IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 荏原環境プラント株式会社の特許一覧 ▶ 株式会社ハイボットの特許一覧

特許7216366超音波探触子およびこれを用いた被検配管厚測定方法
<>
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図1
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図2
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図3
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図4
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図5
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図6
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図7
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図8
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図9
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図10
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図11
  • 特許-超音波探触子およびこれを用いた被検配管厚測定方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-24
(45)【発行日】2023-02-01
(54)【発明の名称】超音波探触子およびこれを用いた被検配管厚測定方法
(51)【国際特許分類】
   G01B 17/02 20060101AFI20230125BHJP
【FI】
G01B17/02 B
【請求項の数】 5
(21)【出願番号】P 2018206470
(22)【出願日】2018-11-01
(65)【公開番号】P2020071167
(43)【公開日】2020-05-07
【審査請求日】2021-07-29
(73)【特許権者】
【識別番号】308024395
【氏名又は名称】荏原環境プラント株式会社
(73)【特許権者】
【識別番号】505087230
【氏名又は名称】株式会社ハイボット
(74)【代理人】
【識別番号】100138519
【弁理士】
【氏名又は名称】奥谷 雅子
(74)【代理人】
【識別番号】230108442
【弁護士】
【氏名又は名称】佐藤 明夫
(72)【発明者】
【氏名】伊能 崇雄
【審査官】飯村 悠斗
(56)【参考文献】
【文献】特開2011-075384(JP,A)
【文献】特開2001-027628(JP,A)
【文献】実開昭63-033457(JP,U)
【文献】特開平11-133006(JP,A)
【文献】特開平09-053926(JP,A)
【文献】特開昭59-155709(JP,A)
【文献】特開昭61-031962(JP,A)
【文献】特開昭59-163562(JP,A)
【文献】実公昭62-045167(JP,Y2)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 17/00-17/08
G01N 29/00-29/52
(57)【特許請求の範囲】
【請求項1】
水流圧により配管内を移動することにより、配管内部から被験配管の管厚を測定するための、後部から伸びたワイヤにより被験配管内の位置を測定可能な超音波探触子であって、
a) 柱状の機体と、
b) 前記柱状の機体周囲に配置された複数の振動子と、
c) 前記被験配管の中心と前記機体の中心を合わせるために前記柱状の機体周囲に設けられた機体安定保持体であって、可撓性又は粗い網目状の傘状の、機体安定保持体と、
d) 前記機体の配管内の移動を実現するための部位と、を備え、
前記振動子が配管内形状に合わせて湾曲されていることを特徴とする、超音波探触子。
【請求項2】
前記振動子が、機体の周囲に機体の中心から対して同心円状に配置されてなる、請求項1の超音波探触子。
【請求項3】
前記振動子が被験配管内の壁に対して垂直に超音波を当て、垂直に反射される反射波を検出することができるように配置されてなる、請求項1の超音波探触子。
【請求項4】
前記機体が円柱状であり、被験配管内の壁に対して超音波を垂直に当て、垂直に反射される反射波を検出するように、機体の周囲に環状に設けた部位に、湾曲した振動子が機体に沿うように湾曲されて配置されている、請求項1の超音波探触子。
【請求項5】
水流圧により移動し、後部から伸びたワイヤにより被験配管内の位置を測定可能な超音波探触子により、被験配管の管厚を測定する方法であって、
1) 柱状の機体周囲に配置された複数の振動子と前記被験配管の中心と前記機体の中心を合わせるために前記柱状の機体周囲に設けられた機体安定保持体であって、可撓性又は粗い網目状の傘状の、機体安定保持体を備える超音波探触子を、被験配管内に挿入する工程と、
2) 前記超音波探触子により、被験配管内の壁に対して垂直に超音波を当て、前記超音波
の反射波を検出する工程と、
3) 被験配管の管厚を決定する工程と、
を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波探触子および該超音波探触子により被検配管厚を検査する方法に関する。
【背景技術】
【0002】
従来より、非破壊検査の一つとして、超音波探傷が知られている。超音波探傷とは、試験体内部に超音波を入射し、その超音波の反射波または透過波を検出することにより、試験体内部の疵、配管の厚さなどを検出することをいう。
【0003】
各種ボイラーは通常高温・高圧の流体を通す過酷な環境で使用されるため損傷を受けることがあり、ボイラーに使用される管体の傷や、ひび、割れ、管厚減少を定期的に検査することが必要である。ボイラー管を切断して切断箇所から検査器具を挿入して管体の傷や、ひび、割れ、管厚減少などを検査する方法では、ボイラー管を切断し、また検査した後に元の形に修復するために多大の時間及びコストが掛かり好ましくない。また、ボイラー管によっては、配管が輻輳していたり、検査対象となる被検配管が外部から接近が困難な場合もある。
【0004】
そのため、主要配管に取り付けられている開口部から管内に検査用装置を挿入して、挿入された装置により管内から管体の傷や、ひび、割れ、管厚減少などを検査する探傷装置及びそれを用いて検査する方法が開示されており、また、探傷装置としては、一般的に超音波探触子を使用する例が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開昭62-83608
【文献】特開2002-365033
【文献】実開平04-051658
【0006】
特許文献1は、パイプラインなどに使用される管の管厚を管内部から超音波探触子を用いて測定する、管の管厚測定装置を開示している。パイプラインに使用される管の管厚の測定において、従来技術では、パイプラインの輸送物が液体の場合は精度良く管厚を測定することが可能であるが、輸送物が気体の場合はパイプライン内に液体を充満させることは困難であるので、超音波を利用して管厚を測定することはできなかった。特許文献1の発明は、管の内周面に圧接される環状のシールカップに超音波探触子を埋設することによって、管内に液体を充満させなくとも、内部から管厚を正確に測定できる管の管厚測定装置を提供することにある。その管厚測定装置は、管の内部を軸方向に移動する移動体に、外周面が管の内周面に圧接されるとともに弾性材で形成された環状のシールカップを搭載し、このシールカップの周上複数位置に、対向する管の内周面に対して超音波送信する複数の超音波探触子を埋設することによって、この超音波探触子から送信されて管の内周面で反射された超音波と管の外周面で反射された超音波との間の超音波探触子への入射時間差から管の管厚を求めるようにしたものである。
【0007】
特許文献2は、被測定物であるチューブ内部に軸方向へ移動可能に挿入されるチューブの肉厚測定装置であって、チューブの内径より小さくした外径を有する2枚の円板状フランジ間に水流により回転する筒状回転体を取り付け、この回転体の内部にチューブ軸方向に発した超音波をチューブ径方向に屈折させる音響ミラーを内蔵させるとともに、前方側フランジには該音響ミラーに向け超音波を発射する超音波探触子を取り付けたことを特徴とするチューブの肉厚測定装置などを開示している。このチューブの肉厚測定装置を被測定物であるチューブ内部を軸方向に移動させながら、後方側フランジより回転体内に水を供給して噴出口から周方向に噴出する水流によって回転体を回転させ、一方、超音波探触子からチューブ軸方向に発した超音波を音響ミラーを介してチューブ径方向に屈折させることにより、超音波をチューブ内表面において軸方向に螺旋状に移動させチューブの全長および全周にわたって肉厚の測定を行うようにしたものである。
【0008】
特許文献3の考案は、管の超音波探触子探傷検査に用いる超音波探触子に関するものであり、従来技術の超音波探触子においては、管の内側に挿入された超音波探触子の振動子から発信された超音波ビームは、管内部に入射する場合に屈折するが、振動子の発信表面が平面をなしており、一方検査対象である超音波ビームが入射する、管の入射面は湾曲しているため、振動子の位置により、その入射角が異なっており、そのため、管内部に入ったビームが拡散してしまい、明確な反射ビームが得られないという問題があった。特許文献3の超音波探触子によれば、従来の超音波探触子の係る問題を解消するために、管の内側に挿入された超音波探触子の振動子において、管の管軸延長方向に見て、管の内周面に対向する凹湾曲面を形成した振動子とすることにより、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされ、管に入射後拡散することなく管内部を伝搬するもので、その結果超音波ビームは、管の内部を収束した状態で伝播することができる様にされたものである。
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献1の管厚測定装置では、管による輸送物が気体の場合を想定しており、そのために、このシールカップの周上複数位置に、超音波探触子を管の内周面に圧接される環状のシールカップに埋設させるという配置を取る。そして、この超音波探触子から送信されて管の内周面で反射された超音波と管の外周面で反射された超音波との間の超音波探触子への入用時間差から管の管厚を求めるようにしたものである。
特許文献1の管厚測定装置は、水を伝播媒体としないため、複数の探触子を管の内周面に圧接される環状のシールカップに埋設させるという構造を取る必要がある。この様な超音波探触子ではある特定の口径の管についてのみ使用することが可能であり、検査対象の管の口径が変わると、超音波探触子を埋設しているシールカップの口径を対象となる管の口径に合わせたものとすることが必要となり、管厚測定装置に汎用性がない。
また、特許文献1の、シールカップの周上複数位置に配置された超音波探触子では、探触子が複数配置されてはいるが、管の内周面全域を連続して漏れなく検査することはできない(特許文献1、図3参照)。
また、超音波探触子の管内の移動を圧縮空気により行う(特許文献1、(3)ページ、左上欄)ため、水流によって、超音波探触子(特許文献1のピグ2)の管内の移動に比べて、その制御が制約される。
【0010】
特許文献2の肉厚測定装置は、被測定物であるチューブ内部を移動しながら、超音波探触子によりチューブ内部からチューブの肉厚の測定を行うものである。肉厚測定装置はこのチューブの内径より小さくした外径を有する2枚の円板状フランジ間に水流により回転する筒状回転体を取り付け、この回転体の内部にチューブ軸方向に発した超音波をチューブ径方向に屈折させる、45度傾斜した音響ミラーを内蔵させるとともに、前方側フランジに取り付けられた超音波探触子から該音響ミラーに向け超音波を発射し、受信することで、チューブの肉厚の測定を行う。そして、その移動は牽引用の紐部材により、牽引されることで移動する。
特許文献2の発明は、肉厚測定装置では、超音波探触子から発信された超音波を、回転体内部に設けられた音響ミラーにより反射、屈曲させるものであり、その間にも回転体は、前方に移動しているため、超音波によるチューブの検査部位に間隔ができ、肉厚測定装置の移動速度、音響ミラーの回転速度によっては検査漏れとなる部分が出てくる恐れがある。また、回転体を、回転体に設けられた(水の)噴出孔からの、噴出水の圧力により回転させるものであるため、水流中の泡の発生も危惧される。回転体を、水の供給管から供給される水流により回転させる構造であり、装置が複雑になる。
【0011】
特許文献3の超音波探触子は、管の内側に挿入された超音波探触子の振動子において、管の管軸延長方向に見て、管の内周面に対向する凹湾曲面を形成した振動子とすることにより、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされているが、その超音波探触子が形成している凹湾曲面の振動子の凹湾形状は、振動子から発信された超音波ビームが、その振動子の位置に拠らず、管の内側のある点に収束する様にされる様に、凹湾形状を形成しているものである(図1図2)。
したがって、特許文献3の超音波探触子は、超音波の試験体の管内壁に垂直に入射するものでない。
【課題を解決するための手段】
【0012】
上述の課題を解決するために、本発明にかかる超音波探触子は、水流圧により管内を移動することにより、管内部から管の異常の発見、管厚などを測定するための超音波探触子であって、管壁に向けて超音波を発振し、前記管壁で反射したエコー信号を受信するものであり、その柱状の機体の周囲に沿って、複数の振動子が配置され、振動子が配管内形状に合わせて湾曲されていることを特徴とする。
本願発明においては、超音波探触子の振動子が複数配置され、それら振動子が配管内形状に合わせて湾曲されているため、振動子から発振された超音波は、検査対象である管壁に対して垂直に照射され、またそれらの反射エコー信号も、照射された管壁から、垂直に反射されて返ってくるため、検査対象である管壁に対して、斜角の位置に配置された振動子から発振された超音波、及び反射波の場合に比べて散乱、干渉が起きることも少なく、管の厚さに対応した波長の超音波を選択することにより明確なデータを得ることができる。また、本願発明の超音波探触子は、柱状の機体の周囲に沿って、複数の湾曲した振動子を配置することができるため、例えば、柱状の機体の周囲に沿って連続して配置させた場合は、単一または少数の振動子を用いた超音波探触子で必要となる機体を管の周囲方向に回転させて、振動子の配置されていない箇所に対応する管壁に対して、回転させた位置において新たに音波ビームを発信することは不要となる。また、超音波探触子は、浮揚性の機体及び必要に応じてその前後に配置される浮揚性及び水流圧に対して抵抗性を持った、浮揚及び案内装置に支持され、かつ、水が浸入しない密閉構造となっているため、水流により容易に管内を浮揚・移動し、容易に被検配管を検査することができる。
【0013】
以下、本願発明の第1の実施の態様による、本願の超音波探触子について説明する。
【0014】
本願の超音波探触子は、配管内を移動することにより、配管内部から被験配管の管厚を測定するための、超音波探触子であって、
a) 柱状の機体と、
b) 前記柱状の機体周囲に配置された複数の振動子と、
c) 前記被験配管の中心と前記機体の中心を合わせるための部位と、
d) 前記機体の配管内の移動を実現するための部位と、を備え、
前記振動子が配管内形状に合わせて湾曲されていることを特徴とする。
【0015】
本願の超音波探触子は、機体の周囲に機体の中心に対して同心円状に振動子が配置されていてもよい。
【0016】
本願の超音波探触子は、前記機体に配置された振動子が被験配管内の壁に対して垂直に超音波を当て、垂直に反射された反射波を検出することができるように配置されていてもよい。
【0017】
本願の超音波探触子は、前記機体が円柱状であり、被験配管内の壁に対して超音波が垂直にあたり、垂直に反射された反射波を検出するように、機体の周囲に環状に設けた部位に、湾曲した振動子が機体に沿うように湾曲されて配置されてもよい。
【0018】
本願の超音波探触子は、柱状の超音波探触子により、被験配管の管厚を測定する方法に用いることができるものであって、前記方法は、
1) 機体周囲に配置された複数の湾曲した振動子を備える超音波探触子を、被験配管内に挿入する工程と、
2) 前記超音波探触子により、被験配管内の壁に対して垂直に超音波を当て、前記超音波の反射波を検出する工程と、
3) 被験配管の管厚を決定する工程とを含むことができる。
【発明の効果】
【0019】
本願の超音波探触子は、水流圧により配管内を移動することができ、その柱状の機体は、機体安定保持体により被検配管と同軸に配置されており、その柱状の機体の周囲に沿って配置された複数の振動子が、配管内形状に合わせて湾曲されているため、振動子から発振された超音波は、検査対象である配管壁に対して垂直に入射され、またそれらの反射エコー信号も、入射された配管壁から、垂直に反射されて返ってくるため、発振された超音波及び反射波の散乱、干渉が起きることもなく、より明確なデータを得ることができる。また、本願の超音波探触子は、機体安定保持体を備えた部分を、被検配管の口径にあわせて取り換え可能であるため、種々の異なる口径の配管の検査を、装置の部品の交換により行うことができると言う有意な効果を奏する。
【図面の簡単な説明】
【0020】
図1】従来技術の、平板状の振動子が配列されている超音波探触子により、配管の内部から配管の内側表面にビームを発射した場合の、ビームの予想経路を示す例である。
図2】本願発明の、機体の周囲に環状に形成された振動子を備える超音波探触子により、配管の内部から配管の内側表面に垂直にビームを発射した場合の、ビームの発信、反射経路を示す例である。
図3】本願発明の、第1の実施態様による機体の周囲に環状に形成された振動子を備える超音波探触子の、被検配管内の配置の例を示す。
図4】本願発明の、機体の前方に設けられた、機体安定保持体及び案内部の一例を示す斜視図である。
図5】本願発明の、機体の後方に設けられた、機体安定保持体の一例を示す斜視図である。
図6A】本願発明の、他の実施の態様における、機体の後部中央部分が、機体の軸方向内部に向けて、凹状に形成された、機体の状態を示す模式図である。
図6B】本願発明の、他の実施の態様における、機体の後方に設けられた、機体を円滑に移動させるため後部フィンの一例を示す斜視図である。
図7】本願発明の、他の実施の態様における、機体の側面に設けられた、機体を安定して移動させるため側面翼の一例を示す斜視図である。
図8】本願発明の、他の実施の態様における、機体の側面に設けられ、被検配管の内部表面に接地された状態のローラの一例を示す斜視図である。
図9】本願発明の、機体にフレキシブルな連結紐で連結された、浮揚連結体の一例を示す斜視図である。
図10】本願発明の、振動子を備える機体とフレキシブルな連結紐で連結された浮揚連結体が、被検配管の屈曲部を通過する様子を示す模式図である。
図11】本願発明の、機体の前方に設けられた、機体に浮力を与えるとともに、超音波探触子の被検配管内への導入を容易にするための浮揚・案内部分の一例を示す模式図である。
図12】本願発明の1つの態様として、機体の前後に可動性のジョイントを弾性コイルで覆った機体安定保持体を有する超音波探触子である。
【0021】
以下、図面を参照しつつ、本願発明の第1の実施の態様による、本願の超音波探触子について説明する。
図1は、従来技術の、柱状の機体30と、前記柱状の機体の周囲に沿って、配置された1または複数の平板状の振動子20を備える超音波探触子が、被検配管内に挿入された状態を示す。
図2は、本願発明の柱状の機体3と、前記柱状の機体の周囲に沿って、配置された1または複数の湾曲した振動子2を備える超音波探触子が、被検配管内に挿入された状態を示す。機体の形状、材質は、機体が被検配管内に挿入することができ、機体が配管の長手方向に沿って、流水により安定して浮揚した状態で移動することができ、また被検配管の屈曲部を曲がることのできる程度の長さを持ち、屈曲部を曲がる際に必要な、ある程度の柔軟性を備えている材料であるのが好ましい。
【0022】
柱状の機体は、必ずしも、円柱状である必要はないが、被検配管の対象となるボイラー管の断面が通常円形状であることを考慮すれば、円柱状であるのが好ましい。機体の進行方向先端部分には、被検配管への超音波探触子の挿入を容易にするために、超音波探触子の挿入のための案内部5を設けてある(図3)。案内部5は、被検配管への超音波探触子の挿入を容易にするためのものであれば、その形状は問わないが、超音波探触子が、流水による配管内の移動、前進を容易にするために、側面視において、例えば、対象となる被検配管の口径よりも小さい前面部であって、この前面部の断面は、被検配管の中心軸に垂直の断面において同心の円形状であってもよい。また、機体の前面部の中心部分は、機体の進行方向に対して、凡そ、先端部が丸みを帯びた円錐状(側面視において、三角形状)をしていてもよい。機体の前面部を先端部が丸い円錐状にすることにより、超音波探触子の移動において、水流への抵抗を少なくすることができる。
また、その前面部の周辺部から、機体進行方向に対して斜め後方に、機体を取り巻く様に、機体の中心軸を被検配管の中心軸に一致させるように、被検配管の内壁と機体の間の緩衝部分である、機体安定保持体4が設けられている。機体の前面中心部分と周辺部分は流水の抵抗を少なくするため、機体安定保持体4に滑らかに移行する形状を持つのが良い。
【0023】
機体3を、被検配管の中央部分に保持するための機体安定保持体4は、側面視において、傘状の、弾性を持つ、例えば、金属性の粗い網目状のものであり、この機体安定保持体4により、機体の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができるため、機体の周りに環状に配置された振動子を、その振動子から発信された音波ビームが垂直に配管壁に照射することができるとともに、機体安定保持体が粗い網目状をしているため、網目を通過した水流が機体と管壁の間を阻害されることなく、円滑に流れることができ、機体の周りに環状に配置された振動子と被検配管の検査対象部分の間に常に音波伝播物質である水が存在する。
【0024】
機体安定保持体4は、機体3を管の中央に安定させる機能を奏することができるものであれば、前記の様な、側面視において機体の前面部分から、斜め後方に、傘状の、例えば、金属性の弾性を持つ、粗い網目状のものである必要はなく、機体3の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができ、水流が機体と管壁の間を、阻害されることなく、円滑に流れることができるものであれば、その形状、材質などは問わない。本発明の1つの態様として、可撓性のある材料でできた長方形部材を機体の円周上に等間隔に配置してもよい(図12)。
【0025】
機体3の長手方向後方部分に、機体3の長手方向中心軸を、配管(被検配管)の中心軸に一致させ、水流が機体を管壁の間を阻害されることなく、円滑に流れることができるように、前記機体前方の機体安定保持体と同様の、金属性の弾性を持つ粗い網目状のリング体(後部機体安定保持体4b)を設けることができる。この様なリング体を機体の周囲に設けることにより、機体前方の機体安定保持体と同様に、機体の長手方向中心軸を、配管(被検配管)の中心軸に一致させることができ、また、水流が機体を管壁の間を、阻害されることなく円滑に流れることを可能とする。機体前方の機体安定保持体と同様に、前記効果を奏することができるものであれば、その形状、材質などは問わない。
【0026】
機体の前面の案内部及びそれに連続して設けられる前部機体安定保持体4a、または後部機体安定保持体4bは何れも、その周囲に環状に設けられた振動子を配置する機体本体とは、例えば、螺合ネジにより篏合、または取り外し自在の構造とすることができる。したがって、検査対象となる被検配管の口径が異なる場合でも、前部機体安定保持体4a、または後部機体安定保持体4bを、被検配管の口径に合わせたサイズを持つ機体安定保持体に取り替えることにより、同一の機体及びそれに配置された振動子2を備える超音波探触子を、種々の異なる口径を持つ配管に使用して検査をすることができる。
前記振動子2は、検査対象となる配管の形状に合わせて湾曲されており、発信された音波は、被検配管の内壁に略垂直に照射されるため、その反射波は、また垂直に反射され、明確な検査結果を得ることができる。
【0027】
超音波探触子による、超音波の発信、受信のための発信部、受信部、制御部、電源供給装置等は、その重量、容量、被検配管の口径などによる制限等を考慮すると、機体とは別の、機体にフレキシブルな連結紐により連結された、防水型の浮揚連結体9に収納することができる。
【0028】
更に、本願の超音波探触子は、その後部から伸びたワイアにより、被検配管内の位置を測定する態様も本願は発明の範囲内である。この場合には、流水の抵抗を受けて被検配管内への挿入を容易に行えるように設けられた浮揚案内装置をワイアに等間隔で設けることにより、あるいは外部に残っているワイアの長さから、被検配管内での超音波探触子の位置を判断することができる(図12)。
【0029】
以下、超音波探触子について、その変形例を含めその構造、機能について図面を参照しつつ詳細を説明する。
【0030】
超音波探触子の機体3は、前述の通り、検査される被検配管に挿入でき、背後から送られる水流により移動されつつ、被検配管の肉厚などを振動子2により超音波検査をすることができるものであれば、特にその形状、材質などは問わない。一般に、被検配管の断面が円形であることを考慮すれば、機体3の断面も、被検配管の断面の口径よりも小さい口径を持つ、円柱状のものであるのが好ましいが、円柱形状に限定されるものではない。また、機体3の口径は、超音波探触子が、水流により、被検配管の内部を自由に移動可能なものであれば、特に制約はされないが、背後からの水流13の圧力によって移動されること、また振動子2が、機体周りに環状に配置される場合を予測すると、これに対応して、少なくともある一定以上の口径を持つことが望ましい。被検配管の屈曲部での移動に問題がなければ、また、被検配管の材質及び水流中の音波の伝搬速度を考慮して、機体の進行方向に対して垂直方向断面の幅(又は口径)が、被検配管の内径に近くすることができれば、流水の圧力の影響を受けやすくなり、超音波探触子の移動が容易になる。
【0031】
また、超音波探触子の機体の材質及びその重量は、水中において、過度な浮力、または水中で過度な重力を受けることなく移動することができるものであることを考慮すると、水とほぼ同等の比重を有することが望ましいが、これに限定されるものではなく、水流によって支障なく移動することができる程度の材質、容量及び重量を持つものであればよい。
【0032】
超音波探触子の振動子2とのパルスの発信部、受信部、電源供給部、制御部などは、機体内部に備えられていてもよい(図に示さず)し、機体とは別の、機体にフレキシブルな連結紐により連結された、浮揚連結体9に配置される場合もある(図9および図10)。いずれの態様においても、これらは水の浸水から保護される様に防水されている。その場合、機体3と結ぶフレキシブルな連結紐には、電源ケーブル30などが同時に配設されているが、当然その電源ケーブル30なども、防水性のものを使用する。また、適当な浮揚力を与える、及び水流による圧力により移動される等を考慮した場合、機体の前方、及び前記電源供給部等を収容する浮揚連結体9の後方に、フレキシブルな連結紐により連結された、PVC等軟質ゴム等の可撓性材料によりなる、例えば、球状の浮揚案内装置8を設けるのが良い。浮揚案内装置は任意の長さのワイアに一定間隔で浮揚具を備えたものでもよい。
該態様において、ワイアにより本願発明の超音波探傷子を被検配管に挿入し、被検配管外のワイアの長さから挿入位置が判断できる。該態様において、配管壁に接して被検配管と機体の中心軸を合わせるための構成は可撓性のある樹脂線維の束である。本態様では、機体の前後の機体安定性保持体はそれ自体が曲がることができるため、曲部のある被検配管内の移動に有利である。(図12
【0033】
機体3には、流水により移動する場合に、周りの測定対象である被検配管との位置を安定させ、機体が軸周りに回転することを抑制する効果を与えるために、機体の側面に機体の軸方向に沿って一以上の、弾性体でできている側面翼12(図7)を設けてもよい。側面翼12の高さは、機体の側面と被検配管の内部表面の距離より小さく、機体の移動時に被検配管の内面に接触しないものとし、その形状は特に問わないが、流体が機体の側面を流れる場合に、機体が軸周りに回転することを抑制する効果を与えるものであればよく、例えば、航空機等で一般的に見られる垂直尾翼などの形状のものでもよい。
【0034】
機体3は、背後方向からの流水によって、その圧力により移動するが、機体3に対する流水13の圧力を、より適切に機体に与えることができるように、機体3の後部の形は、その側面視において、その垂直面の中央部分が機体の軸方向内部に向けて凹状をなしていてもよい(図6A)。また、その機体3の後部の凹状形状が、機体3の側面と交差する部分において、前記凹状形状部分がさらに、機体3の後部側面と交差する部分を超えて延伸させてもよく(後部カバー6)、そのような形状によって、背後方向からの流水による、機体3の前方への移動のための、流水による圧力が負荷される機体の後部の面積が大きくなるため、機体の安定した移動を実現することができる(図6B)。なお、機体の回収時における作業を考慮し、後部安定保持部に延伸部分を設ける場合は、その材質は弾性を持つものが好ましい。なお、本願の超音波探触子は、その後部部分から、配管外に連結されたワイアを備えており、必要に応じて超音波探触子を前記ワイアにより、配管外に引き出すことができる。
【0035】
さらに、機体の側面に、被検配管内部表面に接触するローラ10を設けることにより、被検配管に挿入された後の超音波探触子の位置を的確に知ることができる。前記ローラ10は、機体の側面に取り付けられており、被検配管に機体が挿入されると、ローラ10が付勢されたバネにより、ローラ車が被検配管内部表面に接触するように構成されており、車の回転数を計測することにより、被検配管に挿入された後の超音波探触子位置を的確に知ることができる(図8)。
【0036】
更に、本願の超音波探触子は、その後部から伸びたワイアにより、被検配管内の位置を測定する態様も本願は発明の範囲内である(図12)。この場合には、流水の抵抗を受けて被検配管内への挿入を容易に行えるように設けられた浮揚案内装置をワイアに等間隔で設けることにより、あるいは外部に残っているワイアの長さから、被検配管内での超音波探触子の位置を判断することができる。
【符号の説明】
【0037】
1.超音波探触子
2.振動子
3、機体
4.機体安定保持体
4a.前部機体安定保持体
4b.後部機体安定保持体
4m.篏合用ミゾ
4n.機体側嵌合用ミゾ
5.案内部
6.後部カバー
7.フレキシブル連結紐
8.浮揚案内装置
9.浮揚連結体
10.ローラ
11.配管(被検配管)
12.側面翼
13.水流
14.ワイア
20.平板状の振動子
30.電源ケーブル
40 管壁
K 管内面
K 管外面





図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12