IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人 総持学園 鶴見大学の特許一覧 ▶ ウシオ電機株式会社の特許一覧

<>
  • 特許-光干渉断層画像撮像装置 図1
  • 特許-光干渉断層画像撮像装置 図2
  • 特許-光干渉断層画像撮像装置 図3
  • 特許-光干渉断層画像撮像装置 図4
  • 特許-光干渉断層画像撮像装置 図5
  • 特許-光干渉断層画像撮像装置 図6
  • 特許-光干渉断層画像撮像装置 図7
  • 特許-光干渉断層画像撮像装置 図8
  • 特許-光干渉断層画像撮像装置 図9
  • 特許-光干渉断層画像撮像装置 図10
  • 特許-光干渉断層画像撮像装置 図11
  • 特許-光干渉断層画像撮像装置 図12
  • 特許-光干渉断層画像撮像装置 図13
  • 特許-光干渉断層画像撮像装置 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-26
(45)【発行日】2023-02-03
(54)【発明の名称】光干渉断層画像撮像装置
(51)【国際特許分類】
   G01N 21/17 20060101AFI20230127BHJP
   A61B 3/10 20060101ALI20230127BHJP
   A61B 18/22 20060101ALI20230127BHJP
【FI】
G01N21/17 630
A61B3/10 100
A61B18/22
【請求項の数】 13
(21)【出願番号】P 2017167960
(22)【出願日】2017-08-31
(65)【公開番号】P2019045271
(43)【公開日】2019-03-22
【審査請求日】2020-03-31
(73)【特許権者】
【識別番号】505055985
【氏名又は名称】学校法人総持学園
(73)【特許権者】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】100097548
【弁理士】
【氏名又は名称】保立 浩一
(72)【発明者】
【氏名】横田 利夫
(72)【発明者】
【氏名】里村 一人
(72)【発明者】
【氏名】澤田 愛子
【審査官】平田 佳規
(56)【参考文献】
【文献】国際公開第2015/025932(WO,A1)
【文献】特表2014-525571(JP,A)
【文献】特開2009-273550(JP,A)
【文献】特開2015-148488(JP,A)
【文献】特開2017-113134(JP,A)
【文献】特開2011-158395(JP,A)
【文献】特開2013-205390(JP,A)
【文献】特開2006-162366(JP,A)
【文献】特開2015-163862(JP,A)
【文献】特開2016-217959(JP,A)
【文献】国際公開第2016/059939(WO,A1)
【文献】特開2013-178235(JP,A)
【文献】特開2011-212432(JP,A)
【文献】国際公開第2008/090599(WO,A1)
【文献】特開2008-145429(JP,A)
【文献】特開2008-002815(JP,A)
【文献】特開2007-101250(JP,A)
【文献】国際公開第2003/062802(WO,A2)
【文献】米国特許出願公開第2003/0081220(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00- G01N 21/01
G01J 1/00- G01J 1/04
G01J 3/00- G01J 3/51
G01J 9/00- G01J 9/04
G01B 9/02- G01B 9/029
G01B 11/00- G01B 11/30
A61B 1/00
A61B 3/10- A61B 3/12
A61B 10/00
A61B 18/20- A61B 18/28
(57)【特許請求の範囲】
【請求項1】
400nm以上3000nm以下の波長範囲において200nm以上の波長帯域に亘って連続スペクトルである光を出射する一つの光源部と、
光源部から出射される光を、測定光と参照光とに分割するとともに、測定光を被観察部位に照射し、当該被観察部位からの反射光と参照光との干渉光を発生させる光学系と、
反射光と参照光との干渉光の強度を検出する検出部と、
検出部で検出された干渉光の強度に基づいて、被観察部位の断層画像を取得する演算処理部と、
被観察部位からの反射光の波長帯域から、前記一つの光源部が出射する連続スペクトルである光の波長帯域よりも狭い少なくとも二つの異なる波長帯域を同時に選択可能な帯域選択部と
を備えており、
検出部は、帯域選択部が選択した少なくとも二つの異なる波長帯域において干渉光の強度を検出することが可能なものであり、
演算処理部は、帯域選択部が選択した少なくとも二つの異なる波長帯域において検出された干渉光の強度に基づいて被観察部位の断層画像を取得することが可能となっており、帯域選択部が選択しなかった波長帯域については被観察部位の断層画像を取得しないものであることを特徴とする光干渉断層画像撮像装置。
【請求項2】
前記光源部は、時間に対して波長が連続的に変化する広帯域光を出射するものであり、 前記演算処理部は、干渉光の強度に基づいて被観察部位の断層画像を取得する画像取得プログラムを備えており、
前記帯域選択部は、画像取得プログラムの一部であって、前記検出部からの出力について時間に対応させて前記少なくとも二つの異なる波長帯域における干渉光の強度を取得可能なものであることを特徴とする請求項1記載の光干渉断層画像撮像装置。
【請求項3】
前記光源部は、光源と、チャープ化素子とを備えており、チャープ化素子は、光源からの光に対して正の群速度分散を生じさせる速度分散素子であることを特徴とする請求項2記載の光干渉断層画像撮像装置。
【請求項4】
前記帯域選択部は、中心波長が短い帯域ほど短い帯域幅で各波長帯域を同時に選択可能なものであることを特徴とする請求項1乃至3いずれかに記載の光干渉断層画像撮像装置。
【請求項5】
前記帯域選択部は、各波長帯域の光によって断層画像を取得する際の深さ方向解像度が各波長帯域で互いに同じになる中心波長及び帯域幅で各波長帯域を同時に選択可能なものであることを特徴とする請求項4記載の光干渉断層画像撮像装置。
【請求項6】
前記帯域選択部は、前記少なくとも二つの異なる波長帯域を互いに分離した帯域として同時に選択可能なものであることを特徴とする請求項1乃至5いずれかに記載の光干渉断層画像撮像装置。
【請求項7】
前記演算処理部は、前記同時に選択された少なくとも二つの波長帯域の光により取得した少なくとも二つの断層画像をディスプレイ上に重ねて表示することが可能なものであることを特徴とする請求項1乃至6いずれかに記載の光干渉断層画像撮像装置。
【請求項8】
前記光源部は、パルス光を出射するものであることを特徴とする請求項1乃至いずれかに記載の光干渉断層画像撮像装置。
【請求項9】
前記帯域選択部により選択される少なくとも二つの異なる波長帯域は、50nm以上1500nm以下の幅であることを特徴とする請求項1乃至いずれかに記載の光干渉断層画像撮像装置。
【請求項10】
前記検出部で検出された干渉光の強度に基づいて被観察部位の断層画像を取得する撮像モードと、前記光源部からの光を患部に照射することで治療を行う治療モードとの二つのモードで動作可能な装置であり、
撮像モードと治療モードとを切り替える切替部と、
切替部を制御するコントローラと
を備えていることを特徴とする請求項1乃至いずれかに記載の光干渉断層画像撮像装置。
【請求項11】
前記光源部は、前記治療モードの際には前記撮像モードの際よりも狭帯域の光を出射するものであることを特徴とする請求項10記載の光干渉断層画像撮像装置。
【請求項12】
前記光源部は、
レーザー源と、
前記撮像モードの際にレーザー源からの光を広帯域化させる非線形光学素子としての第一のファイバと、
前記治療モードの際にレーザー源からの光を導く第二のファイバと
を備えており、
第二のファイバは、第一のファイバよりも低非線形の素子であり、
前記切替部は、前記撮像モードの際にはレーザー源からの光を第一のファイバに入射させ、前記治療モードの際にはレーザー源からの光を第二のファイバに入射させるものであることを特徴とする請求項11記載の光干渉断層画像撮像装置。
【請求項13】
前記治療モードの際に前記光源部からの光が前記検出部に入射しないように当該光を遮断する遮断部を備えていることを特徴とする請求項10乃至12いずれかに記載の光干渉断層画像撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本願の発明は、光の干渉を利用して被観察部位の断層画像を撮像する光干渉断層画像撮像装置に関するものである。
【背景技術】
【0002】
光干渉断層計(Optical coherence tomography; OCT)は、低コヒーレンス光の干渉を利用して光の進行方向の距離を計測する技術を応用したものである。工学研究者のFujimotoと眼科医のHuang らは、 1 本のスキャン(Aスキャン)を横へずらして連続スキャン(Bスキャン)することで断層画像化に成功した。この1991年の出来事が、光干渉断層画像撮像装置の始まりである。
当初は撮像の対象は眼底であり、眼底の診断の目的で光干渉断層画像撮像装置は多く使用されてきた。最近では、皮膚、血管内壁(血管内カテーテル)、胃壁(胃内視鏡)、口腔内など、さまざまな部位が撮像の対象となっている。
【0003】
図12及び図13は、従来の一般的な光干渉断層画像撮像装置の概略図である。このうち、図12は、従来のタイムドメインタイプの光干渉断層画像撮像装置の概略図であり、図13は、従来のフーリエドメインタイプの光干渉断層画像撮像装置の概略図である。
図12に示す光干渉断層画像撮像装置は、光源11と、光源11からの光を測定光と参照光とに分割して測定光を被観察部位に照射するとともに被観察部位からの反射光を参照光と干渉させる光学系2と、干渉光の強度を検出する検出器30と、検出器30からの出力により断層画像を取得する演算処理部4とを備えている。
【0004】
図12に示す装置は、タイムドメインタイプであるので、光学系2は、参照ミラー21を駆動させる駆動機構221を備えている。光学系2は、光源11からの光を測定光と参照光とに分割するビームスプリッタ21を備えている。低コヒーレンスの光源11としては、LEDのように、あるピーク波長を持ちその前後のある程度の範囲でスペクトルが連続しているものが使用される。
【0005】
測定光が照射された被観察部位では、屈折率が変化する界面において反射光が生じる。この反射光は、ビームスプリッタ21で重ね合わされるが、界面からビームスプリッタまでの距離と、参照ミラー22からビームスプリッタまでの距離が等しい場合、干渉が生じる。この場合、光源11からの光は低コヒーレンスであるため、ある限られた範囲(コヒーレンス長)で干渉が生じる。干渉が生じた場合、検出器30で検出される光の強度が特に高くなる。したがって、参照ミラー22をビームスプリッタ21に対して移動させて距離を変更させながらどの位置で干渉光強度が極大となるかを検出器30で検出することで、反射面の位置が特定できる。
【0006】
屈折率が変化する界面(反射面)は、被観察部位の表面の場合もあるが、多くの場合、被観察部位の表面より少し深い位置に存在している。即ち、内部からの反射光と参照光との干渉光が捉えられることになる。また、厳密な意味での反射光の場合もあるが、反射光は、いわゆる散乱光の場合もある。被観察部位の内部で屈折率が大きく変化している界面があり、この界面で測定光が反射したり散乱したりしてビームスプリッタ21の側に戻ってきた光が参照光と干渉することになる。以下、この明細書において、被観察部位での反射光という場合、散乱光である場合を含む。
【0007】
参照ミラー22を移動させながら検出した干渉光の強度の分布(Aスキャン)は、深さ方向のどの位置に反射面があるかを示す情報となる。そして、横方向(ビームスプリッタから被観察部位への光軸に垂直な方向)に測定光の照射ポイントを移動させながら得た干渉光の強度の変化(Bスキャン)を色の濃淡等で表現すると、被観察部位の断層画像が得られることになる。
【0008】
図13に示すフーリエドメインタイプの装置は、参照ミラー22を移動させる代わりに、フーリエ変換によって深さ方向の反射光強度の分布を得る。測定光が照射された被観察部位の内部において、幾つかの反射面(屈折率の変化面)が存在し、各反射面で光が反射される。各反射面からの反射光は、測定光と同じスペクトルではあるものの、ビームスプリッタ21との距離に応じて、特定の波長の反射光のみが参照光と特に干渉して強い干渉光を生じさせる。つまり、検出器30で検出される干渉光を分光して波長毎の強度が判れば、被観察部位内のどの位置(深さ)にどの程度のコントラスト(屈折率の相違)の反射面が存在しているか判ることになる。
【0009】
図13に示すように、フーリエドメインタイプの光干渉断層画像撮像装置では、ビームスプリッタ21と検出器30との間に回折格子300が配置されており、ビームスプリッタ21で統合された反射光と参照光とは、回折格子300を介して検出器30に入射する。この例では、検出器30はアレイセンサとなっており、各波長の光が到達する位置に各セグメントが配置されたセンサとなっている。
【0010】
被観察部位内には、屈折率が変化する境界が複数あることがしばしばであり、したがって、検出器30に入射する干渉光は、異なる複数の波長での干渉光となることがしばしばである。この場合、アレイセンサである検出器30から吐き出される信号は、各波長の干渉光が混ざり合ったものであるが、フーリエ変換することで各波長の干渉光に分離することができ、干渉光の波長は、屈折率が変化する境界の位置(深さ)を示す。また、その干渉光の強弱は屈折率変化のコントラストを示すことになる。したがって、同様にBスキャンを行うことで、被観察部位の断層画像が得られることになる。
【0011】
このような光干渉断層画像撮像装置において、光源11は、低コヒーレンス光源として適度に広い帯域幅の発光スペクトルを有する。一般的には数十から数百nm程度の帯域幅の発光スペクトルのものが、光源11として使用される。
【先行技術文献】
【特許文献】
【0012】
【文献】特開平4-174345号公報
【文献】特開2014-16181号広報
【発明の開示】
【発明が解決しようとする課題】
【0013】
上述した光干渉断層画像撮像装置において、低コヒーレント光を出射する光源は、観察しようとする部位(以下、被観察部位という。)に応じて選定される。この理由は、被観察部位によって光の吸収や反射といった性質が大きく異なるためであり、被観察部位の媒質の光学的性質に応じて観察に適したものを使用する必要があるからである。
特に、断層観察の場合、被観察部位の奥深くまで光を到達させて界面を探す必要があったり、粘膜のような表皮組織の手前側にあってそこを透過させて光を到達させる必要があったりする場合がある。このため、被観察部位に応じて最適な帯域の光を出射する光源を使用する必要がある。
【0014】
この場合、光の吸収がどの波長において少ないかは、人体に限った場合でも、部位によって大きく異なる。図14は、この点の一例を示した図であり、人の口腔内の部位の違いにおける光の吸収特性の違いを示した図である。図14の横軸は波長、縦軸は光強度が1/10になる深さ(mm)を吸収特性として示している。この例では、口腔のうち、歯肉、舌裏、口唇の三箇所について吸収特性が示されている。図14に示すように、同じ口腔とはいっても、部位によって吸収特性は大きく異なる。この例では、歯肉の場合には1100nm前後又は1600nm前後の光が吸収が少ないのでその内部の観察にはこれらの帯域が良好ということになるし、舌裏の内部については1200nm程度が良好ということになる。また、口唇の内部については400~500nm程度が良好ということになる。
【0015】
図14に例示したように、媒質によって光吸収の波長特性が異なるため、従来の光干渉断層画像撮像装置では、被観察部位の媒質に応じて最適な波長帯域の光を出射する光源を選定して採用していた。逆に言えば、従来の光干渉断層画像撮像装置は、特定の被観察部位についての専用の装置であり、偶然にも最適波長帯域が一致する場合を除き、他の部位については別の装置を使用する必要があった。
【0016】
このように、従来の光干渉断層画像撮像装置は、一つの特定の波長帯域の光を出射する光源を備えるのみであったため、観察の自由度が非常に低く、最適波長帯域の異なる他の部位の断層観察用には使用することができなかった。
従来、異なる被観察部位について断層画像を観察しようとすると、複数の装置が必要になり、コストの問題が避けられない。光源を変更することで異なる波長帯域の光で観察できるようにすることも考えられるが、コストの問題に加え、光源の交換に要する手間の問題も生じる。仮に、光源の交換により異なる波長帯域での撮像を可能にしたとしても、異なる波長帯域での撮像は、別々に行う必要があるから、必要な波長帯域の数だけ光照射を繰り返す必要がある。
【0017】
また、特定の部位を被観察部位とする場合でも、どの程度の深さにおいて観察を行うかによっても最適波長帯域は異なる。即ち、表面のごく浅い領域を観察する場合には吸収の大きな波長帯域の光でも良いが、深い領域を観察する場合、吸収が少なくて深部に到達できる波長帯域の光を使用する必要がある。
しかしながら、従来の光干渉断層画像撮像装置では、一つの特定の波長帯域の光を出射する光源を備えるのみであったため、異なる深さに存在する界面を同時に観察することができなかった。
【0018】
さらに、従来の光干渉断層画像撮像装置では、測定に使用する波長帯域は一つのみであり、一つの特定の波長帯域の光により干渉光を作り出して断層画像を得るので、得られる断層画像も、その波長帯域で観察できる1個の断層画像のみであった。即ち、波長帯域の異なる複数の低コヒーレンス光を用いて複数の光干渉断層画像を得ることができる装置は、従来存在しなかった。
【0019】
このように、従来の光干渉断層画像撮像装置は、目的とする被観察部位に応じた専用の装置であって、予め決まっている一つの波長帯域の光しか被観察部位に照射できないため、観察の自由度が種々の観点で極めて低かった。
この出願の発明は、上記課題を解決するために為されたものであり、観察の自由度の高い光干渉断層画像撮像装置を提供することを目的とする。
【課題を解決するための手段】
【0020】
上記課題を解決するため、本願の請求項1記載の発明は、400nm以上3000nm以下の波長範囲において200nm以上の波長帯域に亘って連続スペクトルである光を出射する一つの光源部と、
光源部から出射される光を、測定光と参照光とに分割するとともに、測定光を被観察部位に照射し、当該被観察部位からの反射光と参照光との干渉光を発生させる光学系と、
反射光と参照光との干渉光の強度を検出する検出部と、
検出部で検出された干渉光の強度に基づいて、被観察部位の断層画像を取得する演算処理部と、
被観察部位からの反射光の波長帯域から、前記一つの光源部が出射する連続スペクトルである光の波長帯域よりも狭い少なくとも二つの異なる波長帯域を同時に選択可能な帯域選択部と
を備えており、
検出部は、帯域選択部が選択した少なくとも二つの異なる波長帯域において干渉光の強度を検出することが可能なものであり、
演算処理部は、帯域選択部が選択した少なくとも二つの異なる波長帯域において検出された干渉光の強度に基づいて被観察部位の断層画像を取得することが可能となっており、帯域選択部が選択しなかった波長帯域については被観察部位の断層画像を取得しないものであるという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記光源部は、時間に対して波長が連続的に変化する広帯域光を出射するものであり、
前記演算処理部は、干渉光の強度に基づいて被観察部位の断層画像を取得する画像取得プログラムを備えており、
前記帯域選択部は、画像取得プログラムの一部であって、前記検出部からの出力について時間に対応させて前記少なくとも二つの異なる波長帯域における干渉光の強度を取得可能なものであるという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、前記請求項2の構成において、前記光源部は、光源と、チャープ化素子とを備えており、チャープ化素子は、光源からの光に対して正の群速度分散を生じさせる速度分散素子であるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項1乃至3いずれかの構成において、前記帯域選択部は、中心波長が短い帯域ほど短い帯域幅で各波長帯域を同時に選択可能なものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項の構成において、前記帯域選択部は、各波長帯域の光によって断層画像を取得する際の深さ方向解像度が各波長帯域で互いに同じになる中心波長及び帯域幅で各波長帯域を同時に選択可能なものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項1乃至5いずれかの構成において、前記帯域選択部は、前記少なくとも二つの異なる波長帯域を互いに分離した帯域として同時に選択可能なものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項1乃至6いずれかの構成において、前記演算処理部は、前記同時に選択された少なくとも二つの波長帯域の光により取得した少なくとも二つの断層画像をディスプレイ上に重ねて表示することが可能なものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項1乃至いずれかの構成において、前記光源部は、パルス光を出射するものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、前記請求項1乃至いずれかの構成において、前記帯域選択部により選択される少なくとも二つの異なる波長帯域は、50nm以上1500nm以下の幅であるという構成を有する。
また、上記課題を解決するため、請求項10記載の発明は、前記請求項1乃至いずれかの構成において、前記検出部で検出された干渉光の強度に基づいて被観察部位の断層画像を取得する撮像モードと、前記光源部からの光を患部に照射することで治療を行う治療モードとの二つのモードで動作可能な装置であり、
撮像モードと治療モードとを切り替える切替部と、
切替部を制御するコントローラと
を備えているという構成を有する。
また、上記課題を解決するため、請求項11記載の発明は、前記請求項10の構成において、前記光源部は、前記治療モードの際には前記撮像モードの際よりも狭帯域の光を出射するものであるという構成を有する。
また、上記課題を解決するため、請求項12記載の発明は、前記請求項11の構成において、前記光源部は、
レーザー源と、
前記撮像モードの際にレーザー源からの光を広帯域化させる非線形光学素子としての第一のファイバと、
前記治療モードの際にレーザー源からの光を導く第二のファイバと
を備えており、
第二のファイバは、第一のファイバよりも低非線形の素子であり、
前記切替部は、前記撮像モードの際にはレーザー源からの光を第一のファイバに入射させ、前記治療モードの際にはレーザー源からの光を第二のファイバに入射させるものであるという構成を有する。
また、上記課題を解決するため、請求項13記載の発明は、前記請求項10乃至12構成において、前記治療モードの際に前記光源部からの光が前記検出部に入射しないように当該光を遮断する遮断部を備えているという構成を有する。
【発明の効果】
【0021】
以下に説明する通り、本願の請求項1記載の発明によれば、任意の波長帯域を選択して断層画像観察が行えるので、被観察部位の媒質の特性を考慮しながら最適な波長帯域を選択して観察を行うことができ、観察の自由度が高い光干渉断層画像撮像装置が提供される。
また、複数の波長帯域を同時に選択して観察を行うことができるので、複数の波長帯域での断層画像を同時に取得することもでき、この点で観察の自由度がさらに高くなる。
また、請求項2記載の発明によれば、上記効果に加え、データ処理において任意の帯域を選択するので、帯域選択部は波長選択素子のような光学素子を備えている必要はなく、この点で、構造的に簡略化され、コストも安くなる。また、波長帯域の変更の際にはデータ取得の時間帯の設定を変更するだけで良いので、観察の自由度がさらに高くなる。
また、請求項3記載の発明によれば、上記効果に加え、光源からの光に対して正の群速度分散を生じさせる速度分散素子によりチャープな光を得るので、より広い波長帯域で容易にチャープな光を得ることができる。
また、請求項記載の発明によれば、上記効果に加え、中心波長が短い帯域ほど短い帯域幅で各波長帯域を選択するものであるので、各波長帯域における観察の深さ方向解像度のずれが小さくなる。
また、請求項記載の発明によれば、上記効果に加え、各波長帯域の光によって断層画像を取得する際の深さ方向解像度が各波長帯域で互いに同じになるので、深さ方向解像度のずれがない状態で多波長帯域での観察が行える。
また、請求項記載の発明によれば、上記効果に加え、前記少なくとも二つの異なる波長帯域を互いに分離した帯域として選択可能なものであるので、より精度の高い断層画像観察が行える。
また、請求項記載の発明によれば、上記効果に加え、複数の波長帯域の光により取得した断層画像をディスプレイ上に重ねて表示することができるので、複数帯域観察のメリットをより活かすことができる。
また、請求項記載の発明によれば、上記効果に加え、波長帯域が50nm以上1500nm以下の幅であるので、調整が難しくなったり限度以上に低解像度となったりする問題がない。
また、請求項10記載の発明によれば、上記効果に加え、上記効果に加え、1台の装置で診断(断層画像観察)と治療が行えるため、設備に要する全体のコストを小さくでき、また省スペース化も達成できる。
また、請求項11又は12記載の発明によれば、上記効果に加え、治療モードでは狭帯域の光が照射されるので、よりエネルギーの高い光を照射して効果的な治療を行うことが
容易となる。
また、請求項13記載の発明によれば、上記効果に加え、治療モードに際に光源部からの光が検出部に入射しないように当該光を遮断する遮断部を備えているので、高強度の光によって検出部が損傷してしまう事故が防止される。
【図面の簡単な説明】
【0022】
図1】第一の実施形態に係る光干渉断層画像撮像装置の概略図である。
図2】光源部から出射される光のスペクトルについて説明した概略図である。
図3】帯域選択部の作用及び意義について、従来の装置と対比させて示した図である。
図4】第一の実施形態における帯域選択部が備える帯域分離ユニットの構成を示した概略図である。
図5】第一の実施形態において演算処理で行われる演算処理について説明する図である。
図6】第二の実施形態の光干渉断層画像撮像装置の概略図である。
図7】第三の実施形態の光干渉断層画像取得装置の概略図である。
図8】第三の実施形態の装置における光源部の作用について示した図である。
図9】第三の実施形態におけるデータ処理による帯域分離について示した概略図である。
図10】第四の実施形態の光干渉断層画像撮像装置の概略図である。
図11】第五の実施形態の光干渉断層画像撮像装置の概略図である。
図12】従来のタイムドメインタイプの光干渉断層画像撮像装置の概略図である。
図13】従来のフーリエドメインタイプの光干渉断層画像撮像装置の概略図である。
図14】人の口腔内の部位の違いにおける光の吸収特性の違いを示した図である。
【発明を実施するための形態】
【0023】
次に、本願発明を実施するための形態(実施形態)について説明する。図1は、第一の実施形態に係る光干渉断層画像撮像装置の概略図である。
図1に示す光干渉断層画像撮像装置は、広帯域光を出射する光源部1と、光学系2と、干渉光の強度を検出する検出部3と、演算処理部4とを備えている。
【0024】
まず、光源部1について説明する。
図2は、光源部1から出射される光のスペクトルについて説明した概略図である。この実施形態では、光源部1は、400nm以上3000nm以下の波長範囲において200nm以上の波長帯域に亘って連続スペクトルである広帯域光を出射するものとなっている。
図2に示すように、スペクトルは、400nm以上3000nm以下の波長範囲において連続スペクトルであれば良く、200nm以上の帯域に亘って連続であれば良い。図2に示すように、スペクトルは、ある中心波長λを持ち、その前後の100nm以上に亘って連続しているということである。
【0025】
より具体的に説明すると、この実施形態では、光源部1は、スーパーコンティニウム光を出射するものとなっている。図1に示すように、光源部1は、レーザー源11と、レーザー源11から出射させるレーザー光を広帯域化させる非線形光学素子12とを備えている。レーザー源としては、高いピークパワーを得るため、フェムト秒レーザーやピコ秒レーザーのような超短パルスレーザー源が使用される。例えば、チタンサファイアレーザー源やファイバレーザー源が使用できる。非線形光学素子12としては、例えば10メートル程度の長さのシングルモードファイバが使用できる。
【0026】
レーザー源11から出射される高いピークパワーの超短パルス光が非線形光学素子12に入射すると、自己位相変調や四光波混合、ラマン散乱のような非線形光学効果が非線形光学素子12中で生じ、新たな波長の光が生成されて波長が広帯域化する。即ち、非線形光学素子12からは、スーパーコンティニウム光が出射される。例えば、波長1064nmの超短パルスレーザー光を10メートル程度の長さのシングルモードファイバに通すことで、400nmから2000nmという広い帯域に亘ってスペクトルが連続するスーパーコンティニウム光が出射される。このような広帯域光を出射する構成を、この実施形態における光源部1として使用することができる。
【0027】
次に、光学系2について説明する。
光学系2は、測定光と参照光とに分割するとともに、測定光を被観察部位に照射し、当該被観察部位からの反射光と参照光との干渉光を発生させるものである。具体的に説明すると、光学系2は、光源部1からの光を測定光と参照光に分割するビームスプリッタ21を含んでいる。
【0028】
図1に示すように、光源部1からの光軸A1は、ビームスプリッタ21により、測定用光軸A2と参照用光軸A3とに分岐される。参照用光軸A3上には、参照ミラー22が配置されている。第一の実施形態の装置は、タイムドメインタイプであるので、参照ミラー22は移動ミラーとなっており、駆動機構221が付設されている。参照ミラー22は、光軸A3に対して垂直である。
【0029】
一方、被観察部位Rは、測定光軸A2上に位置する。図1に示すように、測定光軸A2上には、走査機構23と、対物レンズ24とが設けられている。走査機構23は、測定用光軸A2に垂直な面内で直交する二つの方向に測定光の照射スポットを走査する機構である。走査機構23としては、二つのガルバノミラーを組み合わせた機構が採用できる。
対物レンズ24は、被観察部位に適切な大きさのスポットで測定光を照射するとともに、被観察部位からの反射光を集めてビームスプリッタ21に戻すためのレンズである。
【0030】
図1から解るように、対物レンズ24を介してビームスプリッタ21に戻された反射光は、参照ミラー22に反射して戻ってきた参照光とビームスプリッタ21において重ね合わされる。重ね合わされた光は、参照用光軸A3と同一直線上に延びる検出用光軸A4に沿って進みこの際に互いに干渉する。
【0031】
そして、図1に示すように、この干渉光が進む検出用光軸A4上に検出部3が配置されている。検出部3は、複数の検出器31~34を備えている。各検出器31~34としては、例えばフォトダイオードのような半導体素子センサが使用される。可視域から赤外域に亘る広い範囲で十分な感度を有するセンサを使用することが好ましい。
【0032】
演算処理部4は、各検出器31~34からの出力データを処理し、被観察部位の断層画像を取得する演算処理を行うものである。この実施形態では、演算処理部4としては、パソコンのような汎用のユニットが使用されている。演算処理部4は、画像取得プログラム40を含む各種プログラムを記憶した記憶部41と、演算処理を行うCPU42と、取得した断層画像を表示するディスプレイ43と、検出部3からの出力データを入力するための不図示のインターフェース等を備えている。尚、各検出器31~34は、不図示のADコンバータを介して演算処理部4に接続されている。
【0033】
このような実施形態の光干渉断層画像撮像装置は、少なくとも一つの任意の波長帯域における干渉光の強度に基づいて被観察部位の断層画像を取得することが可能となっている。少なくとも一つの任意の波長帯域における干渉光強度を取得するための構成として、実施形態の装置は、光源部1からの光について波長帯域を任意に選択できる帯域選択部を備えている。
この実施形態では、特に、帯域選択部は、同時に複数の波長帯域を選択できるようになっている。そして、演算処理部4は、選択された複数の異なる波長帯域における干渉光の強度に基づいてそれぞれ被観察部位の断層画像を取得することが可能となっている。以下、これらの点について説明する。
【0034】
図3は、帯域選択部の作用及び意義について、従来の装置と対比させて示した図である。図3(1-1)に示すように、従来の装置は、予め決まっている一つのみの帯域λ~λでの連続スペクトルの光を低コヒーレンス光として用い、この一つの帯域でのみ干渉光の強度を検出して(図3(1-2))、1個のみの断層画像Iを得ている(図3(1-3))。このため、前述したように、観察の自由度が低いという問題を有していた。
一方、実施形態の装置は、図3(2-1)に示すように、任意の波長帯域を選択でき、且つ複数の波長帯域を選択できる。そして、選択された波長帯域の光を低コヒーレンス光として利用して干渉光の強度を検出し(図3(2-2))、各々断層画像I~Iを取得する(図3(2-3))。この例は、λ~λの帯域は選択せず、他の帯域は全て選択して断層観察をした例である。
【0035】
図3(2-1)(2-2)(2-3)に示すような波長帯域の任意選択を可能にするため、第一の形態における帯域選択部は、光源部1からの広帯域光を複数の異なる帯域に分離する帯域分離ユニット5を備えている。図4は、第一の実施形態における帯域選択部が備える帯域分離ユニットの構成を示した概略図である。
帯域分離ユニット5は、複数の異なる波長選択素子を組み合わせて構成されたものとなっている。この実施形態では、波長選択素子としてダイクロイックミラーが使用されている。この例では、帯域分離ユニット5は、八個のダイクロイックミラー51~58を備えており、これらにより四つの異なる帯域に分割するものとなっている。以下、説明の都合上、四つの異なる帯域を、波長の短い順に、第一帯域、第二帯域、第三帯域、第四帯域と呼ぶ。
【0036】
図4の紙面上、上側に配置された四つのダイクロイックミラー51~54を、左側(入射側)から順に第一ミラー51、第二ミラー52、第三ミラー53、第四ミラー54とそれぞれ呼ぶ。下側に配置された四つのダイクロイックミラー55~58を、左側から順に第五ミラー55、第六ミラー56、第七ミラー57、第八ミラー58とそれぞれ呼ぶ。第一ミラー51、第二ミラー52、第三ミラー53、第四ミラー54は、境界波長より長い波長を透過し、短い波長を反射させるダイクロイックミラーである。第五ミラー55、第六ミラー56、第七ミラー57、第八ミラー58は、境界波長より長い波長を反射し、短い波長を透過させるダイクロイックミラーである。尚、ダイクロイックミラーにおける「境界波長」は、反射される波長であっても良いし、透過される波長であっても良いし、そのいずれかである。
【0037】
境界波長は、各ミラーにおいて異なる。この例では、第一ミラー51の境界波長は500nm、第二ミラー52の境界波長は690nm、第三ミラー53の境界波長は970nm、第四ミラーの境界波長は1370nmである。また、第五ミラーの境界波長は450nm、第六ミラーの境界波長は600nmである。第七ミラーの境界波長は800nm、第八ミラーの境界波長は1050nmである。
【0038】
図4において、各ミラー51~58を反射又透過した光のスペクトルが模式的に示されている。図4に示すように、光源部1からの光L1は、第一ミラー51を透過した500nm以上の光L2と、第一ミラー51に反射した500nm以下の光L3とにまず分割される。第一ミラー51に反射した500nm以下の光L3のうち、450nm以上の光L4は、第五ミラー55に反射し、残りの光は、第五ミラー55を透過し、ビームダンパー6に達する。
【0039】
第一ミラー51を透過した500nm以上の光L2のうち、690nm以下の光L5は第二ミラー52に反射して第六ミラー56に向かい、690nm以上の光L6は、第二ミラー52を透過して第三ミラー53に向かう。第二ミラー52に反射した690nm以下の光L5のうち、600nm以上の光L7は、第六ミラー56に反射して第七ミラー57に向かい、残りの光は、第六ミラー56を透過してビームダンパー6に達する。また、第五ミラー55に反射した450nm以上500nm以下の光L4は、そのまま第六ミラー56を透過する。
【0040】
第二ミラー52を透過した690nm以上の光L6のうち、970nm以下の光L8は、第三ミラー53に反射して第七ミラー57に向かい、970nm以上の光L9は、第三ミラー53を透過して第四ミラー54に向かう。第三ミラー53に反射した970nm以下の光L8のうち、800nm以上の光L10は、第七ミラー57に反射して第八ミラー58に向かい、残りの光は第七ミラー57を透過して、ビームダンパー6に達する。450nm以上500nm以下の光L4及び600nm以上690nm以下の光L7も、第七ミラー57を透過して第八ミラー58に向かう。
【0041】
第三ミラー53を透過した970nm以上の光L9のうち、1370nm以下の光L11は、第四ミラー54に反射して第八ミラー58に向かい、1370nm以上の光L12は、第四ミラー54を透過してビームダンパー6に達する。第四ミラー54に反射した1370nm以下の光L11のうち、1050nm以上の光L13は、第八ミラー58に反射し、残りの光は第八ミラー58を透過してビームダンパー6に達する。第七ミラー57を透過した450nm以上500nm以下の光L4及び600nm以上690nm以下の光L7と、第七ミラー57に反射した800nm以上970nm以下の光L10は、第八ミラー58を透過する。
【0042】
即ち、光源部1が備える出射口から出射される光は、450nm以上500nm以下の光L4、600nm以上690nm以下の光L7、800nm以上970以下の光L10、及び1050nm以上1370nm以下の光L13となる。このように、実施形態における帯域分離ユニット5は、一つの広帯域の光L1を四つの帯域の光L4,L7,L10,L13に分離するものとなっている。以下、この四つの帯域に分けられている光を、ユニット通過光と呼び、図1中にLuで示す。
尚、帯域分離ユニット5が備える上記各ダイクロイックミラー51~58は、誘電体多層膜により波長に応じて光の透過、反射を制御するミラーである。
【0043】
図1に示すように、ビームスプリッタ21は、帯域分離ユニット5の出射側に配置されている。したがって、ユニット通過光Luは測定光と参照光とに分割され、測定光が被観察部位Rに照射され、参照光が参照ミラー22で折り返される。そして、被観察部位Rからの反射光と参照光との干渉光の強度が、検出部3で検出される。
【0044】
上述した帯域分離の構成に応じて、検出系の構成も最適化されている。以下、この点について説明する。図1に示すように、この実施形態では、検出部3は、四つの検出器31~34を備えている。
第一の検出器31は、第一帯域(450~500nm)における干渉光強度を検出するものであり、第二の検出器32は、第二帯域(600~690nm)における干渉光強度を検出するものである。第三の検出器33は、第三帯域(800~970m)における干渉光強度を検出するものであり、第四の検出器34は、第四帯域(1050~1370nm)における干渉光強度を検出するものである。
【0045】
図1に示すように、検出部3は、ビームスプリッタ21からの光軸上に四つのダイクロイックミラー35~38を備えている。以下、これら四つのダイクロイックミラーを、検出用第一ミラー35、検出用第二ミラー36、検出用第三ミラー37、検出用第四ミラー38と呼ぶ。
この実施形態では、検出用第一ミラー35は、波長500nm以下の光を反射し、500nm以上の光を透過するミラーであり、検出用第二ミラー36は、波長690nm以下の光を反射し、690nm以上の光を透過するミラーである。検出用第三ミラー37は、波長970nm以下の光を反射し、970nm以上の光を透過するミラーであり、検出用第四ミラー38は、波長1370nm以下の光を反射し、1370nm以上の光を透過するミラーである。
【0046】
第一の検出器31は、検出用第一ミラー35に反射した光の光軸上に配置されており、第二の検出器32は、検出用第二ミラー36に反射した光の光軸上に配置されている。第三の検出器33は、検出用第三ミラー37に反射した光の光軸上に配置されており、第四の検出器34は、検出用第四ミラー38に反射した光の光軸上に配置されている。
尚、検出用第四ミラー38を透過する光は実質的にないが、検出用第四ミラー38を透過した光が到達する位置には、ビームダンパー6が設けられている。
【0047】
また、各検出用ミラー35~38と各検出器31~34とを結ぶ各光軸上には、第一から第四の帯域遮断シャッタ391~394が設けられている。各帯域遮断シャッタ391~394は、各々独立して開閉駆動されるようになっている。各帯域遮断シャッタ391~394は、帯域の選択に応じて開閉される。即ち、第一の帯域を使用しない場合には第一の帯域遮断シャッタ391は閉じられ、使用する場合には開かれる。第二の帯域を使用しない場合には第二の帯域遮断シャッタ392は閉じられ、使用する場合には開かれる。第三の帯域遮断シャッタ393、第四の帯域遮断シャッタ394についても同様である。
上記説明から解るように、帯域分離ユニット5で分離させた各帯域について第一から第四の帯域遮断シャッタ391~394で使用、不使用を選択するので、帯域分離ユニット5、各検出用ミラー35~38及び第一から第四の帯域遮断シャッタ391~394が、この実施形態における帯域選択部を構成している。
【0048】
次に、演算処理部4において行われる演算処理について、図5を参照して詳しく説明する。
図5は、第一の実施形態において演算処理で行われる演算処理について説明する図である。図5において、理解のため、第一から第四の各帯域における干渉光の振動パターンが例示的、概略的に示されている。
【0049】
この実施形態においても、参照ミラー22を移動させながら、被観察部位からの反射光と参照光との干渉光の強度が、検出部3で測定される。この際、測定光は、分離された第一から第四の四つの帯域の光であるので、被観察部位からの反射光も、第一から第四の四つの帯域の光であり得る。参照光も第一から第四の四つの帯域の光であるので、干渉光も、第一から第四の四つの帯域の光であり得る。各帯域の干渉光の強度は、各検出器31~34で検出され、各強度の信号が演算処理部4に送られる。
【0050】
演算処理部4に実装された画像取得プログラム40は、各強度信号を記憶する記憶モジュールを含んでいる。記憶モジュールは、各検出器31~34から送られる強度信号を別々のファイル441~444に記録するモジュールである。参照ミラー22を移動させるに従って、各検出器31~34からの出力信号が変化する。記憶モジュールは、不図示のAD変換器を介して入力される各信号を、所定のサンプリング周期毎に各ファイル441~444に記録する。サンプリング周期は、後述する深さ方向解像度に応じて予め適宜定められる。
【0051】
一つの照射ポイントにおいて参照ミラー22の移動を行いながら干渉光強度の測定(いわゆるAスキャン)を行った後、走査機構23が駆動され、被観察部位内の次の照射ポイントに測定光が照射された状態とされる。この状態で、同様に参照ミラー22を移動させながら、各検出器31~34からの出力が、AD変換器を介して演算処理部4に入力され、記憶モジュールにより各ファイル441~444に記録される。この動作を繰り返し、X方向又はY方向の各照射ポイントでの測定が行われる。
【0052】
画像取得プログラム40が有するメインモジュールは、各ファイル441~444からデータを読み出し、干渉光強度の各値の大小を画像の濃淡に置き換える処理を行う。これにより、一つの断層画像が取得される。この際に特徴的なことは、各ファイル441~444から一つの画像が取得されるために、一回の測定で複数の断層画像(図5にI1~I4で示す)が得られることである。ここでの一回の測定とは、各照射ポイントでAスキャンを行いながら、X方向又はY方向で一回のBスキャンを行うという動作を意味する。
【0053】
図5から解るように、各ファイル441~444のデータは、各検出器31~34からの出力データであり、互いに異なる波長帯域の光で測定したデータである。即ち、一つの被観察部位Rについて異なる波長帯域の低コヒーレンス光で測定した複数の断層画像I1~I4が一度に得られるということである。前述したように、被観察部位の内部の光透過特性は、波長によって異なる場合が多い。したがって、一つの被観察部位において異なる深さにある複数の境界面の像が一度に観察されることもあり得る。
尚、各ファイル441~444から各断層画像I1~I4を得るデータ処理は、一回の測定で一個のみの断層画像を取得していた従来のタイムドメインタイムの装置と同様に行える。したがって、詳細な説明は、割愛する。
【0054】
上記第一の実施形態の構成において、帯域分離ユニット5で分離される第一から第四の帯域の各幅は、光干渉断層観察における深さ方向解像度との関係で最適化されている。以下、この点について説明する。
周知のように、光干渉断層観察において、光源からの光のスペクトルがガウス分布の場合、深さ方向分解能は、以下の式1で与えられる。
【数1】

式1において、λは光源からの光の中心波長、Δλは波長帯域の幅、nは被観察部位の屈折率、lnは常用対数である。Δzが小さいほど分解能が高いことを意味する。
【0055】
式1から解るように、深さ方向分解能は、中心波長λと波長帯域幅Δλに依存し、中心波長λが短いほど高く、波長帯域幅Δλが広いほど高くなる。上記の点を考慮し、実施形態の装置において、第一から第四の各帯域の中心波長及び幅は、深さ方向分解が同一になるように選定されている。このため、図3に示すように、中心波長が短いほど帯域幅は狭くなっている。したがって、実施形態の装置では、四つの帯域それぞれについて同じ又は近似した深さ方向分解能で観察を行うことができるようになっている。
【0056】
このような実施形態の光干渉断層画像撮像装置によれば、任意の波長帯域を選択して断層画像観察が行えるので、被観察部位の媒質の特性を考慮しながら最適な波長帯域を選択して観察を行うことができ、観察の自由度が高い。
また、複数の波長帯域を選択して観察を行うこともでき、複数の波長帯域での断層画像を同時に取得することもできる。この点でも、実施形態の装置は観察の自由度が高くなっている。
そして、一つの光源41からの光を帯域分離ユニット5で複数の帯域に分離して使用するので、装置が複数の光源を備えている必要がなく、また光源の交換の手間もない。
【0057】
人の疾病の診断用のようなより具体的な用途の場合の構成例について説明すると、測定光の導光と被観察部位からの反射光との導光のために、光ファイバカプラーのように複数本のファイバを溶着その他の方法で一本に束ねたファイバ(以下、導光用ファイバという。)が使用される。ファイバの先端を被観察部位に近づけて測定光を照射し、反射光を当該先端から入射させてビームスプリッタ21に戻す構成とされる。
【0058】
尚、任意に選択される波長帯域の幅について補足すると、選択される波長帯域の幅は、50nm以上1500nm以下の幅であることが好ましい。50nm未満であると、コヒーレンス長が長くなってしまい、深さ方向解像度が限度以上に低下してしまう。また、1500nm以上であると、あまりにも広帯域の光となり、深さ方向解像度は理論的には高くなるが、ほんの僅かな長さでしか干渉をしなくなるので、光学系2等の調整が難しくなる。このため、50nm以上1500nm以下とすることが好ましい。
【0059】
次に、第二の実施形態の光干渉断層画像撮像装置について説明する。
図6は、第二の実施形態の光干渉断層画像撮像装置の概略図である。図6に示す第二の実施形態の装置は、第一の実施形態とは異なり、フーリエドメインタイプの装置となっている。即ち、フーリエドメインタイプの装置で任意帯域測定光の構成や複数帯域測定光の構成を実現したことが、第二の実施形態の装置の特徴点となっている。
【0060】
第二の実施形態の装置も帯域選択部を備えており、帯域選択部は帯域分離ユニット5を含んでいる。帯域分離ユニット5は、同様に波長選択素子としての複数のダイクロイックミラー51~58を組み合わせた構成を採用している。帯域分離ユニット5は、光源部1からの広帯域光を第一から第四の四つの帯域に分離する構成であり、検出部3は、それぞれの帯域の光を取り出す検出用ミラー35~38を備えている。そして、第二の実施形態では、フーリエドメインタイプであるので、各検出用ミラー35~38と各検出器31~34とを結ぶ各光軸上に、波長分散素子としての回折格子301~304が設けられている。波長分散素子としてはプリズムが使用されることもある。
【0061】
各検出器31~34は、この実施形態ではアレイセンサとなっている。アレイセンサである各検出器31~34における各画素の配列方向は、回折格子301~304により光が波長に応じて分散する方向に一致している。したがって、各検出器31~34の各画素には、各回折格子301~304で分光された各波長の光がそれぞれ入射する。アレイセンサである各検出器31~34としては、例えばCCDセンサ又はフォトダイオードアレイが使用される。
【0062】
各検出器31~34において、各画素で検出された光強度信号が画素配列の順に出力されるが、この出力信号は、各検出用ミラー35~38で取り出された各帯域の光を分光したスペクトル強度分布に相当している。この実施形態においても、各検出器31~34は、不図示のAD変換器を介して演算処理部4に接続されおり、各検出器31~34の出力信号は、デジタル信号に変換されて演算処理部4に入力される。
【0063】
この実施形態の装置はフーリエドメインタイプであるので、演算処理部4に実装された画像取得プログラム40は、フーリエ変換を含む演算処理を行う。画像取得プログラム40は、各検出器31~34からの出力データをそれぞれ別のファイル451~454に記録する。記録されたデータは、被観察部位からの反射光と参照光との干渉光のスペクトル(分光強度)であり、スペクトルは、Bスキャンを行いながら取得されたX方向又はY方向の各点でのスペクトルである。
【0064】
画像取得プログラム40は、各ファイル451~454のデータについてそれぞれフーリエ変換を含む演算処理を行い、各点での深さ方向の干渉光強度分布を得る。そして、この処理をX方向又はY方向の各点でのデータについて行い、干渉光強度を画像の濃淡に置き換え、断層画像を取得する。一つのファイルのデータから一つの断層画像を取得するデータ処理自体は、従来のスペクトルドメインタイプの装置の場合と同様である。
【0065】
この実施形態においても、異なる四つの帯域の測定光によって断層画像が取得できるので、被観察部位の特性に応じて任意の一又は複数の帯域を適宜選択しながら観察を行うことができる。特に、参照ミラー22の移動を必要とせず、高速でSN比の高いフーリエドメインタイプの装置で任意帯域での観察や多帯域での観察が実現できる意義は大きい。
【0066】
次に、第三の実施形態の光干渉断層画像撮像装置について説明する。
図7は、第三の実施形態の光干渉断層画像取得装置の概略図である。図7に示す第三の実施形態の装置は、まず、光源部1の構成が第一第二の実施形態と異なっている。第三の実施形態の装置では、光源部1は、チャープしたスーパーコンティニウム光を出射するもの、特に線形にチャープしたスーパーコンティニウム光を出射するものとなっている。
【0067】
具体的に説明すると、第三の実施形態では、光源部1は、レーザー源11と、レーザー源11からの光に非線形光学効果を生じさせてスーパーコンティニウム光を生じさせる非線形光学素子12と、生成されたスーパーコンティニウム光をチャープした光とするチャープ化素子13とを備えている。チャープ化素子13としては、この実施形態では、群速度分散素子が使用されており、特に正常分散ファイバのような正常分散素子が使用されている。
【0068】
図8は、第三の実施形態の装置における光源部の作用について示した図である。
周知のように、正常分散ファイバのような正常分散特性を示す群速度分散素子に多波長の光を通すと、長波長ほど光は速く進む。実施形態の光源部1は、これを利用している。
より具体的に説明すると、非線形光学素子12により広帯域化とされたスーパーコンティニウム光が、波長λ~λを含んでいるとし、λ<λ<λ<λ<λ<λ<λであるとする。この場合、スーパーコンティニウム光は、時間的にはパルス光であるが、波長λ~λの光は、一つのパルス内の時間でみると、図8(1)に示すように時間的にも長波長側から順に波長がシフトしている場合もあり、図8(2)に示すように、各波長の光は時間的にはランダムに並んでいる場合もある。
【0069】
図8(1)に示すような波長な時間的にシフトするスーパーコンティニウム光は、レーザー源11において長波長側のレーザー光が最初に発生し、その後に順次短波長側のレーザー光が発生しており、その状態が維持されてスーパーコンティニウム光が生成される(波長が広帯域化する)場合に多い。
このようないずれのタイプのスーパーコンティニウム光であっても、図8(3)に示すように、正常分散ファイバ中を伝搬することによって、パルス光の時間幅が伸張される際に、1パルス内の光の波長成分は時間的に連続したものとなり、チャープした光が得られる。例えば、スーパーコンティニウム光のパルス幅はフェムト秒~ピコ秒オーダーであるとすると、正常分散ファイバによりパルス幅は1μ秒程度まで伸張され、この際、図8(3)に示すようにチャープした光となる。正常分散ファイバの特性や伝搬距離を適宜選定することで、図8(3)に示すように線形にチャープした光が得られる。
【0070】
より具体的な一例を示すと、レーザー源11としては、発振波長1064nm、パルス幅5ピコ秒のパルスレーザーが使用され、非線形光学素子12としては10メートル程度の長さのシングルモードファイバが使用される。この場合、チャープ化素子13としては、例えば通信用の分散補償ファイバを転用することができる。通信用としては、正の分散スロープを持つシングルモードファイバが伝送用にしばしば使用されるが、波形の歪みを補償するべく負の分散スロープを有するファイバが分散補償ファイバモジュール(DCM)として市販されており、それを使用することができる。このような構成により、1000~1600nm程度の波長域において線形にチャープした広帯域光を得ることができる。
【0071】
尚、光干渉断層画像撮像装置としては、波長掃引可能なレーザー源を光源として用いた装置が知られている。波長掃引レーザー源からの光も、波長が時間に対して変化している光であるといえる。但し、波長掃引レーザー源は、掃引できる波長幅が広くても100nm程度である。また、波長帯域についても機種が限られていることから選定の自由度は低い。これと比較すると、正常分散の群速度分散素子を利用する方法は、より広い波長帯域で容易にチャープした光を得ることができ、その中から自由に波長帯域を選定できる。このため、自由度が高い。
【0072】
第三の実施形態では、光学的な構成としての帯域分離ユニットは設けられていない。図7に示すように、第三の実施形態では、正常分散ファイバであるチャープ化素子13の出射側にコリメータ14を設け、コリメータ14を経た光をビームスプリッタ21で測定光と参照光とに分割する構成となっている。
参照ミラー22は、第二の実施形態と同様に位置固定のミラーである。また、検出部3の構成は、ビームスプリッタ21からの干渉光の光軸上に1個の検出器30が配置されたシンプルな構成となっている。
【0073】
そして、第三の実施形態では、光学的な構成としての帯域分離ユニットの代わりに、データ処理において帯域分離を行う構成が採用されている。以下、この点について図9を参照して説明する。図9は、第三の実施形態におけるデータ処理による帯域分離について示した概略図である。
第三の実施形態では、上述したように、光源部1からの光は広帯域のパルス光であって且つ一つのパルス内で波長が時間的に変化する線形にチャープした光となっている。このため、この光がビームスプリッタ21で測定光と参照光とに分割され、被観察部位で反射した反射光と参照光とが重ね合わされた際、特定の波長帯域において干渉が生じて干渉光の強度が検出器30で検出されたとすれば、そのタイミングは、その波長帯域に応じたパルス内の時間帯ということになる。
【0074】
例えば、図9に示すように、波長450nm~500nmの範囲内で干渉光が生じている場合、検出器30がパルスを検出し始める時刻をtとし、波長500nmを検出する時刻をtとし、波長450nmが検出される時刻をtとする。波長が長いほど速く進む正常分散であるので、t<tである。この場合、波長450nm~500nmの範囲内で干渉光が生じているとすれば、図9に示すように、干渉光は時刻tからtの範囲内ということになる。
【0075】
ここで、図6に示すフーリエドメインタイプの装置(第二の実施形態)においても、第第一の検出器31には450nm~500nmの帯域の光が回折格子304を介して入射する。アレイセンサである第一の検出器31から各波長の検出信号が順次吐き出される状態は、図9に示す第三の実施形態において時刻tからtまでの出力データを取得した状態と同様である(回折格子301の向きによっては短波長側が先で長波長側が後の場合もある)。
したがって、第三の実施形態において、時刻tからtの範囲内の出力データに対して同様にフーリエ変換を含むデータ処理を適用すれば、第二の実施形態の場合と同様に、波長450nm~500nmで観察した断層画像I1が得られることになる。
【0076】
他の帯域についても同様である。図9に示すように、例えば波長1800nmを検出する時刻をtとし、波長1300nmが検出される時刻をtとし、波長700nmを検出する時刻をtとする。この場合、時刻tからtの範囲内の出力データに対して同様にフーリエ変換を含むデータ処理を適用し、時刻tからtの範囲内の出力データに対してすれば、450~700nmと1300~1800nmの二つの波長帯域で観察した断層画像I5が得られることになる。
【0077】
このように、第三の実施形態では、線形にチャープした光を出射するよう光源部1を構成し、一つの検出器30からの出力データに対してフーリエ変換を含むデータ処理を適用する時間帯(データ取得の時間帯)を設定することで各帯域の光による断層画像を得る装置となっている。出力データを区切るタイミングについては、光源部1からの線形チャープ光について波長対時刻の関係を予め解析して特定しておき、どの帯域で観察を行うかに応じてタイミングを設定する。演算処理部4に実装された画像取得プログラム40には、このタイミングの情報が定数又は引数として与えられて組み込まれるようになっている。
【0078】
第三の実施形態の装置によれば、光源部1からの光を線形にチャープした光とし、一つの検出器30からの出力データに対してフーリエ変換を含むデータ処理を適用する時間帯(データ取得の時間帯)を設定することで各帯域の光による断層画像を得るので、第二の実施形態のように各帯域用に回折格子301~304を設けることは不要である。ハードウェアの構成としては、正常分散ファイバのようなチャープ化素子13を追加するだけで良いので、構造的に簡略化され、コストも安くなる。
また、第二の実施形態の場合、分離する帯域を変更しようとすると、波長選択素子を変更する必要があり、コストの問題や手間の問題が生じるが、第三の実施形態では、データ取得の時間帯の設定を変更するだけで良いので、観察の自由度がさらに高くなる。
【0079】
次に、第四の実施形態の光干渉断層画像撮像装置について説明する。
図10は、第四の実施形態の光干渉断層画像撮像装置の概略図である。図10に示す第四の実施形態は、タイムドメインタイプであり、第一の実施形態を変形したものとなっている。
第四の実施形態では、帯域分離ユニット5は、ビームスプリッタ21と検出部3との間に配置されており、また構成が簡略化されている。図10に示すように、ビームスプリッタ21と検出部3との間の光軸上には、四つのダイクロイックミラー591~494が設けられている。以下、ビームスプリッタ21に近い順に、第一分離ミラー591、第二分離ミラー592、第三分離ミラー593、第四分離ミラー594という。
【0080】
この例では、第一分離ミラー591は、500nm以下反射、500nm以上透過のミラーである。第二分離ミラー592は、690nm以下反射、690nm以上透過のミラーである。第三分離ミラー593は970nm以下反射、970nm以上透過のミラーである。第四分離ミラー594は1370nm以下反射、1370nm以上透過のミラーである。第一分離ミラー591に反射した光の光軸501を、以下、第一分離光軸とし、第二分離ミラー592に反射した光の光軸502を第二分離光軸とし、第三分離ミラー593に反射した光の光軸503を第三分離光軸とし、第四分離ミラー594に反射した光の光軸504を第四分離光軸とする。
【0081】
図10に示すように、各分離光軸501~504上には別のダイクロイックミラー595~598が設けられている。以下、第一分離光軸501上のダイクロイックミラー595を第五分離ミラーとし、第二分離光軸502上のダイクロイックミラー596を第六分離ミラーとし、第三分離光軸503上のダイクロイックミラーを第七分離ミラー597とし、第四分離光軸504上のダイクロイックミラー598を第八分離ミラーとする。
【0082】
そして、第五分離ミラー595は、450nm以下反射、450nm以上透過のミラーであり、第六分離ミラー596は、600nm以下反射、600nm以上透過のミラーであり、第七分離ミラー597は、800nm以下反射、800nm以上透過のミラーであり、そして、第七分離ミラー598は、1050nm以下反射、1050nm以上透過のミラーである。したがって、第一分離光軸501を進む光は、450nm以上500nm以下の波長帯域の光となる。第二分離光軸502を進む光は、600nm以上690nm以下の波長帯域の光となる。第三分離光軸503を進む光は、800nm以上970nm以下の波長帯域の光となる。第四分離光軸504を進む光は、1050nm以上1370nm以下の波長帯域の光となる。
【0083】
検出部3は、各分離光軸501~504上には設けられた第一から第四の検出器31~34と、各帯域遮断シャッタ391~394とを備えている。各検出器31~34の構成は、第一の実施形態と同様である。その他、演算処理部4の構成も第一の実施形態と同様である。
尚、第四分離ミラー594を反射した光の光軸上にはビームダンパー6が設けられている。また、第五分離ミラー595を反射した光の光軸上にもビームダンパー6が設けられている。第六分離ミラー596、第七分離ミラー597、第七分離ミラー598についても同様で、各々反射した光の光軸上には、ビームダンパー6が設けられている。
【0084】
第四の実施形態においても、参照ミラー22を移動させながら、測定光を被観察部位Rに照射し、被観察部位Rからの反射光と参照光との干渉光の強度を第一から第四の各検出器31~34で検出する。そして、走査機構23を動作させてX方向又はY方向に照射ポイントを走査し、各照射ポイントでの干渉光強度のデータが帯域毎に演算処理部4内の各ファイル441~444に記録される。そして、演算処理部4が画像取得プログラム40を実行することで、各ファイル441~444内のデータにより各帯域での断層画像I1~I4が取得される。
【0085】
この第四の実施形態では、反射光と参照光との干渉光が検出部に到達するまでの光路が単純化されるため、光軸調整が容易になる。
尚、第四の実施形態は第一の実施形態を変形した例であったが、第二の実施形態(フーリエドメインタイプ)について適用しても良い。この場合は、各分離光軸501~504上に回折格子が設けられ、各検出器31~34はアレイセンサとされる。
【0086】
上記第四の実施形態において、帯域選択部5の構成として、複数の波長帯域が連続するものとして選択する構成を採用することも可能である。しかしながら、このようにすると、帯域の境界部分では、反射光の波長によっては境界をまたがる状態で干渉光が発生する場合があり、帯域選択部はそれをぶつ切りにすることになる。この場合には、そのぶつ切りにされた部分では界面の画像が取得できないか又は精度の悪いものとなる。帯域を相互に分離するようにすると、このような問題はない。この意義は、第一から第三の実施形態においても同様である。
【0087】
次に、第五の実施形態の光干渉断層画像撮像装置について説明する。
図11は、第五の実施形態の光干渉断層画像撮像装置の概略図である。第五の実施形態の層は、断層画像の撮像に加え、被観察部位の治療も行うことができる装置となっている。即ち、第五の実施形態の装置は、被観察部位の断層画像を取得する撮像モードと、被観察部位の治療を行う治療モードとで動作することが可能となっている。具体的には、第五の実施形態の装置は、撮像モードと治療モードとを切り替える切替部と、切替部を制御する不図示のコントローラとを備えている。
【0088】
この実施形態では、治療モードにおける治療は、患部に光照射して行うことが前提となっている。この際、治療モードにおける光源と撮像モードにおける光源とで異なるものを使用することも可能であるが、この実施形態では、装置構造の簡略化、装置コストの低減等を考慮して一つの光源を治療モードと撮像モードで兼用する構成となっている。
例えば、初期の口腔がん等の治療には、可視から近赤外域のレーザー光を照射して行うレーザー治療が有効であることが知られている。この場合、上記第一から第三の実施形態における光源部1に設けられたレーザー源11の波長が治療に有効な場合があり、第五の実施形態はこのようなケースを想定している。
【0089】
図11に示すように、第五の実施形態における光源部1は、例えば発振波長1064nmの超短パルスレーザー源を同様に備えている。そして、光源部1は、切替部として光スイッチ15を備えている。光スイッチ15は、レーザー源11の出力側に設けられており、光スイッチ15を介して二本のファイバ12,16がパラレルに接続されている。一本のファイバ12は、第一から第三の実施形態と同様に、スーパーコンティニウム光を生成するための非線形光学素子としてのファイバである。第五の実施形態では、シングルモードのフォトニック結晶ファイバ(PCF)12が非線形光学素子として使用されている。
【0090】
もう一本のファイバ16は、治療モードの際に使用されるもので(以下、治療モード用ファイバという。)、この実施形態では、フォトニックバンドギャップファイバ(PBF)が使用されている。PBFは、低非線形のファイバとして知られており、この実施形態では、レーザー源11からの光を特に広帯域化することなく使用するためのものとなっている。尚、光スイッチ15としては、入射光を折り返して出射するプリズムに移動機構を設けたメカニカル式のものを使用することができる。
【0091】
非線形光学素子としてのPCF12と治療モード用ファイバとしてのPBF16とは、出射側で一本に束ねられ、出射レンズ17を通して出射する構成となっている。光源部1以外の構成としては、上記第一から第三のいずれの実施形態の構成も採用し得る。一例として、図3では、第一の実施形態(タイムドメインタイプ)のものが採用されている。即ち、帯域分離ユニット5で帯域分離させた光をビームスプリッタ21で測定光と参照光とに分離し、参照光と被観察部位からの反射光との干渉光の強度を帯域毎の四つの検出器31~34で検出する構成となっている。
【0092】
尚、第五の実施形態では、治療モードの際に各部に対して光を適宜遮断するためのシャッタ71,72が追加して設けられている。まず、治療モードでは、参照ミラー22は使用しないので、ビームスプリッタ21と参照ミラー22との間にシャッタ(以下、参照光シャッタ)71が設けられている。また、検出部3も、治療モードでは使用しないので、ビームスプリッタ21と検出部3との間にシャッタ(以下、検出部シャッタ)72が設けられている。装置は、各部を制御するコントローラを備えており、コントローラは、光スイッチ15とともにこれらシャッタ71,72の開閉も制御するものとなっている。
【0093】
次に、第五の実施形態の光干渉断層画像撮像装置の動作について説明する。撮像モードの場合、コントローラからの信号により、光スイッチ15はレーザー源11からの光(超短パルス光)がPCF13側に達するように切り替えられる。超短パルス光は、PCF13でスーパーコンティニウム光となり、帯域分離ユニット5で各波長帯域に分離された後、ビームスプリッタ21に達する。そして、第一の実施形態と同様に、被観察部位Rからの反射光が参照光と干渉し、干渉光の強度が帯域毎に各検出器31~34で検出され、演算処理部4でのデータ処理により各波長帯域での断層画像が得られる。
【0094】
一方、治療モードの場合、コントローラからの信号により光スイッチ15はレーザー源11からの光がPBF16に達するように切り替えられる。また、コントローラからの信号により参照光シャッタ71及び検出部シャッタ72が閉じられる。この状態で、レーザー源11を動作させる。レーザー源11からの光は、PBF16、帯域分離ユニット5、ビームスプリッタ21等を経由して患部に照射され、治療が行われる。
治療モードの際、不図示の導光用ファイバの先端を患部の付近に位置させてレーザー光を照射するが、走査機構23を動作して必要な範囲にレーザー光が照射されるようにする場合もあるし、先端の向きを変えられるタイプの導光用ファイバを使用してマニュアル操作で照射ポイントを変更する場合もある。
【0095】
第五の実施形態の光干渉画像撮像装置によれば、任意の波長帯域や異なる複数の波長帯域での断層画像観察を可能にしつつ、1台の装置で診断(断層画像観察)と治療が行える。このため、設備に要する全体のコストを小さくでき、また省スペース化も達成できる。この際、撮像モードと治療モードとで1個の光源を兼用しているので、装置の構成がシンプルになり、さらにコストを低減できる。
【0096】
また、1個の光源11を兼用するということは、撮像モードと治療モードとの切り替えに際して光源の交換が不要なことを意味する。この点は、断層画像を撮像したその状態、そのポイントでそのまま治療が行えることを意味し、診断から治療への移行が極めてスムーズに行えることを意味する。特にこの実施形態では、光照射するための光学系2も兼用しており、光スイッチ15の切り替えやシャッタ71,72の開閉という動作は必要になるものの、これらの動作はコントローラからの信号によって自動的に行う構成を採用することができる。したがって、コントローラへの外部入力部としてタッチパネル、キースイッチ等を設けることで、断層画像観察で診断をしたそのポイント(患部)についてそのままワンタッチで治療に移行することができ、極めて簡便な診断、治療システムが実現される。
【0097】
このような第五の実施形態の装置の意義は、任意の波長帯域や複数の波長帯域での断層画像観察という点と相まってその効果が著しいが、任意の波長帯域や複数の波長帯域での断層画像観察という構成によってもたらされる意義とは別に奏される意義ということもできる。即ち、任意の波長帯域や異なる複数の波長帯域での断層画像観察という構成を備えていない場合でも、1台の装置で撮像モードと治療モードとが行えるようにしたり、1個の光源を兼用したりしても、上記意義は達成される。
【0098】
尚、第五の実施形態において、上記PBF16は、治療モードにおいては光を撮影モードの際に比べて狭帯域化させて照射する(広帯域化させないで照射する)ものであるといえる。この点は、照射される光のエネルギーを高くし、治療が効率よく行われるようにする意義がある。
また、シャッタ71,72は、治療モードの際に高エネルギーの光が各部に不必要に照射されないようにして各部の損傷を防止するものである。シャッタ71,72は、遮断部の一例であるが、この他、進退可能なミラーで光を治療モードの際には光軸に配置し、光を光軸から取り出してビームダンパーで受ける構成も採用できる。
【0099】
上述した各実施形態の光干渉断層画像撮像装置において、BスキャンはX方向又はY方向であるとして説明したが、その両方を行う場合もあり得る。即ち、X方向での断層画像を取得するとともに、そのX方向での断層画像を所定のインターバルでY方向に複数取得する場合もあり得る。この場合、XY方向のエリア(いわゆるフルフィールド)での断層画像となるので、深さ方向も合わせると三次元での断層画像観察ということになる。画像処理部に実装されるプログラムには、そのような三次元での断層画像をモニター上に三次元で表現する機能が追加されることもあり得る。
【0100】
また、上記各実施形態において、複数の波長帯域での画像取得を行った際、それら複数の断層画像を適宜重ね合わせてディスプレイ43に表示することもあり得る。即ち、一つの被観察部位を異なる複数の波長帯域で観察した場合、波長帯域によって当該部位への進入深さが異なることから、各断層画像において、異なる深さに位置する界面が観察されることがあり得る。この場合、被観察部位としては一つなので、重ね合わせて表示した方が界面同士の位置関係等が把握し易くなるので、好適である。この場合、演算処理部4に実装された画像取得プログラム40に含まれる表示モジュールは、各断層画像を重ね合わせて表示することができるようにプログラミングされる。この際、グレースケールの濃度を適宜低下させたり、視認されないエリアのイメージを削除したりする補正が行われるようプログラミングされる場合もあり得る。
【0101】
また、上記各実施形態では、第一帯域が450~450nm、第二帯域が600~690nm、第三帯域が800~970nm、第四帯域が1050~1370nmであったが、これは単なる一例であり、他の帯域であっても良い。帯域の数も、四つには限らず、それより少なくても多くても良い。少なくとも二つの異なる帯域の光で断層画像が取得できれば良い。
尚、各波長帯域の帯域幅は、式1に従って同じ解像度になるように中心波長に応じて選定されることが望ましいが、厳密に同じ解像度にならなくても、ある程度近い解像度であれば、問題がないことも多い。この意味で、中心波長が短いほど帯域幅も狭くするという選定だけであっても実用的には足りる場合もある。
【0102】
また、上記式1の説明では、低コヒーレンス光はガウス分布であることを前提としたが、帯域分離ユニット5で分離した後の各波長帯域の光は、厳密にはガウス分布ではない場合が多い。それでも、ガウス分布であるとみなして式1を適用し、深さ方向解像度を求めることで特に問題はない。必要であれば、波長選択素子としての各ダイクロイックミラーについて、透過・反射の境界がある程度なだらかなものにすることで、ガウス分布に近づけることが可能である。
【0103】
尚、各検出器30~34におけるサンプリング周期は、深さ方向解像度に応じた周期とされる。第一の実施形態のようなタイムドメインタイプの場合、参照ミラー22が深さ方向解像度の距離を移動するたびに値を読み取る構成とされる。また、第二の実施形態のようなフーリエドメインタイプの場合、回折格子301~304における波長分解能は深さ方向解像度に応じたものとされる。サンプリング周期は、アレイセンサである検出器31~34の信号読み出し周期による。被観察部位に対して二以上のパルスを照射し、各パルスでの干渉光の強度を積算した形で検出器31~34の信号を読み出す場合もあり得る。
また、各実施形態の説明において、干渉光の強度を検出するとして説明したが、検出器30~34には参照光も入射しており、干渉光が干渉光に重畳した形となっている。したがって、実際の検出では、各検出器30~34の出力から参照光の分を差し引いて干渉光の強度とする。
【0104】
尚、上記各実施形態では、光源部1は、スーパーコンティニウム光を出射するものであったが、スーパーコンティニウム光でなくとも200nm以上の幅で連続スペクトルとなっている光を出射するものであれば光源部として用いることができる。例えば、SLD (Superluminescent Diode)やASE(Amplified Spontaneous Emission)光源を本願発明における光源部として採用することも可能である。
【0105】
また、スーパーコンティニウム光を出射する光源部を採用する場合でも、非線形光学素子としては、バルク状のものが採用されることもあり得る。但し、ファイバ状の非線形光学素子(非線形ファイバ)の方が取り扱いが容易であり、チャープ化素子13に正常分散ファイバを使用したり、ファイバレーザーをレーザー源としたりした場合には、ファイバ同士の方が相性も良いので、この点でも好適である。
【0106】
尚、チャープ化素子13は、スーパーコンティニウム光を線形チャープな光とするものであったが、線形でない場合でも実施可能である。線形でない場合でも、一つの波長帯域において各波長の1パルス内の存在時刻と当該波長とが1対1で対応していれば、1パルス内での検出時刻により波長を特定することができる。1パルスの開始時刻を基準にして、どの波長がどの時刻に存在するかは予め解析して知ることができ、線形でない場合であっても時間に応じて波長が変化している限り、実施可能である。但し、線形チャープである方が時刻対波長の関係を求めるのが容易なので、好適である。
【0107】
また、被観察部位としては、眼底や口腔の例を採り上げたが、この他、冠動脈のような血管系を被観察部位としたり、皮膚やその下層組織を被観察部位としたりする場合もあり得る。さらに、人の疾病診断に用いる用途の他、ペット等の動物の診断に用いられる場合もある。また、非破壊・非接触の断層画像観察方法として、例えば基板上に作成された薄膜の解析のような生体以外の断層観察にも本願発明が利用されることがあり得る。
【符号の説明】
【0108】
1 光源部
11 レーザー源
12 非線形光学素子
13 チャープ化素子
15 光スイッチ
16 治療モード用ファイバ(PBF)
2 光学系
21 ビームスプリッタ
22 参照ミラー
23 走査機構
3 検出部
30 検出器
31~34 検出器
35~38 検出用ミラー
391~394 帯域遮断シャッタ
4 演算処理部
40 画像取得プログラム
5 帯域分離ユニット
51~58 ダイクロイックミラー
6 ビームダンパー
R 被観察部位
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14