112の上端の位置にクランプする。その後、技術者は、加熱管114を所定の位置に締め付け得る。
【0036】
前述したように、試験法は2つの部分に分けて実行される。第1の部分では、試験リグ100を使用して熱酸化堆積物を生成する。第2の部分では、専用の機器を使用して、第1の部分中に生成された熱酸化堆積物を定量化する。
図5は、1つ以上の実施形態に係る、熱酸化堆積物を生成するための試験法の第1の部分の間にリグ100によって実行される一連の機能502を示す。図示されたように、一連の機能502は、曝気ステップ又は手順504、事前濾過ステップ又は手順508、バスバー冷却ステップ又は手順、管加熱ステップ又は手順510、及び差圧測定ステップ又は手順512を含む。バスバーの冷却については、以降で詳細に説明する。
【0037】
ジェット燃料サンプルSは、一定量のジェット燃料であり、サンプル容器102に保管される。リグ100は、ポンプシステム506を利用して、燃料サンプルSをサンプル容器102から測定部110を通して加熱管114を横切り、そして最終的に廃棄物容器104へと、一定の流量で移送又は圧送する。ジェット燃料サンプルSは、熱くなった加熱管114上で劣化し、その上に目に見える膜として出現する熱酸化堆積物を形成し得る。更に、ジェット燃料サンプルSからの劣化した物質は、加熱管114から下流側に流れ、例えば、試験フィルタ120に捕獲され得る。
【0038】
従って、燃料サンプルSは、最初に曝気手順504を介して乾燥空気で曝気又は飽和させることによって準備される。曝気手順504の後、リグ100は、例えば紙製の膜を通して燃料サンプルSを圧送することにより、燃料サンプルSを事前濾過ステップ508にかける。一実施形態において、事前濾過ステップ508の紙製の膜は、0.45μmの濾過膜である。次に、ポンプシステム506は、一定の体積流量で燃料サンプルSをスリーブ112の燃料の入口116を通して測定部110に運ぶ。燃料サンプルSは、スリーブ112の内壁と加熱管114の外壁との間の測定部110を通って流れ、スリーブ112の燃料の出口118を通ってスリーブ112を出る。スリーブ112を出た後、燃料サンプルSは試験フィルタ120を通過し、リグ100は差圧測定ステップ512を実行する。
【0039】
図示された実施形態では、差圧測定ステップ512は、試験フィルタの上流の管路内の圧力(P+)と試験フィルタの下流の管路内の圧力(P-)との差圧測定を行うことにより、試験フィルタ120の閉塞率を推定することを含む。試験フィルタ120を横切る閉塞率は、以下、差圧降下(ΔP)と呼ぶが、水銀圧力計又は電子式変換器によって測定される。リグ100は又、バイパス管路を通る燃料サンプルSの流れを促進するために選択的に開閉され得る弁を有する差動バイパス管路を含み得る。例えば、試験フィルタ120に渡る差圧降下ΔPが急激に上昇し始めた場合(及び技術者がすべての試験法を実行することを望む場合)、試験法を終了するために差動バイパス管路の弁を開けてもよい。
【0040】
手短に上述したように、試験法は、技術者が曝気手順504を介して燃料サンプルSを準備することを要求する。より具体的には、試験法を実施する前に、サンプル容器102に含まれる燃料サンプルSに1.5リットル(「L」)/分(min)の流量で6分間乾燥空気を注入するように、この試験法は技術者に命じている。しかしながら、既存の機器は、試験法の結果の精度と再現性に作用や影響を与え得る、手動による空気流の調整を利用している。
図6Aは、既存の機器によって利用されるいくつかの手動による曝気シーケンス602を含む例示的な曝気手順504を示す。図示されたように、手動による曝気シーケンス602(曝気段階と呼ばれることもある)は、空気Aを大気圧で提供することから始まり、次に、ポンプ606を介して1.5L/minの流量で空気Aを、フィルタ604を通して圧送する。次に、事前濾過された空気Aは、例えば、空気A内に存在する水分の量をまとめて乾燥及び測定する空気乾燥剤608及び湿度センサ610を介して、乾燥工程にかけられる。次に、空気Aは、適切な曝気を確実にするために空気Aが所望の流量でサンプル容器102に確実に注入されるように手動による調整が行われる、可変面積流量計612に導かれる。図示された実施形態では、空気Aは、可変面積流量計610からサンプル容器102内に配置された拡散器614に導かれるが、試験法に規定されているように、拡散器614は、目の粗い12ミリメートル(「mm」)のホウケイ酸ガラス製の拡散管であってよい。燃料サンプルSの曝気は、換気システムを介してシステムから排出される煙霧をもたらすことが理解されよう。しかしながら曝気シーケンス602は手動であり、試験法の結果は、技術者の技能及び可変面積流量計612の操作に依存し、正確であったりなかったりし得る。
【0041】
図6Bは、1つ以上の実施形態に係る、試験法中に空気流を自動的に制御するための代替の曝気シーケンス622を示す。手動による曝気シーケンス602と同様に、曝気シーケンス622も、フィルタ604、ポンプ606、空気乾燥剤608、湿度センサ610、及びサンプル容器102内に配置された拡散器614の利用を含む。しかしながら、曝気シーケンス622は自動的に実行されるので、所望の流量を維持するために手動による操作又は調整は不要で、それにより、試験法で規定された流量が曝気シーケンス622の全体に渡って利用/確保されることを確実にする。従って、図示された実施形態では、曝気シーケンス622は、(手動による曝気シーケンス602の可変面積流量計610の代わりに)電子流量計624を利用し、ポンプ606は、電子流量計624に関連する制御ループ又はコントローラ626を含み、自動制御された曝気シーケンス622の少なくとも一部の間、空気Aが空気乾燥剤608と湿度センサ610を通して圧送されるときの所望の流量を維持する。一実施形態において、コントローラ626は、燃料サンプルSが規定された通りに適切に曝気されるように、ポンプ606及び電子流量計624の作動を調整するためにパルス幅変調を利用したサーボ制御である。しかしながら、他の実施形態においては、曝気シーケンス622の自動空気流制御は異なった構成であってもよく、例えば、ポンプ606及び電子流量計624は、複数のセンサを含み、論理を使用して所定の流量を維持してもよい。
【0042】
上述したように、ポンプシステム506は、燃料サンプルSをサンプル容器102から測定部110を通して加熱管114を横切り、そして最終的に廃棄物容器104へと、一定の流量で移送する。実際、試験法では、燃料サンプルSは500ポンド/平方インチ(「PSI」)の圧力の下で3mL/minの流量で流れる必要があると規定されている。この低流量は、燃料サンプルSの機械的特性の変動性(すなわち、粘度、密度など)と共に、従来のポンプシステム(すなわち、膜ポンプ、ピストンポンプなど)を高い信頼性で使用する能力を妨げ、それによって試験法の結果の精度に悪影響を及ぼし得る。更に、流量は、加熱管114上に形成される熱酸化堆積物の品質にも影響を及ぼし得る。例えば、低流量の期間の後に、大きな温度勾配と共に急激な流量の増加が続くと、熱面付近の軸対称の不安定性(すなわち、テイラー柱型のトロイダル渦)を引き起こし、これらの「局所渦」は、加熱管114を通る全体の流れを乱流にしない一方で、加熱管114から(その上に形成された)熱酸化堆積物の薄い層を取り除くように作用し得る。従って、利用されるポンプシステム506は、形成された熱酸化堆積物に損傷を与えないように、滑らかで安定した流量を提供すべきである。
【0043】
過去においては、従来のポンプシステム506は単一のシリンジを備えていたため、燃料全体の容量(すなわち、試験に必要な燃料サンプルS)は単一のシリンジに入れられていた。しかしながら、この世代の機器は、シリンジのサイズに加え、その取り扱い及び漏れに関連した多くの問題を抱えていた。例えば、試験法に必要なサンプル燃料Sの総容量よりも少ない容量を有する単一のシリンジが利用される場合、吸引時の途中に、流れの休止や絶え間の発生が避けられない。その他の従来のポンプシステム506は、一対のピストンを備えた高速液体クロマトグラフィ(「HPLC」)ポンプを利用していた。しかしながら、HPLCポンプは、各ピストンサイクルの最後に流れの微小な断続を生じさせるため、満足のいくものではない。更に、HPLCポンプは購入及び維持の金銭的負担が高い。
【0044】
一実施形態において、ポンプシステム506は、燃料サンプルSの機械的特性に関係なく、燃料サンプルSの安定した流れを確実にする一対のシリンジ構成を有する。
図7は、1つ以上の実施形態に係る、一対のシリンジ/ピストン構成を利用するポンプシステム702を示す。図示されたように、ポンプシステム702は、一対のモータ708、710によってそれぞれ作動される2つのシリンジ又はピストン組立体704、706を含む。従って、第1のモータ708は、第1のシリンジ組立体704を駆動するように作動し、一方、第2のモータ710は、第2のシリンジ組立体706を駆動するように作動する。
【0045】
図示された実施形態では、それぞれのシリンジ組立体704、706は、中空で燃料サンプルSが圧送される内部容積714を画成するバレル712を含む。バレル712は、バレル712の第1の端部に先端部716を含み、バレル712の第2の端部に、先端部716の反対に向けられた開口した端部718を含む。それぞれのシリンジ組立体704、706は又、その開口した端部718を通ってバレルの内部容積714内に延在するプランジャ(又はピストン)720を含み、内部容積714を充填し得る燃料サンプルSの量を増減するようにその内部で滑動し得る。ピストン720は、ヘッド部722と、ヘッド部722の後面に連結された軸724とを含む。ヘッド部722は、その外縁又は外周がバレル712の内壁に当接し、それによりヘッド部分722の外周とバレル712の内壁との間で密封状態を形成するように、内部容積714内にはまり込む寸法になっており、それによって燃料サンプルSがバレル712の開口した端部718から漏れたり流出したりするのを防止する。軸724は、ヘッド部722の後面から遠ざかる方向に、内部容積714を通って延在し、開口した端部718を介してバレル712を出る。
【0046】
更に、軸724は、ヘッド722の反対側に配置され、モータ708、710の1つに作動可能に係合された端部726を含む。一実施形態において、モータ708、710は、回転してピストン720を駆動するボールねじ変速機728をそれぞれが含むステップモータである。当該実施形態において、ボールねじ変速機728は、軸724の端部726に連結され、バレル712に対してプランジャのヘッド部722を駆動し、それにより、内部容積714の寸法を変化させる。ピストン720の送り速度は、ボールねじ変速機728を介してモータ708、710によって付加される。
【0047】
それぞれのシリンジ組立体704、706は又、バレル712の内部容積714に出入りする燃料サンプルSの流れを制御するための一対の逆止弁730、732を含む。ここで、逆止弁730、732は、それぞれの先端部716に配置される。第1の逆止弁730は、サンプル容器102をバレル712の内部容積714に流体的に相互接続する入力管路734上に配置され、サンプル容器102からバレル712の内部容積714への燃料サンプルSの流れを可能にすると共に、逆方向の流れを防止する。同様に、逆止弁732は、事前濾過ステップ508で利用されるものなどその他の下流側のシステムに内部容積714を流体的に相互接続する流体の出力管路736上に配置され、バレル712からそうした下流側の装置への流れを可能にすると共に、逆方向の流れを防止する。
【0048】
シリンジ組立体704、706は、交互に行われる焼成シーケンスで作動する。例えば、第1のシリンジ組立体704が燃料サンプルSを該当するバレル712へと引き込むとき(すなわち、吸引段階)、第2のシリンジ組立体706は、該当するバレル712から燃料サンプルSを排出する(すなわち、排出段階)。こうした構成により、シリンジ組立体704、706の1つは常に排出段階を実行し、それにより、燃料サンプルSが、試験法によって規定されるように、一定の流量で下流側の装置に提供されることを保証する。
【0049】
燃料サンプルSは、バレル712内を前後するピストン720の軸方向の動きを介して、バレル712の中に引き込まれたり、外に排出されたりする。ピストン720が第1のシリンジ組立体704から第1の方向X1に一定の速度で引っ張られると、ある量の燃料サンプルSがサンプル容器102から吸引される。同時に、第2のシリンジ組立体706のピストン720は、一定の速度でバレル712に押し込まれる。ピストン720を第2のシリンジ組立体706に押し込むとき、該当するバレル712内の燃料サンプルSは、ヘッド部722の直径及びそれが内部容積714内で変位する速度に依存する流速で排出される。上述したように、一対の逆止弁730、732は、吸引段階と排出段階の交互の作動を確実にし、いくつかの実施形態では、一対の逆止弁730、732は能動弁であり、その他の実施形態では、一対の逆止弁730、732は受動弁である。
【0050】
ポンプシステム702は、シリンジ組立体704、706の一方から他方への切り替え時において、流れの変動を感知できないレベルに抑えながら燃料サンプルSを圧送する。これは、バレル712の底部(すなわち、開口した端部718の近傍)における一方のピストン720のストロークの開始時に、そのピストン720を加速し、そのピストン720が先端716に向かって第1の方向X2に移動するにつれて、そのピストン720がそのストロークの終端(すなわち、先端部716の近傍)に近づいたときに、同時に第2のピストン720を減速させることによって達成される。従って、一方の(例えば、サイクルの終わりにおける第1のシリンジ組立体704の)ピストン720の減速は、他方の(例えば、第2のシリンジ組立体706の)ピストン720の加速によって補完され、その逆についても同様となる。この位相調整は、第1及び第2のシリンジ組立体704、706のピストン720の速度の合算値が常に公称送り速度と等しくなるように提供され、それにより、バレル712の選択された直径についての流量の一定化を確実にする。図示された実施形態では、それぞれのバレル712の内部容積714は5mLであり、燃料サンプルSの流量は3mL/分である。図示された実施形態では、シリンジ組立体704、706の一方から他方への切り替え時間は、総サイクル時間の約20%であり、それにより、いかなる流れの変動も排除される。
【0051】
燃料サンプルSが測定部110を通して圧送されると、バスバー122a、122bを介して加熱管114に定常電流が印加され、特定の試験で利用される燃料サンプルの温度及び/又は品質に応じて、熱酸化堆積物が、目に見える膜として加熱管114上に形成され得る。加熱管114は比較的高い温度、例えば260℃に維持されるが、用途によってはこの温度がより高くなったり低くなったりする場合があり得る。加熱管114に印加される電流は、測定点において、安定した温度を維持するように制御される。
【0052】
図8は、バスバー122a、122bを介して加熱管114を加熱するための従来の加熱システム802を示す図である。図示されたように、従来の加熱システム802は、電源804、制御システム806、加熱管114上の点Pにおいて、ホットスポット808を測定する熱電対124、及び加熱管114を固定する一対のバスバー122a、122bを含む。加熱管114は、電源804から加熱管114を流れる高アンペア数、低電圧電流のコンダクタンスによって抵抗加熱され、これにより、図示された熱プロファイルを有する加熱管114が得られる。ここで、熱電対124の測定用の点Pは、加熱管114の内側に位置し、加熱管114の肩部132a、132bの長さによって決定されるが、本試験法の場合の長さは39mmである。従って、この39mmの点は、試験法で利用される加熱管114の最も高温の領域(すなわち、ホットスポット808)にある。
【0053】
図示された実施形態では、バスバー122a、122bは比較的重く、水冷されているため、電流が供給されたときに比較的最小限の温度上昇しか生じない。制御システム806は、インジケータ及び/又はコントローラとして機能する。例えば、制御システム806は、温度を自動的に制御し、必要に応じて電源804から供給される電力を変化させて、バスバー122a、122b及び加熱管114に安定した熱源が提供されるようにし得る。従って、加熱システム802は、試験法によって規定されるように、例えば260℃といった目標温度を維持するために利用され得る。あるいは、制御システム806は、代わりに手動操作を提供し、それによって技術者が必要に応じて手動で温度を調整できるように、温度の読み出しのみを提供してもよい。
【0054】
加熱管114の熱プロファイル、すなわち、その上のホットスポット808の位置は、多くの要因に影響され得る。これらの要因には、燃料サンプルSの熱特性、バスバー122a、122bの温度、及びバスバー122a、122b間の温度差(ΔT)が含まれる。更に、加熱管114の熱プロファイルを制御する能力は、試験法の結果及びその再現性を改善し得る。しかしながら、従来の機器は、加熱管114の熱プロファイルの微調整を可能にする制御システムを含まない。たとえば、既存の機器には、高温の加熱管114からの熱伝導によってバスバー122a、122bに加えられる熱を取り除く冷却システムが含まれているが、技術者はこれらの既存の冷却システムを制御して加熱管114の熱プロファイルを最適化することができない。
【0055】
既存のリグ100のバスバー122a、122bは、各バスバー122a、122bを通って流れる単一の経路に沿って水を循環させる水冷システムを介して冷却される。水は、例えば実験室の流しなど、外部源から提供されてもよく、あるいは既存の機器は、内部循環式及びラジエータ冷却式の水システムを含むことによって、水を循環させてもよい。
図9Aは、既存のバスバーの水冷システム902がどのように作動するかを示す図であり、
図9Bは、既存の機器に組み込まれ得る例示的な内部冷却システム904を示す。しかしながら、これらの既存のシステムは、バスバー122a、122bを通して液体を循環させ、次いで周囲温度で空気を吹き付けることによって液体を冷却するファン910に関連する熱交換器908に液体を循環させる、液体ポンプ906を単に含むのみであり、温度制御されていない。
【0056】
既存の機器の作動中に、最初は加熱されていない燃料サンプルSは、下側のバスバー122b近傍のスリーブ112に導入され、それに沿って上向きに流れながら加熱管114の長さに沿って加熱され、高温の上側のバスバー122a近傍のスリーブ112を出る。しかしながら、良好な熱伝達特性を有する燃料から成る燃料サンプルSは、下側のバスバー122bの温度を低下させるが、そのような燃料サンプルSは、上部バスバー122aには同じ効果を与えない。代わりにこれは、例えば、ホットスポット808の大きさを歪めることによって、及び/又は最も高温の点Pを上側の肩部132aの更に近くに移動させることによって、加熱管114の熱プロファイルに影響を与える。温度制御システム806は、加熱管114上の最も高温の点Pであると想定される単一の点で温度測定を行うように設計されているため、これらの影響は、試験法の結果に悪影響を及ぼし得る。しかしながら、熱プロファイルが歪んで、最も高温の点Pが加熱管114に沿って上方にシフトした場合には、温度制御システム806はもはや最も高温の点Pを測定しておらず、そのため不正確な結果がもたらされる。更に、連続的な試験を実行するとき、例えば、いくつかの試験を、間を空けずに実行するとき、冷却流体はより温かくなり、加熱管114の熱条件は後続するそれぞれの試験の熱条件と同一ではなくなる。
【0057】
図10は、1つ以上の実施形態に係る、バスバー122a、122b内の温度を制御するための温度システム1002を示す。温度システム1002は、バスバー122a、122bのそれぞれの温度が互いに独立して制御され、それにより、加熱管114の熱プロファイルが一定に維持されるように、それぞれの温度を個別に制御する。このようにして、バスバー122a、122b間の温度差(ΔT)を最小化及び/又は固定し、あるいは所望の値に設定し得る。更に、上側のバスバー122aと下側のバスバー122bとの間の温度差(ΔT)を固定することによって、温度システム1002は又、試験される燃料サンプルSの熱特性の変動の影響を制限し得る。
【0058】
温度システム1002は、試験法の温度(例えば、試験法によっては260℃)の関数としての、加熱管114の一定の熱プロファイルを維持する。そのために、それぞれのバスバー122a、122bの温度を完璧に制御し、完璧な相関性を有する結果を担保するために、それらの熱プロファイルは、既存の機器から得られた典型的な熱プロファイルに基づいたものとされる。再現されたプロファイルは、通常の周囲温度及び非連続的な試験条件下で実行された試験をイメージしたものとなる。更に、試験法のプロトコルが将来変更又は改良されて、たとえば、上側のバスバー122aと下側のバスバー122bが同じ温度(例えば、35℃)を維持することが必要となった場合、温度システム1002は、そうした新しい要件に適合するが、液体循環を利用する既存の機器では、そうした新しい要件を満たすことはできない。
【0059】
図示されたように、温度システム1002は、上側のバスバー122a及び下側のバスバー122bの温度をそれぞれ制御する上側のバスバーのサブシステム1004及び下側のバスバーのサブシステム1006を含む。それぞれのバスバーのサブシステム1004、1006は、冷却モジュール1010、ヒートシンク1012、コントローラ1014、強制対流装置1016、及びそれぞれのバスバー122a、122bの温度を測定する熱電対1018を含む。図示された実施形態では、冷却モジュール1010はペルチェ素子であり、強制対流装置1016はファンであるが、本開示から逸脱することなく、他の冷却モジュール1010及び/又は強制対流装置1016を利用してもよい。それぞれのバスバーのサブシステム1004、1006は、それぞれのヒートパイプ1008によってバスバー122a、122bから抽出される熱を個別に調整できるように、別個のコントローラ1014及び構成要素を含むことが理解されよう。
【0060】
冷却モジュール1010には電力が供給され、それによって、バスバー122a、122bからそれぞれのヒートシンク1012に伝達される熱エネルギーの量は、バスバー122a、122bのそれぞれに対して実行される温度測定に基づいて制御される。これらの温度測定に利用される測定点は、加熱管114との接続部に近い点でバスバー122a、122b上に配置され、例えば、既存の機器のバスバー上に設けられた測定点と同じ箇所にそれぞれ配置され得る。
【0061】
バスバー122a、122bは、熱伝達を最適化するような形状を有し得る。例えば、バスバー122a、122bの外形プロファイル又は形状1019は、図示されたように、冷却モジュール1010の熱交換面全体を使用できるように形成されてもよい。又、図示された実施形態では、各バスバー122a、122bは、基部1020と、そこから内向きに、加熱管114を保持又は固定する先細りの端部1024に向かって延在する穴1022とを含み、ヒートパイプ1008は、バスバー122a、122bの穴1022に挿入される。ヒートパイプ1008の熱伝導率は(例えば、真鍮で作られ得る)バスバー122a、122bの熱伝導率よりも高いので、熱量はそれぞれのバスバー122a、122bの一端から他端へより効率的に伝達される。測定点(すなわち、熱電対1018の測定点)間の温度差(ΔT)及び冷却モジュール1010の低温面の接触面積を低減することができ、それによって、冷却システム1002の効率及び制御ループの応答時間が改善される。従って、温度システム1002は、個々のバスバー122a、122bの独立した熱制御を提供する一方で、周囲温度との熱交換のみに基づく冷却手段と比較して周囲温度の影響を排除する。
【0062】
図11Aは、(スリーブ112内の)加熱管114の下側の肩部132bを下側のバスバー122bに固定するために利用されるクランプシステム1102を示す。図示されたように、クランプシステム1102は、下側のバスバー122bの端面1106に近接して移動可能に配置されるプレート1104を含み、下側のバスバー122b内に配置された加熱管114の下側の肩部132bを締め付け又は把持するように配置される。クランプシステム1102は、プレート1104の外面1110及び(図の視野からは隠れた)内面を通って、下部バスバー122bの端面1106内に延在する一対のねじ1108を更に含む。ねじ1108を締めたり緩めたりすることによって、技術者が下側のバスバー122bに対してプレート1104を締め付け又は押し付けることができることが理解されよう。従って、(スリーブ112内に固定された)加熱管114の下側の肩部132bが、プレート1104の(図の視野からは隠れた)内面と下側のバスバー122bの端面1106との間に配置されると、技術者は、測定部110を固定又は取り外すために、ねじ1108を締めたり緩めたりすることができる。いくつかの実施形態では、プレート1104の(図の視野からは隠れた)内面及び下側のバスバー122bの端面1106のいずれか又は両方は、加熱管114の下側の肩部132bを受け止めるように形成される。更に、ねじ1108は、それを締めたり緩めたりすることを容易にするための、そこから延在するレバー1112を含み得る。図示されてはいないが、上側の肩部132aをそこに固定/固定解除するためのクランプシステム1102も同様に上側のバスバー122aに配置されることが理解されよう。
【0063】
スリーブ112及び加熱管114の組立体(すなわち、測定部110)を下側のバスバー122bに対して取り付け又は取り外しするために、技術者は、プレート1104が加熱管114の下側の肩部132bを受け止める端面1106上の位置を妨げることがないように、プレート1104を移動させなければならない。1つの方法としては、技術者は、1つのねじ1108を完全に取り外してから、プレート1104を(残りの)ねじ1108を中心に旋回させることができるようにもう1つのねじ1108を緩め、それによって、下側のバスバー122bの端面1106内に下側の肩部132bを、妨げられることなく配置しなければならない。代わりに、技術者は、両方のねじ1108を取り外して、プレート1104を下側バスバー122bの端面1106から完全に取り外して、測定部110を取り付け又は取り外ししてもよい。説明されてはいないが、前述したクランプシステム1102の操作を上側のバスバー122aにも同様に適用して、上側の肩部132aをそこに固定/固定解除し得ることが理解されよう。
【0064】
しかしながら、2つのねじを必要とせず、肩部132a、132bとバスバー122a、122bとの間の改良された電気的及び/又は熱的接触を提供する代わりのクランプシステムを利用してもよい。例えば、
図11Bは、1つ以上の実施形態に係るクランプシステム1120を示す。以下に詳述するように、図示されたクランプシステム1120は、加熱管114を取り付け又は取り外しするために取り外され得る単一のねじを利用して、改良された熱的及び電気的接触を提供し得る。
図11Bのクランプシステム1120は、上側のバスバー122a及び下側のバスバー122bの一方又は両方について利用され得るが、以下では、上側又は下側のバスバー122a、122bのいずれかとして利用され得る単一の不特定のバスバー122への使用について説明する。
【0065】
図示されたように、クランプシステム1120で利用されるバスバー122は、先細の端部1024で分岐している。従って、バスバー122の先細の端部1024は、バスバー122の基部1020から遠ざかる方向にそこから延在する一対の分岐又は突起1122a、1122bを含む。一対の突起1122a、1122bは、それらの間に凹部又は間隙1124を画成する。ここで、間隙1124は、加熱管114の肩部132a、132bが、以下に記載されるようにそこを通して挿入又は格納され得るような寸法である。更に、先細の端部1024は、少なくとも突起1122a、1122bの長さに渡ってバスバー122内に延在するねじ穴1126を画成するように中空であってもよい。
【0066】
図示された実施形態では、クランプシステム1120は、バスバー122のねじ穴1126内に受け入れられ、これと噛み合うねじ部1130を有するねじ1128を更に含む。又、クランプシステム1120は、一対の突起1122a、1122bの間の間隙1124内に配置されたプレート1132を含み、プレート1132は、突起1122a、1122bの間を滑動して、加熱管114の肩部132a、132bの1つに当接するバスバー122の内面1134に近づいたり内面1134から遠ざかったりするように配置される。作動中、肩部132a、132bの1つは、バスバー122の内面1134に近接して配置され、ねじ1128を回転させて、そのねじ部1130を動かしてねじ穴1126に対して出し入れできるようになっており、更に、プレート1132を内面1134に近づいたり内面1134から遠ざかったりするように駆動し、それによって、その間に配置される肩部132a、132bの1つを締め付け又は締め付け解除する。ねじ1128及びプレート1132がバスバー122の先細の端部1024から引き抜かれると、間隙は妨げられず、加熱管114の肩部132a、132bを挿入又は引き抜くことができる。図示された実施形態では、プレート1132及び内面1134はそれぞれ、肩部132a、132bを受け入れるように形成された座面1132'、1134'を含む。
【0067】
又、図示された実施形態では、ねじ1128は中空であり、小径部1137a及び大径部1137bを有する穴1136を含み、プレート1132は中空であり、ねじ1128の穴1136と同軸の穴1140を画成する軸1138を含む。図示されたように、軸1138及びその穴1140は、プレート1132から、バスバー122の基部1020から遠ざかる方向に、ねじ1128の穴1136の小径部1137aを通って、大径部1137bへと延在する。
【0068】
プレート1132に対するねじ1128の回転を可能にしながら、ねじ1128に対する間隙1124内のプレート1132の軸方向の動きの量を制限又は抑制するために、固定装置1142を利用し得る。固定装置1142は、プレート1132の穴1140内に固定される。更に、固定装置1142は、ねじ1128の穴1136の大径部1137b内を浮動し、バスバー122の穴1126からねじ1128を引き出したときにねじ1128の穴1136内の肩部1146に当接する、フランジ1144(すなわち、小径部1137aと大径部1137bとの間に配置されたフランジ)を含み得る。又、プレート1132とねじ1128との間の相対的な回転を許容しながらも、フランジ1144と肩部1146との相互作用を介して、プレート1132の軸1138がねじ1128の穴1136から完全に引き抜かれることを防止するために、プレート1132をねじ1128に取り付けてもよい。こうして、バスバー122のねじ穴1126からねじ1128を引き抜こうとすると、(固定装置1142に取り付けられた)プレート1132は、(回転する)ねじ1128によってバスバー122の基部1020から遠ざかる軸方向に引っ張られる。言い換えると、ねじ1128の回転は、間隙1124内のプレート1132の軸方向の変位に変換される。従って、プレート1132はねじ1128によって担持され(又は引き出され)、間隙1124に対して加熱管114の肩部132a、132bを組み付け又は取り外しできるように、プレート1132をバスバー124の先細の端部1024から取り外して間隙1124を露出させ、それによってバスバー122からの加熱管114の取り外しを容易にする。
【0069】
いくつかの実施形態では、上述したように、バスバー122は、バスバー122の上側又は下側に配置され、温度システム1002の熱電対1018の1つを受け入れるように配置される一対の凹部1018a、1018bの一方又は両方を有し得る。
【0070】
従って、開示されたシステム及び方法は、言及された目的及び利点、並びにそれらに固有の事項の達成に十分に適合している。本開示の教示は、本明細書の教示の利益を享受する当業者にとって明らかな、異なるが同等の方法で修正及び実施され得るので、上に開示された特定の実施形態は、単なる例示に過ぎない。更に、以下の特許請求の範囲に記載されている場合を除き、本明細書に示されている構造又は設計の詳細に対する制限は意図されていない。従って、上記で開示された特定の例示的な実施形態は変更、組み合わせ、又は修正されてもよく、そのようなすべての変形は本開示の範囲内であると考えられることは明らかである。本明細書に例示的に開示されているシステム及び方法は、本明細書に具体的に開示されていない任意の要素及び/又は本明細書に開示された任意の要素がなくても適切に実施できる。構成及び方法は、様々な構成要素又はステップを「備える」、「有する」、又は「含む」という用語で説明されるが、構成及び方法は、様々な構成要素及びステップ「から本質的になる」又は「からなる」とすることもできる。上記に開示されたすべての数と範囲は、ある程度変化する場合があり得る。下限及び上限を伴う数値の範囲が開示される場合は常に、その範囲内に含まれる任意の数及び任意の含まれる範囲が具体的に開示される。特に、本明細書に開示される全ての値の範囲(「約aから約bまで」、又は同等に「およそaからbまで」、又は同等に「およそa~bまで」の形式)は、より広い範囲の値に含まれるすべての数と範囲を示すものと理解されるべきである。又、特許請求の範囲の用語は、特許権者によって明示的かつ明確に定義されていない限り、平易かつ通常の意味を有する。更に、特許請求の範囲で使用される不定冠詞「a」又は「an」は、本明細書では、それが導入する要素の1つ又は複数を意味するように定義される。本明細書及び参照により本明細書に組み込まれ得る1つ以上の特許又は他の文書における単語又は用語の使用法に矛盾がある場合、本明細書と一致する定義が採用されるべきである。
【0071】
上、下、上側、下側、上方、下方、左、右などの方向を示す用語の使用は、図に示されている例示的な実施形態に関連して使用され、「上向き」又は「上方向」は、対応する図の上部に向かうことを示し、「下向き」又は「下方向」は、対応する図の下部に向かうことを示している。
【0072】
本明細書で使用されるように、一連の項目の前に置かれる「少なくとも1つ」という語句は、項目のいずれかを区切る「及び」又は「又は」という用語とともに、リストの各構成要素(すなわち、 各項目)ではなく、リストをまとめて修飾するものである。「少なくとも1つ」という語句は、項目のいずれか1つ、及び/又は項目の任意の組み合わせの少なくとも1つ、及び/又は項目のそれぞれの少なくとも1つを含むことを意味することを可能にする。例として、「A、B、及びCのうちの少なくとも1つ」又は「A、B、又はCのうちの少なくとも1つ」という句はそれぞれ、Aのみ、Bのみ、又はCのみ;A、B、及びCの任意の組み合わせ;及び/又はA、B、Cのそれぞれの少なくとも1つ、を指す。