IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クレオ・メディカル・リミテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-27
(45)【発行日】2023-02-06
(54)【発明の名称】靱帯を熱的に治療するための装置
(51)【国際特許分類】
   A61B 18/18 20060101AFI20230130BHJP
【FI】
A61B18/18 100
【請求項の数】 15
(21)【出願番号】P 2019568072
(86)(22)【出願日】2018-07-03
(65)【公表番号】
(43)【公表日】2020-09-03
(86)【国際出願番号】 EP2018067996
(87)【国際公開番号】W WO2019007984
(87)【国際公開日】2019-01-10
【審査請求日】2021-06-23
(31)【優先権主張番号】1710793.9
(32)【優先日】2017-07-05
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】512008495
【氏名又は名称】クレオ・メディカル・リミテッド
【氏名又は名称原語表記】CREO MEDICAL LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ハンコック,クリストファー・ポール
(72)【発明者】
【氏名】バーン,パトリック
(72)【発明者】
【氏名】ゲオゲガン,レイフ
【審査官】和田 将彦
(56)【参考文献】
【文献】特表2013-506480(JP,A)
【文献】特表2008-500087(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/18
A61B 18/12 - 18/16
A61B 5/05
A61N 5/02 - 5/04
(57)【特許請求の範囲】
【請求項1】
靱帯を引き締めるための電気手術装置であって、
マイクロ波電磁(EM)エネルギーを発生及び出力するように配置される電気手術発電機と、
前記電気手術発電機に接続されるプローブであって、
前記マイクロ波EMエネルギーを伝えるための同軸伝送線を含有する可撓シャフトと、
前記可撓シャフトの遠位端にあるアプリケータであって、前記マイクロ波EMエネルギーを前記同軸伝送線から受信し及び前記受信されたマイクロ波EMエネルギーを前記アプリケータに隣接する治療ゾーンに放出するように配置される、エネルギー送達構造を有する、前記アプリケータと、を備える、前記プローブと、
前記治療ゾーンの特性を監視するように配置される検出器と、
前記検出器によって取得された情報に基づいて、前記プローブに送達された前記マイクロ波EMエネルギーのエネルギー送達プロフィールを制御するように配置されるコントローラと、を備え、
前記エネルギー送達プロフィールは、
(i)測定エネルギー送達プロフィール、または、
(ii)治療エネルギー送達プロフィールのいずれかであり、
前記治療エネルギー送達プロフィールの電力の大きさは、前記測定エネルギー送達プロフィールの電力の大きさよりも大きく、
前記検出器は、前記電気手術発電機から前記プローブに進行する前記測定エネルギー送達プロフィールの順方向電力信号と、前記プローブから後方に反射される反射電力信号とを検出するように配置される電力検知モジュールを備え、
前記コントローラは、前記治療ゾーン内の体内組織の種類を示す情報を取得するために、前記検出された順方向電力信号及び反射電力信号を処理するように配置され、
前記コントローラは、参照データを記憶するメモリと、マイクロプロセッサとを含み、前記マイクロプロセッサは、
前記治療ゾーン内の体内組織の種類を示す前記情報を前記参照データと比較するソフトウェアコマンドを実行し、
前記比較から、前記治療ゾーン内の神経組織の存在を検出し、
神経組織が前記治療ゾーンに不在であると判定されたとき、前記治療エネルギー送達プロフィールを選択するように配置される、前記電気手術装置。
【請求項2】
前記検出器は温度センサを備える、請求項1に記載の電気手術装置。
【請求項3】
前記検出器は撮像デバイスを備える、請求項1または2に記載の電気手術装置。
【請求項4】
前記コントローラは、前記検出された順方向電力信号及び反射電力信号から、前記治療ゾーン内の前記体内組織の種類の
(i)複素インピーダンス、あるいは、
(ii)減衰及び/または位相定数のいずれかを判定するように配置され、前記治療ゾーン内の前記体内組織の種類を示す前記情報は、前記複素インピーダンス、あるいは前記減衰及び/または位相定数を判定した結果である、請求項1から請求項3のいずれか1項に記載の電気手術装置。
【請求項5】
熱エネルギーを前記治療ゾーンから除去するための冷却機構を備える、請求項1から請求項4のいずれか1項に記載の電気手術装置。
【請求項6】
前記プローブは前記可撓シャフトを通って延在する流体供給導管を含み、前記冷却機構は、冷却液を、前記流体供給導管を通して前記治療ゾーンに送達するためのアクチュエータを備える、請求項5に記載の電気手術装置。
【請求項7】
術スコープデバイスを備え、器具チャネルが当該手術スコープデバイスを通って延在し、前記プローブは、前記治療ゾーンに達するために前記器具チャネルを通して挿入可能になるように寸法決定される、請求項1から請求項6のいずれか1項に記載の電気手術装置。
【請求項8】
前記測定エネルギー送達プロフィールの前記電力の大きさは、10mW以下である、請求項1から請求項7のいずれか1項に記載の電気手術装置。
【請求項9】
前記治療エネルギー送達プロフィールの前記電力の大きさは、15W以下である、請求項1から請求項8のいずれか1項に記載の電気手術装置。
【請求項10】
前記エネルギー送達構造は、進行波スロット放射器を備える、請求項1から請求項9のいずれか1項に記載の電気手術装置。
【請求項11】
前記エネルギー送達構造はマイクロストリップアンテナを備える、請求項1~9のいずれか1項に記載の電気手術装置。
【請求項12】
前記エネルギー送達構造は開放導波路を備える、請求項1~9のいずれか1項に記載の電気手術装置。
【請求項13】
前記エネルギー送達構造は、人体または動物体の治療ゾーンに適合するように配置される、請求項1から請求項12のいずれか1項に記載の電気手術装置。
【請求項14】
前記アプリケータは、前記エネルギー送達構造を前記治療ゾーンに延在させるために拡張するように配置される、膨張可能部を備える、請求項1から請求項13のいずれか1項に記載の電気手術装置。
【請求項15】
前記プローブは、前記エネルギー送達構造に接するように組織の一部を保定するためのフック部を備える、請求項1から請求項14のいずれか1項に記載の電気手術装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コラーゲン構造の熱によって誘発された変性によって靱帯引締めを実行するための装置及び方法に関する。
【背景技術】
【0002】
靱帯は、関節を形成するために骨と骨を接続する織り合わされたコラーゲンスレッドで構成される樹脂ケーブル状構造である。年をとるにつれて、または暴力による傷害で、関節の靱帯は、損傷し得る(例えば、裂ける、または伸びる)。これは、関節に痛み及び不安定性を生じさせ得る。
【0003】
伸びた靱帯を修復する1つの方法は、靱帯を加熱することによって行われる。加熱は、靱帯を収縮及び引き締めさせる。肩の嚢靱帯を治療するための熱嚢縫合術として既知の非接触加熱の技術は、この概念に基づいて開発されてきた。熱嚢縫合術では、プローブは、肩関節に侵襲的に挿入される。プローブの先端は、そのすぐ近くで分子を熱的に励起する無線周波数(RF)電磁エネルギーを放出するように配置される。プローブ先端自体は熱くない。
【0004】
US2002/0095199号に記載された熱嚢縫合術に関連付けられる1つの問題は、靱帯内でプローブによって誘発される温度が、神経への回復不可能な損傷を生じさせるほどに高いことである。特に懸念されるのは、下関節上腕靱帯の直下を走行する腋窩神経である。靱帯が腋窩神経のすぐ近くで加熱される場合、永久的損傷の危険性がある。腋窩神経が通る実際の経路が、人によって変わり得るため、治療のために常に安全である靱帯の領域を指定することが可能ではない。
【0005】
US2002/0095199号は、熱靱帯治療をアクティブにする前に神経刺激パルス(例えば、いわゆる、凝固RF波を有する)を放出するプローブを構成することによって、この問題に取り組んでいる。神経刺激パルスが(視覚的に観察され得る)神経を刺激する場合、プローブの周囲の領域が熱靱帯治療に安全ではないことが理解され得る。適切な治療ゾーンが発見されるまで、例えば、外科医によって、プローブは周囲で移動され得る。
【0006】
また、コラーゲンの収縮を制御することよって靱帯に変化をもたらすために、マイクロ波エネルギーを送達することは既知である。例えば、US6,461,353号は、偏向可能な遠位端を伴うトロカールを有する、整形外科装置を開示している。マイクロ波エネルギーを治療部位に送達するために、電極は遠位端に位置付けられている。
【発明の概要】
【課題を解決するための手段】
【0007】
最も一般的には、本発明はマイクロ波エネルギーを使用して靱帯を引き締めるための電気手術装置を提供し、検出器は、神経組織、または周囲の皮膚もしくは筋膜構造への望まない熱的副作用(例えば、2次的熱損傷)がなく、必要な熱的効果を標的組織(例えば、靱帯、腱等)に生じさせる方式でエネルギーを送達することを可能にする治療ゾーンの状態または特性についての情報を取得するために使用される。
【0008】
本発明に従って、靱帯を引き締めるための電気手術装置が提供され、本装置は、マイクロ波電磁(EM)エネルギーを発生及び出力するように配置される電気手術発電機と、電気手術発電機に接続されるプローブであって、マイクロ波EMエネルギーを伝えるための同軸伝送線を含有する可撓シャフトと、可撓シャフトの遠位端にあるアプリケータであって、マイクロ波EMを同軸伝送線から受信し及び受信されたマイクロ波EMエネルギーをアプリケータに隣接する治療ゾーンに放出するように配置される、エネルギー送達構造を有する、アプリケータと、を備える、当該プローブと、治療ゾーンの特性を監視するように配置される検出器と、検出器によって取得された情報に基づいて、プローブに送達されたマイクロ波EMエネルギーのエネルギー送達プロフィールを制御するように配置されるコントローラと、を備える。本装置を用いて、エネルギーは、正確な方式で標的組織に送達されることができる。本装置は、例えば、適宜、エネルギー送達プロフィールを制御するために、組織の種類を検出するためにまたはエネルギー送達のレベルを検知するために治療部位を監視することによって、周囲組織への付帯的損害を回避することを確実にできる。
【0009】
一例では、検出器は、温度センサ(例えば、熱電対等)を備え得る。温度センサは、例えば、治療ゾーンの温度を検出するために、アプリケータの遠位端に搭載され得る。検出器は、例えば、治療ゾーンの視覚フィードバックを提供するために、撮像デバイスを備え得る。撮像デバイスは、例えば、治療ゾーンの内部の異なる温度の可視指示を提供するような効率的な温度センサであり得る。例えば、可視スペクトルまたは赤外線の光学的放射線を使用して、撮像デバイスは動作し得る。当該撮像デバイスは、治療ゾーンに及びそこから光学的放射線を伝えるような、可撓シャフトに沿って延在する光ファイバー束を備え得る。他の例では、撮像デバイスは、他のモダリティ(例えば、超音波等)を使用できる。
【0010】
検出器は、電気手術発電機からプローブに進行する順方向電力信号と、プローブから後方に反射される反射電力信号とを検出するように配置される電力検知モジュールを備え得、コントローラは、治療ゾーン内の体内組織の種類を示す情報を取得するために、検出された順方向電力信号及び反射電力信号を処理するように配置される。したがって、コントローラは、適切な治療ゾーンを自動的に検出する検出器の出力を使用するように配置され得る。例えば、本発明は、プローブの遠位端に位置する治療ゾーン内の物質(体内組織)の誘電特性を測定し得る。制御装置は、測定に基づいて、治療を自動的に制御するように配置され得る。一実施形態では、測定は、治療ゾーン内の物質の減衰及び/または位相定数を判定するために、プローブの遠位端から反射される信号を検出し、反射信号を順方向信号と比較することによって行われ得る。次に、順方向信号は、すなわち、治療ゾーンに送達されるエネルギーを制御するために、この比較に基づいて調節され得る。
【0011】
本発明は、治療ゾーンの変化を検出する機能を提供し得る。例えば、適切ではないゾーンが治療中に検出された場合、本装置は自動的に反応し得る。したがって、本装置は、例えば、神経/神経組織に対する損傷の危険性を減らすことができる応答装置及び感知装置を提供し得る。
【0012】
コントローラは、神経組織が潜在的に有害な放射線に露出する時間を減らし得る取得情報に基づいて自動的に動作し得る。適切に変調するマイクロ波エネルギー送達プロフィールは、効率的に、治療ゾーンのほぼ瞬間的な加熱効果を生じさせ得、他の場所での加熱効果は最小限である。したがって、取得情報に基づいてコントローラを自動的に動作させることによって、神経組織(例えば、治療ゾーン内の神経組織及び/または治療ゾーンの近くの神経組織)への損傷を防止しながら、効率的な靱帯引締めを行うことができる。
【0013】
本明細書では、体内組織の種類は、神経組織を含有する体内組織と、神経組織を含有しない体内組織とを包含する。靱帯引締めを行う場合、体内組織の種類は、実質的に靱帯組織だけを含有する体内組織を含むことが好ましい。いくつかの実施形態では、体内組織の種類は、また、靱帯組織の種類(例えば、膝、肩、足首等)を指し得る。
【0014】
コントローラは、検出された順方向電力信号及び反射電力信号から、治療ゾーン内の体内組織の種類の(i)複素インピーダンス、あるいは(ii)減衰及び/または位相定数のいずれかを判定するように配置され得、治療ゾーン内の体内組織の種類を示す情報は、複素インピーダンス、あるいは減衰及び/または位相定数を判定した結果である。コントローラは、参照データを記憶するメモリと、治療ゾーン内の体内組織の種類を示す情報を参照データと比較するソフトウェアコマンドを実行し、及び当該比較に基づいてエネルギー送達プロフィールを制御するように配置される、マイクロプロセッサとを含む。
【0015】
本装置は、熱エネルギーを治療ゾーンから除去するための冷却機構を含み得る。冷却機構は、例えば、アプリケータを用いて、冷却剤(例えば、水または生理食塩水等の流体)を治療ゾーンと熱的接触させるための手段を含み得る。一例では、プローブは可撓シャフトを通って延在する流体供給導管を含み得る。冷却機構は、冷却液を、流体供給導管を通して治療ゾーンに送達するためのアクチュエータを備え得る。
【0016】
冷却機構は所望の温度効果の直線分布を提供するために使用され得る。例えば、本装置は、均等な温度プロフィールを生じさせるために、治療ゾーンの内部の熱との、治療ゾーンの表面における冷却のバランスを提供するように配置され得る。60度~70度の範囲の温度は、腱または靱帯のコラーゲンの縮みを生じさせるための最適温度であり得る。80度を超える温度では、コラーゲンは全てのその構造を完全に失う。したがって、係る温度を上回るいずれかの熱領域は望ましくない成果をもたらす。
【0017】
エネルギー送達プロフィールは、制限された最大電力レベル(例えば、15W以下)を有するように配置され得る。より高い電力における加熱によって組織の引張強度の減少し得る危険性がある。デバイスの引張強度を低下させることなく、所望の縮みを得るために、組織の異なる領域上でエネルギーのいくつかの印加を使用することが有益であり得る。そこで手術中に潜在的に速度を改善する方法は、所望の組織への影響を得るように距離を調整し得る2つ以上のアプリケータであり得る。
【0018】
本装置は、具体的には、低侵襲外科手術に適し得る。例えば、本装置は、操縦可能器具コードを通って延在する器具チャネルを伴う操縦可能器具コードを有する、手術スコープデバイス(例えば、内視鏡、胃カメラ、気管支鏡、腹腔鏡等)を含み得る。プローブは、治療ゾーンに達するために器具チャネルを通して挿入可能になるように寸法決定され得る。
【0019】
エネルギー送達プロフィールは、測定エネルギー送達プロフィールまたは治療エネルギー送達プロフィールのいずれかであり得る。治療エネルギー送達プロフィールの電力の大きさは、測定エネルギー送達プロフィールの電力の大きさよりも(例えば、1桁分)大きくなり得る。
【0020】
コントローラは、当該比較から、治療ゾーン内の神経組織の存在を検出するように配置され得る。測定電力の大きさにおけるマイクロ波エネルギーが、神経組織を含有しない治療ゾーンを安全に特定するために測定モードで使用され得る。いったん測定モードを使用して神経組織を含有しない治療ゾーンを特定すると、治療電力の大きさにおけるマイクロ波エネルギーが、次に靱帯組織を熱的に治療する治療モードで使用され得る。言い換えれば、測定モードは、治療モードを使用/アクティブにする前に、安全/適切な治療ゾーンを識別するために使用され得る。コントローラは、適宜、エネルギー送達プロフィールを制御するように構成され得る。例えば、コントローラは、神経組織が治療ゾーン内に存在しないと判定されたとき、治療エネルギー送達プロフィールを選択するように配置され得る。
【0021】
測定エネルギー送達プロフィールの電力の大きさは、誘電特性(例えば、神経組織の存在または不在)を検出するのに十分であるが、治療ゾーン内にかなりの加熱効果を生じさせるのに不十分であり、ひいては神経組織を損傷させるのに不十分であるように選択され得る。治療エネルギー送達プロフィールの電力の大きさは、靱帯組織に加熱効果を生じさせるのに十分であるように、すなわち、靱帯引締めの治療効果をもたらすのに十分であるように選択され得る。治療電力の大きさは、測定電力の大きさよりも1桁以上大きいものであり得、組織を、55度よりも大きい温度(例えば、70度~80度の範囲)まで速く加熱するのに十分であり得る。測定電力の大きさは10mW(10dBm)以下であり得る。したがって、測定モードを使用することによって、(好ましくは、実質的に)55度を下回る温度に、神経組織の温度を維持することが可能であり得る。したがって、永久的な神経損傷が発生することを防止することが可能であり得る(永久的神経損傷が55度を超える温度で発生するように示されている場合)。治療電力の大きさは、10W以上(ただし、上記に説明したように、15W以下)であり得る。
【0022】
反射エネルギー信号を検査するために、連続波(CW)エネルギー送達プロフィールに従って、測定モードで放射線を送達するのに好ましい場合があり得、反射エネルギー信号から、治療ゾーン内の組織の誘電特性を判定し得る。次に、所望の治療効果を生じさせるために、治療モードは、1つ以上のパルス(複数可)から成るパルスエネルギー送達プロフィールを使用し得る。いくつかの実施形態では、単一の存続期間の短いパルスは、治療ゾーンの靱帯組織の所望のほぼ瞬間的な加熱効果を生じさせるのに十分であり得る。
【0023】
エネルギー送達構造は、受信されたマイクロ波EMエネルギーを伴う電場を放射するための任意の適切なエミッタを備え得る。例えば、エネルギー送達構造は、進行波スロット放射器、マイクロストリップアンテナ、及び開放導波路のいずれかを備え得る。エネルギー送達構造は、人体または動物体の治療ゾーンに適合するように配置され得る。例えば、アプリケータは、エネルギー送達構造を治療ゾーンに延在するように拡張するために配置される、膨張可能部を備え得る。一例では、プローブは、エネルギー送達構造に接するように組織の一部を保定するためのフック部を備え得る。
【0024】
上記に簡潔に説明したように、いったん適切な治療ゾーンが検出されると、本装置は、複数のエネルギー送達プロフィールから選択されたエネルギー送達プロフィールを使用して、治療電力の大きさにおいて電力をアンテナに送達するように配置され得る。各送達プロフィールは、各々の靱帯の種類に関連付けられ得る。コントローラは、送達プロフィールに従って、順方向電力信号を送達するために、可変減衰器及び/または信号変調デバイスを制御するように配置され得る。送達プロフィールは、治療ゾーン内の組織の種類を示す取得情報に従って、コントローラによって自動的に選択可能であり得る。代替として、または加えて、本装置は、例えば、治療される本体(膝、肩等)のエリアに応じて、適切な/所望の送達プロフィールのユーザ選択を可能にするためのコントローラに接続されるユーザインタフェースを含み得る。
【0025】
さらに、適切な治療ゾーンが検出されたとき、本装置は発電機に接続されたインピーダンス調節器を含み得、インピーダンス調節器は、治療ゾーン内の体内組織の検出インピーダンスを一致させるために、マイクロ波検出信号に基づいてコントローラによって制御可能である、調節可能である複素インピーダンスを有する。さらに、順方向電力信号及び反射電力信号は、治療ゾーンに送達される電力を監視するために使用され、それにより、靱帯(非神経)組織への最大エネルギー移送を達成する。靱帯引締めの治療が実行されるときインピーダンスを動的に調節することによって、また、加熱によるコラーゲン変化の誘電特性でさえも、最大電力送達を確実にすることが可能であり得る。言い換えれば、コラーゲンの反発係数はコラーゲンが加熱にするにつれて変化するため、本発明の装置は、この変化を検出し電力送達を最大にする。また、引締め治療の進捗を監視するために、変化を監視し得る。組織に送達されるマイクロ波エネルギーの投与量は、正確に定量化され得る。
【0026】
出力電力は、1GHz~300GHzの範囲の周波数を有し得る。具体的な以下の周波数帯域を使用し得る。その周波数帯域として、2.4GHz~2.5GHz、5.725GHz~5.875GHz、14GHz~14.5GHz、24GHz~24.25GHz、30GHz~32GHz、及び45GHz~47GHzが挙げられる。さらにより具体的には、以下のスポット周波数を考慮し得る。そのスポット周波数として、2.45GHz、5.8GHz、14.5GHz、24GHz、31GHz、45GHz、及び61.25GHzが考慮される。これらの高周波数において、(治療ゾーンのサイズに関する)放射線の浸透の深度は小さく、これにより、治療ゾーンの場所の制御と、治療ゾーン内の物質の誘電特性を明確に測定する能力との両方を補助する。また、標的組織の縮みも支援する組織を脱水するマイクロ波エネルギーのいくつかの利点があり得る。
【0027】
アンテナは、その遠位端における放出領域内の進行波スロット放射器を備え得る。
別の態様では、本発明は、靱帯組織を熱的に治療する方法を提供し得、本方法は、治療ゾーンにアンテナを位置付けることと、マイクロ波周波数電磁場をアンテナから治療ゾーンに放出し、治療ゾーン内で生物組織の加熱を生じさせることと、アンテナに送達される順方向電力信号と、アンテナから後方に反射する反射電力信号とを検出することと、検出された前方電力信号及び反射電力信号から、治療ゾーン内の生物組織の誘電特性の変化を判定することと、誘電特性の判定された変化に基づいて、順方向電力信号の大きさを制御することと、を含む。
【0028】
またさらなる態様では、本発明は、靱帯組織を熱的に治療する方法を提供し得、本方法は、治療ゾーンにアンテナを位置付けることと、測定電力レベルにおけるマイクロ波周波数電磁場をアンテナから治療ゾーンに放出することと、アンテナに送達される順方向電力信号と、アンテナから後方に反射する反射電力信号とを検出することと、検出された順方向電力信号及び反射電力信号から、治療ゾーン内の神経組織の存在または不在を判定することと、神経組織が治療ゾーンから不在であることが判定された場合、治療電力レベルにおけるマイクロ波周波数電磁場をアンテナから治療ゾーンに放出することであって、治療電力レベルは測定電力レベルを上回る大きさを有する、当該放出することと、を含む。
【0029】
本発明の装置は、肩の靱帯の治療(例えば、熱嚢縫合術での治療)、足首の靱帯の治療(すなわち、足首の不安定性の治療)、及び膝の靱帯の治療(例えば、側副靱帯損傷の治療)を行うために使用され得る。
【0030】
本発明の例は、添付の図面を参照して下記に詳細に説明される。
【図面の簡単な説明】
【0031】
図1】本発明の第1の実施形態による、電気手術装置の全体の概略的装置図である。
図2】本発明の第2の実施形態による、電気手術装置の概略図である。
図3】本発明の実施形態で使用されるインピーダンス調節器及びマイクロ波信号検出器の概略的回路図である。
図4】本発明の実施形態で使用されるのに適切なインピーダンス調節器の別の例の概略的回路図である。
図5】本発明の実施形態で使用されるのに適切なインピーダンス調節器のまた別の例の概略的回路図である。
図6】分布素子回路として扱われる完全なマイクロ波エネルギー送達構造の概略図である。
図7】分離測定チャネルを有する、本発明の第3の実施形態による、電気手術装置の概略的装置図である。
図8】分離測定チャネルを有し、発電機を整調するための手段を有する、本発明の第3の実施形態による、別の電気手術装置の概略的装置図である。
図9】本発明での使用に適切な概略的プローブ構造の概略図である。
図10A】第1の例示的プローブ構造の概略的な上面図である。
図10B】第1の例示的プローブ構造の概略的な断面側面図である。
図11】第2の例示的プローブ構造の概略的断面側面図である。
図12A】第3の例示的プローブ構造の概略的な断面側面図である。
図12B】第3の例示的プローブ構造の概略的な上面図である。
図13】第4の例示的プローブ構造の概略的側面図である。
図14A】非展開構造の第5の例示的プローブ構造の概略図である。
図14B】展開構造の第5の例示的プローブ構造の概略図である。
図15】第6の例示的プローブ構造の概略図である。
図16】第7の例示的プローブ構造の概略図である。
【発明を実施するための形態】
【0032】
概して、靱帯治療装置は、靱帯引締めプローブの遠位端に位置するエネルギー送達構造に結合される電源において高周波数マイクロ波電力を発生するための手段を提供し、エネルギー送達構造は、効率的な靱帯引締めまたは筋肉引締めを行うことを可能にし得る実質的に瞬間的な局部温度上昇を生じさせるように、集められた電磁場を小さな繊細な靱帯組織構造に放つように適合される。
【0033】
さらに、本装置は、電磁場が放たれる物質(体内組織)の誘電特性を測定するための手段を含み得る。感度の高い測定装置を提供することによって、加熱効果は、実質的に標的組織(例えば、靱帯組織)だけを含有する治療ゾーンに限定され得、神経組織への損傷を防止する。
【0034】
好適に形成されたプローブ構造を用いて、本発明は、例えば、眼筋靱帯、膝靱帯、足首靱帯、及び/または肩靱帯を治療するために使用されることができる。
【0035】
下記に説明されるいくつかの実施形態は、組織の種類を識別する技術を組み込み、しかしながら、本発明は係る技術に制限される必要はない。これらの技術は、測定モードを使用して、誘電特性に従って、どの神経組織及び靱帯組織が治療ゾーン内に存在するかを判定するために、治療ゾーンにおける組織の種類を特徴付けることが可能である。例えば、アンテナに送達されるマイクロ波電力の大きさは、適宜調節され得、例えば、治療モードで靱帯を引き締めるのに適切なエネルギーを送達するように、神経組織が検出されないときに実質的に増加し得る。したがって、神経組織へのマイクロ波放射線の送達からの治療ゾーンの加熱効果を実質的に減らすことができ、神経損傷が発生することを防止する。
【0036】
下記に説明されるいくつかの実施形態は、また、適切な治療ゾーン(例えば、神経組織を含有しない治療ゾーン)が検出されたとき、10Ω未満から100kΩよりも大きい値まで変動し得るインピーダンスの範囲にわたって、組織への最大エネルギー送達を確実にする動的組織整合技術を組み込んでいる。
【0037】
他の実施形態では、靱帯治療プローブは、治療ゾーンにおける温度を示す出力を提供する温度センサまたは他の変換器を含み得る。マイクロ波エネルギーの送達は、検出温度に基づいて制御され得る。
【0038】
装置及び発電機構成の全体
本システムで使用され得る靱帯治療システム及び電気手術発電機の全体の態様は、図1図8を参照して下記に説明される。
【0039】
図1は、本発明の第1の実施形態である電気手術靱帯引締め装置100に関する装置図の全体を示す。
【0040】
装置100は、靱帯を治療(例えば、引締め)するのに適切な電力レベルで、マイクロ波周波数電磁信号を発生及び制御するための構成要素を含有する。本実施形態では、装置100は、位相同期発振器(マイクロ波電源)1007、信号増幅器1008、可変信号減衰器(例えば、アナログまたはデジタルダイオード減衰器)1009、増幅ユニット(ここでは、駆動増幅器1010及び電力増幅器1011)、順方向電力結合器1012、サーキュレータ1013、及び反射電力結合器1014を含む。サーキュレータ1013は、結合器1012、1014に存在する望まない信号成分を減らすために、順方向信号を反射信号から分離し、すなわち、それは、結合器の指向性を増加させる。結合器1012、1014は、まとめて、発電機の順方向信号及び反射信号の検出器として考慮され得る。随意に、発電機104は、調節可能インピーダンスを有するインピーダンス整合予備装置(図示されない)を含む。このオプションは、図2を参照して、下記により詳細に説明される。
【0041】
この状況では、マイクロ波エネルギーは、300MHzを超えるいかなるもの、すなわち、1GHz~300GHz、好ましくは、2.45GHz、5.8GHz、24GHz等である。
【0042】
装置100はコントローラ106と通信する発電機104を含み、コントローラ106は、信号調整回路及び汎用インターフェース回路108、マイクロコントローラ110、及びウオッチドッグ部1015を備え得る。ウオッチドッグ部1015は、本装置がその意図される仕様を行わない結果になり得る(すなわち、本装置は、ユーザによって求められるものよりも大きい出力または治療時間に起因してエネルギーの誤った投与量を患者の体内組織に送達する)、様々な潜在的なエラー状態を監視し得る。ウオッチドッグ部1015は、マイクロコントローラ110が正確に機能することを確実にする、マイクロコントローラ110から独立しているマイクロプロセッサを備える。ウオッチドッグ部1015は、例えば、DC電源供給部からの電圧レベル、またはマイクロコントローラ110によって判定されるパルスのタイミングを監視し得る。コントローラ106は、制御信号を発電機104の構成要素に通信するように配置される。本実施形態では、マイクロプロセッサ110は、可変信号減衰器1009に関するマイクロ波制御信号Cを出力するようにプログラムされる。この制御信号は、エネルギー送達プロフィールと、発電機104から出力されたマイクロ波EM放射線のアンテナによって送達されるその電力の大きさとを設定するために使用される。具体的には、可変信号減衰器1009は、出力放射線の電力レベルを制御することが可能である。例えば、増加した電力の大きさで、コントローラ106が装置/発電出力を治療モードに切り替えるように減衰器を制御する点において、神経組織がない領域が検出されるまで、減衰器は10mWの測定電力の大きさで測定モードを維持するように配置されることが好ましい。さらに、調節可能な信号減衰器1009は、出力放射線の波(例えば、パルス幅、デューティサイクル等)を設定することが可能であるスイッチング回路を含み得る。
【0043】
マイクロプロセッサ110は、順方向電力結合器1012及び反射電力結合器1014からの信号情報に基づいて、マイクロ波制御信号Cを出力するようにプログラムされる。本実施形態では、マイクロ波発電機は、発電機から(サンプリングされた順方向電力情報及び反射電力情報から)取得されることができる位相情報の測定値だけによって制御され得る。順方向電力結合器1012は順方向電力レベルを示す信号SM1を出力し、反射電力結合器1014は反射電力レベルを示す信号SM2を出力する。順方向電力結合器1012及び反射電力結合器1014からの信号SM1、SM2は、信号調整回路及び汎用インターフェース回路108と通信し、それらの信号は、マイクロプロセッサ110に移動するのに適切な形態に適合される。
【0044】
ユーザインタフェース112(例えば、タッチスクリーンパネル、キーボード、LED/LCDディスプレイ、メンブランキーパッド、足踏みスイッチ等)は、コントローラ106と通信し、治療についての情報をユーザ(例えば、臨床医/外科医)に提供し、例えば、適切なユーザコマンドを用いて、治療の様々な態様(例えば、治療される靱帯組織の種類)を手動で選択または制御することを可能にする。本装置は、またコントローラ106に接続される従来式足踏みスイッチ1016を使用して動作し得る。
【0045】
コントローラ106は、メモリ(図示されない)を備え、本装置を動作させるソフトウェア命令を実行するように配置される。具体的には、コントローラ106は、プローブに供給される順方向電力信号の大きさ及びプロフィール(すなわち、パルス波形及び期間)を制御する。この制御は、アンテナが患者に対して移動するときに、アンテナの遠位端における組織種類を示す取得情報の変化に基づき得る、または、メモリ内に記憶され得る既定の参照データとの取得情報の比較に基づき得る。例えば、メモリはインピーダンス測定値に関する閾値条件を記憶し得、それによって、閾値条件(すなわち、靱帯組織の存在を示す及び/または神経組織の不在を示す、閾値条件)を満足する取得情報は、治療を始め得る。
【0046】
したがって、本装置は、治療ゾーンに送達されるマイクロ波電力の量(すなわち、組織加熱投与量)を臨床医によって定められることを可能にし得、順方向電力レベル及び反射電力レベルを連続的にサンプリングし、送達電力が要求と同じであることを確実にするために調節を行うことによって送達される電力に対して動的制御を提供し得る。コントローラ106と通信するユーザインタフェース112は、ユーザ(例えば、臨床医または外科医)が、ユーザによって定義されたパラメータのセットを入力し、また、有用な情報(例えば、選択されたエネルギー投与量及び組織に送達されたエネルギー)を表示することを可能にする。ユーザインタフェース112は、また、技術的パラメータ(例えば、時間関数のような反射電力及び順方向電力)を表示することを可能にし得る。この情報は、最適なエネルギープロフィールを達成するために使用されることができる。
【0047】
制御ソフトウェアは、単一のボードコンピュータ(例えば、マイクロプロセッサボードまたはDSP)で起動し得る。ユーザインタフェース112は、適切なフラットスクリーンディスプレイ及びメンブランキーパッド、またはタッチスクリーンディスプレイを含み得る。
【0048】
本装置は、アンテナ118を含有するハンドピース内の足踏みスイッチ(図示されない)またはスイッチによって制御可能であり得る。
【0049】
最終的に、本装置は電力供給ユニット1017を含み、電力供給ユニット1017は、電力を外部電源1018(例えば、電源電力)から受信し、電力を、本装置内の構成要素のDC電源供給信号V~Vに変換する。したがって、ユーザインタフェースは電力信号Vを受信し、マイクロプロセッサ110は電力信号Vを受信し、発電機は電力信号Vを受信し、信号調整回路及び汎用インターフェース回路108は電力信号Vを受信し、ウオッチドッグ1015は、電力信号Vを受信する。
【0050】
図2は、本発明の第2の実施形態による、電気手術装置101の装置図である。本装置の発電機区分104の予備構成要素が示され、本実施形態では、下記に説明されるような整調要素を含む。図1に共通する構成要素は、同じ参照数字が与えられ、再度、説明されない。
【0051】
発電機104は、低電力マイクロ波エネルギーを発生するために使用されるマイクロ波電源148を含む。電源148は、電圧制御発振器(VCO)、誘電共振発振器(DRO)、ガンダイオード発振器等であり得る。電源148の出力は、電力レベルコントローラ及び変調ユニット150によって受信される。電力レベルコントローラ及び変調ユニット150は、発電機をパルスモードで動作させることを可能にするように配置される信号変調デバイスと、ユーザが組織に送達される電力のレベルを制御することを可能にするように配置される電力制御減衰器とを含み得る。靱帯治療に関して、エネルギーの単一パルス(例えば、50W/20ms)は、靱帯を引き締めるために、靱帯を加熱するのに十分であり得る。信号変調デバイスは、パルス持続期間を制御する能力を提供する。
【0052】
変調ユニット内の減衰器は、ユーザが組織(例えば、治療ゾーン内の靱帯組織)に送達される電力のレベル/大きさを制御することを可能にするために使用される。変調スイッチの出力は増幅器及び保護ユニット152に入力され、増幅器及び保護ユニット152は、靱帯を引き締めさせるために、治療に適切な電力レベル(すなわち、治療ゾーン内の生物組織のかなり速い温度上昇を生じさせるのに適切な電力レベル)まで、電力信号を増幅するように配置される。第1の電力レベルは10W以上(例えば、50W)であり得る。減衰器は、増幅器152の入力電力を制御するために、ひいては、増幅器152の出力電力を間接的に制御するために使用されることができる。代替として、減衰器は省略され得、制御信号は、例えば、増幅器及び保護ユニット152のゲインを制御することによって、電力レベルを制御するために使用され得る。
【0053】
増幅器及び保護ユニット152は、周波数源148によって生じる出力信号レベルを増幅する駆動増幅器と、駆動増幅器によって生じる信号を、靱帯を引き締めさせるのに適切なレベルまで増幅する電力増幅器とを含み得る。したがって、測定モードが治療ゾーン内に神経組織が存在しないことを検出するとき、増幅器及び保護ユニット152は、(例えば、順方向電力信号を治療電力の大きさまで増幅することによって)発電機出力を測定モードから治療モードに切り替えるために、コントローラ106によって制御され得る。高レベルの反射マイクロ波エネルギーから増幅器及び電源を保護するために、電力増幅器からの出力はマイクロ波サーキュレータに接続され得る。サーキュレータだけが、マイクロ波電力が時計回り方向に流れることを可能にし、したがって、サーキュレータが3つのポートデバイスである場合、電力増幅器に戻るいずれかの反射電力は電力ダンプ負荷によって吸収される。第1のポートは増幅器から出力電力を取り込む。第2のポートは、この電力を給電構造及びプローブに出力し、プローブの遠位端が体内組織のインピーダンスと不整合であるとき、プローブ及びを給電構造から戻る電力を受信する。第3のポートは反射電力を吸収することが可能である電源負荷に接続され、サーキュレータのインピーダンスとかなり良好に整合される。整合負荷のインピーダンスは、本装置のインピーダンス(すなわち、50+j0Ω)と同じであることが好ましい。方向性結合器は、サーキュレータの第3のポートと、整合負荷に対する入力との間に接続され、反射電力をサンプリングすることを可能にし得る。
【0054】
増幅器及び保護ユニット152の出力は第1の電力結合ユニット154に入力され、第1の電力結合ユニット154は、発電機の順方向及び反射マイクロ波エネルギーをサンプリングするように配置される順方向性結合器及び反射方向性結合器を備え得る。サンプリングされた順方向電力レベル及び反射電力レベルは、各々、第1の電力検出ユニット156の順方向検出部及び反射方向検出部(例えば、ダイオード検出器、またはヘテロダイン/ホモダイン検出器を使用して、電力レベルが検出される)に入力され、順方向及び反射電力の一部をサンプリングし、大きさ、または大きさ及び位相、または位相だけの情報を、サンプリング信号から抽出することを可能する。第1の電力検出ユニット156によって生じる信号は、コントローラ106に入力され、順方向電力及び反射電力の大きさ及び/または位相を使用して、組織に送達される正味電力を計算し、電力レベルコントローラ及び変調器150に入る必要な入力信号を判定することを可能にし、実際の送達電力または送達エネルギーが要求される電力またはエネルギーに等しいことを確実にする。
【0055】
次に、順方向信号及びリターン信号の大きさ(治療ゾーン内の体内組織の減衰を示すもの)、治療ゾーン内の組織の誘電特性のインジケータは、神経組織及び/または靱帯組織の存在/不在を判定するために使用されることができる。次に、適宜、順方向電力を調節できる。加えて、または代替として、順方向信号及びリターン信号からの位相情報を使用できる。上記に説明したように、治療ゾーン内の組織の種類を判定するために、位相及び/または減衰情報を既定の参照データと比較し得る。
【0056】
また、本実施形態は、動的インピーダンス整合装置(インピーダンス調節器)を使用して、増幅器及び保護ユニット152によって発生するマイクロ波エネルギーを、インピーダンスに関して、(測定値誘電特性から)治療ゾーンが神経組織を含有しないと判定されたとき、治療ゾーン内の組織によって、プローブ118の遠位端に存在する負荷と整合させることを可能にし得る。本発明は、マイクロ波電力送達装置用の自動整調機構の使用に限定されない。すなわち、プローブ(ラジエータ)の遠位端は、動作周波数において、ある特定の生物組織の種類/状態に整合し得る、またはプローブのインピーダンスは、機械的に調節され得、すなわち、ハンドピース内に含まれる機構によって調節され、プローブインピーダンスと、プローブと接触する組織のインピーダンスとの間の整合のレベルを提供する。第1の電力結合ユニット154の出力は整調ネットワーク158によって受信され、整調ネットワーク158は、第1の電力検出ユニット156及び第2の電力検出ユニット164から集められた情報に基づいてコントローラ106の制御の下で整調ネットワーク調節機構160の状態によって判定される、発電機104の調節可能インピーダンスを有する。
【0057】
インピーダンス調節器158の出力は第2の電力結合ユニット162に入力され、第2の電力結合ユニット162は、第1の電力結合ユニット154に同様の方式で構成され、発電機104から順方向電力レベル及び反射電力レベルをサンプリングし、それらを各々第2の順方向電力及び反射電力検出ユニット164に入力し得、ユニット164は、検出電力レベル及び/または位相情報をコントローラ106に転送する。
【0058】
第1の電力検出ユニット156及び第2の電力検出ユニット164によって利用可能になる情報は、インピーダンス調節器158に要求される調節を判定するために比較され、電源を治療ゾーン内の体内組織のインピーダンスにインピーダンス整合させることを可能にし得る。
【0059】
発電機104のより詳細な例は、図3図5を参照して下記に説明される。
使用中、コントローラ106は、各々のチャネルのインピーダンスをプローブ118の遠位端における負荷に整合させるためのマイクロ波エネルギー供給中、インピーダンス調節器158の分散整調要素のキャパシタンス及びインダクタンスの値を制御するように動作する。実際には、インピーダンス調節器の整調要素は、可変のスタブ/マイクロストリップ伝送線、または電力PIN/バラクタダイオード(分布素子)であり得る。この状況のインピーダンス整合は、治療ゾーン内の組織への電源(すなわち、本装置)の複素共役整合によって、(マイクロ波エネルギーの放射によって)組織へのエネルギーの移送を最大にすることを指す。マイクロ波源は放射及び伝導によってエネルギーを送達できるが、戻り経路は、マイクロ波電流のために局所化されることが留意され得る。
【0060】
マイクロ波周波数におけるエネルギーを固定の温度安定周波数にするために、発振器148を安定温度の補正済み結晶基準電源に位相ロックすることが好ましい場合がある。
【0061】
インピーダンス調節器は、靱帯(非神経)組織への最大エネルギー移送を達成することを確実にするために、組織に接触するアンテナ構造を組織のインピーダンスに良好に整合することと、アプリケータの放射区分から送達されるエネルギーを良好に定量化することができることとを確実にするために使用され得、すなわち、送達ケーブル及びアプリケータの挿入損失を考慮して、組織(すなわち、コラーゲン)のインピーダンスが加熱効果の結果として変化するときでさえ、高い信頼性で標的組織に100Jのエネルギーを送達するような10W/10秒のユーザ要求を達成できる。
【0062】
図3は、実施形態による、本装置の発電機の構成要素の概略図を示す。電源228は、安定(例えば、固定)マイクロ波周波数を有するマイクロ波信号を出力する。電源228からの出力は可変減衰器230に入力され、可変減衰器230は、コントローラ(図示されない)からの制御信号Cに基づいて、出力の大きさを制御する。可変減衰器230からの出力は切替ユニット232に入力され、切替ユニット232は、コントローラからの制御信号C10に基づいて、出力を変調する。実際に、ユニット230及び232は、本デバイスが変調器として働くことを可能にするのに、または本装置がパルスモードで動作することを可能にするに、十分に速い応答時間(新しいデジタル入力信号を受信したとき、信号減衰を変化させる時間)で可変減衰器を使用することによって、1つの単一ユニットに組み合わせら得る。すなわち、減衰器の応答時間が100nsであり、本装置がパルスモードで動作する場合(パルス幅が5msになるように要求され、パルス間のオフタイムが20msである場合)は、本デバイスは、2つの目的の役割を果たすためにかなり容易に使用されることができる。切替ユニット232の出力は電力増幅器234によって受信され、電力増幅器234は、神経組織が治療ゾーン内で検出されないとき、マイクロ波信号を有用な治療の靱帯の引締め効果をもたらすのに適切な電力レベルまで増幅する。電力増幅器234からの出力はサーキュレータ236の第1のポートに入力される。サーキュレータ236は、増幅器を、プローブから戻るように進行する反射信号から分離する。サーキュレータの第2のポートに戻るように受信したいずれかの反射信号は、第3のポートから出るように電力ダンプ負荷238に向かう。
【0063】
増幅器からの順方向信号は、サーキュレータの第2のポートから出力され、第2のポートは順方向性結合器240に接続され、順方向性結合器240は、順方向指向信号の一部を検出器242に結合する。検出器242の出力はコントローラに接続される。順方向性結合器240の出力は、逆方向性結合器244に入力され、逆方向性結合器244は、任意の反射信号の一部を検出器246に結合する。検出器246の出力はコントローラに接続される。逆方向性結合器244の出力は、調節可能インピーダンスを有するマイクロ波インピーダンス調節器248に入力される。インピーダンス調節器248の出力は、順方向性結合器240及び逆方向性結合器244と同様の様式で、順方向信号及び反射信号の一部の各々を検出器254、検出器256に結合するために、順方向性結合器250及び逆方向性結合器252に入力される。検出器254、検出器256の出力はコントローラに接続される。本発明は、ダイオード検出器の使用に限定されない。すなわち、ログ振幅検出器、ホモダイン位相検出器及びホモダイン振幅検出器、ヘテロダイン位相検出器及びヘテロダイン振幅検出器、または排他的ORゲート(XOR)位相検出器は、検出器242、246、254及び256を実施するために使用され得る。位相情報及び振幅情報を抽出する能力は、マイクロ波整調ネットワークの正確かつ動的な調節を行い、より大きい範囲の制御を提供し、神経損傷を効率的に防止し、整合され得る利用可能なインピーダンスに関する整合装置の性能を改善することが可能であることに関して利点があるが、本発明は、本装置を制御するために、位相情報及び振幅情報を抽出する必要性によって制限されない。例えば、位相情報だけを測定することによって、発電機の測定情報を作成し得る。
【0064】
コントローラは、ダイオード検出器242、246、254、256(または、他の種類の検出器)からの出力を使用して、負荷(例えば、靱帯組織)に送達される電力量を判定し得る、及び/または、インピーダンス調節器248のインピーダンスを制御するための手段として、反射電力を最小にし、発電機によって生じるエネルギーを組織負荷の変化するインピーダンスに整合させ、その誘電特性が加熱によって変化するとき、靱帯組織へのエネルギー送達の最適な効率を提供し、発電機に戻されるエネルギー及び標的靱帯(非神経)組織へのエネルギー送達の正確な定量化に起因して加熱する構成要素の最小化に関する装置の最適な性能を提供し得る。
【0065】
図3のインピーダンス調節器248は、発電機に並列に接続された3つのPINダイオードスイッチ258を備える。PINダイオードスイッチ258のそれぞれは、独立DCまたは比較的低周波数(すなわち、最大10kHz)と、その状態を制御するための電圧制御信号C11~C13(コントローラによって生じる)とを有する。PINダイオードスイッチは、各々の分路キャパシタンス260(伝送線(すなわち、マイクロストリップまたは同軸ケーブル)の区分によって形成され得る)を発電機に切り替えるように動作する。直列インダクタ262(また、伝送線の区分であり得る)は、分岐要素間に接続されるように示される。分路キャパシタンス及び直列インダクタンスの組み合わせは、整調ネットワークまたはフィルタを形成し、流入及び流出するキャパシタンスまたはインダクタンスの全部の値を形成する個別の要素を切り替える能力は、ネットワークが可変整調フィルタとして働くことを可能にする。整調範囲を増加させるために、ネットワーク内の要素の数は増加し得る。同調容量の全部の値を作る分路キャパシタンスの固定値は、可能な限り広範囲の変動を提供するように加重(すなわち、バイナリ加重)され得る。インピーダンス調節器/整調ネットワークを形成するインダクタ及びキャパシタの位置は交換され得る(すなわち、インダクタは並列に接続され得、キャパシタは直列に接続される)。ネットワークで使用されるキャパシタンス及びインダクタンスの値は、分岐要素間に、及び/または伝送線と、整調要素にわたって並列で接続されるスイッチとの間に、長さが変動する伝送線を挿入することによって実現され得る(すなわち、誘導された波長の1/8に等しい物理長の伝送線の長さは、伝送線の特性インピーダンスに等しい値の誘導リアクタンスを生じさせる)。
【0066】
インピーダンス調節器248は、他の方法で実施され得る。図4は、複数の第1のバラクタダイオード264(または、電力PINダイオード)が発電機に直列で接続され、複数の第2のバラクタダイオード266(または、電力PINダイオード)が発電機に並列で接続されるような代替配置を示す。制御可能DCバイアス信号C14~C19は、バラクタダイオード264、266のそれぞれにわたる電圧を制御し、空乏領域の長さを修正するために印加されることができ、次に、キャパシタンスを変動させる。ブロックインダクタ268は、マイクロ波エネルギーがDC源に戻ることを防止する。これらのインダクタは、マイクロストリップ(すなわち、プリントインダクタ、またはワイヤの小さなコイル)において実現され得る。このように、直列バラクタダイオードは最大λ/2まで変動し得る電気的長さを有する伝送線の一部として働く(式中、λはマイクロ波エネルギーの波長である)。並列分路バラクタダイオードは最大λ/4まで変動し得る電気的長さを有するスタブとして働き得る。DCブロックキャパシタ270は、整調ネットワークとプローブとの間に接続され、DCまたは低周波数AC電流を患者の体内に送達することを防止する(すなわち、DC患者隔離バリアを提供する)。
【0067】
図5は、マイクロストリップスタブを使用して実施されるインピーダンス調節器に関する別の代替配置を示す。この例では、異なる長さを有する3つのマイクロストリップスタブ272は、発電機のマイクロストリップラインに接続される。スタブ272のそれぞれは独立して、DC信号C20~C22の制御の下でPINダイオード(または、電気機械)スイッチ274を使用して、短絡回路(閉鎖されているスイッチ接点またはスイッチ結合点)と、開放回路(開放されているスイッチまたはチャネル)との間に切り替えられ得る。スタブ272を形成する伝送線は、(容量性または誘導性)リアクタンスまたはインピーダンスの範囲を表す長さに設定されることができる。図5に示される配置は、8つの異なる整調位置(すなわち、2)を選択することを可能にする。図3の例では、インダクタ276は、分岐スタブの間に、直列に接続されるように示される。これらのインダクタは、ここでは、伝送線の特性インピーダンスを形成する線よりも狭い誘電材料の上にラインをプリントすることによって、マイクロストリップラインに実現された細い伝送線として示される。また、他の伝送線構成(線の幅/直径及び/または線の長さが、動作周波数において要求されるインダクタンスのインダクタを実現することを可能にする)を使用し得る。この構成は、インダクタ276を使用することに限定されない(すなわち、マイクロストリップラインの幅は、整調インダクタンスよりもむしろ整調キャパシタンスを生じさせるために、伝送線の特性インピーダンスに等しいインピーダンスで線を形成するために要求されたものよりも大きくなるように増加し得る)。
【0068】
別の例では、伝送線スタブ、またはスタブを形成する導波路(長方形または円筒状)区分はマイクロストリップスタブの代わりに使用され得、同軸トロンボーン構造は、位相が変動するように実施され得る。
【0069】
図6は、電気手術装置の動作を分析するために使用され得る発電機の分布回路302を示す。
【0070】
図6に示される発電機の分析は、インピーダンスの分散型ネットワークに基づいて行われ、各要素は複素インピーダンスとして表される。マイクロ波発電機318は、発電機320のインピーダンスに直列で接続されるように示され、公称50Ωである。電源インピーダンスは、4つの直列に接続された固定インピーダンス322、324、326、328と、前述の直列インピーダンスの遠位端と近位端との間に接続された3つの並列に接続された可変インピーダンス330、332、334とを備える、分布素子マイクロ波チューナーに接続される。整調ネットワークの出力は、公称インピーダンス336(50Ω)を有する同軸ケーブルアセンブリに接続される。
【0071】
ある範囲のインピーダンス値及び可変/固定の線長によって表され及び図6に示される、分布素子マイクロ波整調装置から、(インピーダンス336を伴う)同軸ケーブルアセンブリ及び(インピーダンス338を伴う)アンテナが、インピーダンスチューナーの出力ポートと、アンテナと接触する組織との間に接続されるとき、整調ネットワークの内部の可変要素330、332、334は、電源インピーダンス320を組織インピーダンス340に整合させる必要がある。
【0072】
図7は、本発明の第3の実施形態による、電気手術装置400の完全な装置図を示す。本実施形態では、発電機は、マイクロ波電源402と、治療チャネルと、治療チャネルとは分離している測定チャネルとを有する。
【0073】
治療チャネルは、電力制御モジュール(制御信号V10を用いてコントローラ406によって制御される可変減衰器404と、制御信号V11を用いてコントローラ406によって制御される信号変調器408とを備える)と、増幅モジュール(治療に適切である電力レベルにおいてプローブ420からの送達のために、順方向マイクロ波EM放射線を発生するための駆動増幅器410及び電力増幅器412を備える)とを備える。増幅モジュールの後に、治療チャネルには、マイクロ波信号結合モジュール(マイクロ波信号検出器の一部である)が続き、マイクロ波信号結合モジュールは、サーキュレータ416の第1のポートと第2のポートとの間の経路に沿って、マイクロ波EMエネルギーを電源からプローブに送達するように接続されるサーキュレータ416と、サーキュレータ416の第1のポートにおける順方向結合器414と、サーキュレータ416の第3のポートにおける反射結合器418とを備える。反射結合器を通過した後、第3のポートからのマイクロ波EMエネルギーは、電力ダンプ負荷422に吸収される。また、マイクロ波信号結合モジュールは、順方向結合信号または反射結合信号のいずれかを検出用のヘテロダイン受信機に接続するために、制御信号V12を用いて、コントローラ406によって動作するスイッチ415を含む。
【0074】
本実施形態で測定チャネルを作るために、電力スプリッタ424(例えば、3dBのパワースプリッタ)は、信号を電源402から2つの分岐に分けるために使用される。代替実施形態では、電力スプリッタ424は省略され得、別の電源が測定チャネルのために使用される。電力スプリッタ424からの1つの分岐は治療チャネルを形成し、それに接続される上記に説明した構成要素を有する。他の分岐は測定チャネルを形成する。測定チャネルは、治療チャネルの増幅器(複数可)をバイパスさせ、ひいては、治療ゾーン内のかなりの加熱効果を生じることなく、プローブからの低電力信号(例えば、治療ゾーン内の組織の種類を検出する測定モードで使用されるのに適切な10mWの連続波電力信号)を送達するように配置される。本実施形態では、制御信号V13を用いてコントローラ406によって制御される1次チャネル選択スイッチ426は、治療チャネルまたは測定チャネルのいずれかからプローブに送達するために、信号を選択するように動作可能である。例えば、コントローラ406は、神経組織が治療ゾーン内に存在しないと測定モードで判定されたとき、スイッチ426を、靱帯引締めを行うために高い電力出力を送達するための治療チャネルに切り替えさせ得る。
【0075】
本実施形態の測定チャネルは、プローブから反射された電力の位相及び大きさを検出するように配置される構成要素を含み、当該構成要素は、プローブの遠位端に存在する生物組織の物質(例えば、種類(靱帯または神経))についての情報を生じさせ得る。測定チャネルは、サーキュレータ428の第1のポートと第2のポートとの間の経路に沿って、マイクロ波EMエネルギーを電源402からプローブに送達するために接続されるサーキュレータ428を備える。プローブから戻された反射信号は、サーキュレータ428の第3のポートに向かう。サーキュレータ428は、正確な測定を容易にするために、順方向信号と反射信号との間に隔離をもたらすために使用される。しかしながら、サーキュレータがその第1のポートと第3のポートとの間に完全な隔離をもたらさないとき(すなわち、順方向信号の一部が第3のポートを通り抜け、反射信号に干渉し得るとき)、キャリアキャンセル回路は、(投入結合器432を用いて)第3のポートから出てくる信号に戻るように(順方向結合器430から)順方向信号の一部を投入するように使用される。キャリアキャンセル回路は位相調節器434を含み、位相調節器434は、投入部が、信号をキャンセルするために、第1のポートから第3のポートに通り抜けるいずれかの信号と180度だけ位相をずらすことを確実にする。また、キャリアキャンセル回路は信号減衰器436を含み、信号減衰器436は、投入部の大きさがいずれかのブレイクスルー信号と同じになることを確実にする。
【0076】
順方向信号の任意のドリフトを補償するために、順方向結合器438は、測定チャネルに提供される。サーキュレータ428の第3のポートから順方向結合器438及び反射信号の結合された出力は、スイッチ440の各々の入力端子に接続され、スイッチ440は、結合された順方向信号または反射信号のいずれかを検出用のヘテロダイン受信機に接続するために、制御信号V14を用いてコントローラ406によって動作する。
【0077】
スイッチ440の出力(すなわち、測定チャネルからの出力)及びスイッチ415の出力(すなわち、治療チャネルからの出力)は、2次チャネル選択スイッチ442の各々の入力端子に接続され、2次チャネル選択スイッチ442は、1次チャネル選択スイッチと併せて、制御信号V15を用いてコントローラ406によって動作可能であり、1次チャネル選択スイッチは、測定チャネルがエネルギーをプローブに供給するとき、測定チャネルの出力がヘテロダイン受信機に接続されることと、治療チャネルがエネルギーをプローブに供給するとき、治療チャネルの出力がヘテロダイン受信機に接続されることと、を確実にする。
【0078】
ヘテロダイン受信機は、位相情報及び振幅情報を、2次チャネル選択スイッチ442によって出力される信号から抽出するために使用される。図7に示される実施形態では、単一のヘテロダイン受信機を使用する。信号がコントローラに入る前に2回下回る光源周波数を混合する(2つのローカル発振器及び混合器を含有する)ダブルヘテロダイン受信機は、必要に応じて使用され得る。ヘテロダイン受信機は、ローカル発振器444と、2次チャネル選択スイッチ442によって出力される信号をミックスダウンするための混合器448とを備える。ローカル発振器信号の周波数は、混合器448からの出力がコントローラ406で受信される適切な中間周波数において行われるように選択される。バンドパスフィルタ446、450は、ローカル発振器444及びコントローラ406を高周波マイクロ波信号から保護するために提供される。
【0079】
コントローラ406は、ヘテロダイン受信機の出力を受信し、当該受信された出力から、治療チャネル及び/または測定チャネル上の順方向信号及び/または反射信号の位相及び大きさを示す情報を判定する(例えば、抽出する)。この情報は、例えば、治療ゾーン内で検出された靱帯組織の種類に応じて、治療チャネル上で高電力マイクロ波EM放射線の送達を制御するために使用されることができる。ある実施形態では、前方向信号及び反射信号から判定されるような治療ゾーン内の物質の誘電特性が神経組織を含有しない治療ゾーンを示すとき、コントローラは、本装置を高電力マイクロ波EM放射線を送達するように切り替える。上記で説明したように、参照データを使用して、この判定を行い得る。上記の実施形態でも説明したように、ユーザは、また、ユーザインタフェース452を介してコントローラ406と相互作用し得る。
【0080】
図8は、図7の第3の実施形態に示される装置をわずかに改変した電気手術装置500の完全な装置図を示す。図7図8とで共通する構成要素は、同じ参照数字が与えられ、再度、説明されない。
【0081】
治療チャネル上では、インピーダンス調節器502は、増幅モジュールとプローブとの間に接続される。インピーダンス調節器502は、制御信号V17を用いて、コントローラ406によって制御される。サーキュレータ504は、電力増幅器412を反射信号から保護するために、増幅モジュールとインピーダンス調節器502との間でアイソレータとして働く。電力増幅器412とサーキュレータ504との間に接続される順方向結合器506は、信号を監視する電力増幅器の結合を解除する。順方向結合器508及び反射結合器510は、サーキュレータ504とインピーダンス調節器502との間に接続され、インピーダンス調節器502の前の発電機の順方向電力信号及び反射電力信号についての情報を提供する。順方向結合器512及び反射結合器514は、インピーダンス調節器502とプローブ420との間に接続され、インピーダンス調節器502の後の発電機の順方向電力信号及び反射電力信号についての情報を提供する。組み合わせることで、結合器508、510、512、514は、コントローラ406がプローブから送達される電力とインピーダンス調節器502の電力損失とを判定することを可能にする情報を抽出できる。後者は選択的であり、したがって、結合器512、514の1対だけを必要とし得る。制御信号V12を用いてコントローラ406によって動作可能である信号選択スイッチ516は、マイクロ波信号情報を提供するために、出力がコントローラ406に送信されるヘテロダイン受信機への結合器506、508、510、512、514の出力のうちの1つを接続する。
【0082】
利用可能である位相情報及び振幅情報は、インピーダンス調節器502の内部で含有される可変要素を制御し、治療チャネルからのエネルギー送達の効率を最大にするために使用されることができる。
【0083】
プローブ構造
ここで、上記に説明した装置が使用されるのに適切なプローブ構造は、図9図16を参照して説明される。プローブ構造600の全体は図9に示される。プローブは、標的部位に位置付けできるマイクロ波ケーブル(例えば、同軸ケーブル)を含有する可撓シャフト602(例えば、ケーブルをシャフト602の管腔を通して搬送するもの)を備える。可撓シャフト602の遠位端において、マイクロ波電磁(EM)エネルギーをケーブルから受信し、当該エネルギーを標的部位における組織に送達するために接続される、エネルギー送達構造を有するアプリケータ604がある。エネルギー送達構造に関する例示的構成は下記に説明される。エネルギーは、例えば、オペレータに、アプリケータの適切な配向によって治療される組織の領域に対する制御を行わさせるような方向性のある方式で送達され得る。可撓シャフト602の近位端は、上記に説明したようなマイクロ波EMエネルギーを供給及び制御する発電機(図9に示されない)に接続され得る。
【0084】
2つの使用シナリオが想定される。プローブが開手術または一般的手術で使用される場合、1つ以上のガイドワイヤ(図示されない)は、シャフト602の管腔を通して搬送され得る。アプリケータ604は、ガイドワイヤを操作することによって移動できる可撓先端を備え得る。プローブが手術スコープデバイス(例えば、前十字靱帯手術またはアキレス腱再建では内視鏡)とともに使用される場合、アプリケータ604及び可撓シャフト602はスコープデバイスの器具チャネルを通して挿入され得る。この例では、内視鏡を操作することによって、プローブの移動(例えば、操縦)を制御し得る。
【0085】
図10A及び図10Bは、第1の例示的プローブ610を示す。プローブ610は、シャフト612の遠位端に搭載されるエネルギー送達構造を備える。この例では、エネルギー送達構造は、湾曲遠位縁(例えば、実質的に放物線の形状のもの)を有する誘電材料(例えば、セラミック等)の平面物体614を備える。平面物体614の上部表面は、その片側に形成(例えば、堆積)される第1の導体材料618を有する。導体材料は、金属(例えば、金またはステンレス鋼)であり得る。同様に、第2の導体材料620は、平面物体614の底表面に形成され得る。底表面は、それを覆うように搭載される保護用ハル622を有する。保護用ハル622は誘電材料から作成され、平面物体614の縁に対して徐々に先細りになる。
【0086】
図10Bの断面側面図に示されるように、同軸ケーブルは、シャフト612の内部で搬送されている。同軸ケーブルは、内側導体613、外側導体617、及び誘電材料615を備える。内側導体613は、誘電材料615の遠位端を越えて遠位に延在し、第1の導体材料618に電気的に接触する。外側導体617は、導電性リンク619によって第2の導体材料620に電気的に接続される。このように、第1の導体材料618及び第2の導体材料620は、エネルギー送達構造を形成する。マイクロ波エネルギーがプローブに送達されたとき、マイクロ波エネルギーは、導体材料618で覆われる本体614の側面から放射状に広がる。
【0087】
テーパ状遮蔽体カバー616は、関節を保護するように、内側導体613と第1の導体材料との間の接続部にわたって搭載される。
【0088】
本体614の上部表面の一部だけに導電コーティングを提供し、プローブ610がエネルギーを放射する方式で、プローブ610に指向性を与える。
【0089】
図11は、第2の例示的プローブ624を示す。図10A及び図10Bに共通する特徴は、同じ参照数字が与えられ、再度、説明されない。この例では、アプリケータは、シャフト612の遠位端に搭載される誘電体キャップ628によって形成される単純なマイクロ波アンテナを備える。同軸ケーブルの内側導体613は、アンテナを形成する誘電体キャップの中の同軸ケーブルの残りの部分を越えて突出する遠位部626を含む。誘電体キャップ628の誘電特性は、望ましい場形状を提供するように選ばれる。プローブ624は、さらに、誘電体キャップ628の遠位端を越えて延在するフック要素630を備える。フック630は、マイクロ波エネルギーが印加される前に、標的組織を引っ掛けるために使用されることができる。フック630は、例えば、適切なガイドロッド(図示されない)の操作によって後退可能であり得る。
【0090】
図12A及び図12Bは、第3の例示的プローブ632を示す。図10A及び図10Bに共通する特徴は、同じ参照数字が与えられ、再度、説明されない。プローブ632によって使用されるエネルギー送達構造は、「漏洩フィーダ」型伝送線であり、スロットは、エネルギーが出ることを可能にする接地面内に形成される。この例では、エネルギー送達構造は、両面に金属化された可撓誘電体シート642を備える。外側金属層は、シャフト612を通して搬送される同軸ケーブル634の外側導体に接続される。内側金属層は、同軸ケーブル634の内側導体に接続される。図12Bに示されるように、複数のスロット644は、形成された進行波スロットアンテナに対する外側金属層内に形成される。スロットのサイズ及び位置は、既知の方式で、可撓誘電体シート642及びマイクロ波エネルギー周波数の特性に基づいて選択される。この例では、プローブ632は、さらに、可撓誘電体シートが、標的部位における組織に接するように拡張し、(例えば、組織の周囲で巻くように)当該組織に適合することを可能にするように構成されている。これは、フレーム640の内部に軟質シートを搭載し及びフレーム640と軟質シート642との間に膨張可能体積638を提供することによって行われる。膨張可能体積638(バルーンまたは同等物であり得る)は、制御可能な媒体の膨張を可能にする膨張媒体(例えば、適切な不活性または生体適合性の気体または液体)と流体連通する。この目的のために、流体供給導管636は、シャフト612を通して搬送され得る。膨張可能体積は、膨張するとき、軟質シート642に所望の形状を表させるように配置される既定の形状を有し得る。例えば、軟質シートが、標的部位における組織に凹表面を提示することが望ましい場合がある。
【0091】
図13は、第4の例示的プローブ646を示す。図10A及び図10Bに共通する特徴は、同じ参照数字が与えられ、再度、説明されない。プローブ646のアプリケータは、1対のジョー650によって画定される捕捉器具の形態である。ジョー650は、治療される組織を受容するために、ジョー650の間に空間を画定するような対向方式で配置される。一方または両方のジョー650は、空間内に存在する組織に接触するように、ジョー650に搭載されるエネルギー送達構造652を有し得る。ジョー650は、空間を開閉するように調節可能であり得る。また、本実施形態では、空間内の温度を示す情報を検出するように配置される変換器648がある。変換器648は熱電対等であり得る。本明細書に説明される他のプローブ構造のいずれかは、同様の変換器が提供され得る。他の例では、撮像要素(例えば、レンズを伴う光ファイバー束)は、治療部位を監視する変換器とともに、または、変換器の代わりに使用され得る。
【0092】
図14A及び図14Bは、第5の例示的プローブ654を示す。図10A及び図10Bに共通する特徴は、同じ参照数字が与えられ、再度、説明されない。この例では、アプリケータは、調節可能形状を有するワイヤ構造656を備える。図14Bに概略的に示されるように、ワイヤ構造656は、例えば、治療される組織の周囲で巻くように、使用中にらせん形状を採用するように構成され得る。エネルギーは、ワイヤ構造が組織に接触する点で、ワイヤ構造から送達され得る。図14Aに示されるように、ワイヤ構造656は、らせん構造から直線構成に弾性的に変形し得る。ワイヤ構造の変形は、シャフト612を通って延在する1つ以上のガイドロッドを操作することによって行われ得る。アプリケータは標的部位の位置にあり得、ワイヤ構造656が直線構成であり、そのとき、ワイヤ構造656は、治療される組織を囲むらせん構造を採用するために開放され得る。
【0093】
図15は、第6の例示的プローブ658を示す。この例では、アプリケータは、供給ケーブル660の遠位端に取り付けられる開放長方形導波路662である。開放導波路662によって送達される電力は、電場が2乗された余弦波のように導波路の開口にわたって変動する。電場は、開口の側壁においてゼロであり、中心において最大である。導波路662は、放射開口のサイズを減らすために、誘電材料664で満たされ得る。サイズの減少は、誘電率の平方根に比例し、したがって、導波路が25の誘電率を有する物質で満たされる場合、サイズ減少は5になる。言い換えれば、充填されない長い壁の長さが25mmの導波路アプリケータは、充填材の比誘電率が25である場合に5mmの充填された壁の長さを有する。短い壁が10mmである場合、これは2mmに減り、したがって、空気が存在する10mm×25mmである構造は、25の誘電率を有する物質で満たされるとき、2mm×5mmの構造になる。これを達成するために使用され得る物質は、ECCOSTOCK(登録商標)HiK500Fである。
【0094】
図16は、第7の例示的プローブ668を示す。この例では、アプリケータは、供給ケーブル670の遠位端に取り付けられるホーンアンテナ672である。ホーンアンテナ672は、エネルギーを靱帯に集めるために、集められたビーム幅(例えば、18度)を生じさせるように構成され得る。別の例では、数々のアンテナ(例えば、ホーンアンテナまたは他の構造のもの)は、アプリケータに提供され得る。係る例では、放射されるエネルギーの方向性は、アンテナの特性、または各アンテナが受信する信号を制御することによって調節可能であり得る。例えば、ある配置の各アンテナの位相を制御することによって、アンテナによって放射されるビームは、ある点に集束するように配置され得る。
【0095】
標的部位の温度の閉制御を維持するために、上記に説明したプローブのいずれかは、表面の組織を冷却するように配置され得る。これは、例えば、シャフトによって搬送される流体供給導管を介して、治療部位に冷却液を直接送達することによって行われることができる。または、冷却は、例えば、治療部位に隣接する皮膚の表面を介して、プローブから独立して適用され得る。表面を冷却することは、熱損傷から、皮膚及び他の組織構造(例えば、筋膜)を保護することを補助できる。例えば、周辺(非標的)組織の温度を下げるために、マイクロ波エネルギーが導入される前に冷却が行われ得る。
【0096】
他の可能である使用分野
上記の説明では、靱帯を引き締めることに関して本発明を提示している。これに関連して、本発明は、肩、膝、及び足の靱帯を治療する際に特定の使用を見いだし得る。本発明は、また、腱(例えばアキレス腱等)を引き締める、または他には、腱(例えばアキレス腱等)を治療するために使用され得る。
【0097】
本発明は、また、他の分野で適用可能であり得る。例えば、本発明は、例えば、出産後に伸びた筋肉及び関連の構造を引き締めるために、子宮脱出症の管理における使用を見いだし得る。同様に、本発明は、尿失禁しないことを助けるために、膀胱の周囲で、筋肉を引き締めるために、または狭窄を作るために使用され得る。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10A
図10B
図11
図12A
図12B
図13
図14A-14B】
図15
図16