(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-26
(45)【発行日】2023-02-03
(54)【発明の名称】ドライバーの状態推定方法及び装置
(51)【国際特許分類】
A61B 5/18 20060101AFI20230127BHJP
A61B 5/0245 20060101ALI20230127BHJP
【FI】
A61B5/18 ZDM
A61B5/0245
(21)【出願番号】P 2018207994
(22)【出願日】2018-11-05
【審査請求日】2021-10-18
【新規性喪失の例外の表示】特許法第30条第2項適用 第7回環境放射能除染研究発表会要旨集、第31頁、平成30年6月29日発行
(73)【特許権者】
【識別番号】303057365
【氏名又は名称】株式会社安藤・間
(73)【特許権者】
【識別番号】515271607
【氏名又は名称】株式会社TAOS研究所
(74)【代理人】
【識別番号】110001564
【氏名又は名称】フェリシテ弁理士法人
(74)【代理人】
【識別番号】100081514
【氏名又は名称】酒井 一
(74)【代理人】
【識別番号】100082692
【氏名又は名称】蔵合 正博
(72)【発明者】
【氏名】丸山 能生
(72)【発明者】
【氏名】丸山 敏弘
(72)【発明者】
【氏名】苗 鉄軍
(72)【発明者】
【氏名】神谷 昭勝
(72)【発明者】
【氏名】東田 外史
【審査官】▲高▼原 悠佑
(56)【参考文献】
【文献】特開2015-016273(JP,A)
【文献】特開2012-239480(JP,A)
【文献】特開平04-367653(JP,A)
【文献】国際公開第2005/039415(WO,A1)
【文献】特開2015-189402(JP,A)
【文献】米国特許出願公開第2004/0137639(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/16-5/18
A61B 5/02-5/03
(57)【特許請求の範囲】
【請求項1】
輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波を測定し、
当該脈波から
、心拍変動ゆらぎ、カオスゆらぎの2種類の生体ゆらぎ
として、次の(1)-(4)の指標を計測し、
(1)心拍数(HR)
(2)リアプノフ指数(Lya)
(3)心拍変動の高周波成分(HF)
(4)心拍変動の低周波成分(LF)
これらの指標から、各種のドライバーの運転に支障を及ぼす「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態を
、次のように推定する、
「適応力低下・落込み状態」は、HR及びLyaを使い、次式により推定する、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
「眠気・疲労状態」は、HR、HF及びLFを使い、次式により推定する、
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3、S4、S5は閾値、
「緊張・気分高揚状態」は、HRとLyaを使い、次式により推定する、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
「ストレス状態」は、HF及びLFを使い、次式により推定する、
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値、
を特徴とするドライバーの状態推定方法。
【請求項2】
輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波を測定し、
当該脈波から、心拍変動ゆらぎ、カオスゆらぎの2種類の生体ゆらぎとして、次の(1)-(4)の指標を計測し、
(1)心拍数(HR)
(2)リアプノフ指数(Lya)
(3)心拍変動の高周波成分(HF)
(4)心拍変動の低周波成分(LF)
これらの指標から、各種のドライバーの運転に支障を及ぼす「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態を、次のように推定する、
「適応力低下・落込み状態」は、HR及びLyaを使い、次式により推定する、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
「眠気・疲労状態」は、HR、ln(HF)及びln(LF/HF)を使い、次式により推定する、
ln(HF)>S10 且つ HR<S4 且つ ln(LF/HF)<S11
ここで、S4、S10、S11は閾値、ln(HF)、ln(LF/HF)は自然対数、
「緊張・気分高揚状態」は、HRとLyaを使い、次式により推定する、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
「ストレス状態」は、ln(HF)及びln(LF/HF)を使い、次式により推定する、
ln(LF/HF)>S12 且つ ln(HF)<S13
ここで、S12、S13は閾値、ln(HF)、ln(LF/HF)は自然対数、
を特徴とするドライバー
の状態推定方法。
【請求項3】
各種のドライバーから脈波を測定する脈波測定器と、
前記脈波測定器に接続され、当該脈波測定器により測定した脈波を基にリアプノフ指数を求めるリアプノフ指数算出部と、
前記脈波測定器に接続され、当該脈波測定器により測定された脈波を基に心拍数を求める心拍数算出部と、
前記脈波測定器に接続され、当該脈波測定器により測定された脈波を基に心拍変動の低周波成分、高周波成分、及び低・高周波成分の比を算出する心拍変動の低周波成分・高周波成分算出部と、
リアプノフ指数、心拍数、心拍変動の低周波成分、高周波成分、及び低・高周波成分の比を格納し、またこれらのデータの対応関係を記憶する記憶部と、
前記リアプノフ指数算出部と前記心拍数算出部とに接続され、リアプノフ指数と心拍数から適応力低下・落込み状態を判定する適応力低下・落込み状態判定部と、
前記心拍数算出部と前記低周波成分・高周波成分算出部とに接続され、心拍数と心拍変動の低周波成分、高周波成分、低・高周波成分の比から眠気・疲労状態を判定する眠気・疲労状態判定部と、
前記リアプノフ指数算出部と前記心拍数算出部とに接続され、リアプノフ指数と心拍数から緊張・気分高揚状態を判定する緊張・気分高揚状態判定部と、
前記低周波成分・高周波成分算出部に接続され、心拍変動の低周波成分、高周波成分、低・高周波成分の比からストレス状態を判定するストレス状態判定部と、
前記適応力低下・落込み状態判定部、前記眠気・疲労状態判定部、前記緊張・気分高揚状態判定部、及び前記ストレス状態判定部に接続され、これら適応力低下・落込み状態判定部、前記眠気・疲労状態判定部、前記緊張・気分高揚状態判定部、及び前記ストレス状態判定部による判定結果を出力する出力部と、
を備えた、
ことを特徴とするドライバーの状態推定装置。
【請求項4】
心拍変動の低周波成分・高周波成分算出部は、脈波測定器に接続され、前記脈波測定器により測定された脈波を基に脈波のピークの間隔を求める脈波ピーク間隔算出部と、前記脈波ピーク間隔算出部に接続され、前記脈波測定器により求められた時系列データから前記脈波ピーク間隔のパワースペクトル密度を算出する脈波ピーク間隔のパワースペクトル密度算出部と、前記パワースペクトル密度算出部に接続され、前記パワースペクトル密度算出部により求められた前記脈波ピーク間隔のパワースペクトル密度から心拍変動の低周波成分、高周波成分及び低・高周波成分の比を算出する心拍変動の低周波成分・高周波成分・低周波成分/高周波成分算出部とにより構成される請求項3に記載のドライバーの状態推定装置。
【請求項5】
リアプノフ指数算出部は、脈波の測定値からカオス解析でリアプノフ指数を求め、
心拍数算出部は、脈波の測定値から脈拍数を計算して心拍数を求め、
心拍変動の低周波成分・高周波成分算出部は、脈波の測定値から脈波のピーク間隔を求め、当該脈波のピーク間隔の時系列データを周波数解析して、心拍変動の低周波成分、高周波成分及び低・高周波成分の比を求め、
適応力低下・落込み状態判定部は、次式、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
により適応力低下・落込み状態を判定する、
眠気・疲労状態判定部は、次式、
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3-S5は閾値、
により眠気・疲労状態を判定する、
緊張・気分高揚状態判定部は、次式、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
により緊張・気分高揚状態を判定する、
ストレス状態判定部は、次式、
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値、
によりストレス状態を判定する、
請求項
3又は4に記載のドライバーの状態推定装置。
【請求項6】
リアプノフ指数算出部は、脈波の測定値からカオス解析でリアプノフ指数を求め、
心拍数算出部は、脈波の測定値から脈拍数を計算して心拍数を求め、
心拍変動の低周波成分・高周波成分算出部は、脈波の測定値から脈波のピーク間隔を求め、当該脈波のピーク間隔の時系列データを周波数解析して、心拍変動の低周波成分、高周波成分及び低・高周波成分の比を求め、
適応力低下・落込み状態判定部は、次式、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
により適応力低下・落込み状態を判定する、
眠気・疲労状態判定部は、次式、
ln(HF)>S10 且つ HR<S4 且つ ln(LF/HF)<S11
ここで、S4、S10、S11は閾値、ln(HF)、ln(LF/HF)は自然対数、
により眠気・疲労状態を判定する、
緊張・気分高揚状態判定部は、次式、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
により緊張・気分高揚状態を判定する、
ストレス状態判定部は、次式、
ln(LF/HF)>S12 且つ ln(HF)<S13
ここで、S12、S13は閾値、ln(HF)、ln(LF/HF)は自然対数、
によりストレス状態を判定する、
請求項
3又は
4に記載のドライバーの状態推定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ダンプカーなどの輸送系車両やブルドーザーなどの建設機械を含む各種の車両のドライバーの運転に不適切な状態(眠気、疲労など)を推定するドライバーの状態推定方法及び装置に関する。
【背景技術】
【0002】
除染土壌などの輸送において、これまでもヒューマンエラー対策が図られてきたが、交通事故やルート逸脱などのトラブルが発生している。今後、輸送量はますます増大し、ハード面のみならず、ソフト面からもリスク低減対策が必要になっている。
ところで、近年、交通事故などの予防策として、車両の運転手の運転中の生体状態を推定(又は判定)する方法や装置が注目されている。この種の方法や装置が特許文献1-3などにより提案されている。
【0003】
特許文献1は危険発生箇所情報収集システムと車載機器に関するもので、このシステムは、車両に搭載される車載機器とセンターに設置される危険発生箇所情報収集装置とが通信網を介して通信可能に構成される。車載機器は、脈波センサー、心電センサー、無線通信機、GPS受信機、車速センサー、ブレーキセンサー、アクセルセンサー、全方位カメラ、音声出力装置及び表示装置からなり、危険発生箇所情報収集装置は、通信装置及びヒヤリハットマップデータベースからなる。
このシステムでは、運転手の心電と脈波を組み合わせて血圧を求め、この求めた血圧と心電から求めた心拍数とから眠気や緊張度のレベルを推定する。
【0004】
特許文献2は自動車運転者居眠り防止装置に関するもので、この装置は、ハンドルに運転者からの情報を検知するための複数のセンサー(緊握センサー、脈波センサー、心電センサー)から構成される運転者状態検知手段を有し、車輌の内部に車両の走行状態を検知するための複数のセンサーから構成される車輌状態検知手段を備え、また、車輌状態検知手段は運転者状態検知手段からの検知情報に基づいて、運転者の眠気状態を判定する情報処理装置を有し、この情報処理装置は、判定の結果、眠気が発生していると判定された場合に、車輌状態検知手段からの情報に応じて運転者に対して警告するか否かを判定する。この場合、脈波間隔、心電波形が覚醒時、たとえば市街地走行時の脈波、心電間隔と比べ長いと検知した場合、もしくは、脈波、心電間隔の揺らぎの周波数分析を行い、大よそ0.15~0.4(Hz)の周波数帯域の成分が覚醒時に比べ増加していると検知した場合、もしくは、共に検知した場合、運転者に眠気が発生しているとして判定する。
【0005】
特許文献3はドライバー状態判定装置及びドライバー状態判定プログラムに関するもので、この装置は、非線形解析部、周波数スペクトル分析部、ドライバー状態判定部を備え、非線形解析部が、ドライバーの運転操作に係る運転操作量(アクセルペダル、ブレーキペダル、ハンドルなどの操作に係る操作量)を取得し、非線形解析処理を行うことによって運転操作量に関するリアプノフ指数を算出し、周波数スペクトル分析部が、リアプノフ指数の時系列データのパワースペクトル密度を算出し、算出されたパワースペクトル密度における所定の低周波数帯域の積分値と、所定の高周波数帯域の積分値とを算出し、ドライバー状態判定部は、所定の低周波数帯域の積分値、及び所定の高周波数帯域の積分値を用いて、その時系列変化からドライバーの運転時の疲労度又は緊張度を判定する。
【0006】
その他に心拍揺らぎによる眠気検知の方法が周知である。この方法は、心拍間隔(心拍の一拍と一拍との間隔)が一定値を取るのではなく、一拍ごとに間隔が変動しているため、その心拍間隔の変動を周波数解析することにより自律神経活動を把握して眠気を推定するものである。この方法では、測定した脈波から心拍のピーク(心電のR波に相当)を取得し、そのピーク間隔(RRI:R-R Interval)の時系列データを取得して周波数解析を行う。心拍間隔のスペクトルは生体の状態によって変化し、活動時にはスペクトルの高周波数成分(HF成分)が低く、リラックス時にはHF成分が高まることが知られているので、HF成分の大きさ、あるいは低周波成分(LF成分)の大きさとの組み合わせ、あるいはLF成分とHF成分の比(LF/HFやその対数ln(LF/HF))を用いて眠気を推定する。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2007-94542号公報
【文献】特開2011-8457号公報
【文献】特開2015-189402号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記従来の技術では、ドライバーの運転に支障を及ぼす状態、あるいは運転に不適切な状態として、ドライバーの眠気や疲労のみ、あるいは眠気や疲労の他に緊張といった精神状態の一部分だけの評価に着目しているだけで、眠気や疲労がドライバーの運転不適の状態の代表例であるが、眠気や疲労状態以外にも、適応力低下や極度に落ち込んでいる状態、緊張や気分高揚の状態、ストレスが高い状態など精神状態の面で安全運転義務違反やヒューマンエラーにつながるおそれのある状態があり、このような状態に対して対応ができない、という問題がある。
【0009】
本発明は、上述したような事情に鑑みてなされたもので、この種のドライバーの状態推定方法及び装置において、輸送系車両、建設機械のドライバーを含む各種のドライバーの状態を簡易な手法でありながらより広範かつ詳細に測定して、運転に適した状態か否かを的確に判定することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明のドライバーの状態推定方法は、
輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波を測定し、
当該脈波から、心拍変動ゆらぎ、カオスゆらぎの2種類の生体ゆらぎとして、次の(1)-(4)の指標を計測し、
(1)心拍数(HR)
(2)リアプノフ指数(Lya)
(3)心拍変動の高周波成分(HF)
(4)心拍変動の低周波成分(LF)
これらの指標から、各種のドライバーの運転に支障を及ぼす「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態を、次のように推定する、
「適応力低下・落込み状態」は、HR及びLyaを使い、次式により推定する、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
「眠気・疲労状態」は、HR、HF及びLFを使い、次式により推定する、
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3、S4、S5は閾値、
「緊張・気分高揚状態」は、HRとLyaを使い、次式により推定する、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
「ストレス状態」は、HF及びLFを使い、次式により推定する、
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値、
ことを要旨とする。
この場合、HF、LF/HFに代えてln(HF)、ln(LF/HF)を使ってもよい。ここでlnは自然対数である。自然対数を使った場合は、閾値も変わる。
【0011】
また、上記目的を達成するために、本発明のドライバーの状態推定装置は、
各種のドライバーから脈波を測定する脈波測定器と、
前記脈波測定器に接続され、当該脈波測定器により測定した脈波を基にリアプノフ指数を求めるリアプノフ指数算出部と、
前記脈波測定器に接続され、当該脈波測定器により測定された脈波を基に心拍数を求める心拍数算出部と、
前記脈波測定器に接続され、当該脈波測定器により測定された脈波を基に心拍変動の低周波成分、高周波成分、及び低・高周波成分の比を算出する心拍変動の低周波成分・高周波成分算出部と、
リアプノフ指数、心拍数、心拍変動の低周波成分、高周波成分、及び低・高周波成分の比を格納し、またこれらのデータの対応関係を記憶する記憶部と、
前記リアプノフ指数算出部と前記心拍数算出部とに接続され、リアプノフ指数と心拍数から適応力低下・落込み状態を判定する適応力低下・落込み状態判定部と、
前記心拍数算出部と前記低周波成分・高周波成分算出部とに接続され、心拍数と心拍変動の低周波成分、高周波成分、低・高周波成分の比から眠気・疲労状態を判定する眠気・疲労状態判定部と、
前記リアプノフ指数算出部と前記心拍数算出部とに接続され、リアプノフ指数と心拍数から緊張・気分高揚状態を判定する緊張・気分高揚状態判定部と、
前記低周波成分・高周波成分算出部に接続され、心拍変動の低周波成分、高周波成分、低・高周波成分の比からストレス状態を判定するストレス状態判定部と、
前記適応力低下・落込み状態判定部、前記眠気・疲労状態判定部、前記緊張・気分高揚状態判定部、及び前記ストレス状態判定部に接続され、これら適応力低下・落込み状態判定部、前記眠気・疲労状態判定部、前記緊張・気分高揚状態判定部、及び前記ストレス状態判定部による判定結果を出力する出力部と、
を備えた、
ことを要旨とする。
また、この場合、心拍変動の低周波成分・高周波成分算出部は、脈波測定器に接続され、前記脈波測定器により測定された脈波を基に脈波のピークの間隔を求める脈波ピーク間隔算出部と、前記脈波ピーク間隔算出部に接続され、前記脈波測定器により求められた時系列データから前記脈波ピーク間隔のパワースペクトル密度を算出する脈波ピーク間隔のパワースペクトル密度算出部と、前記パワースペクトル密度算出部に接続され、前記パワースペクトル密度算出部により求められた前記脈波ピーク間隔のパワースペクトル密度から心拍変動の低周波成分、高周波成分及び低・高周波成分の比を算出する心拍変動の低周波成分・高周波成分・低周波成分/高周波成分算出部とにより構成される。
そして、
リアプノフ指数算出部は、脈波の測定値からカオス解析でリアプノフ指数を求め、
心拍数算出部は、脈波の測定値から脈拍数を計算して心拍数を求め、
心拍変動の低周波成分・高周波成分算出部は、脈波の測定値から脈波のピーク間隔を求め、当該脈波のピーク間隔の時系列データを周波数解析して、心拍変動の低周波成分、高周波成分及び低・高周波成分の比を求め、
適応力低下・落込み状態判定部は、次式、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値、
により適応力低下・落込み状態を判定する、
眠気・疲労状態判定部は、次式、
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3-S5は閾値、
により眠気・疲労状態を判定する、
緊張・気分高揚状態判定部は、次式、
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値、
により緊張・気分高揚状態を判定する、
ストレス状態判定部は、次式、
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値、
によりストレス状態を判定する。
また、この場合、HF、LF/HFに代えてln(HF)、ln(LF/HF)を使ってもよい。ここでlnは自然対数である。自然対数を使った場合は、閾値も変わる。
【発明の効果】
【0012】
本発明の方法及び装置によれば、上記の各構成により、従来のような眠気や疲労のみの評価、あるいは眠気と緊張、疲労と緊張といった身体状態と精神状態の一部分だけの評価と異なり、各種のドライバーの状態をより広範かつ詳細に測定して、運転に適した状態か否かを的確に判定することができ、安全管理上、ヒューマンエラー対策上より一層現実に即したきめ細かい対策を採ることができ、しかも、この評価に使う指標はすべて脈波の測定値から算出できることから、脈波センサー以外にセンサーは必要がなく、ドライバーが装着するウエラブルセンサーとしてはシンプルな装置構成とすることができる、という本発明独自の格別な効果を奏する。
【図面の簡単な説明】
【0013】
【
図1】本発明の一実施の形態に係るドライバーの状態推定方法及び装置のイメージを示す図
【
図6】同装置の制御部による適応力低下・落込み状態評価動作の処理手順を説明する図
【
図7】同装置の制御部による眠気・疲労状態評価動作の処理手順を説明する図上記実施の形態の制御部による精神的疲労評価結果を表示する図である。
【
図8】同装置の脈波測定器で測定された脈波を示す図
【
図9】同装置の制御部による緊張・気分高揚状態評価動作の処理手順を説明する図
【
図10】同装置の制御部によるストレス状態評価動作の処理手順を説明する図
【
図11】同装置の出力部からドライバーに警報する判定基準と注意喚起メッセージを示す図
【
図12】同装置を用いた、実車によるバイタルデータ(脈波)の取得とその効果の結果を示す図
【発明を実施するための形態】
【0014】
次に、この発明を実施するための形態について図を用いて説明する。
図1、
図2にドライバーの状態推定方法(以下、本方法という。)を示している。
図1、
図2に示すように、本方法は、輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波を測定し、当該脈波から心拍変動ゆらぎ、カオスゆらぎの2種類の生体ゆらぎを計測し、2種類の生体ゆらぎに基づいて、各種のドライバーの運転に支障を及ぼす「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態を推定する。特に、本方法では、各種のドライバーの脈波から心拍変動解析及びカオス解析を用いて、心拍数(HR)、心拍変動の低周波成分(LF)、高周波成分(HF)、リアプノフ指数を求め、行動エラーを誘発する「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態の兆候を捉える。つまり、本方法では、従来から取り入れられている指標である心拍数、心拍変動の低周波成分や高周波成分などとリアプノフ指数とを組み合わせることで、各種のドライバーの眠気、疲労状態の他に運転に不適切な適応力低下・落込み状態、緊張・気分高揚状態、ストレス状態を評価する。
【0015】
本方法では、まず、各種のドライバーの2種類の生体ゆらぎを計測するため、各種のドライバーの脈波から次の指標を計算する。
(1)心拍数(HR)
(2)リアプノフ指数(Lya)
(3)心拍変動の高周波成分(HF)
(4)心拍変動の低周波成分(LF)
(5)心拍変動の低・高周波成分の比(LF/HF)
なお、各指標について簡単に触れておく。
心拍数(HR)は、一定の時間(通常1分間)内に心臓が拍動する回数をいい、一般に緊張するほど心拍数は高く、リラックスするほど心拍数は低くなる。
リアプノフ指数(Lya)は脈波のカオス解析により得られる指数で、人間の精神的健康度、例えば精神的活力や気力、外部適応力(外界の変化に柔軟に対応できる力)と関係する。ストレス状態で気分が高揚しているとリアプノフ指数は大きくなり、それを超えてさらに大きくなるとパニック状態であることを示す。逆に疲れていたり気分が落ち込んでいたりするとリアプノフ指数は小さくなり、睡眠状態ではさらに小さくなる。
心拍変動の高周波成分(HF)は呼吸変動と関連しており、副交感神経の影響を受ける。リラックスしているとHF成分は大きくなる。
心拍変動の低周波成分(LF)は血圧の変動であるMayer波の成分であり、交感神経と副交感神経の両方の影響を受ける。
心拍変動の低・高周波成分の比(LF/HF)は自律神経機能の評価として用いられる値であり、緊張状態では交感神経が活性するため、LF/HFは上昇し、リラックス状態では副交感神経が活性するため、LF/HFは低下する。
【0016】
そして、これらの指標から各種のドライバーの「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」の4つの状態を次のように推定する。
「適応力低下・落込み状態」は、心拍数(HR)及びリアプノフ指数(Lya)を使い、次式により推定する。
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値
「眠気・疲労状態」は、心拍数(HR)、心拍変動の高周波成分(HF)及び低周波成分(LF)を使い、次式により推定する。
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3、S4、S5は閾値
「緊張・気分高揚状態」は、心拍数(HR)とリアプノフ指数(Lya)を使い、次式により推定する。
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値
「ストレス状態」は、心拍変動の高周波成分(HF)及び低周波成分(LF)を使い、次式により推定する。
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値
また、この場合、HF、LF/HFの代わりにln(HF)、ln(LF/HF)を使う場合もある。ここでlnは自然対数である。自然対数を使った場合は、閾値も変わる。
この場合、「適応力低下・落込み状態」は、HR及びLyaを使い、次式により推定する、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値
「眠気・疲労状態」は、HR、ln(HF)及びln(LF/HF)を使い、次式により推定する、
ln(HF)>S10 且つ HR<S4 且つ ln(LF/HF)<S11
ここで、S4、S10、S11は閾値、ln(HF)、ln(LF/HF)は自然対数
「緊張・気分高揚状態」は、HRとLyaを使い、次式により推定する。
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値
「ストレス状態」は、ln(HF)及びln(LF/HF)を使い、次式により推定する、
ln(LF/HF)>S12 且つ ln(HF)<S13
ここで、S12、S13は閾値、ln(HF)、ln(LF/HF)は自然対数
とすることができる。
【0017】
そして、各種のドライバーにこれら運転に不適切な状態が推定されると、次のような行動エラー(ヒューマンエラー)が想定され、それぞれに応じた措置を取る。
各種のドライバーが適応力低下・落込み状態と推定されると、脇見運転やルート間違いなどの散漫、漫然運転を引き起こす恐れがあり、この場合は、運転の注意喚起の措置を取る。
各種のドライバーが眠気・疲労状態と推定されると、居眠り運転、操作ミスなどを引き起こす恐れがあり、この場合は、運転の注意喚起とともに休憩を促す措置を取る。
各種のドライバーが緊張・気分高揚状態と推定されると、衝突、法令違反などを引き起こす恐れがあり、この場合は、運転の注意喚起とともに深呼吸などしてリラックスすることを促す措置を取る。
各種のドライバーがストレス状態と推定されると、衝突、法令違反などを引き起こす恐れがあり、この場合は、運転の注意喚起とともに深呼吸などしてリラックスすることを促す措置を取る。
なお、上記の状態以外では、各種のドライバーは正常な状態とする。
【0018】
図3にこの方法に用いるドライバーの状態推定装置(以下、本装置Aという。)を示している。
図3に示すように、本装置Aは、各種のドライバーから脈波を測定する脈波測定器1と、脈波測定器1において測定された脈波の測定値をデータ処理するとともに本装置A全体の動作をコントロールする制御部2と、制御部2における処理に必要なデータ、及び制御部2の処理結果データを格納する記憶部3と、本装置Aにおける各種のドライバーの状態推定結果を出力する出力部4とを備えて構成される。
【0019】
脈波測定器1は本願出願人らの共同開発による既知の高解像度バイタルデータ取得ユニットで、
図4に示すように、耳たぶに装着するクリップ式の脈波センサー11と、脈波センサー11をコントロールするコントローラー12とからなる。
脈波センサー11は発光部及び受光部を有する光電型脈波センサーで、被検者であるドライバーから脈波を測定する。脈波は、心臓が血液を送り出すことに伴って発生する、血管の容積変化のことをいい、脈波の測定方法はいくつかあるが、血管の容積変化に伴って変化するヘモグロビン量を検知することで容易に測定できる。血中ヘモグロビンは特定の波長の光を強く吸収するので、この波長の光を照射したときの反射光や透過光はヘモグロビン量によって変化する。反射光または透過光の強度を電気信号に変えれば脈波を測定することができる。本装置Aでは、脈波センサー11に透過型の光電型脈波センサーを採用した。また、この種の脈波センサーは、脈波の測定に適した身体の部位として、指先、手首、耳たぶ、耳孔に装着するタイプなど各種のものが実用化されているが、本装置Aでは、ドライバー用として運転の妨げにならないように、耳たぶに装着するクリップ式のものとし、耳たぶで脈波を測定するものとした。この脈波センサー11でドライバーの耳たぶから脈波をサンプリング周波数1000Hzによりデジタル化して取得する。
コントローラー12もまた既知のもので、ここでは装置構成について特に図示していないが、脈波センサー11他コントローラー12の各部を制御し、脈波センサー11で測定された測定信号を取り出す制御部、測定信号をA/D変換するA/D変換部、A/D変換後のデータ(脈波データ)をスマートフォンやタブレット型端末などのモバイル端末やパソコンへ無線送信するための通信部、電源を必要とする各部に電源を供給する電源部などからなり、全体として手の平サイズのコンパクトな箱型の装置になっている。このようなコントローラー12がセンサーケーブル13を介して脈波センサー11に(電気的に)接続される。
このようにして脈波センサー11で測定された各種のドライバーの脈波データ他各種のデータはコントローラー12によりモバイル端末などへ送られるようになっている。
【0020】
制御部2はCPUが用いられ、被検者のドライバーの状態(「適応力低下・落込み状態」と、「眠気・疲労状態」と、「緊張・気分高揚状態」と、「ストレス状態」)を評価するために各種処理プログラムおよび各種測定データや演算データを用いてデータ処理を行う。
図5にこの制御部2の機能ブロック図を示している。
図5に示すように、制御部2は、脈波測定器1に接続され、脈波測定器1により測定した脈波を基にリアプノフ指数を求めるリアプノフ指数算出部21と、脈波測定器1に接続され、脈波測定器1により測定された脈波を基に心拍数を求める心拍数算出部22と、脈波測定器1に接続され、脈波測定器1により測定された脈波を基に心拍変動の低周波成分、高周波成分、及び低・高周波成分の比を算出する心拍変動の低周波成分・高周波成分算出部23と、リアプノフ指数算出部21と心拍数算出部22とに接続され、リアプノフ指数と心拍数から適応力低下・落込み状態を判定する適応力低下・落込み状態判定部24と、心拍数算出部22と低周波成分・高周波成分算出部23とに接続され、心拍数と心拍変動の低周波成分、高周波成分、低・高周波成分の比から眠気・疲労状態を判定する眠気・疲労状態判定部25と、リアプノフ指数算出部21と心拍数算出部22とに接続され、リアプノフ指数と心拍数から緊張・気分高揚状態を判定する緊張・気分高揚状態判定部26と、低周波成分・高周波成分算出部23に接続され、心拍変動の低周波成分、高周波成分、低・高周波成分の比からストレス状態を判定するストレス状態判定部27とを備える。
また、この場合、心拍変動の低周波成分・高周波成分算出部23は、脈波測定器1に接続され、脈波測定器1により測定された脈波を基に心電図のRRI(RR間隔)に相当する脈波のピーク間隔を求める脈波ピーク間隔算出部231(以下、RRI算出部231という。)と、RRI算出部231に接続され、脈波測定器1により求められた時系列データから脈波ピーク間隔のパワースペクトル密度を算出する脈波ピーク間隔のパワースペクトル密度算出部232(以下、RRIのスペクトル密度算出部232という。)と、RRIのスペクトル密度算出部232に接続され、RRIのスペクトル密度算出部232により求められた脈波ピーク間隔のパワースペクトル密度から心拍変動の低周波成分(以下、LF成分という。)、高周波成分(以下、HF成分という。)及び低・高周波成分の比(以下、LF/HFという。)を算出する心拍変動の低周波成分・高周波成分・低周波成分/高周波成分算出部233(以下、LF、HF、LF/HF算出部233という。)とにより構成される。
この制御部1は
図1においてクラウド上のサーバーにより実現される。このようにして脈波センサーからモバイル端末へ送られた脈波データ他各種のデータはモバイルネットワークでこのクラウド上のサーバーへ転送されて、このサーバーにおいて転送されたデータを基に作業員の状態を判定する。
なお、この制御部1は
図1において各種のドライバーを管理する管理センターに設置されるパソコンや各種のドライバーが携帯するスマートフォン、タブレット端末などのモバイル端末やパソコンで実現することもできる。
【0021】
記憶部3は、制御部2で算出された心拍数、LF成分、HF成分、及びLF/HF、リアプノフ指数を格納し、またこれらのデータの対応関係を記憶する。
この記憶部3は
図1においてクラウド上のサーバーにより実現される。
なお、この記憶部3は
図1において各種のドライバーを管理する管理センターに設置されるパソコンや各種のドライバーが携帯するスマートフォン、タブレット端末などのモバイル端末やパソコンで実現することもできる。
【0022】
出力部4は、制御部2において適応力低下・落込み状態判定部24、眠気・疲労状態判定部25、緊張・気分高揚状態判定部26、及びストレス状態判定部27に接続され、これら適応力低下・落込み状態判定部24、眠気・疲労状態判定部25、緊張・気分高揚状態判定部26、及びストレス状態判定部27による判定結果を出力する。この出力部4は、基本的に、各判定結果を画像で表示するディスプレイなどの表示装置、又は各判定結果を音声で知らせるスピーカー、さらには各判定結果を紙面に表示するプリンターなどであり、また、各判定結果を通信回線を通して送信する通信装置としてもよいが、この場合、出力部4は
図1においてドライバーにあってはスマートフォンやタブレット端末などのモバイル端末で、管理センターにあってはパソコンで実現される。このようにしてクラウド上のサーバーで判定された各種のドライバーの状態がモバイルネットワークを介してドライバーの携帯するモバイル端末へ、また、インターネット回線などを介して管理センターに設置されたパソコンへ、通知され、運転に適していない状態のときは、注意喚起のメッセージなどが併せて警報される。
【0023】
このような構成を有する本装置Aの動作について説明する。
(動作1:適応力低下・落込み状態判定動作)
図6に本装置Aの制御部2による適応力低下・落込み状態判定動作の処理手順を説明するフローチャートを示している。
図6に示すように、この適応力低下・落込み状態判定動作において、制御部2は、脈波測定器1において測定された被検者である各種のドライバーの脈波データを取得する(ステップS11)。入力された脈波データはリアプノフ指数算出部21および心拍数算出部22へ送付され、リアプノフ指数算出部21においては脈波データから脈波のリアプノフ指数が算出される(ステップS12)一方、心拍数算出部22においては脈波データから心拍数が算出される(ステップS13)。
【0024】
リアプノフ指数の算出手順はカオス解析の分野で確立した方法がある。リアプノフ指数とは、
X
n+1 =f(X
n)
という力学系について、近接した2点から出発した2つの軌道{X
n}がn→∞(すなわち、無限大)のときにどれ位離れて行くかを計る尺度をいい、脈波のリアプノフ指数は次式で算出する。このアルゴリズムは特許文献4に基づく。
特許文献4:特開平6-28335号
【数1】
【0025】
心拍数算出部22においては、脈波データから1分間の心拍(心拍のピーク)の回数(回/分)が数えられる。なお、この心拍の回数は、RRI算出部231で測定するRRI(秒/回)を使って、60/RRIで計算されてもよい。
60[秒/分]/RRI[秒/回]=60/RRI[回/分]
【0026】
これらの算出されたリアプノフ指数及び心拍数の各データは一旦記憶部3へ送付され、当該記憶部3の所定の格納領域に記憶されてもよい。
そして、適応力低下・落込み状態判定動作の遂行に当たっては、上記算出されたリアプノフ指数及び心拍数の各データは適応力低下・落込み状態判定部24へ送付される。適応力低下・落込み状態判定部24においては、適応力低下・落込み状態判定状態を表す指標として、脈波のリアプノフ指数と心拍数の各データを取得し、これら脈波のリアプノフ指数と心拍数との両データを使って以下のような処理を実行して適応力低下・落込み状態を評価(判定)する(ステップS14)。適応力低下・落込み状態判定部24において得られた適応力低下・落込み状態の評価結果は出力部4へ送付され、画像、その他の形で出力表示される(ステップS15)。適応力低下・落込み状態判定部における処理は下記のとおりである。
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値
【0027】
なお、リアプノフ指数及び心拍数のデータが記憶部3に記憶されている場合は、脈波の測定時点とは時間的に異なった状況(例えば後日とか)での適応力低下・落込み状態評価処理を実行できる。よって、特定のドライバーにとっての、適応力低下・落込み状態の各評価の日中の時間変動や長期間でみた季節変動などの傾向も探究することが可能となる。
【0028】
(動作2:眠気・疲労状態判定動作)
図7に本装置Aの制御部2による眠気・疲労状態判定動作の処理手順を説明するフローチャートを示している。
図7に示すように、この眠気・疲労状態判定動作において、制御部2は、脈波測定器1において測定された被検者であるドライバーの脈波データを取得する(ステップS21)。入力された脈波データは心拍数算出部22、及び低周波成分・高周波成分算出部23(すなわち、RRI算出部231、RRIのパワースペクトル密度算出部232、LF、HF、LF/HF算出部233)へ送付され、心拍数算出部22においては脈波データから心拍数が算出され(ステップS22)、低周波成分・高周波成分算出部23では、RRI、RRIのパワースペクトル密度、LF、HF、LF/HFが算出される(ステップS23)。
【0029】
心拍数算出部22においては、脈波データから1分間の心拍(心拍のピーク)の回数(回/分)が数えられる。なお、この心拍の回数は、RRI算出部231で測定するRRI(秒/回)を使って、60/RRIで計算されてもよい。
60[秒/分]/RRI[秒/回]=60/RRI[回/分]
【0030】
低周波成分・高周波成分算出部23では、RRI算出部231において、脈波データから脈波のピークが検出され、各ピーク間の間隔(1つ前のピークとの間隔)を測定する。
図8に脈波の測定値と脈波のピーク間隔の一例を示す。
RRIのパワースペクトル密度算出部232においては、RRI算出部231において測定された脈波のピーク間隔(RRI)の時系列データからパワースペクトル密度が算出される。
RRIの時系列データをx(t)とする。x(t)のパワースペクトル密度PSD(f)は次式で算出する。
【数2】
LF、HF、LF/HF算出部233においては、RRIのパワースペクトル密度算出部232において算出されたパワースペクトル密度からLF、HF、LF/HFが算出される。
LF、HFは次式で算出する。
【数3】
LF/HFは上記式で求めた結果を使って算出する。
ここで、f1、f2は低周波領域の下限と上限であり、f3、f4は高周波領域の下限と上限である。f1=0.04Hz、f2=0.15Hz、f3=0.15~0.20Hz、f4=0.35~0.45Hzが良く使われる値である。なお、これらの値はこれに限定されるものではなく、ドライバー個人毎に変えてもよい。
【0031】
これらの算出された心拍数及びRRI、RRIのスペクトル密度、LF、HF、LF/HFの各データは一旦記憶部3へ送付され、当該記憶部3の所定の格納領域に記憶されてもよい。
そして、眠気・疲労状態判定動作の遂行に当たっては、上記算出された心拍数及びLF、HF、LF/HFの各データは眠気・疲労状態判定部25へ送付される。眠気・疲労状態判定部25においては、眠気・疲労状態を表す指標として、心拍数とLF、HF、LF/HFの各データを取得し、これら心拍数とLF、HF、LF/HFとの両データを使って以下のような処理を実行し、眠気・疲労状態を評価(判定)する(ステップS24)。眠気・疲労状態判定部25において得られた眠気・疲労状態の評価結果は出力部4へ送付され、画像、その他の形で出力表示される(ステップS25)。眠気・疲労状態判定部25における処理は下記のとおりである。
HF>S3 且つ HR<S4 且つ LF/HF<S5
ここで、S3、S4、S5は閾値
【0032】
なお、心拍数及びLF、HF、LF/HFの各データが記憶部3に記憶されている場合は、脈波の測定時点とは時間的に異なった状況(例えば後日とか)での眠気・疲労状態の評価処理を実行できる。よって、特定のドライバーにとっての、眠気・疲労状態の評価の日中の時間変動や長期間でみた季節変動などの傾向も探究することが可能となる。
【0033】
(動作3:緊張・気分高揚状態判定動作)
図9に本装置Aの制御部2による緊張・気分高揚状態判定動作の処理手順を説明するフローチャートを示している。
図9に示すように、この緊張・気分高揚状態判定動作において、制御部2は、脈波測定器1において測定された被検者であるドライバーの脈波データを取得する(ステップS31)。入力された脈波データはリアプノフ指数算出部21および心拍数算出部22へ送付され、リアプノフ指数算出部21においては脈波データから脈波のリアプノフ指数が算出される(ステップS32)一方、心拍数算出部22においては脈波データから心拍数が算出される(ステップS33)。
【0034】
リアプノフ指数算出部21においては、脈波のリアプノフ指数を既述のとおり次式で算出する。
【数1】
【0035】
心拍数算出部22においては、既述のとおり、脈波データから1分間の心拍(心拍のピーク)の回数(回/分)が数えられる。また、この心拍の回数は、RRI算出部で測定するRRI(秒/回)を使って、60/RRIで計算されてもよい。
60[秒/分]/RRI[秒/回]=60/RRI[回/分]
【0036】
これらの算出されたリアプノフ指数及び心拍数の各データは一旦記憶部3へ送付され、当該記憶部3の所定の格納領域に記憶されてもよい。
そして、緊張・気分高揚状態判定動作の遂行に当たっては、上記算出されたリアプノフ指数及び心拍数の各データは緊張・気分高揚状態判定部26へ送付される。緊張・気分高揚状態判定部26においては、緊張・気分高揚状態判定状態を表す指標として、脈波のリアプノフ指数と心拍数の各データを取得し、これら脈波のリアプノフ指数と心拍数との両データを使って以下のような処理を実行して緊張・気分高揚状態を評価(判定)する(ステップS34)。緊張・気分高揚状態判定部26において得られた緊張・気分高揚状態の評価結果は出力部4へ送付され、画像、その他の形で出力表示される(ステップS35)。緊張・気分高揚状態判定部26における処理は下記のとおりである。
HR>S6 且つ Lya>S7
ここで、S6、S7は閾値
【0037】
なお、リアプノフ指数及び心拍等のデータが記憶部3に記憶されている場合は、脈波の測定時点とは時間的に異なった状況(例えば後日とか)での緊張・気分高揚状態の評価処理を実行できる。よって、特定のドライバーにとっての緊張・気分高揚状態の評価の日中の時間変動や長期間でみた季節変動などの傾向も探究することが可能となる。
【0038】
(動作4:ストレス状態判定動作)
図10に本装置Aの制御部2によるストレス状態判定動作の処理手順を説明するフローチャートを示している。
図10に示すように、このストレス状態判定動作において、制御部2は、脈波測定器1において測定された被検者であるドライバーの脈波データを取得する(ステップS41)。入力された脈波データは低周波成分・高周波成分算出部23(すなわち、RRI算出部231、RRIのパワースペクトル密度算出部232、LF、HF、LF/HF算出部233)へ送付され、低周波成分・高周波成分算出部23では、RRI、RRIのパワースペクトル密度、LF、HF、LF/HFが算出される(ステップS42)。
【0039】
低周波成分・高周波成分算出部23では、RRI算出部231において、脈波データから脈波のピークが検出され、各ピーク間の間隔(1つ前のピークとの間隔)を測定する。
図8参照。
RRIのパワースペクトル密度算出部232においては、RRI算出部231において測定された脈波のピーク間隔(RRI)の時系列データからパワースペクトル密度が算出される。
RRIの時系列データをx(t)とする。x(t)のパワースペクトル密度PSD(f)は次式で算出する。
【数2】
LF、HF、LF/HF算出部233においては、RRIのパワースペクトル密度算出部232において算出されたパワースペクトル密度からLF、HF、LF/HFが算出される。
LF、HFは次式で算出する。
【数3】
LF/HFは上記式で求めた結果を使って算出する。
ここで、f1、f2は低周波領域の下限と上限であり、f3、f4は高周波領域の下限と上限である。f1=0.04Hz、f2=0.15Hz、f3=0.15~0.20Hz、f4=0.35~0.45Hzが良く使われる値である。なお、この値はこれに限定されるものではなく、ドライバー個人毎に変えてもよい。
【0040】
これらの算出されたRRI、RRIのスペクトル密度、LF、HF、LF/HFの各データは一旦記憶部3へ送付され、当該記憶部3の所定の格納領域に記憶されてもよい。
そして、ストレス状態判定動作の遂行に当たっては、上記算出されたLF、HF、LF/HFの各データはストレス状態判定部27へ送付される。ストレス状態判定部27においては、ストレス状態を表す指標として、LF、HF、LF/HFの各データを取得し、これらLF、HF、LF/HFとの各データを使って以下のような処理を実行し、ストレス状態を評価(判定)する(ステップS43)。ストレス状態判定部27において得られたストレス状態の評価結果は出力部4へ送付され、画像、その他の形で出力表示される(ステップS44)。ストレス状態判定部27における処理は下記のとおりである。
LF/HF>S8 且つ HF<S9
ここで、S8、S9は閾値
【0041】
なお、RRI、RRIのスペクトル密度、LF、HF、LF/HFのデータが記憶部3に記憶されている場合は、脈波の測定時点とは時間的に異なった状況(例えば後日とか)でのストレス状態の各評価処理を実行できる。よって、特定のドライバーにとってのストレス状態の各評価の日中の時間変動や長期間でみた季節変動などの傾向も探究することが可能となる。
【0042】
上記本装置Aの動作においては、HF、LF/HFの代わりにln(HF)、ln(LF/HF)を使う場合もある。ここでlnは自然対数である。自然対数を使った場合は、閾値も変わる。
この場合、「適応力低下・落込み状態」は、HR及びLyaを使い、次式により推定する、
Lya<S1 且つ HR<S2
ここで、S1、S2は閾値
「眠気・疲労状態」は、HR、ln(HF)及びln(LF/HF)を使い、次式により推定する。
ln(HF)>S10 且つ HR<S4 且つ ln(LF/HF)<S11
ここで、S4、S10、S11は閾値、ln(HF)、ln(LF/HF)は自然対数
「緊張・気分高揚状態」は、HRとLyaを使い、次式により推定する。
HR>S6 かつ Lya>S7
ここで、S6、S7は閾値
「ストレス状態」は、ln(HF)及びln(LF/HF)を使い、次式により推定する、
ln(LF/HF)>S12 且つ ln(HF)<S13
ここで、S12、S13は閾値、ln(HF)、ln(LF/HF)は自然対数
とすることができる。
【0043】
ここに、一つの事例であるが、ダンプカーのドライバーの状態を推定するのに実際に使用した具体的な指標による判定式を示す。
Lya<0.5 且つ HR<50 のとき、適応力低下・落込み状態と判定する。
ln(HF)>7 且つ HR<50 且つ ln(LF/HF)<0.5 のとき、眠気・疲労状態と判定する。
HR>85 かつ Lya>6 のとき、緊張・気分高揚状態と判定する。
ln(LF/HF)>2 且つ ln(HF)<4 のとき、ストレス状態と判定する。
ここで、lnは自然対数を示す。
なお、これらの値は一つの事例であり、これに限定されるものではない。また、これらの値は個人毎に変えられてもよい。
【0044】
このように本方法及び本装置Aでは、輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波を測定し、脈波から心拍変動ゆらぎ、カオスゆらぎの2種類の生体ゆらぎを計測し、2種類の生体ゆらぎに基づいて、各種のドライバーの運転に支障を及ぼす「適応力低下・落込み状態」、「眠気・疲労状態」、「緊張・気分高揚状態」、「ストレス状態」といった4つの行動パターンを推定し、これらの行動パターンと行動エラーとの関係を把握することで、これらの行動パターンを行動エラーの兆候として捉えることができ、これをドライバーに警告することにより、ヒューマンエラーを未然に防止することができる。
図11に上記ダンプカーのドライバーの状態を推定するのに実際に使用した具体的な指標による判定式を使って、本装置Aの出力部4からドライバーに警報する判定基準と注意喚起メッセージを例示している。なお、この場合、出力部4としてタブレット端末を用いている。
(1)Lya<0.5 且つ HR<50 のとき、適応力低下・落込み状態と判定され、「適応力が低下しています。注意して運転に当たってください。」と画面表示、音声などにより出力される。
(2)ln(HF)>7 且つ HR<50 且つ ln(LF/HF)<0.5 のとき、眠気・疲労状態と判定され、「疲れて眠い状態です。休憩などを取って下さい。」と画面表示、音声などにより出力される。
(3)HR>85 かつ Lya>6 のとき、緊張・気分高揚状態と判定され、「テンションが上昇気味です。リラックスして運転しましょう。」と画面表示、音声などにより出力される。
(4)ln(LF/HF)>2 且つ ln(HF)<4 のとき、ストレス状態と判定され、「ストレスが高い状態です。深呼吸などをし、リラックスして運転しましょう。」と画面表示、音声などにより出力される。
【0045】
本願出願人らは、本装置Aを用いて、ダンプカーで汚染土壌を仮置場から受入地まで輸送する実車によるバイタルデータ(脈波)の取得とその効果の確認を実施した。その結果を
図12に示す。
図12に示すように、ドライバーの「緊張」、「ストレス」は頻繁に検知されており、ドライバー自身に自覚がないときでも、本装置Aではその兆候を検知することができた。また、「適応力低下」についても本装置Aで検知することができた。交感神経が高い状態、つまり、緊張・気分高揚が連続的に継続しているところに、「適応力低下」が見られた。このままの状態で運転を継続すると、散漫・漫然状態に陥り、ヒューマンエラーにつながる恐れがある。この結果から、本方法及び本装置Aの有用性を確認することができた。
【0046】
以上説明したように、本方法及び本装置Aによれば、輸送系車両、建設機械のドライバーを含む各種のドライバーの脈波から心拍ゆらぎ、カオスゆらぎの2種類の生体ゆらぎを計測し、すなわち、従来から取り入れられている指標である心拍数(HR)、心拍変動の低周波成分(LF)や高周波成分(HF)とリアプノフ指数(Lya)とを組み合わせることで、各種のドライバーの適応力低下・落込み状態、眠気、疲労状態、緊張・気分高揚状態、ストレス状態といった生体的行動パターンを推定するので、従来の眠気や疲労のみの評価、あるいは眠気と緊張、疲労と緊張といった身体状態と精神状態の一部分だけの評価と異なり、各種のドライバーの状態(運転に適正な状態か不適正な状態か)をより詳細に測定して、運転に適した状態か否かを的確に判定することができ、安全管理上、ヒューマンエラー対策上、より一層現実に即したきめ細かい対策を採ることができる。
【0047】
また、本方法及び本装置Aで用いる指標はすべて、脈波の測定値から算出できるので、脈波センサー以外にセンサーは必要がなく、ドライバーが装着するウエラブルセンサーとしてはシンプルな装置構成とすることができる。
さらに、本装置Aでは、運転席でドライバーが使用する装置は脈波センサーとスマートフォンやタブレット端末などのモバイル端末のみですみ、携帯が容易で操作もしやすく、ドライバーの負担を少なくすることができる。一方、管理センターではバイタルデータをリアルタイムで取得して、ドライバーの健康状態や疾患につながる病変を常時モニタリングすることができ、ドライバーの安全管理を確実に実施することができる。
【符号の説明】
【0048】
A ドライバーの状態推定装置(本装置)
1 脈波測定器
11 脈波センサー
12 コントローラー
13 センサーケーブル
2 制御部
21 リアプノフ指数算出部
22 心拍数算出部
23 心拍変動の低周波成分・高周波成分算出部
231 脈波ピーク間隔算出部(RRI算出部)
232 脈波ピーク間隔のパワースペクトル密度算出部(RRIのスペクトル密度算出部)
233 心拍変動の低周波成分・高周波成分・低周波成分/高周波成分算出部(LF、HF、LF/HF算出部)
24 適応力低下・落込み状態判定部
25 眠気・疲労状態判定部
26 緊張・気分高揚状態判定部
27 ストレス状態判定部
3 記憶部
4 出力部