IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サラマス エーアイ リミテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-25
(45)【発行日】2023-02-02
(54)【発明の名称】医療介入制御システム
(51)【国際特許分類】
   G16H 10/40 20180101AFI20230126BHJP
   G16H 20/00 20180101ALI20230126BHJP
   G16H 50/00 20180101ALI20230126BHJP
   A61B 5/00 20060101ALI20230126BHJP
【FI】
G16H10/40
G16H20/00
G16H50/00
A61B5/00 102A
【請求項の数】 15
(21)【出願番号】P 2020554950
(86)(22)【出願日】2018-12-21
(65)【公表番号】
(43)【公表日】2021-03-04
(86)【国際出願番号】 GB2018053745
(87)【国際公開番号】W WO2019122919
(87)【国際公開日】2019-06-27
【審査請求日】2021-12-16
(31)【優先権主張番号】1721581.5
(32)【優先日】2017-12-21
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】520226078
【氏名又は名称】サラマス エーアイ リミテッド
【氏名又は名称原語表記】THALAMUS AI LIMITED
【住所又は居所原語表記】Apartment G3 The Franklin,81 Bournville Lane,Bournville,Birmingham West Midlands B30 2BZ(GB)
(74)【代理人】
【識別番号】100186060
【弁理士】
【氏名又は名称】吉澤 大輔
(74)【代理人】
【識別番号】100145458
【弁理士】
【氏名又は名称】秋元 正哉
(72)【発明者】
【氏名】ウォーカー,ジェレミー ジェームス
(72)【発明者】
【氏名】デービィス,ジャスティン
【審査官】吉田 誠
(56)【参考文献】
【文献】特表2007-524461(JP,A)
【文献】特表2014-507983(JP,A)
【文献】米国特許出願公開第2009/54908(US,A1)
【文献】米国特許出願公開第2008/0294019(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00 - 80/00
A61B 5/00
(57)【特許請求の範囲】
【請求項1】
リスク分析を提供し且つ患者に対する介入行動に影響を及ぼすための医療介入制御システムであって、当該システムは:
出データを含む少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースと;
少なくとも1つのデータソースから波形を識別し、波形を抽出し、波形を分類し、波形を所定のフォーマットに正規化し、波形の波形特性およびパラメータを決定するように動作可能な波形検出器であって、波形データでセットされるデータを追加する波形検出器と;
患者から被験者データを得るための測定モジュールと;
前記検出データと前記波形データを含むデータセットに関して被験者データを分析し、1以上のアウトカムの各々について関連する確率を出力するように動作可能な分析器であって、関連する確率は介入によって影響され、分析器は患者から得られた前記被験者データを取得し、アウトカムおよびアウトカムに影響を及ぼす可能性のある介入について検証する、分析器と;
介入割当モジュールにフィードバックを提供し、それぞれの介入に対して、介入を実行するように介入割当モジュールに直接的な命令を出力する、あるいは介入を実行することをやめるように介入割当モジュールに直接的な命令を出力するように動作可能である行動および警告管理モジュールと;および
現在の患者に対する行動および警告管理モジュールからの直接的な命令に応じて、介入を実行するか介入を実行しない介入割当モジュールと;
を備えるシステム。
【請求項2】
前記波形は、画像を含むデータソースの1つから識別される、請求項1に記載のシステム。
【請求項3】
分析器がトレーニングされたデータに基づいた様々な「治療する」/「治療しない」オプションのリスク分析を行うようにトレーニングされた確率行列を構築し、システムは患者がオプションで治療される場合にはどのようなリスクであり、患者が治療オプションで治療されない場合にはどのようなリスクであるかのリスク分析を行う、請求項1又は2に記載のシステム。
【請求項4】
前記行動および警告管理モジュールの前記出力は、前記介入割当モジュールのためのそれぞれの介入に関する命令のセットを含む、請求項1から3のいずれかに記載のシステム。
【請求項5】
前記介入割当モジュールは、前記介入を実行するように動作可能な医療ロボットを含み、前記ロボットによって行われる前記介入の少なくとも1つのステップは、人間のユーザからの権限委譲を必要とする、請求項1から4のいずれかに記載のシステム。
【請求項6】
介入の後に被験者データを検出して、患者の状態を再評価する、請求項1から5のいずれかに記載のシステム。
【請求項7】
前記データセットが、研究データを含む少なくとも1つのデータソースからのデータを含む、請求項1から6のいずれかに記載のシステム。
【請求項8】
前記研究データが、患者の危険因子、患者の人口統計、関連する臨床アウトカムおよび結果、履歴検出データおよび医療保険プロファイルまたはソーシャルメディアフィード、登録データ、数理リスクテーブル、臨床試験データおよび/または監査データを含む、請求項7に記載のシステム。
【請求項9】
検出データは、心電図、冠状動脈プレッシャ・ワイヤおよびトランスデューサ、血管造影図、超音波トランスデューサ、冠状動脈ガイドワイヤ取り付けセンサなどの検出機器から取得された捕捉または検出データポイント、波形または画像を含み、血流予備量比-FFR、iFR(FFRの瞬時血流予備量比(iFR)バージョン)、冠血流予備能-CFR、静止遠位冠状動脈圧対大動脈圧比(Pd/Pa)間の関係、医療保険プロファイルおよび/またはソーシャルメディアフィードに関するデータを提供し、および/または前記データは、前記分析器における予測モデルのための入力を含む、請求項1から8のいずれかに記載のシステム。
【請求項10】
システムが、データセット内のデータを正規化するための正規化器を更に含み、前記正規化器が、前記データを標準テンプレートに適合させる、請求項1から9のいずれかに記載のシステム。
【請求項11】
前記分析器は複数の分析器を含み、前記分析器のうちの1以上は少なくとも1つのデータソースからのデータを分析し、それぞれの介入に対する有望なアウトカムの確率モデルを添付する、請求項1から10のいずれかに記載のシステム。
【請求項12】
リスク分析評価モジュールが、分析器の出力に基づいてリスク分析を提供するように動作可能である、請求項1から11のいずれかに記載のシステム。
【請求項13】
前記波形検出器は、前記分析器をトレーニングするために使用され得る標準出力を提供するための波形の画像データを変換するように動作可能である、請求項1から12のいずれかに記載のシステム。
【請求項14】
各入力からの確率値はマトリックスに保存され、各値はフィールドからのさらなる入力によって反復されて、個々に使用されるとき、または他の入力と一緒に使用されるとき、各入力についての一連の確率ノード値を決定し、一連のノード値は治療の必要性、有意な死亡率および罹患率の確率、リスク分析、ならびに限局性疾患とびまん性疾患とを区別する能力を決定し、確率が各アウトカムまたは潜在的介入に割り当てられて、次いで、潜在的に医療専門家と協議して決定を行い、またはどのようなアウトカムまたは介入を考慮すべきかについて実施医療専門家に通知する、請求項1から13のいずれかに記載のシステム。
【請求項15】
以下に対する命令のセットでプログラムされたコンピュータ動作可能媒体:
検出データを含む少なくとも1つのデータソースからのデータを含むデータセットにおけるデータソースから波形を識別することと;
前記波形を抽出し、前記波形を分類し、所定のフォーマットに波形を正規化し、波形特性および波形のパラメータを決定し、波形データでセットされるデータセットを追加することと、
患者から被験者データを得ることと;
出データと波形データを含むデータに関して被験者データを分析することと;
1以上のアウトカムの各々について関連する確率を出力することであって、関連する確率が介入によって影響を受け、分析器が患者に由来する被験者データを取得し、アウトカムと、前記アウトカムに影響を及ぼす可能性のある介入を検証することと
ィードバックを提供し、患者に対する介入または介入の欠如に影響すること。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はリスク分析を提供し且つ患者に対する介入行動に影響を及ぼすための医療介入制御システムに関する。
【背景技術】
【0002】
医療現場では、介入を開始するか、または何もせず特定の介入を行わないことで最良のアウトカムが達成できることを評価するかについての決定を行うために、どのようなアウトカムが予想されるか、また、どのようなリスクがそれぞれの介入や一連の行動(または不活動)に関連している可能性があるかを判断するために、患者/被験者のデータセットや患者/被験者のデータのその後の分析を1人以上の医療専門家が決定する医療専門家との個人的な協議に頼ることが多い。
【0003】
動脈狭窄を「治療する」または「治療しない」必要性について現在なされている決定は、圧力波形、血管造影画像、患者の危険因子および人口統計を含む特定のデータソースに基づいている。ほとんどの場合、分析はこれらのデータソースのうちの1つまたは他のデータソースのみに限定され、しばしば疾患治療の必要性の分析および決定のために小さなセグメントのみを使用する。このような分析は冠動脈疾患患者の管理のためのエビデンス基盤の多くを形成したが、限られた利用可能なデータ量が意思決定を制約している。
【0004】
さらなる治療ステップを精査し、決定する際には、複数の要因が関与する。例えば、冠状動脈分野では、よく知られている発生中の危険因子があり、これらは同定され、また同定されつつあり、よりよく理解されている。冠状動脈分野の危険因子カテゴリーには、血圧、総コレステロール、LDLコレステロール、およびHDLコレステロールが含まれる。性別は危険因子に影響を及ぼすことが知られており、医者が患者を評価し、コホートデータおよび患者データを精査する際に考慮される。民族性や年齢も、糖尿病などの病態と同様に危険因子に影響を及ぼす。喫煙などの生活習慣も危険因子に影響を及ぼす。医療専門家は利用可能な多数のデータソースを有しており、データソースはこれらの様々な因子が治療の決定にどのように影響し、アウトカムに影響するかに関する研究データを提供している。典型的には、医師が彼らの経験、研究領域、診療場所、または患者ベースに特有のデータのセクションの経験を有する。例えば、ニュージーランドの医師は、異なる民族性のためにスコットランドの医師が有する可能性がより低い、マオリ人口における危険因子の経験を有する可能性がより高い。
【発明の概要】
【発明が解決しようとする課題】
【0005】
医師が入手できるデータソース、ならびに研究および調査から入手できるデータは、入手可能ではあるが、通常、非常に異なる形態であり、データは標準的なテンプレートに容易に適合しない。
【0006】
医師に利用可能な大量の情報にもかかわらず、医療事象(動脈狭窄など)に関連するリスクを分析するための現在の技術は、通常、単一のデータソース(プレッシャ・ワイヤ)からの単一の指標(Pd/Pa圧など)に焦点を当てている。測定された圧力波形についてのそのような指標の例は、FFR、iFR(FFRの瞬時血流予備量比(iFR)バージョン)、冠血流予備能-CFR、静止遠位冠状動脈圧対大動脈圧比(Pd/Pa)間の関係、または得られた波形、QFR(定量的流量比)、または心臓血流(計算流体力学モデリング)からである。
【0007】
このようなインデックスに焦点を当てた精査は、医師が行うリスク分析がインデックスデータに過度に基づいていることを意味し、それによって、他の危険因子の影響を考慮に入れないことによってリスク分析を歪めてしまうこととなる。
【0008】
利用可能な大規模な研究データ、異なる研究の範囲や焦点、および生じうる相反する報告や結論により、医師は困惑する可能性がある。医師は特定の患者群に影響を及ぼす最近の進歩や目立たない進歩を認識していない可能性があり、そのような進歩を見過ごす可能性があるであろう。
【課題を解決するための手段】
【0009】
本発明の態様はこの事態を改善し、既知のシステムの欠点を改善する。本発明の態様は、添付の特許請求の範囲に記載されているものである。
【0010】
本発明の一態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼすための医療介入制御システムを提供し、当該システムは:
a)研究データ;およびb)検出データを含む少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースと;
データソースから波形を識別し、波形を抽出し、波形を分類し、波形を所定のフォーマットに正規化し、波形の波形特性およびパラメータを決定するように動作可能な波形検出器であって、検出データの一部を追加する波形検出器と;
患者から被験者データを得るための測定モジュールと;
少なくとも1つのデータソースからのデータセットに関して被験者データを分析し、1以上のアウトカムの各々について関連する確率を出力するように動作可能な分析器であって、関連する確率は介入によって影響され、分析器は患者から得られた被験者データを取得し、アウトカムおよびアウトカムに影響を及ぼす可能性のある介入について検証する、分析器と;
介入割当モジュールにフィードバックを提供し、それぞれの介入に対して、介入を実行するように介入割当モジュールに直接的な命令を出力する、あるいは介入を実行することをやめるように介入割当モジュールに直接的な命令を出力するように動作可能である行動および警告管理モジュールと;および
現在の患者に対する行動および警告管理モジュールからの直接的な命令に応じて、介入を実行するか介入を実行しない介入割当モジュールと;
を備える。
【0011】
好ましくは、分析器がトレーニングされたデータに基づいた様々な「治療する」/「治療しない」オプションのリスク分析を行うようにトレーニングされた確率行列を構築し、システムは患者がオプションで治療される場合にはどのようなリスクであり、患者が治療オプションで治療されない場合にはどのようなリスクであるかのリスク分析を行う。
【0012】
好都合には、行動および警告管理モジュールの出力は、介入割当モジュールのためのそれぞれの介入に関する命令のセットを含む。
【0013】
好ましくは、介入割当モジュールは、介入を実行するように動作可能な医療ロボットを含む。
【0014】
本発明の一態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼす方法であって、当該方法は:
a)研究データ;およびb)検出データを含む少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースを確立することと;
検出データの一部を波形データで追加することであって、波形はデータソースから抽出され、所定のフォーマットに正規化され;
患者から被験者データを得ることと;
被験者データのアウトカムおよび患者のアウトカムに影響を及ぼす可能性のある介入の検証を行うことと;
少なくとも1つのデータソースからのデータセットに関して被験者データを分析し、それぞれのアウトカムについて関連する確率を出力することであって、関連する確率が介入によって影響を受けることと;
それぞれの介入について、介入を実行するための直接的な命令又は介入を実行することをやめるための直接的な命令を出力することと;および
直接的な命令に応じて介入を行うか又は介入をやめることと;
を含む。
【0015】
本発明の別の態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼすための医療介入制御システムを提供し、当該システムは:
a)研究データ;およびb)検出データを含む少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースと;
データソースから波形を識別し、波形の波形特性およびパラメータを決定するように動作可能な波形検出器と;
患者から被験者データを得るための測定モジュールと;
少なくとも1つのデータソースからのデータセットに関して被験者データを分析し、1つ以上のアウトカムの各々について関連する確率を出力するように動作可能な分析器であって、関連する確率は介入によって影響され、分析器は患者から得られた被験者データを取得し、アウトカムおよび介入について検証する、分析器と;
治療割当モジュールにフィードバックを提供するように動作可能な行動および警告管理モジュールと;および
現在の患者に対する介入または介入の欠如に影響を及ぼす介入割当モジュールと;
を備える。
【0016】
本発明の別の態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼすための医療介入制御システムを提供し、当該システムは:
少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースと;
患者から被験者データを得るための測定モジュールと;
少なくとも1つのデータソースからのデータセットに関して被験者データを分析し、1以上のアウトカムの各々について関連する確率を出力するように動作可能な分析器であって、関連する確率が介入によって影響を受ける分析器と;
を備える。
【0017】
好ましくは、分析器は、トレーニングされたデータに基づいた様々な「治療する」/「治療しない」オプションのリスク分析を行うようにトレーニングされた確率行列を構築し、システムは、患者がオプションで治療される場合にはどのようなリスクであり、患者が治療オプションで治療されない場合にはどのようなリスクであるかのリスク分析を行う。
【0018】
好都合には、少なくとも1つのデータソースはa)研究データと、b)検出データとを含み、研究データは、患者の危険因子、患者の人口統計、関連する臨床アウトカムおよび結果、履歴検出データおよび医療保険プロファイルまたはソーシャルメディアフィードを含む履歴データ、登録データ、数理的リスクテーブル、臨床試験データおよび/または監査データを含み、検出データは、心電図、冠状動脈プレッシャ・ワイヤおよびトランスデューサ、血管造影図、超音波トランスデューサ、冠状動脈ガイドワイヤ取り付けセンサなどの検出機器から取得された捕捉または検出データポイント、波形または画像を含み、血流予備量比-FFR、iFR(FFRの瞬時血流予備量比(iFR)バージョン)、冠血流予備能-CFR、静止遠位冠状動脈圧対大動脈圧比(Pd/Pa)間の関係、医療保険プロファイルおよび/またはソーシャルメディアフィードに関するデータを提供する。
【0019】
好ましくは、各入力からの確率ノード値はマトリックスで実行され、各値はフィールドからのさらなる入力によって反復されて、個々に使用されるとき、または他の入力と一緒に使用されるとき、各入力についての一連の確率ノード値を決定し、一連のノード値は治療の必要性、有意な死亡率および罹患率の確率、リスク分析、ならびに限局性疾患とびまん性疾患とを区別する能力を決定し、確率が各アウトカムまたは潜在的介入に割り当てられて、次いで、潜在的に医療専門家と協議して決定を行い、またはどのようなアウトカムまたは介入を考慮すべきかについて実施医療専門家に通知する。
【0020】
本発明の別の態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼす方法を提供し、当該方法は:
a)研究データ;およびb)検出データを含む少なくとも1つのデータソースからのデータを含むデータセットを有するデータベースを確立することと;
データソースから波形を識別することと;
波形特性及び波形のパラメータを決定することと;
患者から被験者データを得ることと;
少なくとも1つのデータソースからのデータセットに関する被験者データを分析することと;
1以上のアウトカムの各々について関連する確率を出力することであって、関連する確率が介入によって影響を受けることと;
アウトカムおよび介入に関する被験者データの検証を行うことと;
フィードバックを提供し、患者に対する介入または介入の欠如に影響することと;
を含む。
【0021】
本発明のさらなる態様は、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼす方法であって、当該方法は:
少なくとも1つのデータソースからのデータを含むデータセットを確立することと;
患者から被験者データを得ることと;
少なくとも1つのデータソースからのデータセットに関する被験者データを分析することと;
1以上のアウトカムの各々について関連する確率を出力することであって、関連する確率が介入によって影響を受けることと;
を含む。
【0022】
本発明の別の態様は、以下に対する命令のセットでプログラムされたコンピュータ動作可能媒体を提供する:
データソースから波形を識別することと;
波形特性および波形のパラメータを決定することと、
患者から被験者データを得ることと;
a)研究データ、およびb)検出データを含む少なくとも1つのデータソースからのデータに関して被験者データを分析することと;
1以上のアウトカムの各々について関連する確率を出力することであって、関連する確率が介入によって影響を受けることと;
アウトカムおよび介入について被験者データの検証を行うことと;
フィードバックを提供し、患者に対する介入または介入の欠如に影響すること。
【0023】
本発明のさらなる態様は、以下に対する命令のセットでプログラムされたコンピュータ動作可能媒体である:
患者から被験者データを得ることと;
a)研究データ、およびb)検出データを含む少なくとも1つのデータソースからのデータに関して被験者データを分析することと;
1以上のアウトカムの各々について関連する確率を出力することであって、関連する確率が介入によって影響を受けること。
【図面の簡単な説明】
【0024】
本発明をより容易に理解できるようにするために、本発明の実施形態を、添付の図面を参照し、図示するように、例として説明する:
図1図1は、本発明を具現化するシステムの概略図である;
図2図2は、本発明で使用するための分析器の1つの可能な構成を示す詳細図である;
図3図3は、目に見える冠動脈疾患を示す画像である;
図4図4は、図3と、圧力測定値を得るために引き戻される、動脈内の圧力をモニタするためのプレッシャ・ワイヤとの画像である;
図5図5は、動脈の長さに沿った遠位圧力を記録する、対象動脈を通して引き戻されるプレッシャ・ワイヤからの圧力出力の例であり、出力の形態は、びまん性冠状動脈疾患を示す;
図6図6は、動脈の長さに沿った遠位圧力を記録する、対象動脈を通して引き戻されるプレッシャ・ワイヤからの圧力出力の例であり、出力の形態は、限局性冠状動脈疾患を示す;
図7図7は、動脈の長さに沿って遠位圧力を記録する、対象動脈を通して引き戻されるプレッシャ・ワイヤからの圧力出力の例であり、出力の形態は、限局性およびびまん性冠状動脈疾患の混合状態を示す;
図8図8は、「正常である」/健康な圧力波形の特徴の概略図である;
図9図9は、スパイクアーチファクトを示す一連の圧力波形の出力である;
図10図10は、減衰アーチファクトを示す一連の圧力波形の出力である;
図11図11は、特性を有する圧力波形出力である;
図12図12は、図11に示したのと同じ波形出力の続きである;
図13図13は、減衰効果を識別し、減衰効果を改善するために所定量だけ案内カテーテルを引き出す介入を指定する分析器の概略図である;
図14図14は、前記特性の認識のためのトレーニングを可能にするために、その波形に関連するそれぞれの特性を示す出力を有する圧力波形出力の選択である;
図15図15は、本発明を具現化する分析器がアウトカムまたは事象の確率を決定するために精査した一連の圧力波形である;
図16図16は、本発明を具現化する分析器がアウトカムまたは事象の確率を決定するために精査した別の一連の圧力波形である;
図17図17は、本発明を具現化する分析器が帰結または事象の確率を決定するために精査した、さらなる一連の圧力波形である;
図18図18は、本発明を具現化する分析器が潜在的なアウトカムを決定するために精査した一連の圧力波形である。
図19図19は、本発明を具現化する分析器への入力としての圧力波形および治療インジケータを示す;
図20図20は、本発明を具現化する分析器への入力としてのさらなる圧力波形および治療インジケータを示す;
図21図21は、本発明を具現化する分析器への入力としての別の圧力波形および治療インジケータを示す;
図22図22は、例示的な入力および例示的な出力と共に本発明を具現化する波形検出器を示し、及び
図23図23は、本発明の実施形態で採用される様々な分析の重み付けされた組み合わせを示す;
図24図24は、患者から検出されたプルバックデータで動作する本発明を具現化する制御システムを示す;
図25図25の下のパネルは、圧力感知カテーテルから得られた各拍動を示し;図25の上側パネルはそれぞれの拍が正常で減衰する可能性の%を示し、
図25図26は、拍の性質を予測する本発明を具現化する制御システムの精度を示す。
【発明を実施するための形態】
【0025】
図1を参照すると、リスク分析を提供し且つ患者に対する介入行動に影響を及ぼす医療介入制御システム1が開示されており、システム1は:1以上のデータソースすなわちセンサ10からのデータ20を含むデータセットおよび可能性のあるアウトカム30を含むデータベース100と;現在の患者90に関する被験者データ00と;データセット100に関して被験者データ00を分析し、それぞれが関連する確率を有する1以上の可能性のあるアウトカムを出力するように動作可能な分析器40と;分析器の出力に基づいてリスク分析を提供するように動作可能なリスク分析評価モジュール50と;介入または治療割当モジュール70にフィードバックを提供するように動作可能な行動および警告管理モジュール60と;現在の患者90に対する介入または介入の欠如に影響を及ぼす介入割当モジュール70と;現在の患者90から被験者データ00を得るための測定モジュール80とを備える。
【0026】
図1のシステム1は捕捉されたデータを分析し、捕捉されているデータから分析器40をトレーニングするために、所定の位置に制御を有するフィードバックループを示す。捕捉されたデータは、データベース100内のデータセットを追加する。データベースは事前に捕捉され分析された全ての実行可能なデータ(エビデンスベース)を含み、例えば、外科医による次のステップを知らせるための予測モデルを出力する。次のステップは、特定の介入が良好なアウトカムの確率を有することを示してもよく、または最良のアウトカムは非介入であることを示してもよい。介入割当モジュール70は、行動および警告管理モジュール60のコマンドの下で介入を実施する(または実施しない)。捕捉されたデータ20は、分析器40における予測モデルのための入力を含む。
【0027】
このシステムは、アウトカムに影響を及ぼす可能性のある1以上の潜在的介入を示唆することができる。システムは有益である可能性が高い特定の介入を識別し、および/または有益である可能性が低い特定の介入を識別する。システムは、確率(またはリスクレベル)をそれぞれの介入に関連付けることができる。システムはまた、予測モデルの出力に介入パラメータまたはさらなる命令を含むこともできる。例えば、可能性のある有益な介入がステントの挿入である場合、予測モデルは、ステントの心臓空間内の最適な位置、ステントのタイプ、およびステントの寸法、ならびにステントを展開するための最適な経路を示唆することができる。
【0028】
いくつかの実施形態では、予測モデルの出力が特定の介入または処置を実行するための介入割当モジュールへの直接的な命令、または特定の介入または処置を実行することをやめるための直接的な命令である。介入または処置は、好ましくは完全に自律的または部分的に自律的な医療ロボットによって実行される処置である。予測モデルの出力は、識別された介入または処置に関する命令のセットを含むことができる。
【0029】
介入割当モジュール70は、医療ロボット70を含んでもよく、または介入割当モジュール70の近位または遠隔にあってもよい医療ロボットに命令を提供してもよい。
【0030】
さらに、システムはまた、閉ループとして機能することもでき、介入の前、介入の進行中、および/または介入が完了した後に、患者からのデータを検出する。これらの異なる介入段階で患者から検出されたデータは、好ましくは医療ロボットによる実施のための更なる更新された命令を送信するために使用される。
【0031】
本発明を具現化する制御システムからの命令の下で介入を実行するロボット70の場合、ロボットは命令または推奨に従うことができ、例えば、患者からの変化した検出データに応答してステントを展開するか、またはカテーテルを再配置することができ、例えば、患者からの波形が減衰している可能性がある。ロボットを制御システムに含めることによって、本発明を具現化する制御システムによって、リアルタイムまたはリアルタイムに近い調整を介入に対して行うことができる。本発明を具現化する制御システムは、動的プロセスの実施を可能にする。
【0032】
本発明を具現化する制御システムはまた、医師または医療ロボットまたは他の外科用機器のいずれかの権限を与えられたオペレータなどの人間のユーザからの手動入力および/または人間のユーザへの通知も含み得る。例えば、制御システムは、それぞれの介入における1以上の処置ステップを許可または確認するように制御システムによって要求され得る医師に直接的な命令を提供する。医師または権限を与えられたオペレータからの関与または権限委譲がなければ、処置ステップまたは介入自体を実行することができない。これにより監視が提供され、患者の安全を改善するのに役立つ。
【0033】
本発明を具現化する制御システムは、患者の安全性を改善するのに役立つ。さらに、医師または権限を与えられたオペレータに、本発明を具現化する制御システムを使用することによる介入の進行を監視させることが、安全性を改善するのに役立つ。制御システムは患者から検出されたされたデータおよび患者からの画像データの計算的解釈へのアクセスを医師/オペレータに提供することができ、医師は、自分自身の個人的経験と、本発明を具現化する制御システム1によって提供される計算的解釈との両方によっても通知される。図24は本発明を具現化する制御システムの例を示し、患者からのiFRプルバックカテーテルデータを、同じ検出データの人間による解釈と並行して、しかし制御システムの計算上の洞察の恩恵なしに、再検討している。
【0034】
図24の例では、制御システムが患者の圧力感知カテーテルからのプルバックデータを精査している。図25の下段は、圧力感知カテーテルから得られた各拍動を示す。図25の上段は正常な%尤度(バーの組1、2、3、4、6、7、および8における最上段(LからR)のより暗いバー)、および減衰した%尤度(最上段(LからR)のより明るいバー、第5組のみ)を示し、したがって、個々の拍動が正常または減衰している可能性をもたらす。図26は、アーチファクト、減衰、潜在的減衰、および正常拍動を予測する本発明を具現化する制御システムの精度を示す。図26の背後のモデルは、データベース100(研究データおよび/または臨床データを含む)から生成され、アーチファクト、減衰、潜在的に減衰および正常な拍動が予め定義された(真のクラス)データセットを含む。次いで、これを、5000拍を超える実世界臨床データのさらなるデータセットに対して検証した。得られたモデルは真のクラスを予測するために非常に正確(98.14%)であり、正常拍動を決定するために99%を超えて正確であり、減衰拍動を決定するために100%の正確さであることが示された。
【0035】
再び図24を参照すると、医師は、介入中にプルバックデータを精査している。制御システム1はまた、プルバックデータも精査し、波形が正常から遷移し(図25のバー1から4)、今度は減衰している(図25のバー5)ことを識別する。制御システム1は正常から減衰への移行を即座に認識し、医師またはロボット(この場合、カテーテルおよび/またはプルバックワイヤを後退させるように動作可能なプルバックモータ)に直接的な命令を送り、カテーテルを安全な位置に引き戻す。患者の安全性は、減衰波形が持続された状態でいる場合、危険にさらされる。カテーテルを速やかに抜去することにより、心臓の虚血状態、胸痛、不整脈または心停止などの患者の安全上の懸念を防止または軽減することができる。
【0036】
図10は波形からの減衰アーチファクトの検出を示し、図11および図12は、カテーテルが引き抜かれる上記のシナリオに関連する波形を示すさらなる例である。図11および12は、以下でより詳細に議論される。
【0037】
本発明を具現化する制御システム1は、患者の安全性の懸念を医師が警告されるのに要する時間を直接低減し、したがって、患者の安全性の懸念を防止または軽減するために介入を開始するのに要する時間を低減する。上記の例では、本発明を具現化する制御システムは文字通り、1つの心拍の間における患者の安全性の懸念を認識しており、医師または経験豊富なオペレータは拍動が正常な拍動から減衰した拍動に移行したことを認識するのに、より長くかかることがある。
【0038】
他の例では、本発明を具現化する制御システム1がデータセット100に対して圧力レベルを監視することができ、制御システムは圧力が低下していることを制御システム1が識別し、したがってステントの位置がより有益であることになる、ステントの位置をある位置から別の位置に変更するように、医師に直接的な命令を与えることができる。
【0039】
いくつかの実施形態では、制御システムは、制御システムによって提供される直接的な命令または通知に応答して、人間のユーザの確認応答を必要とする。確認応答は制御システムからの他の入力および出力と同様に、制御システム1によって記録され、監査証跡および活動記録を確立することができる。
【0040】
本発明を具現化する制御システムの例は、動脈疾患の予測のためのリスクスコアリング、および、もしあれば、どのような介入形態がデータによってサポートされ得るかを決定するためのシステムに関連して説明される。このシステムは、現在の患者90から得られた被験者データ80をとり、分析器40におけるアウトカムおよび介入のための検証をする。本発明は、冠状動脈分野に限定されるものではなく、X線誘導下でTAVI弁を使用する大動脈弁移植、ペーシングワイヤ移植、ステント挿入(冠状動脈または末梢)、波形分析ー減衰、危険検出ー停止周辺状況、電気生理学的アブレーション治療、および最小侵襲性先天性または変性手術などの他の医療分野にも適用される。画像データの精査、診断または治療の一部として調べる医療分野は、本発明の用途に特によく適している。
【0041】
この例では、波形検出器200が様々なデータソース10からの出力を取得することができ、例えば、波形のキャプチャされた画像、視覚的スクリーンショット、生のデジタルデータファイルフォーマット、データストリームまたはデータフィードからのデータ、または波形を表すための任意の他の媒体に基づいて動作することができる。機械学習と物体認識とを用いて、波形検出器は例えば、通常、出力のような画像から対象として圧力波形を識別する。次いで、認識された波形は、抽出(波形データのデクラッタリング及び分離)、カテゴリ化(例えば、Pa又はPd波形のような可能性のある種類の波形として)、正規化(少なくとも標準的なタイムスケール及びシステムをトレーニングするための潜在的な振幅を有する標準的なテンプレートへのスケーリング)に利用可能である。波形検出器からのデータはシステム100をトレーニングし、所定のフォーマットでシステムにデータ20を供給するために使用することができる。
【0042】
捕捉されたデータ20は2つの主要なソース10から提供されるが、一部のデータタイプは両方のデータタイプに存在することが可能である。複数のデータソース10からの検出データ20と、広範囲の関連する研究(および履歴データ)からの研究データ20との両方を含む広範囲のデータを使用して、システムをトレーニングし、検証し、操作することが有利である。
【0043】
1つの主要なデータソース10は、心電図、冠状動脈プレッシャ・ワイヤおよびトランスデューサ、血管造影図、超音波トランスデューサ、特に冠状動脈ガイドワイヤ取り付けセンサなどの検出装置から得られる捕捉または検出データ点、波形、または画像などの「検出データ」20を提供して、血流予備量比ーFFR、iFR(FFRの瞬時血流予備量比(iFR)バージョン)、冠血流予備能ーCFR、静止遠位冠状動脈圧対大動脈圧比(Pd/Pa)の間の関係、および任意の他の必要な測定基準に関するデータを提供する。検出データはまた、影響または危険因子であり得る特定の患者の生活様式の視点を与えるための医療保険プロファイルまたはソーシャルメディアフィードに関するデータも含み得る。
【0044】
他の主要なデータソース10は、患者の危険因子、患者の人口統計を含む履歴データを含むことができる「研究データ」20と呼ばれるものを提供し、重要なことに、そのようなデータは、それぞれの介入及びアウトカムに関連するリスク確率を割り当てるためのトレーニング時にシステムが利用できる臨床アウトカム及び結果を含む。研究データはまた、データセット100に生活様式情報を追加するために、検出データまたは履歴検出データのログ、ならびに医療保険プロファイルまたはソーシャルメディアフィードを含んでもよい。履歴データの他の例としては、これらに限定されないが、登録データ、数理的リスクテーブル、臨床試験データ、および/または監査データが含まれる。
【0045】
検出データソースの例としては、これらに限定されないが、以下の物が含まれる:
圧力センサーガイドワイヤ(例えば、ボルケーノ・ヴェラタ(登録商標)プレッシャ・ワイヤ、アボット・プレッシャ・ワイヤ(登録商標)、オープンズ・オプト・ワイヤ(登録商標)、ACIST・メディカル・システムズ・ナーヴァス(登録商標)、マイクロカテーテル、またはフィリップス・CMETテクノロジーなど)、流体充填カテーテル、インピーダンスフローセンサー、熱浸透流センサー(アボット・プレッシャ・ワイヤ(登録商標))、ドップラー・フロー・ワイヤ(ボルケーノ・コンボワイヤ(登録商標))、超音波フロー・センサー(例えば、トランソニック(登録商標)など)
非侵襲的超音波測定(フィリップス心エコー図装置);社会的メディア入力およびフィード;保険プロファイル;グーグル・トレンド・データ;蛍光透視X線画像;CTX線画像;MRI画像;および/または非侵襲的圧力ベース・データ(例えば、PulseCor(登録商標)、またはMobiloGraph(登録商標))。
【0046】
捕捉または検出することができるデータは、これらに限定されないが、以下のものが含まれる:
1.大動脈圧波形
a.充血状態または非安静状態下
b.安静時
2.プレッシャ・ワイヤ波形
a.充血状態または非安静状態下で
b.安静時
3.血管造影、CTまたはMRI画像
4.患者の危険因子
a.喫煙歴
b.脂質
c.IHDの家族歴
d.以前のIHD
e.糖尿病
f.遺伝子プロファイリング
5.患者の人口統計
a.年齢
b.性別
c.人種・民族
d.身長
e.体重
f.ゲノム
【0047】
入力(波形、人口統計、心電図およびアンギオ、およびRFプロファイリング)を示す図2を参照されたい。波形、心電図およびアンギオはすべて、それぞれのリスク分析/確率値を生成するためにAIを使用してトレーニングされる。次いで、これらを他の変数(人口統計)および(RFプロファイリング)と共に重み付けモデルで使用して、予測モード(びまん性の可能性または限局性の可能性、「治療する」ことに関連するリスク、または「治療しない」ことに関連するリスク)として出力することができるリスク分析を生成する。システムの精度は、トレーニングセット、ノード値、および異なる入力間の重み付けに依存する。
【0048】
分析器40において、これらのデータソースの各々はトレーニングされたデータに基づいて様々な「治療する」/「治療しない」オプションのリスク分析を行うようにトレーニングされた確率行列を構築するために、協同して使用される。このシステムは、患者があるオプションで治療された場合、リスクが何であるか、または患者が治療オプションで治療されなかった場合、リスクが何であるかのリスク分析を行う。重要なことに、リスク分析は、入力データだけでなく、非常に広範囲のデータであり得るトレーニングされたデータも考慮に入れるようにトレーニングされたシステムによって行われ、その結果、行われたリスク分析は入力データだけでなく、この場合、圧力波形も考慮に入れる(すなわち、トレーニングされている)だけでなく、研究データおよび他の捕捉または検出データの両方を含む他のデータも考慮に入れる。行われたリスク分析は、システムがトレーニングされ動作された広範囲のデータによって通知される。特定の方法で治療するか否かの決定に到達しようと試みる十分に経験のある医師は、システムがそれに関してトレーニングされた広範囲のデータにアクセスすることができず、したがって、システムによって行われるリスク分析は医師にとって有用なツールである。
【0049】
「治療する」/「治療しない」オプションの例には、以下が含まれる:
1)虚血予測に基づく動脈狭窄の治療/非治療
2)死亡率/罹病率予測に基づく動脈狭窄の治療/非治療
【0050】
このシステムはまた、びまん性疾患または限局性疾患の同定をするようにもトレーニングされる。
【0051】
各入力は、以下の既知の治療ガイダンスに対してトレーニングされる:血流予備量比ーFFR、iFR(FFRの瞬時血流予備量比(iFR)バージョン)、冠血流予備能ーCFR、静止遠位冠状動脈圧対大動脈圧比(Pd/Pa)など、および既知の臨床アウトカム(死亡、MI、血行再建術)。これらから、「治療する」または「治療しない」介入に関連する危険因子または確率を提供するようにシステムがトレーニングされるように、確率ノード値が、各インプットを臨床アウトカムおよび/または介入に結びつける分析器40において決定される。
【0052】
流量波形は、圧力波形に容易に利用できない可能性のあるかなりの量の情報を伝達する。例えば、ベルヌーイ効果に起因して、軽度の狭窄でさえも、流れが正常である場合、圧力波形を使用して深刻に見えることがある。流量が測定されない場合、狭窄が有意であるかどうか、または流量が非常に高かったかどうかを知ることは不可能である。既知の流量波形とそのアウトカムに対して圧力波形をトレーニングすることにより、圧力波形自体から流量を測定することの利点をより多く引き出すことができる。
【0053】
例えば、元の検出データを取得し、それを分析器40による分析のためにデータセットに入力する図13を参照されたい。分析器40はデータセット100から、システム内に減衰が存在する可能性が高く、推奨される「治療」介入は、カテーテルを5mm引き抜くことであると判断する。
【0054】
図14は、システムがそれぞれの波形に関連する特性を相関させるようにトレーニングする検出データを含む様々な波形を示す。
【0055】
図19図21は、患者からのデータ入力00として取られるPa及びPd圧力を示す圧力波形を含む検出データを示す。分析器40は、有害アウトカムのリスク分析または確率を提供し、「治療する」または「治療しない」ことが有益であるかどうかを示す。これらの場合、潜在的狭窄の深刻さは分析器40によって評価され、関連する確率はそれぞれのアウトカムおよび治療適応と関連する。
【0056】
【表1】
【0057】
波形検出データを精査する分析器の他の例は図15~17に示されており、分析器は、危険因子を特定のアウトカムに関連付ける。
【0058】
分析器40は少なくとも1つのデータソース10からのデータセット100に関して被験者データ00を分析し、1以上のアウトカム30の各々について関連する確率50/60を出力するように動作可能であり、関連する確率は、介入によって影響を受ける。
【0059】
次に、各入力からの確率ノード値は大きな行列で実行され、各値はフィールドからのさらなる入力によって反復される。このようにして、一連の確率ノード値は個々に使用されるとき、または他の入力と共同して使用されるときに、入力の各々について決定される。
【0060】
次に、これらのノード値を用いて、治療の必要性、重大な死亡率および罹病率の確率、リスク分析、および限局性疾患とびまん性疾患を識別する能力を決定する。次いで、このガイダンスに従って意思決定が実行され、このガイダンスは、各アウトカムまたは潜在的介入に確率を割り当て、次いで、潜在的に医療専門家と協議して決定を行い、またはどのようなアウトカムまたは介入を考慮すべきかについて実施医療専門家にしらせることを含む。
【0061】
図2を参照すると、分析器40は、上記の捕捉されたデータを使用してトレーニングされる。分析器は以下のように、固有のスケーリング危険因子変更子を展開する。
【0062】
分析器40はトレーニング・アルゴリズムを使用して、「治療」/「治療なし」のリスク分析を行う。「治療」/「治療なし」の選択肢の例には以下のものがある:
1)虚血予測に基づく動脈狭窄の治療/非治療;および/または
2)死亡率/罹病率予測に基づく動脈狭窄の治療/非治療。
【0063】
この例では、分析器は、グーグル・テンサーフロー(登録商標)バックエンド上で実行されるオープンソースKeras(登録商標)機械学習ライブラリを利用する。Python(商標)プログラミング言語を使用した。圧力波形のような出力からの推定に使用されるニューラルネットワークは、単一の出力ニューロンを有する長・短期記憶(LSTM)反復ニューラルネットワークである。トレーニングは、アダマックス・オプチマイザーを用いて行った。プルバックトレースをびまん性または限局性として分類するために使用されるニューラルネットワークは、グーグルのGoogLeNet Inception V3アーキテクチャおよびバイナリ分類子として作用する単一出力ニューロンを使用する畳み込みニューラルネットワークの形態をとった。トレーニングは、アダム・オプチマイザー(Adam optimiser)を用いて行った。
【0064】
これは、この例及び特に波形状データ又は出力及びCT、MRI、X線及び他の生理学的又は医学的画像データを分析するような画像の形態の医学的又は生理学的データを分析するための類似の例に対して有効な結果をもたらす。
【0065】
別の例ではニューラルネットワークがプルバックトレースをびまん性または限局性として分類するために使用され、この例ではシステムがびまん性または限局性疾患の識別を行うようにトレーニングされる。分析器40は、GoogLeNet Inception V3アーキテクチャを使用する畳み込みニューラルネットワークと、バイナリ分類器として機能する単一出力ニューロンとを使用する。トレーニングは、アダム・オプチマイザーを用いて行った。これは、この例及び特に波形状データ又は出力及びCT、MRI、X線及び他の生理学的又は医学的画像データを分析するような画像の形態の医学的又は生理学的データを分析するための類似の例に対して有効な結果をもたらす。
【0066】
図2に示した捕捉されたデータ変数(生理波形、心電図、血管造影図、人口統計および危険因子プロファイリング)は個々の変数であり、各変数が示唆される全体的な診断/アウトカムにどの程度寄与するかを加重して変化させる。このようにして、システムは、単一の入力(具体的にはここでは圧力波形を考える)のいずれか1つのみから達成され得るものを超えて、臨床事象が生じる確率をさらに精緻化する。特許請求の範囲に記載された発明の実施形態は、以前に行われたようなインデックスベースのリスク分析を改善する効果的なツールである。したがって、ある例では波形データのみから得られる事象の60%の確率がRFプロファイリングから例えばさらに10%の有意な上昇を得ることができるが、人口統計プロファイリングからは3%の減少を得ることができる、ということがありうるであろう。このようにして、臨床事象を予測することができる圧力波形は、モデル内の他の変数に従って変調または調整される。図23は、波形分析に続く圧力測定が事象の40%リスクを識別する別の例を示し、ノードは0.55~0.70の重み付けを有する。血管造影画像がシステムによって分析され、事象の10%のリスクをもたらし、そのノードは、0.05~0.10の重み付けを有する。この例における他の要因は事象の4%および8%のリスクをそれぞれ識別する人口統計学的因子および危険因子であり、これらのノードは、0.02~0.15および0.12~0.18のそれぞれの重み付け範囲を有する。
【0067】
すべてのノードの出力は組み合わされ/乗算されて、1年以内の事象の組み合わされたリスク確率として25.75%をもたらす。
【0068】
重み付け(重み付けの範囲)は、本医療用途のために調整されている。
【0069】
図3図14は、システムに入力され、画像の各々の特性と、画像データが回収された患者に関連付けられた補助データとに基づいて分析器40をトレーニングするために使用される、画像としての様々な出力および波形を示す。補助的なデータは、年齢、性別、適応症、既往歴、人口統計学、処方歴、対応する同患者の心電図または血管造影の読み取りなどの患者情報であってもよい。すべての画像データおよび補助データはデータセット100を追加し、分析器をトレーニングするために使用され、その結果、新しいデータが患者90から受信されると、その新しいデータ10は対象データ80としてデータセット100に提供され、データセット100と比較され、分析器40によって分析されて、それぞれが関連する確率を有する1以上の可能性のあるアウトカムを出力することができる。図15図17を参照すると、波形は、分析器40によって精査され、事象が発生する確率で評価される。事象は、心臓事象であっても、特定の介入を展開するための推奨であってもよい。
【0070】
例えば、図11は特定の特性を有する圧力波形出力であり、最初の2つの拍動(左から右)は、大動脈の有意な減衰(赤の波形)を示す。これは、図(心室大動脈形態)によって強調されるように、拍動を異常に見せ、Pa(赤)およびPd(黄色線)の比率を使用する不正確な測定につながり得る。図12図11に示されるのと同じ波形出力の続きであるが、拍動3ー4では減衰を除去するためにカテーテルが抜去されている。現在、下降していた波形のセグメントは正常な外観(「正常な拡張期低下」)をしており、さらに大動脈切痕が見えるようになっている(「大きな大動脈切痕が存在する」)。これは、測定がもはやアーチファクトの影響を受けず、適切な測定が行われることを意味する。システムは図11に示される明らかに異常な波形を検出することができ、不正確な又は代表的でないデータを提供していることを助言し、解法が読み取り値を改善する確率を推奨する。この場合、システムは適切な代表的な測定が行われるように、カテーテルの抜去を推奨する。
【0071】
図18は、典型的には血管疾患の危険性の増大に関連する波形形状の例である。機械学習プロセスは、波形から様々な特徴を抽出することによって、トレーニングデータセットから学習して、この波形形状をよりリスクの高い患者に関連付ける。
【0072】
アウトカムは、病態の診断および/または示唆される介入でありうる。より詳細には、分析器40の出力がリスク分析評価モジュール50に渡されて、医療専門家に、調整されたリスク分析を提供し、および/またはどのアクションが推奨され得るか、またはさらなる注意のためにどの警告がフラグ付けされるべきかに関するフィードバックを医療専門家に提供することができる行動および警告管理モジュール60に分析器40の出力が渡される。
【0073】
介入がシステムによって示唆される場合、介入割当モジュール70は、介入を自動化するか、または介入を実施するためのガイドラインまたは命令を提供することができる。介入が行われたとき、または介入が効果を有した所定の期間の後、患者90のデータ10を再び取得し、フィードバックループを閉じて、患者の状態を再評価することができる。
【0074】
分析器40はモデルをトレーニングするために新しい入力データおよびアウトカムデータを使用することによって継続的に反復され、確率ノード値はその患者の死亡率および罹病率記録に対して分析器の診断スコアを比較することによって常に変調される。このようにして、分析器40の精度は改善され続け、臨床アウトカムおよび示唆される介入の決定および予測においてより正確になる。
【0075】
確率ノード範囲は、入力の各々について以下の通りである:
治療の必要性に対する大動脈圧波形:n1、n2など。
治療の必要性に対するプレッシャ・ワイヤ波形信号:n1、n2など。
治療の必要性に対する血管造影またはCT画像診断: n1、n2など。
治療の必要性に対する患者の危険因子: n1、n2など。
治療の必要性に対する患者の人口統計: n1、n2など。
【0076】
本発明の別の態様は、波形の捕捉された画像、データストリームまたはデータフィードからのデータ、または波形を表すための任意の他の媒体に対して動作することができる、図22に示されるような波形検出器200を提供する。機械学習および物体認識を使用して、波形検出器は例えば、出力101、スクリーングラブ102、103またはトレースの写真のような画像から通常対象として圧力波形を識別する。次いで、認識された波形は抽出110(波形データをデクラッタリングし分離する)、カテゴリ化111(例えば、PaまたはPd波形などの可能性のある波形のタイプとして)、正規化112(システムをトレーニングするための少なくとも標準的なタイムスケールおよび潜在的な振幅を有する標準的なテンプレートにスケーリングする)に利用可能である。標準波形も保存できる。図22に示す3つの例では、波形検出器200が3つの波形画像101、102、103のそれぞれを取り込み、期間の開始、期間の終了および大動脈切痕の位置などの所定の点/データを認識する。他のデータもまた、使用され得るか、または識別され得る。波形検出器200は必要に応じて画像データを変換して標準出力を提供し、その後、本発明を具現化する分析器40をトレーニングするために使用することができる。
【0077】
図22に示す例では、波形検出器200が画像101、102、103内の波形を認識し、それらを標準テンプレートに適合するように変換する。この例では、標準的なピーク・トゥ・トラフ・ピクセルと標準的なタイムスケールを有する単一周期波形121、122、123を提供する。
【0078】
波形自体の実際の形状またはプロファイルはそれ自体貴重な情報であり、測定値は波形出力自体から得ることができ、および/または測定値は波形出力から推論または得ることができ、波形自体のプロファイル、形状、特性は、システムがシステム内でトレーニングし、アウトカムに重み付けし、傾向マッチングを決定し、有益または有益でない特定の介入の確率に影響を及ぼすために使用する情報である。
【0079】
画像が正規化される前に収集されるべき潜在的な情報、例えば、出力の下の領域、実際の周期の事前正規化、及び実際の振幅の事前正規化がある。この情報は、波形検出器の事前正規化によって捕捉され、波形検出器の正規化された出力に保存または関連付けることができる。標準テンプレートには、1つの期間または複数の期間がある(図を参照)。
【0080】
波形検出器200は、現在のインデックス駆動型アプローチに加算し:現在の技術が圧力波形から得られたインデックスに基づいて治療閾値を識別する方向に向いている。このインデックスの例には、FFR、iFRまたはPd/Paが含まれる。この手法は評価を単純化するが、このことはかなりの割合のデータが無視されることを意味する。これには、血圧の大きさ、コンプライアンス関連の波形変化、大動脈切痕の減弱化などが含まれる。インデックス駆動型アプローチによって無視されるデータは貴重であり得る。本発明を具現化するシステムに波形検出器を組み込むことは、波形変化のすべての側面をモデル化することによって分野を進歩させ、それらを潜在的な治療、リスク分析およびアウトカムに関連付けることができる。単に波形を見ることに加えて、分析器40はまた、複数のデータソース、例えば、危険因子および人口統計学的因子を含む広範囲のデータも考慮に入れる。
【0081】
虚血予測に基づく動脈狭窄の「治療する」/「治療しない」ことに関連する確率に応じて、治療割付けモジュール70によって選択可能な介入:
治療する=PCI(経皮的冠動脈介入)、CABG(冠動脈バイパス術)のいずれかによる冠血行再建術。
治療しない=血行再建なし、および内科的(すなわち、薬物)療法による治療の継続。
【0082】
虚血予測は圧力波形の形状から得られ、トレーニングセット内の他の標準(すなわち、iFR、FFR、および血流)から虚血の他の尺度を予測するために使用される。
【0083】
死亡率/罹病率予測に基づく動脈狭窄の「治療する」/「治療しない」ことに関連する確率に応じて、治療割付けモジュール70によって選択可能な介入。死亡率/罹病率予測は、既知の死亡率および死亡率予測因子(すなわち、MI、死亡、さらなる治療の必要性)に対する圧力波形をトレーニングするであろう。
【0084】
分析器40は、実世界の介入/患者データを含む広範囲のデータによって定義されるデータセット上でトレーニングされた提案されたアウトカムを提供する。
【0085】
治療する=PCI(経皮的冠動脈介入)、CABG(冠動脈バイパス術)のいずれかによる冠血行再建術。
治療しない=血行再建なし、および内科的(すなわち、薬物)療法による治療の継続。
【0086】
分析器40はまた、次のような他のアウトカムに対する確率モデルを決定することもできる:
限局性疾患=治療する - 中等度から重度の疾患のセグメント
びまん性疾患=治療しない - 血管の全長にわたる軽度~中等度の疾患の長いセグメント
【0087】
他の潜在的な介入としては、これらに限定されないが、バルーン、シース、ステント、クロージャー、弁介入および前述のための部位;ペースメーカー、弁移植、リード再配置、何もしない、特定の薬物を使用する、ステントを動かす、ペースメーカーリードを動かす、弁移植の位置を最適化すること、が挙げられる。
【0088】
データベース100にデータ20を提供するセンサまたはデータソース10の例としては、以下のものが挙げられる:
1)生理学的または圧力波形検出器 - これらは大動脈圧およびプレッシャ・ワイヤ圧の記録を提供する;
2)心電図 - 心臓を横切る複数のベクトルから、1回以上の心周期にわたって電気的活動を記録する
3) フルオロスコピー/血管造影 - この検査では、例えば動脈、静脈、体腔、心腔を特定するため、体内の構造を評価するための画像(X線)を提供する。
【0089】
得られた画像/データは、画像寸法がすべて同じになるように正規化される。所定のパラメータ内に収まらない画像の部分は、考慮から削除することができる。
【0090】
圧力波形、心電図、血管造影図等の画像は全て、分析器における画像学習プロセスが標準寸法に基づくことを保証するために標準化される。
【0091】
本発明の例は特に、分析器40が波形のようなデータ又は出力及びCT、MRI、X線及び他の生理学的又は医学的画像データを分析するような画像の形態で医学的又は生理学的データを分析している場合に、有効な結果をもたらす。
【0092】
冠動脈医療分野で分析され得る他の技術は以下を含む:
・大動脈弁の位置決め-冠動脈および左心室に対する弁の位置決めが高すぎるか低すぎるかによって良好なアウトカムを予測する;
・ペーシングワイヤの配置-ペーシングリード変位のリスク分析-良好な位置または不良な位置;および/または
・正しいサイズの弁の識別および選択、ならびに動脈血行再建術の場合の経皮弁移植またはステントのための弁の作製。
【0093】
特許請求の範囲に記載された発明の例は、システムが複数のデータ入力および複数のデータソースにわたりトレーニングされるので、以前に利用可能であったシステムを広義に改善する。捕捉又は検出データと組み合わせて、リスク分析に到達したときに広範囲のデータを考慮に入れるために、リスク分析に影響を及ぼす履歴又は研究データのオーバーレイも存在する。分析器によって分析されたデータは、固有のスケーリング危険因子修飾子を提供するために、厳しい臨床データおよび測定比較の両方を含む。
【0094】
分析器40は、以下のプロファイルを用いて虚血予測に基づく動脈狭窄の「治療する」/「治療しない」ことのリスク分析を行うようトレーニングされている:
・データ収集(波形、心電図、人口統計学的数値および危険因子プロファイリング)
・アウトカム収集(びまん性、限局性、生死)
・データ抽出
・データ前処理
*スケーリング
*ピクセル正規化-画像寸法はすべて同じである。定義済みパラメータでない場合は画像を黒で囲む
*ゼロ入力(すべてのピクセルに0と1の間のスケールがある)、単一チャンネル
*227×227ピクセルへのダウンサンプリング
・トレーニングセットとバリデーションセットに分割する。
・ニューラルネットワークへの入力
・既知の治療/非治療の意思決定に対するニューラルネットワークのトレーニング
・バリデーションセットに対するバリデーション
・出力ノード値
【0095】
分析器40は、以下のプロファイルを用いて、死亡率/罹病率予測に基づく動脈狭窄の「治療する」/「治療しない」ことのリスク分析を行うようトレーニングされている:
・データ収集(波形、心電図、人口統計学的数値および危険因子プロファイリング)
・アウトカム収集(びまん性、限局性、生死)
・データ抽出
・データ前処理
*スケーリング
*ピクセル正規化-画像寸法はすべて同じである。定義済みパラメータでない場合は画像を黒で囲む
*ゼロ入力(すべてのピクセルに0と1の間のスケールがある)、単一チャンネル
*227×227ピクセルへのダウンサンプリング
・トレーニングセットとバリデーションセットに分割する。
・ニューラルネットワークへの入力
・既知のCV事象に対するニューラルネットワークのトレーニング
・バリデーションセットに対するバリデーション
・出力ノード値
【0096】
分析器40は、以下のプロファイルを使用して、びまん性または限局性疾患の同定を行うようにトレーニングされる:
・データ収集(波形、心電図、人口統計学的数値および危険因子プロファイリング)
・アウトカム収集(びまん性、限局性、生死)
・データ抽出
・データ前処理
*スケーリング
*ピクセル正規化-画像寸法はすべて同じである。定義済みパラメータでない場合は画像を黒で囲む
*ゼロ入力(すべてのピクセルに0と1の間のスケールがある)、単一チャンネル
*227×227ピクセルへのダウンサンプリング
・トレーニングセットとバリデーションセットに分割する。
・ニューラルネットワークへの入力
・既知の限局性およびびまん性カテゴリ出力に対するニューラルネットワークのトレーニング
・バリデーションセットに対するバリデーション
・出力ノード値
【0097】
この明細書及び特許請求の範囲において使用される場合、用語「含んでいる」及び「含む」、並びにその変形は、特定された特徴、工程又は整数が含まれることを意味する。これらの用語は、他の特徴、工程、または構成要素の存在を排除するものと解釈されるべきではない。
【0098】
それらの具体的な形態で、または開示された機能を実行するための手段、または開示された結果を達成するための方法または処理に関して表現された、先述の明細書または以下の特許請求の範囲または添付の図面に開示された特徴は、適宜、別々に、またはそのような特徴の任意の組合せで、本発明をその多様な形態で実現するために利用されてもよい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26