(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-26
(45)【発行日】2023-02-03
(54)【発明の名称】誘導結合を利用した通信
(51)【国際特許分類】
H03K 17/691 20060101AFI20230127BHJP
H02M 1/08 20060101ALI20230127BHJP
H04L 25/02 20060101ALI20230127BHJP
H03K 17/567 20060101ALI20230127BHJP
H03K 17/61 20060101ALI20230127BHJP
H03K 19/0175 20060101ALI20230127BHJP
【FI】
H03K17/691
H02M1/08 A
H04L25/02 303B
H03K17/567
H03K17/61
H03K19/0175 280
【外国語出願】
(21)【出願番号】P 2018211023
(22)【出願日】2018-11-09
【審査請求日】2021-10-25
(32)【優先日】2017-12-05
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】516046879
【氏名又は名称】パワー インテグレーションズ スイッツランド ゲーエムベーハー
【氏名又は名称原語表記】Power Integrations Switzerland GmbH
(74)【復代理人】
【識別番号】100125818
【氏名又は名称】立原 聡
(74)【代理人】
【識別番号】100100181
【氏名又は名称】阿部 正博
(72)【発明者】
【氏名】ガルシア オリヴィエ
(72)【発明者】
【氏名】タールハイム ヤン
(72)【発明者】
【氏名】バリ ディディエ ラファエル
(72)【発明者】
【氏名】ペーター マティアス
【審査官】石田 昌敏
(56)【参考文献】
【文献】特開2009-232637(JP,A)
【文献】特開2014-011708(JP,A)
【文献】特表2017-525166(JP,A)
【文献】特開2017-041706(JP,A)
【文献】特開2017-188903(JP,A)
【文献】欧州特許出願公開第3116179(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03K 17/00-17/70
H02M 1/08
H04L 25/02
(57)【特許請求の範囲】
【請求項1】
第1の基準電位を基準とする第1の回路と、
第2の基準電位を基準とする、および、前記第1の回路からガルバニック絶縁された第2の回路と、
前記第1の回路と前記第2の回路とをガルバニック絶縁する誘導結合であって、
前記誘導結合が、前記第1の基準電位を基準とする第1の巻線と前記第2の基準電位を基準とする第2の巻線とを含む、
前記誘導結合と、
を備え、
前記第1の回路が、前記誘導結合に結合された信号受信回路を備え、
前記信号受信回路が、前記誘導結合を通して送信された信号を受信する前記第1の巻線に結合された1つまたは複数の信号受信器を備え、
前記1つまたは複数の信号受信器が、
前記誘導結合から受信された前記信号の少なくとも一部と、前記第1の基準電位に対して第1の極性をもつ第1の閾値と、を比較するように結合された第1の比較器と、
前記誘導結合から受信された前記信号の少なくとも一部と、前記第1の基準電位に対して第2の極性をもつ第2の閾値と、を比較するように結合された第2の比較器と、
を備え、
前記第1の極性が、前記第2の極性の逆であり、
前記第2の回路が、前記誘導結合に結合された信号送信回路を備え、
前記信号送信回路が、前記第2の巻線を通して第1の方向に電流を駆動して第1の信号を送信するように、および、前記第2の巻線を通して第2の方向に電流を駆動して第2の信号を送信するように結合された1つまたは複数の信号送信器を備え、
前記第1の方向が、前記第2の方向の逆である、
デバイス。
【請求項2】
前記1つまたは複数の信号受信器が、
前記第1の比較器を備える第1の信号受信器と、
前記第2の比較器を備える第2の信号受信器と、
を備える、
請求項1に記載のデバイス。
【請求項3】
前記1つまたは複数の信号送信器が、
前記第2の巻線に結合されて前記第1の方向に電流を駆動する第1の信号送信器と、
前記第2の巻線に結合されて前記第2の方向に電流を駆動する第2の信号送信器と、
を備える、
請求項1または請求項2に記載のデバイス。
【請求項4】
前記第1の信号が、前記第2の信号より高い優先度をもち、前記第2の信号との衝突が発生した場合でも受信される、
請求項1から請求項3のいずれか一項に記載のデバイス。
【請求項5】
前記1つまたは複数の信号送信器が、任意の時点で送信することができる、
請求項1から請求項4のいずれか一項に記載のデバイス。
【請求項6】
電力スイッチを備える電力コンバーターのための制御装置であって、
前記制御装置が、請求項1から請求項5のいずれか一項に記載のデバイスを備え、
前記第1の回路が、前記制御装置の一次側であり、
前記第2の回路が、前記制御装置の二次側である、
制御装置。
【請求項7】
前記一次側が、前記誘導結合に結合されたドライバインターフェース回路を備え、
前記ドライバインターフェース回路が、前記1つまたは複数の信号受信器を備える、
請求項6に記載の制御装置。
【請求項8】
前記ドライバインターフェース回路が、前記誘導結合を通してコマンド信号を送信するように結合された第3の信号送信回路をさらに備え、
前記コマンド信号が、オン状態とオフ状態との間における前記電力スイッチの所望の遷移を表し、
前記二次側が、前記誘導結合を通して送信された第3の信号を受信するように、および、前記第3の信号に応答して、前記状態間で前記電力スイッチを駆動するように構成された駆動信号を生成するように結合された駆動信号生成器を備える、
請求項7に記載の制御装置。
【請求項9】
前記1つまたは複数の信号送信器および前記第3の信号送信回路が、任意の時点で送信することができる、
請求項8に記載の制御装置。
【請求項10】
前記第1の方向における前記電流が、前記二次側における異常検出を表す異常信号であり、
前記第2の方向における前記電流が、前記二次側における動作パラメータを表すデータ信号であり、
前記異常信号が、前記データ信号より高い優先度をもつ、
請求項
6または請求項9に記載の制御装置。
【請求項11】
前記動作パラメータが、コレクタ・エミッタ電圧、ドレイン・ソース電圧、システム電圧、前記電力スイッチの温度、負荷電流、コレクタ電流、またはドレイン電流のうちの1つである、
請求項10に記載の制御装置。
【請求項12】
前記第2の方向における前記電流が、二進の
データ信号として構成され、
前記信号送信回路が、
前記第2の方向に前記第2の巻線を通って流れる電流を提供して、前記二進のデータ信号のビットを送信することと、
前記第1の方向に前記第2の巻線を通って流れる電流を提供して、ビットが送信される前または後に前記誘導結合を減磁することと、
を行うように構成され、
前記第1の方向が、前記第2の方向の逆である、
請求項6から請求項11のいずれか一項に記載の制御装置。
【請求項13】
前記信号送信回路が、
前記第2の巻線の第1の端部に結合された第1のスイッチと、
前記第2の巻線の第2の端部に結合された第2のスイッチと、
を備える、
請求項12に記載の制御装置。
【請求項14】
前記信号送信回路が、
第1の電流源と、
第2の電流源と、
を備え、
前記第1の電流源が、
第1の電圧源と、
前記第1の電圧源に直列に接続された第1の抵抗と、
第1のダイオードまたは他の一方向伝導体と、
を備え、
前記第2の電流源が、
第2の電圧源と、
前記第2の電圧源に直列に接続された第2の抵抗と、
第2のダイオードまたは他の一方向伝導体と、
を備える、
請求項13に記載の制御装置。
【請求項15】
前記信号送信回路が、
前記第2の巻線
の第1の端部に結合された第1のスイッチと、
前記第2の巻線
の第2の端部に結合された第2のスイッチと、
前記第1のスイッチと前記第2のスイッチとの両方を伝導状態にスイッチングするように結合されたスイッチ制御回路と、
を備える、
請求項6から請求項14のいずれか一項に記載の制御装置。
【請求項16】
前記第1の比較器が、前記誘導結合から受信された前記信号の少なくとも一部と前記第1の閾値との前記比較の結果を示す第1の比較結果信号を出力するように結合され、
前記1つまたは複数の信号受信器が、
前記第1の比較結果信号を積分して第1の積分値をもたらすように結合された積分器と、
前記第1の積分値と第1の時間閾値とを比較するように結合された第2の比較器と、
をさらに備える、
請求項6から請求項15のいずれか一項に記載の制御装置。
【請求項17】
前記第2の比較器が、前記誘導結合から受信された前記信号の少なくとも一部と第2の電圧閾値との前記比較の結果を示す第2の比較結果信号を出力するように結合され、
前記1つまたは複数の信号受信器が、
前記第2の比較結果信号を積分して第2の積分値をもたらすように結合された第2の積分器と、
前記第2の積分値と第2の時間閾値とを比較するように結合された第4の比較器と、
をさらに備える、
請求項16に記載の制御装置。
【請求項18】
第1の電圧閾値の大きさの絶対値が、前記第2の電圧閾値の大きさの絶対値より大きく、
前記第1の時間閾値の持続期間が、前記第2の時間閾値の持続期間より短い、
請求項17に記載の制御装置。
【請求項19】
前記第1の電圧閾値の前記大きさの前記絶対値が、前記第2の電圧閾値の前記大きさの前記絶対値の3倍より大きく、例えば、4倍より大きいか、または5倍より大きい、
請求項18に記載の制御装置。
【請求項20】
前記第1の時間閾値の前記持続期間が、前記第2の時間閾値の前記持続期間の5分の1未満であり、例えば、7分の1未満であるか、または、10分の1未満である、
請求項18または請求項19に記載の制御装置。
【請求項21】
前記電力スイッチのうちの少なくとも1つが、絶縁ゲートバイポーラトランジスタまたは炭化ケイ素トランジスタを含む、
請求項6から請求項20のいずれか一項に記載の制御装置。
【請求項22】
前記制御装置が、システム制御装置に結合するデータ入力/出力接続を含む、
請求項6から請求項21のいずれか一項に記載の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、誘導結合を利用した通信に関する。例えば、半導体スイッチのための制御装置は、誘導結合を利用してガルバニック絶縁をまたいで通信する送信器と受信器とを含み得る。
【背景技術】
【0002】
電気デバイスは、多くの場合、ガルバニック絶縁された、および、従って異なるグランド電位を基準とする送信器と受信器との間で情報を送信する通信システムを含む。例として、電力コンバーター、医療機器、海事関連機器などが挙げられる。このような通信システムにおける通信チャンネルは、信号変圧器に類似した誘導結合を利用して実装され得る。他の変圧器と同様に、信号変圧器は、ガルバニック絶縁をまたいで電気エネルギーを伝達し得る。概して、信号変圧器は、漏れインダクタンスおよび漂遊キャパシタンスを最小化することにより、高周波応答を改善するように設計される。例えば、信号変圧器の巻線は、セクションに分割されて、交互配置され得る。
【0003】
スイッチング電力コンバーターは、概して、入力を、エネルギー伝達要素をまたいだ電力の伝達を制御することにより、負荷のための調節された出力に変換する。動作時、1つまたは複数のスイッチが制御されて、所望の電力伝達を提供する。デューティサイクル(すなわち、総スイッチング周期に対するスイッチのオン期間の比)を変化させること、スイッチング周波数を変化させること、および/または、単位時間当たりの電流伝導パルスの数を変化させることを含む、幅広い様々なアプローチが説明されている。
【0004】
電力コンバーターは、互いにガルバニック絶縁された一次側と二次側とを含み得る。電力コンバーターは、1つまたは複数のスイッチを制御する1つまたは複数の制御装置をさらに含み得る。1つまたは複数の制御装置は、ガルバニック絶縁をまたいで通信し得る。1つのこのような通信システムは、誘導結合の巻線を使用して、送信器から受信器に情報を送信する。
【発明の概要】
【0005】
以下の図を参照しながら、本発明の非限定的かつ非網羅的な実施形態が説明され、異なる図の中の同様の参照符号は、別段の指定がない限り、同様の部分を示す。
【図面の簡単な説明】
【0006】
【
図1】本開示の一実施形態による、ドライバインターフェースと駆動回路との間の双方向通信を使用した、制御装置を使用した例示的な電力変換システムを示す。
【
図2A】本開示の一実施形態による、
図1に示すドライバインターフェースと駆動回路との間の双方向通信を使用した、例示的な制御装置を示す。
【
図2B】本開示の一実施形態による、
図2Aに示される制御装置の様々な信号に対する例示的な電流値を示す表である。
【
図3A】本開示の一実施形態による、
図2Aの例示的なデータ送信器を示す。
【
図4】本開示の一実施形態による、
図2Aの例示的な異常送信器を示す。
【
図5】本開示の一実施形態による、
図2Aに示す例示的な異常受信器およびデータ受信器を示す。
【
図6A】本開示の一実施形態による、
図2Aに示すドライバインターフェースと駆動回路との間の様々な送信間における優先度を示す表である。
【
図6B】本開示の一実施形態による、データ送信、コマンド送信、および異常送信の間に衝突が存在するときの、一次巻線電流を示すタイミング図である。
【
図6C】本開示の一実施形態による、データ送信、コマンド送信、および異常送信の間に衝突が存在するときの、一次巻線電流の別の例を示すタイミング図である。
【発明を実施するための形態】
【0007】
図面中の複数の図にわたり、対応する参照符号が、対応する構成要素を示す。当業者は、図中の要素が簡潔かつ明確であるように描かれることと、一定の縮尺で描かれるとは限らないこととを理解する。例えば、図中のいくつかの要素の寸法は、本発明の様々な実施形態をより理解しやすくするために、他の要素より誇張される場合があり得る。さらに、市販に適した実施形態において有用または必要な、一般的だがよく理解される要素は、多くの場合、本発明に係るこれらの様々な実施形態の図が見づらくなるのを防ぐために、描かれない。
【0008】
以下の説明では、本発明を十分に理解できるように、多くの特定の詳細事項が記載される。しかし、本発明を実施する際に特定の詳細事項が使用されるとは限らないことが、当業者に明らかとなる。他の例では、よく知られた材料または方法については、本発明が理解しにくくなるのを防ぐために、詳細には説明されない。
【0009】
本明細書中での、「一実施形態(one embodiment)」、「一実施形態(an embodiment)」、「一例(one example)」、または「一例(an example)」についての言及は、実施形態または例との関連で説明される特定の特徴、構造、または特性が本発明の少なくとも1つの実施形態に含まれることを意味する。従って、本明細書中の様々な場所で使用する「一実施形態において(in one embodiment)」、「一実施形態において(in an embodiment)」、「一例(one example)」または「例(an example)」という語句は、すべてが同じ実施形態または例に関係するとは限らない。さらに、特定の特徴、構造、または特性は、1つまたは複数の実施形態または例において、任意の適切な組み合わせ、および/または部分的組み合わせで組み合わされ得る。特定の特徴、構造、または特性は、説明される機能を提供する集積回路、電子回路、結合論理回路、または他の適切な構成要素に含まれ得る。加えて、本明細書とともに提供される図が当業者への説明を目的としていることと、図面が一定の縮尺で描かれるとは限らないこととが理解される。
【0010】
上述のように、電気デバイスは、互いにガルバニック絶縁された送信器と受信器との間に通信チャンネルを提供する誘導結合を含み得る。しかし、誘導結合通信チャンネルは、特定の制限をもち得る。例えば、送信器と受信器とがガルバニック絶縁されるので、送信器と受信器との両方にクロック信号を提供することが高価であり得る。従って、誘導結合通信チャンネルをまたいだ通信は、概して非同期であり、異なる送信器が、同時に信号を送信することを試み得る。
【0011】
本明細書は、これらの制限のうちのいくつかを解決し得る誘導結合通信チャンネルを説明する。例えば、複数の送信器および受信器が、誘導結合に結合されて、誘導結合が提供する通信チャンネルにアクセスし得る。実際には、誘導結合は、複数のチャンネルアクセスを提供し得る。いくつかの場合において、送信器は、非同期で、すなわち、クロック信号、または、送信器のそれぞれの送信が衝突しないことを確実にする他のタイミング機構なしで、送信し得る。いくつかの場合において、デバイスの動作に対してより重要な信号がより低い重要性の信号より信頼性高く搬送されるように、送信された信号は異なる優先度をもち得る。
【0012】
誘導結合通信チャンネルは、スイッチ制御装置が電力スイッチのスイッチングを制御する電力変換システムを含む、様々な異なるデバイスに実装され得る。いくつかのこのような電力変換システムにおいて、電力スイッチは、IGBTドライバにより制御される絶縁ゲートバイポーラトランジスタ(IGBT:insulated-gate bipolar transistor)であり得る。いくつかの場合において、スイッチ制御装置は、誘導結合通信チャンネルを使用してガルバニック絶縁をまたいで通信するように結合されたドライバインターフェースと駆動回路とを含み得る。誘導結合は、信号変圧器または他の結合インダクタとして実装され得る。ドライバインターフェースは、変圧器の一次側にあり得るのに対して、駆動回路は、二次側にあり得る。電力変換システムは、1つまたは複数のスイッチ制御装置を制御するシステム制御装置をさらに含み得る。
【0013】
ドライバインターフェースは、システム制御装置から1つまたは複数の入力信号を受信するように、および、システム制御装置に1つまたは複数の出力信号を提供するように結合され得る。一例において、ドライバインターフェースは、オン状態とオフ状態との間において電力スイッチをスイッチングすることに関係した、システム制御装置からのコマンド信号を受信する。次に、コマンド信号が、誘導結合通信チャンネルを介してガルバニック絶縁をまたいで駆動回路に通信されて、電力スイッチのスイッチングを駆動する。言い換えると、コマンド信号は、電力コンバーターの一次から二次に通信される。
【0014】
駆動回路は、電力スイッチの過電流または過電圧状態などの、電力コンバーターの異常状態を表す異常信号を受信するように結合され得る。異常信号は、駆動回路からドライバインターフェースまで誘導結合通信チャンネルを介してガルバニック絶縁をまたいで通信される。次に、ドライバインターフェースは、システム制御装置に異常信号を出力する。言い換えると、異常信号は、電力コンバーターの二次から一次に通信される。異常信号による異常の指標が、システム制御装置が電力スイッチをすぐにオフに切り替えることを誘発し得るか、または、ドライバは、異常信号送信とは無関係に電力スイッチをオフに切り替え得る。
【0015】
電力スイッチの温度または電圧、コンバーターの入力電圧、または電力スイッチの負荷電流などの、電力スイッチまたは電力コンバーターの動作状態もまた、電力コンバーターの二次から一次に通信され得る。これは、データと呼ばれ得、対応する通信は、データ信号と呼ばれ得る。本開示の実施形態において、電力スイッチ/コンバーターの動作状態に関係したデータ信号は、ドライバ回路により、異常信号およびコマンド信号を通信する同じ誘導結合通信チャンネルを介してガルバニック絶縁をまたいでドライバインターフェースに通信され得る。従って、ドライバインターフェースおよび駆動回路は、双方向通信が可能であり、追加的なハードウェアを不要とし得る。従って、ドライバ回路は、単一の誘導結合通信チャンネルを介してガルバニック絶縁をまたいで異常信号とデータ信号との両方を通信し得る。
【0016】
いくつかの実施態様において、ドライバインターフェースは、誘導結合の一次巻線に結合されるのに対し、駆動回路は、誘導結合の二次巻線に結合される。一実施形態において、ドライバインターフェースは、一次巻線に電圧を印加して、二次巻線における電圧および電流を誘導することにより駆動回路にコマンド信号を送信する。さらに、駆動回路は、誘導結合を介してドライバインターフェースに、異常信号とデータ信号との両方を送信する。一例において、駆動回路は、誘導結合の二次巻線を通して第1の方向に流れるように電流を提供することにより、異常信号を送信し、誘導結合の二次巻線を通して第2の方向に流れるように電流を提供することにより、データ信号を送信し、第1の方向と第2の方向とは互いに逆である。ドライバインターフェースは、異常信号とデータ信号とを受信し、誘導結合の一次巻線における受信された誘導電流の方向により異常信号とデータ信号とを区別する。
【0017】
一実施形態において、コマンド信号、異常信号、およびデータ信号の送信は同期されない。従って、持続期間および/または大きさは、信号が同時に送信された場合に衝突を管理するように選択され得る。持続期間および/または大きさは、電力コンバーターなどのような高パワー/高ノイズ環境において動作するように選択され得る。一例において、異常信号が支配的となるように、異常信号の持続期間および/または大きさは、コマンド信号またはデータ信号に比べて比較的長い/大きい。コマンド信号の大きさは、データ信号に比べて比較的大きなものであり得るが、持続期間は、異常信号またはデータ信号に比べて比較的小さなものであり得る。さらに、データ信号は、比較的小さな大きさをもち得るが、異常信号またはコマンド信号に比べて長い持続期間をもち得る。
【0018】
図1は、双方向通信器を含むドライバインターフェース118と、双方向通信器を含む駆動回路110、111とを含む例示的な電力変換100を示す。電力コンバーター100は、入力電圧102(V
IN)を受信し、電力スイッチ104、105のスイッチングを制御することにより、エネルギー伝達要素L1 107を通して、入力から負荷108に電気エネルギーを伝達するように設計される。様々な実施態様において、電力コンバーター100は、負荷108に出力されるエネルギーの電圧、電流、または電力レベルを制御し得る。
図1に示される例において、エネルギー伝達要素L1 106および2つの電力スイッチ104、105は、ハーフブリッジ構成をとって一緒に結合される。しかし、他のトポロジーも使用され得る。
【0019】
図1に示される例において、電力スイッチ104、105は、IGBTである。しかし、本発明の例は、他の電力スイッチと組み合わせても使用され得る。例えば、金属-酸化物-半導体電界効果トランジスタ(MOSFET:metal-oxide-semiconductor field-effect transistor)、バイポーラトランジスタ、注入促進ゲートトランジスタ(IEGT:injection enhancement gate transistor)、およびゲートターンオフサイリスタ(GTO:gate turn-off thyristor)が使用され得る。加えて、電力コンバーター100は、窒化ガリウム(GaN)半導体または炭化ケイ素(SiC)半導体をベースとした電力スイッチとともに使用され得る。
【0020】
システム制御装置112は、システム入力113を受信し、システム出力183を提供するように結合される。システム制御装置112は、システム入力113に基づいて、スイッチ制御装置(ドライバインターフェース118および駆動回路110、111として示される)が、電力スイッチ104、105をオンに切り替えなければならないか、オフに切り替えなければならないかを判定する。例示的なシステム入力113は、汎用モータードライブのためのパルス幅変調(PWM:pulse width modulated)信号、マルチレベル電力コンバーターのオン切り替えおよびオフ切り替えのシーケンス、またはシステム異常オフ切り替え要求を含む。
【0021】
示される電力コンバーター100において、システム制御装置は、スイッチ制御装置の駆動インターフェース118に、1つまたは複数のコマンドCMD130を出力する。コマンドCMD130は、非一定の持続期間の論理ハイセクションと論理ローセクションとを含む方形パルス波形であり得る。例えば、論理ハイ値は、電力スイッチ104がオン状態になければならないことを示し得るのに対し、論理ロー値は、電力スイッチ104がオフ状態になければならないことを示し得る。両方が同時にオン状態にならないように、電力スイッチ105は、電力スイッチ104と交互にスイッチングされる。実際、電力スイッチ104、105は、概してスイッチング遷移間において両方がオフ状態となる不感時間をもつように制御される。任意の事例において、論理ハイ/論理ロー値の持続期間は、電力スイッチ104、105の所望の駆動に対応し得る。
【0022】
電力スイッチ104、105の各々が、双方向通信器を含むドライバインターフェース118と、双方向通信器を含む駆動回路(それぞれ110、111)とにより制御される。
図1は、単一のドライバインターフェース118を示すが、駆動回路110、111の各々が、それ自体のドライバインターフェースを含み得ることが理解されなければならない。ドライバインターフェース118およびシステム制御装置112の両方が、一次基準電位106を基準とするのに対して、駆動回路110は、二次基準電位175を基準とし、駆動回路111は、二次基準電位176を基準とする。二次基準電位175、176は、異なる電位である。駆動回路110、111は、ドライバインターフェース118と双方向に通信し、さらに、絶縁された通信リンク119によりドライバインターフェース118からガルバニック絶縁される。絶縁された通信リンクは、信号変圧器、結合インダクタ、または他の誘導結合として実装され得る。
【0023】
ドライバインターフェース118は、システム制御装置112により送信されたコマンドCMD130を解釈し、コマンド信号を送信して駆動回路110、111に命令し、絶縁された通信リンク119を介して、電力スイッチ104、105をそれぞれ、オン状態およびオフ状態に駆動する。駆動回路110、111は、それらのそれぞれのコマンド信号を受信し、第1の駆動信号UDR1 116および第2の駆動信号UDR2 117を生成して、電力スイッチ104、105を駆動する。
【0024】
概して、駆動回路110、111は、対応する構造物を含み、対応する動作を実施し得る。しかし、簡潔であるように、駆動回路111の詳細な説明は、以下の説明から省略され、駆動回路110のみに言及する。
【0025】
駆動回路110は、第1の検出信号USENSE1 114と第2の検出信号USENSE2 115とを受信する。第1の検出信号USENSE1 114および第2の検出信号USENSE2 115は、電力スイッチ104の動作状態を表し、データと呼ばれ得る。示される例において、第1の検出信号USENSE1 114が、電力スイッチ104のコレクタ・エミッタ電圧を表すのに対し、第2の検出信号USENSE2 115は、温度センサーNTC155により測定された電力コンバーターの温度を表す。他の例示的な動作状態は、電力スイッチのゲート・エミッタ電圧、電力スイッチを通って流れる電流、またはL1 107の負荷電流を含む。駆動回路110は、異常状態を検出するか、または、それぞれの電力スイッチ104、105における過電圧または過電流異常を表す異常信号(図示されない)を受信し得る。第1の検出信号USENSE1 114および第2の検出信号USENSE2 115により提供される異常信号およびデータは、通信リンク119を介して、駆動回路110からドライバインターフェースに通信される。コマンド信号が電力コンバーター100の一次側から電力コンバーター100の二次側に送信されるのに対し、異常およびデータは、電力コンバーター100の二次側から電力コンバーター100の一次側に送信される。従って、絶縁通信リンク119をまたいだ通信は双方向である。
【0026】
ドライバインターフェース118は、駆動回路110から異常信号およびデータ信号を受信し、変換し、データ信号D132および(適切な場合には)異常信号F131をシステム制御装置112に出力する。システム制御装置112は、受信された信号を使用して、電力スイッチ104、105をオンに切り替えるか、オフに切り替えるかを判定し得る。電力スイッチ104、105をオンに切り替えるか、オフに切り替えるかの判定は、また、例えば駆動回路110によりなされ得る。
【0027】
図2Aは、ドライバインターフェース218と駆動回路210との間における双方向通信器を含む例示的なスイッチ制御装置200を示す。通信リンク219の誘導結合は、一次巻線と二次巻線とを含む信号変圧器として実装される。一次巻線にかかる電圧が一次電圧V
P221と表記されるのに対し、二次巻線にかかる電圧は二次電圧V
S222と表記される。通信リンク219を形成する誘導結合におけるドット(黒丸)は、信号変圧器の一方の巻線が他方に誘導する電流の方向と電圧の極性とを表す。同様に命名および番号付けされた要素は、上述のように結合され、機能を果たすことが理解されなければならない。さらに、システム制御装置212および電力スイッチ204は、ドライバインターフェース218および駆動回路210のためのコンテキスト(使用例)を提供するために
図2Aに示される。
【0028】
システム制御装置212は、システム入力213を受信し、システム出力283を提供するように結合される。さらに、システム制御装置212は、ドライバインターフェース218にコマンド信号CMD230を出力するように、および、ドライバインターフェースから異常信号FLT231およびデータ信号DATA232を受信するように結合される。システム制御装置212は、システム入力213、異常信号FLT231、およびデータ信号DATA232に応答して、コマンドCMD230を生成し得る。
【0029】
示されるドライバインターフェース218は、コマンド送信器223、異常受信器224、およびデータ受信器225を含む。スイッチG1 226、G2 227、G3 228、およびG4 229がさらに示される。示されるスイッチはn型金属-酸化物-半導体電界効果トランジスタ(MOSFET:metal-oxide-semiconductor field effect transistor)であるが、他のスイッチが使用され得ることが理解される。スイッチG1 226は、電源電圧VDDと、変圧器219の一次巻線のドット付き端部とに結合される。スイッチG2 227は、一次基準206、一次巻線のドット無し端部に結合される。スイッチG3 228は、電源電圧VDDと一次巻線のドット無し端部とに結合される。スイッチG4 229は、一次基準206と変圧器219の一次巻線のドット付き端部とに結合される。示されるように、トランジスタG1 226、G4 229に結合されたドライバインターフェース218の入力/出力端子は、TRPを付して表記されるのに対し、トランジスタG2 227、G3 228に結合されたドライバインターフェース218の入力/出力端子は、TRNを付して表記される。
【0030】
コマンド送信器223は、システム制御装置212からコマンドCMD230を受信するように結合され、スイッチG1 226、G2 227、G3 228、およびG4 229の各々に対する制御信号を生成する。スイッチG1 226、G2 227、G3 228、およびG4 229の制御によりトランジスタの一次巻線219にかかる生成された電圧は、電力スイッチ204を駆動するように駆動回路210に命令し得る。一例において、コマンド送信器223は、電力スイッチ204をオン状態に駆動するように駆動回路210に命令するオンコマンドを送信することにより、論理ハイのコマンド信号CMD230に応答することに加え、電力スイッチ204をオフ状態に駆動するように駆動回路210に命令するオフコマンドを送信することにより、論理ローのコマンド信号CMD230に応答する。例えば、コマンドCMD230における立ち上がりエッジを受信したことに応答して、コマンド送信器223は、固定時間長にわたって、スイッチG1 226、G2 227を伝導性のオン状態に制御し、スイッチG3 228、G4 229を非伝導性のオフ状態に制御し得る。その結果、一次巻線のドット付き端部が電源電圧VDDに結合され、他端部が、一次基準206に結合される。従って、電圧VDDが、固定時間長にわたって一次巻線に印加される。言い換えると、電圧VDDに実質的に等しい大きさの、一次電圧VP221における正のパルスが存在する。コマンドCMD230における立ち下がりエッジを受信したことに応答して、コマンド送信器223は、固定時間長にわたって、スイッチG3 228、G4 229を伝導性のオン状態に制御し、スイッチG1 226、G2 227を非伝導性のオフ状態に制御し得る。その結果、一次巻線のドット付き端部が一次基準206に結合され、他端部が電源電圧VDDに結合される。従って、負の基準電圧-VDDが、固定時間長にわたって一次巻線に印加される。言い換えると、電圧VDDに実質的に等しい大きさの、一次電圧VP221における負のパルスが存在する。
【0031】
コマンド送信器223がオンコマンドもオフコマンドも送信していない(すなわち、待機状態である)とき、コマンド送信器223は、a)スイッチG2 227、G4 229をオンに切り替えるとともに、スイッチG1 226、G3 228をオフに切り替えるか、または、b)スイッチG2 227、G4 229をオフに切り替えるとともに、スイッチG1 226、G3 228をオンに切り替える。これは、変圧器219にわたる通信のノイズ耐性を改善するために実行され得る。
【0032】
さらに説明されるように、異常受信器224は、変圧器216の一次巻線のドット付き端部に結合されて誘導電流を検出し、データ受信器225は、一次巻線のドット無し端部に結合されて誘導電流を検出する。これらの誘導電流は、それぞれ、異常およびデータ信号を表す。
【0033】
駆動回路210は、駆動信号生成器233、異常送信器234、およびデータ送信器235を含む。駆動信号生成器233は、二次巻線に結合されて、変圧器219の二次巻線にかかる二次電圧VS222を検出する。一次巻線にかかる電圧を変化させることが、二次巻線にかかる電圧を誘導する。駆動信号生成器233が、誘導二次電圧VS222を検出して、コマンド送信器223がオンコマンドを送信したか、オフコマンドを送信したかを判定する。駆動信号生成器233は、さらに、応答駆動信号UDR216を生成して、結果的に電力スイッチ204を駆動する。
【0034】
異常送信器234は、異常制御信号UFAULT256を受信するように結合される。異常制御信号UFAULT256は、電力スイッチ204における過電流(例えば過負荷または短絡)または過電圧異常を示し得る。一例において、異常制御信号UFAULT256は、非一定の長さの論理ハイセクションと論理ローセクションとを含む方形パルス波形である。異常に応答して、異常制御信号UFAULT256は、論理ハイ値に遷移し得る。異常制御信号UFAULT256に応答して、異常送信器234は、異常信号236を生成して、ドライバインターフェース218に異常の存在を通信する。異常送信器234は、二次基準275を基準とする。異常送信器234は、異常制御信号UFAULT256に応答して、異常電流IFAULT236を提供するスイッチング可能な電流源として実装され得る。示される実施態様において、異常電流IFAULT236は、二次巻線のドット付き端部に流れ込み、一次巻線のドット付き端部から流れ出る一次側異常電流IFAULT_P238を誘導する。一次側異常電流IFAULT_P238の大きさは、信号変圧器219の巻数比により、二次側異常電流IFAULT236に関係する。異常受信器224は、一次側異常電流IFAULT_P238を検出し、一次側異常電流IFAULT_P238が二次側における異常を表すことを識別し、システム制御装置212に信号FLT231を出力する。
【0035】
示される実施態様において、データ送信器235は、第1の検出信号USENSE1 214と第2の検出信号USENSE2 215とを受信するように結合される。両方の検出信号が、電力スイッチ204の動作状態を表す。データ送信器235は、第1の検出信号USENSE1 214および第2の検出信号USENSE2 215により提供されるデータを符号化して、そのデータを具現化したデータ信号IDATA237を生成する。データ信号IDATA237は、対応する一次側データ電流IDATA_P239を誘導することにより、誘導結合219を介してドライバインターフェース218に情報を搬送する。いくつかの実施態様において、情報は、二進(二値)ワードに符号化される。例えば、データ信号IDATA237における論理ハイパルスは、二進数の「1」を示し得、論理ローパルスまたは無パルスは、二進数の「0」を示し得る。いくつかの実施態様において、データ信号IDATA237は、汎用非同期送受信器(UART:universal asynchronous receiver transmitter)プロトコルに適合する。いくつかの実施態様において、ハミング符号または巡回冗長検査(CRC:cyclic redundancy check)符号などの誤り訂正符号が使用され得る。
【0036】
データ送信器235は、二次基準電位275を基準とし、データ電流信号IDATA237を提供する電流源として実装され得る。データ電流信号IDATA237は、異常電流IFAULT236とは異なる二次巻線の端部、すなわち、示される実施態様における二次巻線のドット無し端部に流れ込む。二次側データ電流IDATA237は、一次巻線におけるドットの反対側端部から流れる一次側データ電流I
DATA_P
239を誘導する。一次側データ電流IDATA_P239の大きさは、信号変圧器219の巻数比により、二次側データ電流IDATA237の大きさに関係する。データ受信器225は、一次側データ電流IDATA_P239を検出し、受信された信号を復号する。復号された情報は、DATA232としてシステム制御装置に搬送される。以下でさらに説明されるように、コマンド送信器223により送信されるコマンド信号(すなわち、一次電圧VP221)、異常送信器234により送信される(すなわち、異常電流IFAULT236)異常信号、および、データ送信器235により送信された(すなわち、データ電流IDATA237)データ信号の大きさおよび持続期間は、それらの間における衝突が発生した場合でも、これらの信号が区別され得るように選択され得る。従って、ドライバインターフェース218および駆動回路210は、同期される必要はなく、タイムシェアリング(時分割)スキームに従って情報を送信することに制限されることも必要とされない。むしろ、誘導結合219により形成された通信チャンネルは、非同期でデータを送信する複数の送信器に対する同時アクセスを提供し得る。
【0037】
図2Bは、例示的な一実施態様の場合の、信号変圧器219に入力されるコマンド信号、異常信号、およびデータ信号の例示的な電流および電圧値の表201である。電流の極性は、
図2Aにおけるそれらの例示と一致することが理解されなければならない。一次電圧V
P221および二次電圧V
S222の極性も、
図2Aにおけるそれらの例示と一致する。
【0038】
表201の第1の行は、例示的な実施態様における、送信されたオンコマンドおよび送信されたオフコマンドに対する一次電圧VP221について記載する。オンコマンドの場合、一次電圧VP221は、期間T1にわたって実質的に+VDDである。オフコマンドの場合、一次電圧VP221は、期間T1にわたって実質的に-VDDである。例示的な実施態様において、VDDは、実質的に15ボルト(V)であり、期間T1は、実質的に200ナノ秒(ns)である。例示的なオンコマンドとオフコマンドとは、等しい持続期間をもち、逆極性であるが、様々な異なる極性および持続期間が他の実施態様に使用され得ることが理解されなければならない。
【0039】
表201の第2の行は、例示的な実施態様における、送信された異常電流IFAULT236に対する二次巻線電流について記載する。異常に応答して、異常電流IFAULT236の大きさは、期間T2にわたって-I2に実質的に等しい。異常のない場合、異常電流IFAULT236は、実質的にゼロに等しいものであり得る。期間T2の持続期間は、コマンド信号に対する期間T1の持続期間より大きい。例示的な実施態様において、I2は、170ミリアンペア(mA)に実質的に等しく、期間T1の持続期間は、4.4マイクロ秒(us)に実質的に等しい。しかし、他の実施態様において、異なる極性および持続期間が使用され得る。例えば、変圧器の巻線は、コアの周囲において逆方向に巻き付けられ得る。さらに、他の実施態様において、異常無し状態が別の大きさであり得、および/または、所定の持続期間をもち得る。
【0040】
表201の第3の行は、例示的な実施態様における、送信されたデータ電流IDATA237に対する二次巻線電流について記載する。例示的な実施態様における、データは二進ワードに符号化される。データ電流IDATA237は、二進値「1」を送信するために、期間T3にわたって+I3に実質的に等しい。データ電流IDATA237は、二進値「0」を送信するために、実質的にゼロである。さらに、期間T3の持続期間は、期間T1の持続期間より大きい。例示的な実施態様において、+I3は実質的に30mAであり、期間T3は14マイクロ秒の持続期間をもつ。しかし、他の実施態様において、異なる極性および持続期間が使用され得る。さらに、「0」の送信は、別の大きさであり得、および/または、所定の持続期間をもち得る。
【0041】
図3Aは、
図2Aに示されるデータ送信器235の一例であるデータ送信器335を示す。同様に命名および番号付けされた要素は、上述のように結合され、機能を果たすことが理解されなければならない。さらに、誘導結合319、駆動信号生成器333、および電力スイッチ304は、データ送信器335に対するコンテキストを提供するように示される。
【0042】
データ送信器335は、データ制御/符号化器341、スイッチ346(n型MOSFETとして示される)、抵抗343、344、およびダイオード345を含む。抵抗343は、データ制御/符号化器341およびスイッチ346の制御端子に結合される。ダイオード345は、抵抗343と二次巻線のドット無し端部とに結合される。抵抗344は、二次巻線のドット付き端部とスイッチ346とに結合される。スイッチ346は、抵抗器344と二次基準375との間に結合される。
【0043】
データ送信器335は、変圧器319を減磁する任意選択的な減磁回路342をさらに含み得る。減磁は、変圧器319が飽和状態になることを防ぎ得る。減磁回路342は、スイッチ351(n型MOSFETとして示される)、抵抗348、349、およびダイオード350を含む。抵抗348は、データ制御/符号化器341とスイッチ351の制御端子とに結合される。ダイオード350は、抵抗348と二次巻線のドット付き端部とに結合される。抵抗349は、二次巻線のドット無し端部とスイッチ351とに結合される。スイッチ351は、抵抗器349と二次基準375との間に結合される。
【0044】
データ制御/符号化器341は、第1の検出信号USENSE1 314および第2の検出信号USENSE2 315を受信し、これらの信号により提供されるデータのうちの少なくともいくつかを符号化する。データ制御/符号化器341は、データをデジタル値に変換するアナログ・デジタルコンバーター、SPI(Serial Peripheral Interface、シリアルペリフェラルインターフェース)、I2Cインターフェース、またはデジタルセンサーからデータを受信する他のデジタルインターフェースを任意選択的に含み得る。いくつかの実施態様において、データ制御/符号化器341は、汎用非同期送受信器(UART:universal asynchronous receiver transmitter)プロトコルを適用し得る。いくつかの実施態様において、データ制御/符号化器341は、ハミング符号または巡回冗長検査(CRC:cyclic redundancy check)符号などの誤り訂正符号を使用し得る。
【0045】
データ制御/符号化器341は、スイッチ346を伝導状態に、および、非伝導状態に制御して、データ電流IDATA337を生成する。一実施形態において、データ制御信号UDATA347は、二進値「1」を送信するとき、論理ハイであり、二進値「0」を送信するとき、論理ローである。または言い換えると、データ制御信号UDATA347は、スイッチ346を伝導状態にスイッチングして、二進値「1」を送信し、スイッチ346を非伝導状態にスイッチングして、二進値「0」を送信する。逆の極性も使用され得る。データ制御信号UDATA347がスイッチ346をオンに切り替えたとき、電流が抵抗器343、およびダイオード345を通って、二次巻線のドット無し端部に流れ込む。電流は、二次巻線のドット付き端部から流れ出て、抵抗器344およびスイッチ346を通って、二次基準375に流れる。一例において、データ電流IDATA337の大きさは、I3に実質的に等しく、スイッチ346は、期間T3にわたってオンに切り替えられる。データ電流IDATA337は、一次巻線のドット無し端部から流れ出る一次側データ電流IDATA_P339を誘導する。
【0046】
送信されたデータ電流IDATA337は、変圧器319を励磁して、最終的に変圧器319を飽和させ得る。減磁回路342は、断続的に、または、データ送信器355が二進値「1」を送信するごとに、変圧器319を減磁し得る。減磁回路342は、データ電流IDATA337と同一値であるが二次巻線を通る逆方向の減磁電流IDEMAG353を送信することにより、変圧器319を減磁する。示される例において、減磁電流IDEMAG353は、二次巻線のドット付き端部に流れ込む。等しく反対向きの減磁電流IDEMAG353が、二進値「1」のデータ電流IDATA337の前または後に、または必要なときに送信され得る。スイッチ351がオンに切り替えられたとき、減磁電流IDEMAG353が抵抗器348、およびダイオード350を通って、二次巻線のドット付き端部に流れ込む。減磁電流IDEMAG353は、二次巻線から流れ出て、抵抗器349およびスイッチ351を通って、二次戻り375に流れる。いくつかの実施態様において、抵抗343および348の値は、実質的に等しいものであり得、抵抗344および349の値は、実質的に等しいものであり得る。他の実施態様において、それらは、異なる値をもち得る。
【0047】
図3Bは、例示的な第1の検出信号U
SENSE1 314および第2の検出信号U
SENSE2 315を示す。一例において、第1の検出信号U
SENSE1 314は、入力電圧V
IN302を表し、入力電圧V
IN302が上昇するにつれて、上昇し得る。第2の検出信号U
SENSE2 315は、温度を表し、温度が上昇するにつれて、低下し得る。
【0048】
図4は、
図2Aに示される異常送信器234の一例である異常送信器434を示す。同様に命名および番号付けされた要素は上述のように結合および機能することが理解されなければならない。さらに、誘導結合419、駆動信号生成器433、および電力スイッチ404は、異常送信器434に対するコンテキストを提供するように示される。
【0049】
異常送信器434は、スイッチ457、458(n型MOSFETとして示される)およびダイオード459を含む。スイッチ457は、電源電圧VISOとダイオード459との間に結合される。さらに、スイッチ457は、異常制御信号UFAULT456により制御される。ダイオード459は、誘導結合419の二次巻線のドット付き端部に結合される。スイッチ458は、二次巻線の他方の(ドット無し)端部に結合され、二次基準475を基準とする。スイッチ458は、シフトされた異常制御信号UFAULT’484により制御される。
【0050】
異常制御信号UFAULT456およびシフトされた異常制御信号UFAULT’484は同期され、いくつかの実施態様において、単一の源から出力され得る。異常を検出したことに応答して、異常制御信号UFAULT456とシフトされた異常制御信号UFAULT’484の両方が、スイッチ457、458を伝導状態に制御する論理ハイ状態に遷移するようにされ得る。異常電流IFAULT436は、スイッチ457、およびダイオード459を通って、変圧器419の二次巻線のドット付き端部に流れ込む。異常電流IFAULT436は、さらに、二次巻線の反対側端部から出て、スイッチ458を通って二次基準475に流れる。異常電流IFAULT436の大きさは、電流I2に実質的に等しく、スイッチ457、458は、期間T2にわたってオンに切り替えられる。
【0051】
図5は、
図2Aに示される異常受信器224およびデータ受信器225の例である異常受信器524およびデータ受信器525を示す。同様に命名および番号付けされた要素は、上述のように結合され、機能を果たすことが理解されなければならない。さらに、誘導結合519は、異常受信器524およびデータ受信器525に対するコンテキストを提供するように示される。
【0052】
異常受信器524は、比較器581、積分器560、および比較器561を含むように示される。異常受信器524は、変圧器519の一次巻線のドット付き端部に結合される。上述のように、二次における送信された異常電流I
FAULT536は、一次側異常電流I
FAULT_P538を誘導する。一次側異常電流I
FAULT_P538は、異常受信器524により検出される。一例において、一次側異常電流I
FAULT_P538は、電流検出抵抗またはMOSFETにより検出され得る。例えば、異常電流I
FAULT_P538は、
図2Aに示されるトランジスタG4のドレイン・ソース電圧を検出することにより検出され得る。
【0053】
検出された一次側異常電流IFAULT_P538と第1の閾値TH1 562とが、比較器581により受信される。示されるように、一次側異常電流IFAULT_P538は、非反転入力において受信されるのに対し、第1の閾値TH1 562は、比較器581の反転入力において受信される。比較器581の出力は、積分器560により受信される。示される例において、検出された一次側異常電流IFAULT_P538が第1の閾値TH1 562より大きいとき、積分器560は、最大値まで登りの傾きで積分する。検出された一次側異常電流IFAULT_P538が第1の閾値TH1 562未満であるとき、積分器560は、最小値まで下りの傾きで積分する。さらに説明されるように、第1の閾値TH1 562は、100~145mAの範囲内であり得る。検出された一次側異常電流IFAULT_P538が電圧信号である一例の場合、第1の閾値TH1 562は、100~145mAの電流値に対応した電圧値の範囲であり得る。
【0054】
動作時、検出された一次側異常電流IFAULT_P538が第1の閾値TH1 562より大きいとき、比較器581は、積分器560により最大値まで登りの傾きで積分されるハイ信号を出力する。検出された一次側異常電流IFAULT_P538が第1の閾値TH1 561未満であるとき、比較器581がロー信号を出力し、積分器560が、最小値まで下がるように下りの傾きで放電される。積分結果が、積分器560から出力される。
【0055】
比較器561は、積分器560の出力と第2の閾値TH2 565とを受信するように結合される。示されるように、積分器560の出力は、比較器561の反転入力において受信され、第2の閾値TH2 565は、非反転入力において受信される。積分器560の出力が第2の閾値TH2 565を上回るように上昇したことに応答して、比較器561は、論理ハイの異常信号FLT531を出力する。積分器560の出力が第2の閾値TH2 565未満であることに応答して、比較器561は、論理ローの異常信号FLT531を出力する。第2の閾値TH2 465は、検出された一次側異常電流IFAULT_P538が第1の閾値TH1 562より大きい時間長に対する時間閾値を表し得る。例えば、第2の閾値TH2 565は、790~1620nsの間の時間長に対応し得る。信号FLT531は、システム制御装置(図示されない)に搬送される。従って、積分器560の出力が第2の閾値TH2 565より大きいとき、異常受信器524は、二次におけるドライバ回路から異常が送信されたことを示す。
【0056】
データ受信器525は、比較器582、積分器563、比較器564、および復号器566を含む。データ受信器525は、変圧器519の一次巻線のドット付き端部の反対側の端部に結合された。上述のように、ドライバ回路からの送信されたデータ電流信号IDATA537は、一次側データ電流IDATA_P539を誘導する。一次側データ電流IDATA_P539は、データ受信器525により検出される。例えば、一次側データ電流IDATA_P539は、電流検出抵抗器またはMOSFETにより検出され得る。
【0057】
検出された一次側データ電流IDATA_P539と第3の閾値TH3 579とが、比較器582により受信される。示されるように、一次側データ電流IDATA_P539が非反転入力において受信され、第3の閾値TH3 579が比較器582の反転入力において受信される。さらに説明されるように、第3の閾値TH3 579は、10~20mAの範囲内であり得る。検出された一次側データ電流IDATA_P539が電圧信号であるである一例の場合、第3の閾値TH3 579は、10~20mAの電流値に対応した電圧値の範囲であり得る。動作時、検出された一次側データ電流IDATA_P539が第3の閾値TH3 579より大きいとき、比較器582は、積分器563により最大値まで登りの傾きで積分されるハイ信号を出力する。検出された一次側データ電流IDATA_P539が第3の閾値TH3 579未満であるとき、比較器582はロー信号を出力し、積分器563は最小値まで下がるように下りの傾きで放電される。積分結果が積分器563から出力される。
【0058】
比較器564は、積分器563の出力と第4の閾値TH4 580とを受信するように結合される。示されるように、積分器563の出力は比較器564の反転入力において受信され、第4の閾値TH4 580は非反転入力において受信される。積分器564の出力が第4の閾値TH4 580を上回るように上昇したことに応答して、比較器564の出力は論理ハイとなる。積分器564の出力が第4の閾値TH4 580未満であることに応答して、比較器564の出力が論理ローとなる。第4の閾値TH4 580は、検出された一次データ電流IDATA_P539が第3の閾値TH3 579より大きい時間長に対する時間閾値を表し得る。例えば、第4の閾値TH4 580は、3.3~6.6マイクロ秒より大きな時間長に対応し得る。積分器564の出力における連続した論理ハイ状態と論理ロー状態とが、二次における動作状態を表す一連の二進ビットを形成し得る。
【0059】
復号器566は、比較器564の出力を受信して、データ送信器525により送信された一連のビットを復号する。ビットに符号化された情報に基づいて、復号器566が、システム制御装置にデータDATA532を出力する。データDATA532を出力は、アナログ信号、PWM信号、ビットストリームなどの形態であり得る。
【0060】
図6Aは、誘導結合において衝突が発生した場合に、コマンド信号、異常信号、およびデータ信号の、それらの相対的な優先度を具現化し得る、コマンド信号、異常信号、およびデータ信号の--送信における--大きさおよび持続期間の一実施態様を記載した表600である。上述のように、ドライバインターフェースおよびドライバ回路は同期される必要がなく、信号間の衝突が発生し得る。従って、信号の性質は、衝突が発生したときにどの信号が受信されるかを決定する相対的な優先度を設定するように選択され得る。実際には、損失が多いが多重アクセスである通信チャンネルが、誘導結合において実装され得る。
【0061】
図6Aに示される例において、異常信号は、コマンドおよびデータ信号を上回るように優先順位付けされる。少なくともそれらの送信の時点において、コマンド信号は、データ信号を上回るように優先順位付けされる。しかし、概して、データ信号送信の持続期間は、はるかに長く、介入するコマンド信号を伴う場合でも、データは概して失われない。これらの優先度を実装するために、送信における異常信号は、他の信号に比べて、比較的長い持続期間にわたって、比較的大きな(電流の)大きさをもち得る。例示的な異常信号の詳細が、表600の上部行に示される。さらに、コマンド信号は、異常およびデータ電流信号とは対照的に、電圧信号として実装され得る。送信における例示的なコマンド信号の詳細が、表600の第2の行に示される。コマンド信号が、持続期間という点で、異常信号とデータ信号との両方より大幅に短いものであり得ることに留意されたい。データ信号(および関係する減磁電流)を構成する個々のビットは、大きさという点で小さいが、異常信号およびコマンド信号に比べて比較的長い持続期間をもつ。送信における例示的なデータビットの詳細が、表600の第3の行に示され、例示的な減磁電流の詳細が、表600の第4の行に示される。例示的な異常信号およびデータ信号は電流信号であるが、コマンド信号は電圧信号であることが理解されなければならない。それにもかかわらず、これらの信号はすべて、誘導結合により提供されるガルバニック絶縁の他方側に電圧または電流を誘導する。
【0062】
示される例において、異常電流信号は、170mAに実質的に等しいI2の大きさをもち、期間T2は、送信において4.4マイクロ秒の持続期間をもつ。異常電流信号を検出するために使用される第1の閾値TH1は、100~145mAの範囲内である。コマンド電圧信号は、持続期間という点で200nsに実質的に等しい期間T1にわたって、15Vに実質的に等しい電源電圧VDDの大きさをもつ(これは、70mAに実質的に等しい大きさICMDのコマンド電流を意味する)。オンコマンド信号が正極性をもつのに対し、オフコマンド信号は等しい大きさの負極性をもつ。上述のように、オンコマンド信号およびオフコマンド信号は、持続期間において等しく、極性が逆である必要がある。データ電流ビットは、30mAに実質的に等しいI3の大きさをもち、期間T3は、送信において14マイクロ秒の持続期間をもつ。データ電流ビットを検出するために使用される第3の閾値TH3は、10~20mAの範囲内である。減磁電流は、30mAに実質的に等しいI3の大きさをもち、期間T3は、14usに実質的に等しい持続期間をもつ。減磁電流の極性は、データ電流ビットの極性の逆である。
【0063】
図6Bは、誘導結合において同時に送信された信号間の例示的な衝突を概略的に示すタイミング
図601である。上述のように、二次巻線における送信において、異常信号は、170mAに実質的に等しいI
2の大きさをもち得、持続期間という点で4.4マイクロ秒に実質的に等しい期間T2をもち得る。二次巻線における送信において、データ電流ビットは、30mAに実質的に等しいI
3の大きさをもち得、14マイクロ秒に実質的に等しい持続期間をもつ期間T3をもち得るが、異常信号の極性と逆の極性をもち得る。一例において、一次巻線において受信された異常電流信号の大きさは、大きさI
2_Pと表され得る。大きさI
2_Pの範囲は、閾値TH1(
図5に示される)に関係する。例えば、一次側異常電流の大きさI
2_Pは、第1の閾値TH1より大きくなければならない。一例において、第1の閾値TH1 662は、100~145mAの範囲内である。データビットの場合、一次巻線において受信された信号の大きさは、大きさI
3_Pと呼ばれ得る。大きさI
3_Pの範囲は、閾値TH3(
図5に示される)に関係する。例えば、一次側データ電流の大きさI
3_Pは、第3の閾値TH3 679より大きくなければならない。一例において、第3の閾値TH3 679は、10~20mAの範囲内である。異常信号およびデータビットは、二次側における送信において所定の持続期間をもち得るが、一次側において受信された持続期間は、ノイズおよび他の条件に起因して変動し得る。例えば、受信された異常電流信号の持続期間は、時間閾値TH2(
図5に示される)を上回る790~1620nsより大きなものであり得、受信されたデータビットの持続期間は、時間閾値TH4(
図5に示される)を上回る3.3~6.6マイクロ秒より大きなものであり得る。
【0064】
タイミング
図601は、オンコマンド668と、二進値「1」のデータビット639と、異常信号638との間における3ウェイ衝突を含む一次巻線電流621を示す。示されるように、まずオンコマンド668が、二進値「1」のデータビット639に衝突する。続いて、異常信号638が、同じ二進値「1」のデータビット639に衝突する。端子TRNに(すなわち
図2Aに示されるトランジスタG2またはG3に)流れ込む電流に対する、
図6B(および
図6C)に示される一次巻線電流621の極性が正であるのに対し、端子TRNから(すなわち
図2Aに示されるトランジスタG2またはG3から)流れ出る電流は負である。
【0065】
示される例の場合、二進値「1」のデータビット639の前に、一次側において減磁電流654が誘導される。簡潔となるように、励磁電流は、
図6Bおよび
図6Cに示されない。減磁電流654中、一次巻線電流は、期間T3 674にわたって実質的に-I
3_P 673である。減磁電流654が終了した後、二進値「1」のデータビット639が始まり、一次巻線電流621が期間T3 674にわたって実質的にI
3_P 673まで増加する。一次巻線電流は、オンコマンド668および異常信号638との衝突中を除いて、期間T3 674にわたって実質的にI
3_P 673である。示されるように、二進値「1」のデータビット639が受信されたとき、オンコマンド668が同時に送信される。一次巻線電流621におけるスパイクは、オンコマンド668に関係し、一次巻線電流621は、期間T1 670にわたって大きさI
CMD669まで増加する。期間T1 670の後、一次巻線電流621が実質的にI
3_P 673まで減少する。オンコマンド遷移668は電圧信号であるので、それが、二進値「1」のデータビット639の送信に関係した電圧を凌駕し、衝突にもかかわらず、オンコマンド668が二次側において受信され得る。実際には、オンコマンドの送信中、オンコマンド668は、受信された二進値「1」のデータビット639を上回るように優先順位付けされる。しかし、概して、データ信号送信の持続期間は、オンコマンドよりはるかに長く、介入するオンコマンドを伴う場合でもデータは概して失われない。
【0066】
二進値「1」のデータビット639が受信される期間中、一次巻線において異常信号638が受信される。示されるように、一次巻線電流621は、データビット639の途中で、期間T2 672にわたって実質的に-I2_P 671まで減少する。期間T2 672の終了時に、一次巻線電流621が、I3_P 673に実質的に等しい大きさまで増加して、期間T3 674の残部にわたって大きさI3_P 673に留まる。受信された異常信号638の極性が受信されたデータビット639の極性と逆であるので、衝突にもかかわらず、異常信号が認識され得る。実際には、異常信号638の極性は、二進値「1」のデータビット639を上回る異常信号638の優先順位付けを具現化する。
【0067】
図6Cは、電力コンバーターの一次側におけるオンコマンド668と異常信号638と二進値「1」のデータビット639との間の衝突を概略的に示す別のタイミング図である。
図6Bと同様に、二進値「1」のデータビット639が送信される前に、減磁電流654が一次側に誘導される。減磁654中、一次巻線電流は、期間T3 674にわたって実質的に-I
3_Pである。減磁654が終了した後、二進値「1」のデータビット639が始まり、一次巻線電流621が、期間T3 674にわたって実質的にI
3_Pまで増加する。一次巻線電流は、オンコマンド668および異常信号638との衝突中を除いて、期間T3 674にわたって実質的にI
3_P 673である。
【0068】
異常信号638は、二進値「1」のデータビット639の途中で一次巻線において受信される。示されるように、一次巻線電流621は、期間T2 672にわたって実質的に-I2_P 671まで減少する。受信された異常信号638の間、期間T2 672中、オンコマンド668が送信される。一次巻線電流621におけるスパイクは、オンコマンド668に関係し、一次巻線電流621が、期間T1 670にわたって増加する。オンコマンド668のピークは、実質的に-I2_PにICMDを加えたものである。期間T1 621の後、一次巻線電流621が実質的に-I2_P 671まで減少し、異常信号638が再び優勢となる。期間T2 672の終了時に、一次巻線電流621は、I3_P 673に実質的に等しい大きさまで増加し、期間T3 674の残部にわたって大きさI3_P 673に留まる。異常信号638およびオンコマンド信号668のそれぞれの大きさおよび持続期間が、オンコマンド信号668を上回る異常信号638の優先順位付けを具現化する。特に、異常信号638は、上述のように積分する異常受信器により依然として認識され得る。
【0069】
本発明に関して示される例についての上述の説明は、要約で説明される事項を含め、網羅的であることも、開示される形態そのものへの限定であることも意図されない。本発明の特定の実施形態および例が、本明細書において例示を目的として説明されるが、本発明のより広い趣旨および範囲から逸脱することなく様々な同等な変更が可能である。実際、具体的で例示的な電圧、電流、周波数、出力範囲値、時間などが説明のために提示されることと、本発明の教示に従った他の実施形態および例において他の値も使用し得ることとが理解される。
[付記項1]
第1の基準電位を基準とする第1の回路と、
第2の基準電位を基準とする、および、前記第1の回路からガルバニック絶縁された第2の回路と、
前記第1の回路と前記第2の回路とをガルバニック絶縁する誘導結合であって、
前記誘導結合が、前記第1の基準電位を基準とする第1の巻線と前記第2の基準電位を基準とする第2の巻線とを含む、
前記誘導結合と、
を備え、
前記第1の回路が、前記誘導結合に結合された信号受信回路を備え、
前記信号受信回路が、前記誘導結合を通して送信された信号を受信する前記第1の巻線に結合された1つまたは複数の信号受信器を備え、
前記1つまたは複数の信号受信器が、
前記誘導結合から受信された前記信号の少なくとも一部と、前記第1の基準電位に対して第1の極性をもつ第1の閾値と、を比較するように結合された第1の比較器と、
前記誘導結合から受信された前記信号の少なくとも一部と、前記第1の基準電位に対して第2の極性をもつ第2の閾値と、を比較するように結合された第2の比較器と、
を備え、
前記第1の極性が、前記第2の極性の逆であり、
前記第2の回路が、前記誘導結合に結合された信号送信回路を備え、
前記信号送信回路が、前記第2の巻線を通して第1の方向に電流を駆動して第1の信号を送信するように、および、前記第2の巻線を通して第2の方向に電流を駆動して第2の信号を送信するように結合された1つまたは複数の信号送信器を備え、
前記第1の方向が、前記第2の方向の逆である、
デバイス。
[付記項2]
前記1つまたは複数の信号受信器が、
前記第1の比較器を備える第1の信号受信器と、
前記第2の比較器を備える第2の信号受信器と、
を備える、
付記項1に記載のデバイス。
[付記項3]
前記1つまたは複数の信号送信器が、
前記第2の巻線に結合されて前記第1の方向に電流を駆動する第1の信号送信器と、
前記第2の巻線に結合されて前記第2の方向に電流を駆動する第2の信号送信器と、
を備える、
付記項1または付記項2に記載のデバイス。
[付記項4]
前記第1の信号が、前記第2の信号より高い優先度をもち、前記第2の信号との衝突が発生した場合でも受信される、
付記項1から付記項3のいずれか一項に記載のデバイス。
[付記項5]
前記1つまたは複数の信号送信器が、任意の時点で送信することができる、
付記項1から付記項4のいずれか一項に記載のデバイス。
[付記項6]
電力スイッチを備える電力コンバーターのための制御装置であって、
前記制御装置が、付記項1から付記項5のいずれか一項に記載のデバイスを備え、
前記第1の回路が、前記制御装置の一次側であり、
前記第2の回路が、前記制御装置の二次側である、
制御装置。
[付記項7]
前記一次側が、前記誘導結合に結合されたドライバインターフェース回路を備え、
前記ドライバインターフェース回路が、前記1つまたは複数の信号受信器を備える、
付記項6に記載の制御装置。
[付記項8]
前記ドライバインターフェース回路が、前記誘導結合を通してコマンド信号を送信するように結合された第3の信号送信回路をさらに備え、
前記コマンド信号が、オン状態とオフ状態との間における前記電力スイッチの所望の遷移を表し、
前記二次側が、前記誘導結合を通して送信された第3の信号を受信するように、および、前記第3の信号に応答して、前記状態間で前記電力スイッチを駆動するように構成された駆動信号を生成するように結合された駆動信号生成器を備える、
付記項7に記載の制御装置。
[付記項9]
前記1つまたは複数の信号送信器および前記第3の信号送信回路が、任意の時点で送信することができる、
付記項8に記載の制御装置。
[付記項10]
前記第1の方向における前記電流が、前記二次側における異常検出を表す異常信号であり、
前記第2の方向における前記電流が、前記二次側における動作パラメータを表すデータ信号であり、
前記異常信号が、前記データ信号より高い優先度をもつ、
付記項6または付記項9に記載の制御装置。
[付記項11]
前記動作パラメータが、コレクタ・エミッタ電圧、ドレイン・ソース電圧、システム電圧、前記電力スイッチの温度、負荷電流、コレクタ電流、またはドレイン電流のうちの1つである、
付記項10に記載の制御装置。
[付記項12]
前記第2の方向における前記電流が、二進のデータ信号として構成され、
前記信号送信回路が、
前記第2の方向に前記第2の巻線を通って流れる電流を提供して、前記二進のデータ信号のビットを送信することと、
前記第1の方向に前記第2の巻線を通って流れる電流を提供して、ビットが送信される前または後に前記誘導結合を減磁することと、
を行うように構成され、
前記第1の方向が、前記第2の方向の逆である、
付記項6から付記項11のいずれか一項に記載の制御装置。
[付記項13]
前記信号送信回路が、
前記第2の巻線の第1の端部に結合された第1のスイッチと、
前記第2の巻線の第2の端部に結合された第2のスイッチと、
を備える、
付記項12に記載の制御装置。
[付記項14]
前記信号送信回路が、
第1の電流源と、
第2の電流源と、
を備え、
前記第1の電流源が、
第1の電圧源と、
前記第1の電圧源に直列に接続された第1の抵抗と、
第1のダイオードまたは他の一方向伝導体と、
を備え、
前記第2の電流源が、
第2の電圧源と、
前記第2の電圧源に直列に接続された第2の抵抗と、
第2のダイオードまたは他の一方向伝導体と、
を備える、
付記項13に記載の制御装置。
[付記項15]
前記信号送信回路が、
前記第2の巻線の第1の端部に結合された第1のスイッチと、
前記第2の巻線の第2の端部に結合された第2のスイッチと、
前記第1のスイッチと前記第2のスイッチとの両方を伝導状態にスイッチングするように結合されたスイッチ制御回路と、
を備える、
付記項6から付記項14のいずれか一項に記載の制御装置。
[付記項16]
前記第1の比較器が、前記誘導結合から受信された前記信号の少なくとも一部と前記第1の閾値との前記比較の結果を示す第1の比較結果信号を出力するように結合され、
前記1つまたは複数の信号受信器が、
前記第1の比較結果信号を積分して第1の積分値をもたらすように結合された積分器と、
前記第1の積分値と第1の時間閾値とを比較するように結合された第2の比較器と、
をさらに備える、
付記項6から付記項15のいずれか一項に記載の制御装置。
[付記項17]
前記第2の比較器が、前記誘導結合から受信された前記信号の少なくとも一部と第2の電圧閾値との前記比較の結果を示す第2の比較結果信号を出力するように結合され、
前記1つまたは複数の信号受信器が、
前記第2の比較結果信号を積分して第2の積分値をもたらすように結合された第2の積分器と、
前記第2の積分値と第2の時間閾値とを比較するように結合された第4の比較器と、
をさらに備える、
付記項16に記載の制御装置。
[付記項18]
第1の電圧閾値の大きさの絶対値が、前記第2の電圧閾値の大きさの絶対値より大きく、
前記第1の時間閾値の持続期間が、前記第2の時間閾値の持続期間より短い、
付記項17に記載の制御装置。
[付記項19]
前記第1の電圧閾値の前記大きさの前記絶対値が、前記第2の電圧閾値の前記大きさの前記絶対値の3倍より大きく、例えば、4倍より大きいか、または5倍より大きい、
付記項18に記載の制御装置。
[付記項20]
前記第1の時間閾値の前記持続期間が、前記第2の時間閾値の前記持続期間の5分の1未満であり、例えば、7分の1未満であるか、または、10分の1未満である、
付記項18または付記項19に記載の制御装置。
[付記項21]
前記電力スイッチのうちの少なくとも1つが、絶縁ゲートバイポーラトランジスタまたは炭化ケイ素トランジスタを含む、
付記項6から付記項20のいずれか一項に記載の制御装置。
[付記項22]
前記制御装置が、システム制御装置に結合するデータ入力/出力接続を含む、
付記項6から付記項21のいずれか一項に記載の制御装置。