(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-30
(45)【発行日】2023-02-07
(54)【発明の名称】解析装置、解析方法および解析プログラム
(51)【国際特許分類】
G01R 31/28 20060101AFI20230131BHJP
H01L 21/66 20060101ALI20230131BHJP
【FI】
G01R31/28 H
H01L21/66 B
(21)【出願番号】P 2018193304
(22)【出願日】2018-10-12
【審査請求日】2021-09-17
(73)【特許権者】
【識別番号】390005175
【氏名又は名称】株式会社アドバンテスト
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】酒井 裕二
(72)【発明者】
【氏名】杉村 一
【審査官】續山 浩二
(56)【参考文献】
【文献】特開2003-282654(JP,A)
【文献】米国特許出願公開第2005/0116734(US,A1)
【文献】米国特許出願公開第2012/0123734(US,A1)
【文献】特表2012-504810(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/28
G01R 31/26
H01L 21/66
(57)【特許請求の範囲】
【請求項1】
治具を介して被測定デバイスを測定した複数の測定値を取得する取得部と、
前記複数の測定値を解析して、前記治具が前記被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを算出する解析部と、
前記変動データに基づいて、前記治具の状態を管理する管理部と、
を備え
、
前記取得部は、前記被測定デバイスにおける異なる位置で測定した前記複数の測定値を取得し、
前記解析部は、前記複数の測定値から、前記被測定デバイスにおける測定した位置に依存した位置依存成分を分離して、前記接触回数に応じた測定値の変動を抽出する、解析装置。
【請求項2】
前記位置依存成分は、前記被測定デバイスの中心から同心円状に変化する成分を含む請求項
1に記載の解析装置。
【請求項3】
前記位置依存成分は、前記被測定デバイスを座標平面上に配置した場合に、前記座標平面における一方の座標軸方向に依存した成分、および、前記座標平面における他方の座標軸方向に依存した成分の少なくともいずれか一方を含む請求項
1または
2に記載の解析装置。
【請求項4】
前記被測定デバイスは、複数のデバイス領域が形成されたウエハであり、
前記取得部は、デバイス領域ごとに測定された前記複数の測定値、および、前記デバイス領域を複数含む領域ブロックごとに測定された前記複数の測定値の少なくともいずれか一方を取得する請求項
1から
3のいずれか一項に記載の解析装置。
【請求項5】
前記複数の測定値を用いて、前記位置依存成分のモデルを機械学習により学習する機械学習部を更に備え、
前記解析部は、前記機械学習部により学習された前記モデルを用いて算出される前記位置依存成分を分離する請求項
1から
4のいずれか一項に記載の解析装置。
【請求項6】
前記解析部は、前記複数の測定値を解析して、前記治具の接触抵抗を推定し、
前記管理部は、前記解析部により推定された前記治具の接触抵抗に基づいて、前記治具の状態を管理する請求項1から
5のいずれか一項に記載の解析装置。
【請求項7】
前記解析部は、前記複数の測定値を解析して、前記接触回数に応じた前記接触抵抗の分散を算出し、
前記管理部は、前記解析部により算出された前記接触回数に応じた前記接触抵抗の分散に基づいて、前記治具の状態を管理する請求項
6に記載の解析装置。
【請求項8】
前記管理部は、前記変動データに基づいて、前記治具のクリーニング時期、および、前記治具の交換時期の少なくともいずれか一方を決定する請求項1から
7のいずれか一項に記載の解析装置。
【請求項9】
解析装置が解析する解析方法であって、
前記解析装置が、治具を介して被測定デバイスを測定した複数の測定値を取得することと、
前記解析装置が、前記複数の測定値を解析して、前記治具が前記被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを生成することと、
前記解析装置が、前記変動データに基づいて、前記治具の状態を管理することと、
を備え
、
前記取得することは、前記被測定デバイスにおける異なる位置で測定した前記複数の測定値を取得することを有し、
前記生成することは、前記複数の測定値から、前記被測定デバイスにおける測定した位置に依存した位置依存成分を分離して、前記接触回数に応じた測定値の変動を抽出することを有する、解析方法。
【請求項10】
コンピュータにより実行されて、前記コンピュータを、
治具を介して被測定デバイスを測定した複数の測定値を取得する取得部と、
前記複数の測定値を解析して、前記治具が前記被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを生成する解析部と、
前記変動データに基づいて、前記治具の状態を管理する管理部と、
して機能させ
、
前記取得部は、前記被測定デバイスにおける異なる位置で測定した前記複数の測定値を取得し、
前記解析部は、前記複数の測定値から、前記被測定デバイスにおける測定した位置に依存した位置依存成分を分離して、前記接触回数に応じた測定値の変動を抽出する、解析プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、解析装置、解析方法および解析プログラムに関する。
【背景技術】
【0002】
従来、被測定デバイスを測定するにあたって、治具を被測定デバイスに接触させて測定を行う試験装置が知られている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、被測定デバイスを測定する測定系の状態は常に一定ではなく、様々な要因に起因して変動する。したがって、測定系から得られた情報を解析して、測定系を管理することが望まれている。
【課題を解決するための手段】
【0004】
上記課題を解決するために、本発明の第1の態様においては、解析装置を提供する。解析装置は、治具を介して被測定デバイスを測定した複数の測定値を取得する取得部を備えてよい。解析装置は、複数の測定値を解析して、治具が被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを算出する解析部を備えてよい。解析装置は、変動データに基づいて、治具の状態を管理する管理部を備えてよい。
【0005】
取得部は、被測定デバイスにおける異なる位置で測定した複数の測定値を取得し、解析部は、複数の測定値から、被測定デバイスにおける測定した位置に依存した位置依存成分を分離して、接触回数に応じた測定値の変動を抽出してよい。
【0006】
位置依存成分は、被測定デバイスの中心から同心円状に変化する成分を含んでよい。
【0007】
位置依存成分は、被測定デバイスを座標平面上に配置した場合に、座標平面における一方の座標軸方向に依存した成分、および、座標平面における他方の座標軸方向に依存した成分の少なくともいずれか一方を含んでよい。
【0008】
被測定デバイスは、複数のデバイス領域が形成されたウエハであり、取得部は、デバイス領域ごとに測定された複数の測定値、および、デバイス領域を複数含む領域ブロックごとに測定された複数の測定値の少なくともいずれか一方を取得してよい。
【0009】
取得部は、治具における異なる位置で複数の被測定デバイスを測定した複数の測定値を取得し、解析部は、複数の測定値から、治具における測定した位置に依存した位置依存成分を分離して、接触回数に応じた測定値の変動を抽出してよい。
【0010】
複数の測定値を用いて、位置依存成分のモデルを機械学習により学習する機械学習部を更に備え、解析部は、機械学習部により学習されたモデルを用いて算出される位置依存成分を分離してよい。
【0011】
解析部は、複数の測定値を解析して、治具の接触抵抗を推定し、管理部は、解析部により推定された治具の接触抵抗に基づいて、治具の状態を管理してよい。
【0012】
解析部は、複数の測定値を解析して、接触回数に応じた接触抵抗の分散を算出し、管理部は、解析部により算出された接触回数に応じた接触抵抗の分散に基づいて、治具の状態を管理してよい。
【0013】
管理部は、変動データに基づいて、治具のクリーニング時期、および、治具の交換時期の少なくともいずれか一方を決定してよい。
【0014】
本発明の第2の態様においては、解析装置が解析する解析方法を提供する。解析方法は、解析装置が、治具を介して被測定デバイスを測定した複数の測定値を取得することを備えてよい。解析方法は、解析装置が、複数の測定値を解析して、治具が被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを生成することを備えてよい。解析方法は、解析装置が、変動データに基づいて、治具の状態を管理することを備えてよい。
【0015】
本発明の第3の態様においては、解析プログラムを提供する。解析プログラムは、コンピュータにより実行されてよい。解析プログラムは、コンピュータを、治具を介して被測定デバイスを測定した複数の測定値を取得する取得部として機能させてよい。解析プログラムは、コンピュータを、複数の測定値を解析して、治具が被測定デバイスに接触した接触回数に応じた測定値の変動を示す変動データを生成する解析部として機能させてよい。解析プログラムは、コンピュータを、変動データに基づいて、治具の状態を管理する管理部として機能させてよい。
【0016】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0017】
【
図1】本実施形態に係る解析装置130を測定系10とともに示す。
【
図2】本実施形態に係る解析装置130が測定値のばらつきに基づいて試験装置100の異常を検出するフローを示す。
【
図3】本実施形態に係る解析装置130が解析対象とする測定値に含まれる成分の一例を示す。
【
図4】本実施形態に係る解析装置130が解析対象とする測定値に含まれる成分の他の一例を示す。
【
図5】本実施形態に係る解析装置130が変動データに基づいて治具110の状態を管理するフローを示す。
【
図6】接触回数に応じた治具110の接触抵抗の変化傾向を示す。
【
図7】本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。
【発明を実施するための形態】
【0018】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0019】
図1は、本実施形態に係る解析装置130を測定系10とともに示す。本実施形態に係る解析装置130は、測定系10において測定対象を測定した複数の測定値を取得して解析し、解析した情報を用いて測定を行った試験装置や治具の健康度や安定度を管理する。本実施形態に係る解析装置130は、例えば、半導体やMicro Electro Mechanical Systems(MEMS)等の電子デバイスが複数形成されたウエハをテストした測定値、ウエハをダイシングして個片化したベアチップをテストした測定値およびチップを封止したパッケージをテストした測定値等、測定系10において得られた様々な測定値を解析対象としてよい。すなわち、解析装置130は、いわゆる前工程および後工程のいずれかにおいて測定された測定値を解析対象としてよい。本図においては、解析装置130が、プローバに装着されたウエハを、テスタを用いてウエハテストした測定値を解析対象とする場合を一例として示し、以下この場合について説明する。
【0020】
測定系10は、試験装置100および治具110を有する。試験装置100は、治具110を介して被測定デバイス120を測定する。
【0021】
試験装置100は、テスタ本体102およびテストヘッド104を有する。試験装置100は、例えば、システムLSIテスタ、アナログテスタ、ロジックテスタおよびメモリテスタ等のデバイス試験装置であってよい。なお、試験装置100は、テスト機能を有せずに被測定デバイス120を単に測定する測定装置も含む。試験装置100は、治具110を介して被測定デバイス120に様々なテスト信号を与え、被測定デバイス120から応答信号を取得する。
【0022】
テスタ本体102は、試験装置100の本体部であり、各種測定の制御を行う。テスタ本体102は、各種測定によって得られた複数の測定値を、有線または無線を介して本実施形態に係る解析装置130に出力する機能を有してよい。
【0023】
テストヘッド104は、ケーブルを介してテスタ本体102接続され、被測定デバイス120を測定する測定位置と退避位置との間で駆動可能に構成されている。テストヘッド104は、測定を行う際に、テスタ本体102による制御に基づいて、測定位置において被測定デバイス120にテスト信号を送信し、被測定デバイス120から応答を受信して、それをテスタ本体102へ中継する。
【0024】
治具110は、測定系10における試験装置100以外の構成要素を示す。治具110は、例えば、試験装置100が被測定デバイス120を測定する際に、試験装置100の測定機能と被測定デバイス120とを結ぶインターフェイス部であってよい。治具110は、測定対象となる被測定デバイス120の種類に応じて適宜交換され得る。本図においては、一例として、治具110は、パフォーマンスボード112、プローブカード114およびプローバ116を有する。なお、本実施形態に係る解析装置130が、後工程において測定された測定値を解析対象とする場合には、治具110は、ソケットやハンドラ等を有してもよい。
【0025】
パフォーマンスボード112は、テストヘッド104に着脱可能に装着され、テストヘッド104に電気的に接続されている。
【0026】
プローブカード114は、パフォーマンスボード112に着脱可能に装着され、パフォーマンスボードに電気的に接続されている。また、プローブカード114は、被測定デバイス120に接触させて電気的なコンタクトをとるための複数のプローブニードルを有している。
【0027】
プローバ116は、被測定デバイス120を搬送してステージ上に載置し、被測定デバイス120に設けられた電極パッドとプローブカード114のプローブニードルとの位置合わせを行う。また、プローバ116は、プローブニードルをクリーニングするためのクリーニングユニットを有している。プローブカード114を介して被測定デバイス120と電気的に接続する場合、プローブニードルによって電極パッドの表面を引掻くようにしてコンタクトをとる。この際に、プローブニードルの針先には、電極パッド上の酸化物やゴミ等が付着する。これによって、電極パッドとのコンタクト(タッチダウン)の度にプローブニードルの針先に付着物が堆積していき、徐々に正確な測定ができなくなる。そこで、プローバ116にクリーニングユニットを設け、プローブニードルの針先をポリッシュまたは洗浄することで、プローブニードルをクリーニングして針先に堆積する付着物を除去することができる。
【0028】
被測定デバイス120は、プローバ116のステージ上に載置され、試験装置100によって測定される対象となる測定対象である。本図においては、被測定デバイス120が、複数のデバイス領域122(例えば、チップ)が形成されたウエハである場合を一例として示す。複数のデバイス領域122のそれぞれには、複数の電極パッドが形成されており、試験装置100は、これら電極パッドに、プローブカード114のプローブニードルを接触させて複数のデバイス領域122の測定を行う。この際、試験装置100は、複数のデバイス領域122ごとに測定を行ってもよいし、デバイス領域122を複数含む領域ブロック(例えば、4チップ)ごとに測定を行ってもよい。そして、試験装置100は、例えば、これら被測定デバイス120を異なる位置で測定した際に得られる複数の測定値を、直接またはネットワークや媒体を介して解析装置130に供給する。
【0029】
解析装置130は、測定系10において被測定デバイス120を測定した複数の測定値を取得して解析する。解析装置130は、PC(パーソナルコンピュータ)、タブレット型コンピュータ、スマートフォン、ワークステーション、サーバコンピュータ、または汎用コンピュータ等のコンピュータであってよく、複数のコンピュータが接続されたコンピュータシステムであってもよい。このようなコンピュータシステムもまた広義のコンピュータである。また、解析装置130は、コンピュータ内で1または複数実行可能な仮想コンピュータ環境によって実装されてもよい。これに代えて、解析装置130は、測定値の解析用に設計された専用コンピュータであってもよく、専用回路によって実現された専用ハードウェアであってもよい。一例として、解析装置130は、インターネットに接続されたWebサーバであってよく、この場合、ユーザは、インターネットに接続可能な様々な環境から、クラウド上の解析装置130へアクセスして各種サービスの提供を受けることができる。また、解析装置130は、直接またはLocal Area Network(LAN)等のネットワークを介して試験装置100と接続する単独の装置として構成されてもよいし、試験装置100と一体に構成され、試験装置100の機能ブロックの一部として実現されてもよい。また、後述するように、例えば、ユーザによる直接入力や、USBメモリ等の記憶媒体から複数の測定値を入手可能である場合には、解析装置130は、試験装置100と接続されていなくてもよく、測定系10とは独立した装置として構成されてもよい。
【0030】
解析装置130は、入力部140、取得部150、機械学習部160、解析部170、管理部180および出力部190を備える。
【0031】
入力部140は、複数の測定値を入力するためのインターフェイス部である。入力部140は、例えば、試験装置100のテスタ本体102に、直接またはネットワークを介して接続されており、試験装置100によって測定された複数の測定値を入力する。また、入力部140は、キーボードやマウス等を介してユーザからの直接入力を受け付けるユーザインターフェイスであってもよいし、USBメモリやディスクドライブ等を解析装置130に接続するためのデバイスインターフェイスであってもよく、これらインターフェイスを介して試験装置100によって測定された複数の測定値を入力してもよい。
【0032】
取得部150は、入力部140に接続されており、試験装置100が治具110を介して被測定デバイス120を測定した複数の測定値を取得する。取得部150は、試験装置100が被測定デバイス120における異なる位置で測定した複数の測定値、より詳細には、治具110を被測定デバイス120の異なる位置に接触させて測定した複数の測定値を取得してよい。例えば、被測定デバイス120が、複数のデバイス領域122が形成されたウエハである場合、取得部150は、デバイス領域122ごとに測定された複数の測定値、および、デバイス領域122を複数含む領域ブロックごとに測定された複数の測定値の少なくともいずれか一方を取得する。取得部150は、取得した複数の測定値を、機械学習部160および解析部170へ供給する。また、解析装置130が後工程において測定された測定値を解析対象とする場合には、取得部150は、これに代えて、または、加えて、治具110における異なる位置で複数の被測定デバイス120を測定した複数の測定値を取得してよい。例えば、解析装置130がファイナルテストにおいて測定された測定値を解析対象とする場合、取得部150は、ソケットボード上に設けられた複数のソケットにおいて複数の被測定用ICをそれぞれ測定した複数の測定値を取得してよい。
【0033】
機械学習部160は、取得部150に接続されており、取得部150から供給された複数の測定値を用いて、例えば、被測定デバイス120における測定した位置に依存した成分、および、治具110における測定した位置に依存した成分の位置依存成分等の測定値に含まれる成分のモデルを機械学習により学習する。これについては後述する。
【0034】
解析部170は、取得部150および機械学習部160に接続されており、取得部150から供給された複数の測定値を解析して、測定値のばらつきを抽出する。また、解析部170は、複数の測定値を解析して、治具110が被測定デバイス120に接触した接触回数に応じた測定値の変動を示す変動データを生成する。この際、解析部170は、複数の測定値から、例えば、被測定デバイス120における測定した位置に依存した成分、および、治具110における測定した位置に依存した成分の位置依存成分を分離する。解析部170は、この位置依存成分を、機械学習部160により学習されたモデルを用いて算出することができる。
【0035】
管理部180は、解析部170に接続されており、解析部170により位置依存成分が分離された複数の測定値に基づいて、治具110の状態の管理、および、試験装置100の異常検出の少なくともいずれか一方を行う。例えば、管理部180は、解析部170が生成した変動データに基づいて、治具110の状態を管理する。また、管理部180は、解析部170が抽出した測定値のばらつきに基づいて、試験装置100の異常を検出する。なお、ここで、治具110の状態の管理として、管理部180は、例えば、変動データに基づいて、治具110のクリーニング時期、および、治具110の交換時期の少なくともいずれか一方を決定することができる。
【0036】
出力部190は、管理部180に接続されており、管理部180が管理した情報を出力する。出力部190は、この情報を、解析装置130に設けられた表示部(図示せず)に表示させてもよいし、直接またはネットワークを介して接続された他の装置へ送信してもよい。
【0037】
図2は、本実施形態に係る解析装置130が測定値のばらつきに基づいて試験装置100の異常を検出するフローを示す。ステップ210において、解析装置130の取得部150は、入力部140を介して複数の測定値を取得する。
【0038】
ステップ220において、解析装置130の機械学習部160は、ステップ210において取得した複数の測定値を用いて、位置依存成分等の測定値に含まれる成分のモデルを機械学習により学習する。ここで、位置依存成分は、後述するように、例えば、被測定デバイス120の中心から同心円状に変化する成分、被測定デバイス120をXY平面上に配置した場合にX軸方向に依存した成分およびY軸方向に依存した成分を含む。また、複数の測定値は、後述するようにタッチダウン回数に依存した成分を含む。機械学習部160は、複数の測定値をサンプリングして測定値に含まれる成分のモデルを機械学習により学習する。これについては後述する。
【0039】
次に、ステップ230において、解析装置130の解析部170は、複数の測定値からステップ220において機械学習部160により学習されたモデルを用いて算出される位置依存成分を分離する。
【0040】
そして、ステップ240において、解析装置130の解析部170は、複数の測定値を解析して、ステップ230において位置依存成分が分離された複数の測定値を用いて測定値のばらつきを抽出する。そして、解析部170は、測定値のばらつきを確率分布で表現して、測定値の確率分布を算出する。解析部170は、例えば、測定値の確率分布が正規分布に従うと仮定して、平均値および標準偏差σ等を算出する。なお、上述の説明では、測定値の確率分布が正規分布に従うと仮定したが、これに限定されるものではない。解析部170は、例えば、測定値の確率分布が、スチューデントのt分布およびウィッシャート分布等の他の分布に従うと仮定してもよい。
【0041】
そして、ステップ250において、解析装置130の管理部180は、測定値のばらつきに基づいて試験装置100の異常を検出する。管理部180は、複数の測定値のうち、ステップ240において算出した測定値の確率分布から外れた外れ値に基づいて試験装置100の異常を検出してよい。例えば、管理部180は、測定値の確率分布において、平均値から標準偏差σの所定倍(例えば2σ)離れた値(外れ値)が予め定められた基準以上の確率で発生した場合に、試験装置100に何らかの異常が生じたものと判定してよい。管理部180は、試験装置100の異常として、例えば、被測定デバイス120に電力を供給する電力源、ドライバ、A/D変換器、D/A変換器等の故障を検出し得る。
【0042】
このように、本実施形態に係る解析装置130によれば、複数の測定値を解析して抽出した測定値のばらつきに基づいて、試験装置100の異常を検出する。従来、試験装置100の異常は、定期診断でしか分からなかった。しかしながら、本実施形態に係る解析装置130は、製品として出荷されるデバイスの試験および測定中に得られる測定結果の振る舞いから測定を行った試験装置100の健康度や安定度をチェックすることができる。これにより、異常が生じている試験装置100によって測定された結果、本来、良品と判断されるべき被測定デバイス120が不良として扱われて歩留まりが低下することや、本来、不良と判断されるべき被測定デバイス120が良品として扱われて次工程に流出することを回避することができる。また、本実施形態に係る解析装置130は、複数の測定値から被測定デバイス120における測定した位置に依存する成分や治具110における測定した位置に依存する成分を分離するので、測定値のばらつきをより精度よく抽出することができる。
【0043】
ここで、解析装置130の機械学習部160は、ベイズ推論を用いて測定値に含まれる成分のモデルを機械学習により学習する。これに代えて、機械学習部160は、回帰分析、決定木学習およびニューラルネットワーク等の他の学習アルゴリズムを用いて学習してもよい。
【0044】
一般に、ベイズ推論は、観測された事実から推定したい事柄を確率的な意味で推論する。例えば、P(A)を事象Aが発生する確率(事前確率)、P(A|X)を事象Xが発生した下で事象Aが発生する条件付き確率(事後確率)とすると、事後確率P(A|X)はベイズの定理によって次式で表される。ここで、P(X|A)は尤度であり、統計学において、ある前提条件に従って結果が出現する場合に、逆に観測結果からみて前提条件が何であったと推測する尤もらしさを表す。
【数1】
【0045】
ここで、事象Aの確率の観点からは、P(X)は規格化定数としての意味しかもたないため、しばしば省略され、事後確率P(A|X)は次式のように表すことができる。すなわち、事後確率P(A|X)は事前確率P(A)と尤度P(X|A)の積に比例する。
【数2】
【0046】
このように、事象Xに関するある結果が得られたとすると、それを反映し、尤度の乗算によって、事象Aの確率を事前確率から事後確率へと更新していく。つまり、主観的な確率分布であった事前確率P(A)に、尤度P(X|A)を乗算することにより、事象Xを加味して、より客観性の高い確率分布である事後確率P(A|X)を算出する。そして、さらに新たな事象Xが加えられれば、事後確率を新たに事前確率として扱い、ベイズ改訂を繰り返していく。このように、確率分布をより客観的にするベイズ改訂を利用して、事象Aを推定する方法がベイズ推定である。上述したように、測定系10から得られる複数の測定値は、例えば、同心円状に変化する成分、X軸方向に依存した成分、Y軸方向に依存した成分およびタッチダウン回数に依存した成分等、複数の成分の和として与えられる。本実施形態に係る解析装置130の機械学習部160は、各成分の関数における定数、すなわち、被測定デバイス120の中心からの距離rの関数における定数W、X軸成分xおよびY軸成分yの関数における定数S、およびタッチダウン回数tの関数における定数R等をそれぞれ、(数1)および(数2)の"A"として用い、複数の測定値が示す値を(数1)および(数2)の"X"として用いて、各定数の確率分布を、測定値を使用して更新していく。
【0047】
機械学習部160は、測定値に含まれる成分のモデルを機械学習により学習するにあたって、不明なパラメータを得るためのサンプリング方法として、複数のパラメータが簡単な依存関係にある場合には、連立方程式を用いることができる。これに代えて、複数のパラメータが相互に依存する場合には、機械学習部160は、反復法、統計的推定法、および、最適化等を用いることができる。
【0048】
図3は、本実施形態に係る解析装置130が解析対象とする測定値に含まれる成分の一例を示す。解析装置130が解析する測定値には、被測定デバイス120における測定した位置に依存した位置依存成分が含まれている。位置依存成分は、例えば、本図に示すように、被測定デバイス120の中心から同心円状に変化する成分を含む。ウエハ等の被測定デバイス120に複数のデバイス領域122を形成するにあたっては、枚葉式の処理装置を用いてプロセスが施されることがある。この枚葉式の処理装置においては、ウエハをスピンチャックに保持して回転させた状態で、ノズルからウエハの中心に処理液を塗布し、スピンチャックの回転による遠心力によって処理液をウエハ全体に塗り拡げて処理をしている。この際、処理液をウエハ全体に均一に塗り拡げるように制御することや、ウエハのエッジ部分を中心部分と同様に処理することは厳密には容易ではない。このような理由により、被測定デバイス120は、中心からの距離に依存して同心円状に僅かな製造ばらつきが生じる。したがって、解析装置130が解析する測定値は、被測定デバイス120の中心から同心円状に変化する成分を含んでいる。
【0049】
また、位置依存成分は、例えば、本図に示すように、被測定デバイス120を座標平面(XY平面)上に配置した場合に、座標平面における一方の座標軸方向(X軸方向)に依存した成分、および、座標平面における他方の座標軸方向(Y軸方向)に依存した成分の少なくともいずれか一方を含む。例えば、ウエハ等の被測定デバイス120に複数のデバイス領域122を形成するにあたって、ウエハを一端側から徐々に処理液に浸漬させるプロセスや、ウエハの一端側から処理ガスを処理チャンバに充填させるプロセス等を経ることがある。このような場合に、被測定デバイス120は、一端から他端に向けて僅かな製造ばらつきが生じる。したがって、解析装置130が解析する測定値は、被測定デバイス120をXY平面上に配置した場合に、X軸方向に依存した成分やY軸方向に依存した成分を含んでいる。
【0050】
また、ファイナルテストにおいては、ソケットボード上に設けられた複数のソケットのそれぞれに被測定用ICが装着された状態で、複数の被測定用ICが測定される。このような場合に、ソケットボードの反りや傾き、または温度依存性等により、複数の測定値は、治具110における測定した位置に依存した様々な成分を含んでいる。
【0051】
このように、解析装置130が解析対象とする複数の測定値は、同心円状に変化する成分、X軸方向に依存した成分およびY軸方向に依存した成分等、複数次元の変数からなる位置に依存した位置依存成分を含んでいる。本実施形態に係る解析装置130は、これら複数次元の変数からなる位置依存成分のモデルを機械学習により学習することができる。そして、本実施形態に係る解析装置130は、複数の測定値から位置依存成分を分離することで、製造ばらつきによる測定値への影響や、治具110の位置による測定値への影響を除去することができる。これにより、本実施形態に係る解析装置130によれば、測定値のばらつきや他の要因が及ぼす測定値への影響を詳細に精度よく抽出することができる。
【0052】
図4は、本実施形態に係る解析装置130が解析対象とする測定値に含まれる成分の他の一例を示す。解析装置130が解析する測定値は、
図4に示した位置依存成分に加えて、本図に示すような、プローブカード114が有するプローブニードルを被測定デバイス120に接触させたタッチダウン(TD)回数に応じた測定値の変動成分を含んでいる。
【0053】
上述したように、プローブカード114を介して測定対象と電気的に接続する場合、プローブニードルによって電極パッドの表面を引掻くようにしてコンタクトをとる。この際、プローブニードルの針先には、電極パッド上の酸化物やゴミ等が付着する。これによって、タッチダウン回数に応じてプローブニードルの接触抵抗(CRES)値が増加していき、その結果、タッチダウン回数に応じた変動を測定値に与える。なお、このタッチダウン回数は、上述したクリーニングユニットを用いてプローブニードルの針先をポリッシュまたは洗浄した場合に、リセットされる値である。
【0054】
本実施形態に係る解析装置130は、同心円状に変化する成分、X軸方向に依存した成分およびY軸方向に依存した成分を含む位置依存成分に加えて、タッチダウン回数に応じた変動成分を含めて、測定値に含まれる成分のモデルを機械学習により学習することができる。そして、解析装置130は、複数の測定値から位置依存成分を分離して、タッチダウン回数に応じた測定値の変動を示す変動データを生成し、変動データに基づいて治具の状態を管理することができる。
【0055】
図5は、本実施形態に係る解析装置130が変動データに基づいて治具110の状態を管理するフローを示す。ステップ510からステップ530については、
図2のステップ210からステップ230と同様である。
【0056】
本フローにおいて、解析装置130の解析部170は、ステップ540において、治具110が被測定デバイス120に接触した接触回数、すなわちTD回数に応じた測定値の変動を示す変動データを生成する。解析部170は、測定値のばらつきをTD回数で分類して、それぞれを確率分布で表現する。また、解析部170は、TD回数によって分類して生成した複数の確率分布を用いて、TD回数に応じた治具110(プローブカード114のプローブニードル)の接触抵抗の分散を推定する。
【0057】
そして、ステップ550において、解析装置130の管理部180は、ステップ540で生成された変動データに基づいて、治具110の状態を管理する。例えば、管理部180は、TD回数に応じた治具110の接触抵抗の分散に基づいて、治具110のクリーニング時期、および、治具110の交換時期の少なくともいずれか一方を決定する。
【0058】
図6は、接触回数に応じた治具110の接触抵抗の変化傾向を示す。上述したように、プローブニードルの接触抵抗(CRES)値は、TD回数に応じて増加していく。したがって、本図に示すように、TD回数を横軸にとった場合、CRES値の平均値はTD回数の増加に伴って右肩上がりに増加していく。これに加えて、CRES値は、TD回数の増加に伴ってばらつきが大きくなる傾向を示すことが分かってきた。すなわち、CRES値の確率分布において、TD回数の増加に伴って分散が大きくなっていく傾向を示す。本実施形態に係る解析装置130は、この変化傾向を利用する。
【0059】
すなわち、解析装置130は、ステップ540において、TD回数に応じた接触抵抗の分散を推定し、ステップ550において、TD回数に応じた接触抵抗の分散が予め定められた基準を超える場合に、治具110をクリーニングする必要があると判定する。また、解析装置130は、例えば、TD回数に応じて接触抵抗の分散が大きくなる度合いに基づいて、治具110のクリーニング時期を決定する。すなわち、解析装置130は、TD回数に応じた接触抵抗の分散の増加から、以降も分散が同様に(例えば、線形に)増加すると仮定して、治具110のクリーニング時期を決定しても良い。また、解析装置130は、接触抵抗の分散に基づいて、治具110の交換時期を決定してもよい。例えば、解析装置130は、予め定められた回数よりも少ないTD回数で予め定められた基準を超えた場合に、治具110を交換する必要があると判定してもよい。
【0060】
本実施形態に係る解析装置によれば、治具110が被測定デバイス120に接触した接触回数に応じた測定値の変動を示す変動データに基づいて、治具110の状態を管理するので、治具110のメンテナンスを最適化することができる。従来は、治具110のメンテナンスを定期的に行っていた。しかしながら、本実施形態に係る解析装置は、治具110のメンテナンスを、推定した接触抵抗に基づいて最適化することで、治具110のメンテナンス回数を削減することができる。これによりメンテナンスにかかる時間を低減することができ、測定に費やす時間の短縮やメンテナンス費用の抑制を図ることができる。
【0061】
本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
【0062】
コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
【0063】
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
【0064】
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
【0065】
図7は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、および/またはコンピュータ2200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ2200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。
【0066】
本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216、およびディスプレイデバイス2218を含み、それらはホストコントローラ2210によって相互に接続されている。コンピュータ2200はまた、通信インターフェイス2222、ハードディスクドライブ2224、DVD-ROMドライブ2226、およびICカードドライブのような入/出力ユニットを含み、それらは入/出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータはまた、ROM2230およびキーボード2242のようなレガシの入/出力ユニットを含み、それらは入/出力チップ2240を介して入/出力コントローラ2220に接続されている。
【0067】
CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはそれ自体の中にCPU2212によって生成されたイメージデータを取得し、イメージデータがディスプレイデバイス2218上に表示されるようにする。
【0068】
通信インターフェイス2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD-ROMドライブ2226は、プログラムまたはデータをDVD-ROM2201から読み取り、ハードディスクドライブ2224にRAM2214を介してプログラムまたはデータを提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/またはプログラムおよびデータをICカードに書き込む。
【0069】
ROM2230はその中に、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、および/またはコンピュータ2200のハードウェアに依存するプログラムを格納する。入/出力チップ2240はまた、様々な入/出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入/出力コントローラ2220に接続してよい。
【0070】
プログラムが、DVD-ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い情報の操作または処理を実現することによって構成されてよい。
【0071】
例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェイス2222に対し、通信処理を命令してよい。通信インターフェイス2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD-ROM2201、またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。
【0072】
また、CPU2212は、ハードディスクドライブ2224、DVD-ROMドライブ2226(DVD-ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにし、RAM2214上のデータに対し様々なタイプの処理を実行してよい。CPU2212は次に、処理されたデータを外部記録媒体にライトバックする。
【0073】
様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM2214に対しライトバックする。また、CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
【0074】
上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200近傍のコンピュータ可読媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ2200に提供する。
【0075】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0076】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0077】
100 試験装置
102 テスタ本体
104 テストヘッド
110 治具
112 パフォーマンスボード
114 プローブカード
116 プローバ
120 被測定デバイス
122 デバイス領域
130 解析装置
140 入力部
150 取得部
160 機械学習部
170 解析部
180 管理部
190 出力部
2200 コンピュータ
2201 DVD-ROM
2210 ホストコントローラ
2212 CPU
2214 RAM
2216 グラフィックコントローラ
2218 ディスプレイデバイス
2220 入/出力コントローラ
2222 通信インターフェイス
2224 ハードディスクドライブ
2226 DVD-ROMドライブ
2230 ROM
2240 入/出力チップ
2242 キーボード