(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-01
(45)【発行日】2023-02-09
(54)【発明の名称】バイオドシメトリパネルおよび方法
(51)【国際特許分類】
G01N 33/68 20060101AFI20230202BHJP
G01N 33/53 20060101ALI20230202BHJP
【FI】
G01N33/68
G01N33/53 D
【外国語出願】
(21)【出願番号】P 2020134535
(22)【出願日】2020-08-07
(62)【分割の表示】P 2017054050の分割
【原出願日】2012-09-28
【審査請求日】2020-08-24
(32)【優先日】2011-09-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513270213
【氏名又は名称】ザ ヘンリー エム ジャクソン ファンデイション フォー ザ アドヴァンスメント オブ ミリタリー メディシン インコーポレイテッド
(73)【特許権者】
【識別番号】505243216
【氏名又は名称】メソ スケール テクノロジーズ エルエルシー
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100122301
【氏名又は名称】冨田 憲史
(74)【代理人】
【識別番号】100157956
【氏名又は名称】稲井 史生
(74)【代理人】
【識別番号】100170520
【氏名又は名称】笹倉 真奈美
(72)【発明者】
【氏名】ウィリアム・ブレイクリー
(72)【発明者】
【氏名】エリー・グレザー
(72)【発明者】
【氏名】ジョン・ケンテン
(72)【発明者】
【氏名】サディープ・クマ
(72)【発明者】
【氏名】アヌ・マシュー
(72)【発明者】
【氏名】ナタリア・アイ・オーセットローヴァ
(72)【発明者】
【氏名】ジョージ・シーガル
【審査官】草川 貴史
(56)【参考文献】
【文献】国際公開第2008/140463(WO,A2)
【文献】特許第6251856(JP,B1)
【文献】国際公開第2006/022226(WO,A1)
【文献】米国特許出願公開第2010/0144558(US,A1)
【文献】国際公開第2010/033069(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/48-33/98
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
試料における電離放射線の吸収線量または放射線誘発の組織傷害を評価するために使用される多重アッセイキットであって、
前記試料は対象から得られ、前記
多重アッセイキットは、イムノアッセイを用いて前記試料中の複数のバイオマーカーのレベルを測定するように構成され、前記複数のバイオマーカーは、CD20、Flt-3L、CD177、IL-12、TPO、および唾液アルファ-アミラーゼを含む、上記多重アッセイキット。
【請求項2】
前記複数のバイオマーカーが、
(a)ATM、リン酸化H2AXヒストン、p53、p21、GADD45a、およびこれらの組み合わせからなる群から選択されるDNA損傷バイオマーカー;
(b)IL-1、IL-5、KC/GRO、IFN、IL-2、IL-4、IL-3、IL-7、IL-6、CRP、SAA、IL-10、TNF-アルファ、およびこれらの組み合わせからなる群から選択される炎症反応バイオマーカー;
(c)シトルリン化タンパク質、S100B、SP-D、BPI、TSP、CA15-3、CKBB、CKMB、CKMM、FABP2、GFAP、NSE、およびこれらの組み合わせからなる群から選択される組織損傷バイオマーカー;
(d)G-CSF、KFG、EPO、GM-CSF、SDF-1a、およびこれらの組み合わせからなる群から選択される組織損傷修復バイオマーカー;
(e)CD5、CD-16b、CD26、CD40、およびこれらの組み合わせからなる群から選択される血液学サロゲートマーカー;および
(f)これらの組み合わせ
からなる群から選択される追加のバイオマーカーをさらに含む、請求項1に記載の
多重アッセイキット。
【請求項3】
前記追加のバイオマーカーが、バイオマーカー(a)~(e)のうちの少なくとも2つを含む、請求項2に記載の
多重アッセイキット。
【請求項4】
前記追加のバイオマーカーが、バイオマーカー(a)~(e)のうちの少なくとも4つを含む、請求項2に記載の
多重アッセイキット。
【請求項5】
前記追加のバイオマーカーが、下記:
(a)DNA損傷バイオマーカー;
(b)炎症反応バイオマーカー;
(c)組織損傷バイオマーカー;
(d)組織損傷修復バイオマーカー;および
(e)血液学サロゲートマーカー
からなる群から選択される、請求項2に記載の
多重アッセイキット。
【請求項6】
前記DNA損傷バイオマーカーが、ATM、リン酸化H2AXヒストン、およびこれらの組み合わせからなる群から選択される、請求項2~
5のいずれか1項に記載の
多重アッセイキット。
【請求項7】
前記炎症反応バイオマーカーが、IL-1、IL-5、KC/GRO、IFN、IL-2、IL-4、IL-3、IL-7、およびこれらの組み合わせからなる群から選択される、請求項2~
6のいずれか1項に記載の
多重アッセイキット。
【請求項8】
前記炎症反応バイオマーカーが、IL-3、IL-7、IL-6、またはこれらの組み合わせである、請求項2~
7のいずれか1項に記載の
多重アッセイキット。
【請求項9】
前記組織損傷バイオマーカーが、シトルリン化タンパク質である、請求項2~
8のいずれか1項に記載の
多重アッセイキット。
【請求項10】
前記組織損傷修復バイオマーカーが、G-CSF、KFG、EPO、GM-CSF、SDF-1a、およびこれらの組み合わせからなる群から選択される、請求項2~
9のいずれか1項に記載の
多重アッセイキット
【請求項11】
前記複数のバイオマーカーが、G-CSF、EPO、GM-CSF、SDF-1a、
またはこれらの組み合わせ
をさらに含む、請求項1~
10のいずれか1項に記載の
多重アッセイキット。
【請求項12】
前記複数のバイオマーカーが、G-CSF、GM-CSF、EPO、SAA、およびCD26をさらに含む、請求項1~
11のいずれか1項に記載の
多重アッセイキット。
【請求項13】
前記複数のバイオマーカーが、GM-CSF、SAA、およびCD26をさらに含む、請求項1~
12のいずれか1項に記載の
多重アッセイキット。
【請求項14】
(a)バーコード化された患者識別タグ;(b)バーコードを含む乾燥血液スポット収集カード;(c)乾燥剤を含む試料搬送バッグ;(d)プランジャーを有するキャピラリー;または(e)ランセットを含む、追加のキットコンポーネントをさらに含む、請求項1~
13のいずれか1項に記載の
多重アッセイキット。
【請求項15】
前記
多重アッセイキットが、前記
多重アッセイキットにおいて行われるアッセイに用いられる複数のアッセイウェルを含むマルチウェルアッセイプレートを含み、前記複数のアッセイウェルが、前記試料中の前記複数のバイオマーカーの前記レベルを測定するように構成される、請求項1~
14のいずれか一項に記載の
多重アッセイキット。
【請求項16】
前記
マルチウェルアッセイプレートの
各ウェルが複数のアッセイドメインを含み、前記アッセイドメインの少なくとも2つは、異なるバイオマーカーを測定するための試薬を含む、請求項
15に記載の
多重アッセイキット。
【請求項17】
前記試料中に存在する前記複数のバイオマーカーのレベルを、前記
対象によって吸収された放射線の線量と相互に関連付ける指示をさらに含む、請求項1~
16のいずれか1項に記載の
多重アッセイキット。
【請求項18】
コンピュータシステムによって実行されるとき、コンピュータシステムに、
前記試料中に存在する前記複数のバイオマーカーのレベルを、
前記対象によって吸収された放射線の線量と相互に関連付けることを含む方法を実行させるコンピュータプログラムを格納しているコンピュータ読み取り可能な記録媒体をさらに含む、請求項1~
17のいずれか1項に記載の
多重アッセイキット。
【請求項19】
前記
多重アッセイキットが、複数のアッセイを実行するためのアッセイカートリッジを含み、前記
アッセイカートリッジが、入口、出口または検出チャンバを有するフローセルを含み、前記入口、検出チャンバまたは出口は前記フローセルを通る流路を画定し、前記検出チャンバは前記試料中の前記複数のバイオマーカーの前記レベルを測定するように構成される、請求項1~
18のいずれか1項に記載の
多重アッセイキット。
【請求項20】
前記
多重アッセイキットが、前記
イムノアッセイにおいて使用される1つまたはそれ以上の追加のアッセイ試薬をさらに含み、前記1つまたはそれ以上の追加のアッセイ試薬は、1つまたはそれ以上のバイアル、容器または前記
多重アッセイキットのコンパートメントにおいて提供される、請求項1~19のいずれか1項に記載の
多重アッセイキット。
【請求項21】
前記
多重アッセイキットが、電気化学発光(ECL)標識試薬をさらに含み、前記レベルが、ECLを測定することによって、前記
多重アッセイキットを用いて実行されるアッセイにおいて測定される、請求項1~20のいずれか1項に記載の
多重アッセイキット。
【請求項22】
試料における電離放射線の吸収線量を評価するために使用される多重アッセイキットであって、
前記試料は対象から得られ、前記
多重アッセイキットは、イムノアッセイを用いて前記試料中の複数のバイオマーカーのレベルを測定するように構成され、前記複数のバイオマーカーは、(i)CD20、Flt-3L、CD177、IL-12、TPO、および唾液アルファ-アミラーゼ;ならびに(ii)
(a)ATM、リン酸化H2AXヒストン、p53、p21、GADD45a、およびこれらの組み合わせからなる群から選択されるDNA損傷バイオマーカー;
(b)IL-1、IL-5、KC/GRO、IFN、IL-2、IL-4、IL-3、IL-7、IL-6、CRP、IL-10、TNF-アルファ、およびこれらの組み合わせからなる群から選択される炎症反応バイオマーカー;
(c)シトルリン化タンパク質、S100B、SP-D、BPI、TSP、CA15-3、CKBB、CKMB、CKMM、FABP2、GFAP、NSE、およびこれらの組み合わせからなる群から選択される組織損傷バイオマーカー;
(d)KFG、SDF-1a、およびこれらの組み合わせからなる群から選択される組織損傷修復バイオマーカー;
(e)CD5、CD-16b、CD40、およびこれらの組み合わせからなる群から選択される血液学サロゲートマーカー;
(f)G-CSF、GM-CSF、EPO、SAA、CD26、およびこれらの組み合わせからなる群から選択される1つまたはそれ以上のバイオマーカー;および
(g)これらの組み合わせ
からなる群から選択される追加のバイオマーカーを含む、上記多重アッセイキット。
【請求項23】
前記追加のバイオマーカーが、バイオマーカー(a)~(f)のうちの少なくとも2つを含む、請求項22に記載の
多重アッセイキット。
【請求項24】
前記追加のバイオマーカーが、バイオマーカー(a)~(f)のうちの少なくとも4つを含む、請求項22に記載の
多重アッセイキット。
【請求項25】
前記追加のバイオマーカーが、下記:
(a)DNA損傷バイオマーカー;
(b)炎症反応バイオマーカー;
(c)組織損傷バイオマーカー;
(d)組織損傷修復バイオマーカー;および
(e)血液学サロゲートマーカー
からなる群から選択される、請求項22に記載の
多重アッセイキット。
【請求項26】
前記試料中に存在する前記複数のバイオマーカーのレベルを、
前記対象によって吸収された放射線の線量と相互に関連付けるための指示をさらに含む、請求項22~25のいずれか1項に記載の
多重アッセイキット。
【請求項27】
コンピュータシステムによって実行されるとき、コンピュータシステムに、
前記試料中に存在する前記複数のバイオマーカーのレベルを、
前記対象によって吸収された放射線の線量と相互に関連付けることを含む方法を実行させるコンピュータプログラムを格納しているコンピュータ読み取り可能な記録媒体をさらに含む、請求項22~26のいずれか1項に記載の
多重アッセイキット。
【請求項28】
請求項1~27のいずれか1項に記載の
多重アッセイキットまたは前記複数のバイオマーカーのレベルを測定するための前記
多重アッセイキットのコンポーネントを収納することができるデバイスであって、前記デバイスはコンピュータシステムと動作可能に関連し、前記コンピュータシステムは、該コンピュータシステムによって実行されるとき、コンピュータプログラムに、
前記試料中に存在する前記複数のバイオマーカーのレベルを、
前記対象によって吸収された放射線の線量と相互に関連付けることを含む方法を実行させるコンピュータプログラムを格納している、上記デバイス。
【請求項29】
前記DNA損傷バイオマーカーが、ATM、リン酸化H2AXヒストン、およびこれらの組み合わせからなる群から選択される、請求項22~27のいずれか1項に記載の
多重アッセイキット。
【請求項30】
前記炎症反応バイオマーカーが、IL-1、IL-5、KC/GRO、IFN、IL-2、IL-4、IL-3、IL-7、およびこれらの組み合わせからなる群から選択される、請求項22~27および29のいずれか1項に記載の
多重アッセイキット。
【請求項31】
前記組織損傷バイオマーカーが、シトルリン化タンパク質である、請求項22~27、29および30のいずれか1項に記載の
多重アッセイキット。
【請求項32】
前記
(ii)(f)の1つまたはそれ以上のバイオマーカーが、G-CSF、GM-CSF、EPO、SAA、およびCD26を含む、請求項22~27および29~31のいずれか1項に記載の
多重アッセイキット。
【請求項33】
前記
(ii)(f)の1つまたはそれ以上のバイオマーカーが、GM-CSF、SAA、およびCD26を含む、請求項22~27および29~31のいずれか1項に記載の
多重アッセイキット。
【請求項34】
(a)バーコード化された患者識別タグ;(b)バーコードを含む乾燥血液スポット収集カード;(c)乾燥剤を含む試料搬送バッグ;(d)プランジャーを有するキャピラリー;または(e)ランセットを含む、追加のキットコンポーネントをさらに含む、請求項22~27および29~33のいずれか1項に記載の
多重アッセイキット。
【請求項35】
前記
多重アッセイキットが、前記
多重アッセイキットにおいて行われるアッセイに用いられる複数のアッセイウェルを含むマルチウェルアッセイプレートを含み、前記複数のアッセイウェルが、前記試料中の前記複数のバイオマーカーの前記レベルを測定するように構成される、請求項22~27および29~34のいずれか一項に記載の
多重アッセイキット。
【請求項36】
前記
マルチウェルアッセイプレートの
各ウェルが複数のアッセイドメインを含み、前記アッセイドメインの少なくとも2つは異なるバイオマーカーを測定するための試薬を含む、請求項35に記載の
多重アッセイキット。
【請求項37】
前記
多重アッセイキットが、複数のアッセイを実行するためのアッセイカートリッジを含み、前記カートリッジが、入口、出口または検出チャンバを有するフローセルを含み、前記入口、検出チャンバおよび出口は前記フローセルを通る流路を画定し、前記検出チャンバは前記試料中の前記複数のバイオマーカーの前記レベルを測定するように構成される、請求項22~27および29~34のいずれか一項に記載の
多重アッセイキット。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、全内容が参照によって本明細書に組み入れられる、2011年9月29日に出願された米国仮特許出願第61/540,584号の利益を請求する。
【0002】
本出願は、放射線被曝および放射線への組織傷害の重症度の検出に有用な診断アッセイを行うためのアッセイ方法、モジュールおよびキットに関する。
【0003】
連邦政府支援の研究に関する陳述
本発明は、米国保健社会福祉省によって認定されたHHSO100201000009C下の連邦支援を受けて行われた。米国政府は本発明において一定の権利を有する。
【背景技術】
【0004】
非常に多数の一般人が、放射線または放射性物質に被曝した事故の後遺症において、保健当局は、生命を脅かす重大な放射線量に被曝した個体を迅速に識別できるようにする必要がある。電離放射線(IR)の致命的な影響は、広範囲であり、全身および臓器特異的な損傷を含む。大量の電離放射線(>2Gy)の急性影響は、特定種の末梢血細胞の枯渇、免疫抑制、粘膜損傷、および、骨や骨髄ニッチ細胞、消化器系、肺、腎臓および中枢神経系のような他の部位への潜在的な傷害を含む。さらに、低または中程度の電離放射線量(1~3Gy)への被曝は、肉体的傷害、日和見感染症、および/または出血を伴う場合、死亡率の増加をもたらすことがある。長期的な影響には、広範囲の臓器および組織の機能不全または線維症、白内障が含まれ、最終的には癌のリスクが高まる。多くの場合、放射線被曝の影響は、初期の重症度判定検査および処置によって軽減する場合がある。
【0005】
放射性物質は器具を用いて検出することができるが、ヒトがすでに受けた放射線量または傷害の評価はより困難である。放射線傷害のための現在および予見可能な医療対策は、多くの場合、高価であり、労働集約的であり、管理者(および監視者)には時間がかかり、利用は制限され、時として深刻な毒性と関連付けられるため、これらは、それらの使用から有益となりそうな対象にのみ投与されるべきである。速く、正確な放射線量および組織傷害評価は、早期の医療介入の恩恵を受けることができる被曝した対象の識別を大いに容易にすることができる。
【0006】
単一の時間点で回収される試料に基づいて、IR被曝のレベルを容易に識別することができる迅速な診断は存在しない。全血球数、特にリンパ球数は有用であるが、最適には、線量を推定するために、数時間から数日間空けた少なくとも2つの試料が必要である。放射線バイオドシメトリの分野における診断の「ゴールドスタンダード」は、二動原体染色体アッセイであるが、労働集約的であり、遅く、多数の死傷者を出す状況におけるその使用が問題となる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、緊急の医師の診察を必要とする患者を特定し、放射線被曝の後遺症または晩発影響についての危険性評価を改善し、繰り返しの観察または治療薬投与に関する患者の追跡効率を改善し、監視療法および長期のフォローアップおいて役割を果たすために使用され得る高感度であり、特異的なバイオドシメトリ線量評価ツールが必要である。また、このようなツールは、診療中に受けた放射線、例えば、医療用撮像装置から受けた放射線、内科的治療(例えば癌の治療)として受けた放射線、または幹細胞移植のために準備
で受けた放射線を監視するために重要な必要性を満たす。ツールは、誤って過剰に被曝した個体を検出し、個体を選択し、処置に使用される対策線量のスケジュールを最適化し、および特定の個体についてのツールの有効性を監視する能力を提供する。
【課題を解決するための手段】
【0008】
本発明は、放射線量と組織傷害を評価するために、複数の放射線感受性タンパク質バイオマーカーを測定するためのバイオドシメトリアッセイパネルおよび方法を提供する。本発明の方法は、主要な放射性物質または核事象後、電離放射線に被曝した個体の治療を選別(triage)し、導くために用いることができる。これらのツールはまた、内科療法または偶発的な被曝の結果として電離放射線に被曝した個体の治療を導くために使用することができる。
【0009】
したがって、本発明は、患者試料における電離放射線の吸収線量または放射線誘発の組織傷害を評価するために使用される多重アッセイキットを提供し、上記キットは、上記試料中の複数のバイオマーカーのレベルを測定するように構成され、上記複数のバイオマーカーは、(a)DNA損傷バイオマーカー;(b)炎症反応バイオマーカー;(c)組織損傷バイオマーカー;(d)組織損傷修復バイオマーカー;(e)血液学サロゲートマーカー(hematology-surrogate marker);および(f)これらの組み合わせを含む。また、このようなキットまたは上記複数のバイオマーカーのレベルを測定するための上記キットのコンポーネントを収納することができるデバイスが意図され、該デバイスはコンピュータシステムと動作可能に関連し、上記コンピュータシステムは、該コンピュータシステムによって実行されるとき、コンピュータプログラムに、試料中に存在する上記複数のバイオマーカーのレベルを患者によって吸収された放射線量と相互に関連付けることを含む方法を行わせるコンピュータプログラムを格納している。
【0010】
さらに、患者試料における電離放射線の吸収線量または放射線誘発の組織傷害を評価するために使用される多重アッセイキットが提供され、上記キットは、上記試料中の複数のバイオマーカーのレベルを測定するように構成され、上記複数のバイオマーカーは、(i)Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPO、およびこれらの組み合わせを含む1つまたはそれ以上のバイオマーカー;および(ii)(a)DNA損傷バイオマーカー;(b)炎症反応バイオマーカー;(c)組織損傷バイオマーカー;(d)組織損傷修復バイオマーカー;(e)血液学サロゲートマーカー;および(f)これらの組み合わせを含む追加のバイオマーカーを含む。好ましい実施形態において、複数のバイオマーカーは、Flt-3L、GM-CSF、SAA、TPO、CD27、CD45、CD26、およびIL-12を含む。
【0011】
また、本発明は、患者試料における電離放射線の吸収線量を評価する方法であって、該方法は、(a)上記試料中の複数のバイオマーカーのレベルを測定する工程;(b)プロセッサによって、上記試料中の上記複数のバイオマーカーの上記レベルに基づいて、上記患者における上記吸収線量を評価するためのアルゴリズムを適用する工程を含み、ここで、上記複数のバイオマーカーが、(i)DNA損傷バイオマーカー;(ii)炎症反応バイオマーカー;(iii)組織損傷バイオマーカー;(iv)組織損傷修復バイオマーカー;(v)血液学サロゲートマーカー;および(vi)これらの組み合わせを含む。
【0012】
さらに、本発明は、患者試料における電離放射線の吸収線量を評価する方法を意図し、該方法は、(a)上記試料中の複数のバイオマーカーのレベルを測定する工程;(b)プロセッサによって、上記試料中の上記複数のバイオマーカーの上記レベルに基づいて、上記患者における上記吸収線量を評価するためのアルゴリズムを適用する工程を含み、上記複数のバイオマーカーが、(i)Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPO、およびこれらの組み合わせ
を含む1つまたはそれ以上のバイオマーカー;および(ii)(a)DNA損傷バイオマーカー;(b)炎症反応バイオマーカー;(c)組織損傷バイオマーカー;(d)組織損傷修復バイオマーカー;(e)血液学サロゲートマーカー;および(f)これらの組み合わせを含む追加のバイオマーカーを含む。好ましい実施形態において、複数のバイオマーカーは、Flt-3L、GM-CSF、SAA、TPO、CD27、CD45、CD26、およびIL-12を含む。
【0013】
本発明は、患者試料における電離放射線の吸収線量を評価するために使用される多数の多重バイオドシメトリアッセイキット(単数または複数)を提供し、該キットは、上記試料中の複数のバイオマーカーのレベルを測定するように構成され、ここで、上記複数のバイオマーカーは、(a)Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、および/もしくはTPO;ならびに/または(b)Flt-3L、GM-CSF、SAA、TPO、CD27、CD45、CD26、および/もしくはIL-12を含む。
【0014】
また、本発明は、患者試料における電離放射線の吸収線量を評価するために使用される様々なバイオドシメトリアッセイキットを提供し、該キット(単数または複数)は、Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPOのレベルを測定し、および上記レベル(単数または複数)と正常な対照のレベルとを比較するように構成される。
【0015】
本発明の別の実施形態は、患者試料における電離放射線の吸収線量を評価する方法であって、該方法は、
(a)上記試料中の複数のバイオマーカーのレベルを測定する工程;
(b)プロセッサによって、上記試料中の上記複数のバイオマーカーの上記レベルに基づいて、上記患者における上記吸収線量を評価するためにアルゴリズムを適用する工程
を含み;上記複数のバイオマーカーは、(a)Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPO;または(b)Flt-3L、GM-CSF、SAA、TPO、CD27、CD45、CD26、IL-12を含む。
【0016】
さらに、本発明は、患者試料における電離放射線の吸収線量を評価する方法を含み、該方法は、
(a)上記試料中のFlt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPOのレベルを測定する工程;および
(b)プロセッサによって、上記試料中の上記複数のバイオマーカーの上記レベルに基づいて、上記患者における上記吸収線量を評価するためにアルゴリズムを適用する工程
を含む。
【0017】
本発明の別の実施形態は、傷害重症度値を決定する方法であって、
(a)患者試料中の複数のバイオマーカーのレベルを測定する工程であって、上記バイオマーカーのうちの1つまたはそれ以上のバイオマーカーは、患者における傷害の事象における正常な対照と比較して変更される、上記工程;
(b)プロセッサによって、傷害重症度指標および/または時間の関数として反応表面モデルに上記測定されたレベルを適合させる工程;
(c)上記複数のバイオマーカーを組み合わせるためにコスト関数をコンピュータ計算する工程;および
(d)既知時間間隔で上記コスト関数を最小限にする傷害重症度値を特定する工程
を含む。
【0018】
さらに、本発明は、放射線量を決定する方法を含み、
(a)患者試料中の複数のバイオマーカーのレベルを測定する工程であって、上記複数のバイオマーカーのうちの1つまたはそれ以上のバイオマーカーは、放射線被曝の事象における正常な対照と比較して変更される、上記工程;
(b)プロセッサによって、放射線量または時間の関数として反応表面モデルに上記測定されたレベルを適合させる工程;
(c)上記複数のバイオマーカーを組み合わせるためにコスト関数をコンピュータ計算する工程;および
(d)既知時間間隔で上記コスト関数を最小限にする放射線量を選択する工程
を含む。
【0019】
さらに、本発明は、患者試料中の複数のバイオマーカーのレベルを測定するように構成されたアッセイシステムに動作可能に接続されたコンピュータシステムによって実行されるとき、コンピュータシステムに、
(a)傷害重症度指標または時間の関数として反応表面モデルに上記測定されたレベルを適合させる工程;
(b)上記複数のバイオマーカーを組み合わせるためにコスト関数をコンピュータ計算する工程;および
(c)既知時間間隔で上記コスト関数を最小限にする傷害重症度値を特定する工程
を含む方法によって、傷害重症度値を計算する方法を行わせるコンピュータプログラムを格納しているコンピュータ読み取り可能な記録媒体を意図する。
【0020】
さらなる実施形態において、本発明は、患者試料中の複数のバイオマーカーのレベルを測定するように構成されたアッセイシステムに動作可能に接続されたコンピュータシステムによって実行されるとき、コンピュータシステムに、
(a)放射線量または時間の関数として反応表面モデルに上記測定されたレベルを適合させる工程;
(b)上記複数のバイオマーカーを組み合わせるためにコスト関数をコンピュータ計算する工程;および
(c)既知時間間隔で上記コスト関数を最小限にする放射線量を選択する工程
を含む方法によって、放射線量を計算する方法を行わせるコンピュータプログラムを格納しているコンピュータ読み取り可能な記録媒体を含む。
【0021】
追加の実施形態は、試料中の複数のバイオマーカーのレベルを測定するように構成された多重血液学サロゲートバイオマーカーアッセイキットを含み、該複数のバイオマーカーは、リンパ球細胞表面マーカー、好中球細胞表面マーカー、およびこれらの組み合わせを含む。
【0022】
さらに、本発明の最終の実施形態は、試料中の末梢血白血球の状態をアッセイする方法であって、
(a)試料中の複数の血液学サロゲートバイオマーカーのレベルを測定する工程であって、該複数のバイオマーカーは、リンパ球細胞表面マーカー、好中球細胞表面マーカー、およびこれらの組み合わせを含む、上記工程;
(b)上記試料中の上記バイオマーカーの上記レベルと、正常の対照試料中の上記バイオマーカーのレベルとを比較する工程;および
(c)上記比較工程(b)に基づいて、上記末梢血白血球状態を決定する工程
を含む。
【図面の簡単な説明】
【0023】
【
図1】(a)-(b)は、マウスにおける血漿Flt-3Lレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表8は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する複合傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物(replicate animal)からの平均レベルを表す。
【
図2】(a)-(b)は、マウスにおける血漿SAAレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表9は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図3】(a)-(b)は、マウスにおける血漿G-CSFレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表10は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図4】(a)-(b)は、マウスにおける血漿GM-CSFレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表11は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図5】(a)-(b)は、マウス放射線量研究の結果を示す図である、特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血漿IL-6の反応、それぞれの照射条件に対する反応(表12)についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図6】(a)-(b)は、マウスにおける血漿TPOレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表13は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図7】(a)-(b)は、マウスにおける血漿EPOレベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表14は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図8】(a)-(b)は、マウスにおける血漿IL-5レベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表15は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図9】(a)-(b)は、マウス放射線量研究の結果を示す図である。特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血漿IL-10の反応、それぞれの照射条件に対する反応(表16)についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図10】(a)-(b)は、マウス放射線量研究の結果を示す図である。特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血漿KC/GROの反応、それぞれの照射条件に対する反応についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図11】(a)-(b)は、マウス放射線量研究の結果を示す図である。特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血漿TNF-αの反応、それぞれの照射条件に対する反応(表17)についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図12】(a)-(b)は、マウス放射線量研究の結果を示す図である。特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血液細胞ペレットにおけるγ-H2AXの反応、それぞれの照射条件に対する反応(表19)についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図13】(a)-(b)は、マウス放射線量研究の結果を示す図である。特に、濃度対時間(パネル(a))、濃度対線量(パネル(b))を示す血液細胞ペレットにおけるp53の反応、それぞれの照射条件に対する反応(表20)についての照射対対照のp値(対応のないt検定、強調してあるp値<0.01)を示す。
【
図14】(a)-(b)は、マウスにおける血漿CD-27レベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表21は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図15】(a)-(b)は、マウスにおける血漿IL-12レベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表22は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図16】(a)-(b)は、マウスにおける血漿CD45レベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表23は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図17】(a)-(b)は、マウスにおける血漿CD26レベルに対する放射線の効果を示す図である。パネル(a)は、放射(
60Coγ線)後の時間の関数としてのバイオマーカーレベルを示し、それぞれの線は異なる線量を表す。表24は、0Gyの対照と比較して、それぞれの照射条件についてのバイオマーカーレベルの変化に対する有意性(p値、対応のないt検定、強調してあるp値<0.01)を示す。パネル(b)は、放射線を単独で受けたマウス(黒丸)対15%の表面積にある刺創と組み合わせた放射線を受けたマウス(白丸)においてバイオマーカーレベルを比較する組み合わせ傷害研究の結果を示す。両方のプロット上のそれぞれ点は、8匹の同型動物からの平均レベルを表す。
【
図18a】多重パラメータ線量評価アルゴリズムを用いた、全マウス放射線量研究試料セットについての実際の線量の関数としての予測された線量を示すスキャッタプロットである。異なる色は異なるサンプリング時間に対応する。データは、点を明確に見えるようにするために、X軸に沿って僅かにディザリングされている。実線上の点は、実際の線量と正確に一致する。破線内の点は、実際の線量(6Gy未満)の1.5Gy以内であり、または実際の線量(6Gyを超える)の25%以内である。パネル(a)は、最適な5つのバイオマーカーパネル(Flt-3L、G-CSF、GM-CSF、EPO、IL12/23)を用いた結果を含む。
【
図18b】多重パラメータ線量評価アルゴリズムを用いた、全マウス放射線量研究試料セットについての実際の線量の関数としての予測された線量を示すスキャッタプロットである。異なる色は異なるサンプリング時間に対応する。データは、点を明確に見えるようにするために、X軸に沿って僅かにディザリングされている。実線上の点は、実際の線量と正確に一致する。破線内の点は、実際の線量(6Gy未満)の1.5Gy以内であり、または実際の線量(6Gyを超える)の25%以内である。パネル(b)は、より小さなLPS無反応なパネル(Flt-3L、EPO)を用いた結果を含む。
【
図19a】6Gy線量を非照射対照(青色)と区別し、6Gy線量を3Gy線量と区別するためのROC曲線を示す図である。ROC曲線は、試料を分類するために用いられる予測された線量の値を変更させることによって作成された。ヒストグラム挿入図は、6Gyと非照射試料セットの予測された線量の分布を示し、2つの分布の分離を示す図である。パネル(a)は、最適な5つのバイオマーカーパネル(Flt-3L、G-CSF、GM-CSF、EPO、IL12/23)を用いた結果を含む。
【
図19b】6Gy線量を非照射対照(青色)と区別し、6Gy線量を3Gy線量と区別するためのROC曲線を示す図である。ROC曲線は、試料を分類するために用いられる予測された線量の値を変更させることによって作成された。ヒストグラム挿入図は、6Gyと非照射試料セットの予測された線量の分布を示し、2つの分布の分離を示す図である。パネル(b)は、より小さなLPS無反応なパネル(Flt-3L、EPO)を用いた結果を含む。
【
図20】(a)-(b)は、多重パラメータアルゴリズムを用いた、マウスバイオマーカー発見データについての線量分類精度を示す図である。2つの性能測定基準は、用いられたバイオマーカーの数の関数としてプロットされる。それぞれの点は、バイオマーカーの異なる組み合わせの性能を表す;12個の最大放射感受性バイオマーカーの全ての可能な組み合わせを示す。パネル(a)において、精度は、線量によって正確に分類された試料のパーセントとして提示される(6Gy以下の線量については1.5Gy以内であり、6Gyを超える線量については25%以内である)。パネル(b)において、予測誤差は、全ての試料にわたって線量予測におけるRMS誤差として提示される。2つの高性能なバイオマーカーの組み合わせはそれぞれのパネルサイズについて選択される:傷害感受性マーカーを含まなかったパネル(黄色データ点)および傷害感受性マーカーを含んだパネル(赤色データ点)。これらの選択されたパネルについての性能測定基準を表8に一覧にする。
【
図21】マウスモデルにおいて放射線量を評価するために、多重パラメータアルゴリズムの性能および最適な6重バイオマーカーパネル(CD27+Flt-3L+GM-CSF+CD45+IL-12+TPO)を示す図である。本研究で試験された全ての試料は、試験中および線量予測分析中に研究を行う個人に分からないようにした。プロットは、照射後の1~7日の間に回収された試料についての実際の線量の関数とした予測線量を示す。異なる色は、試料回収の時間に対応する。データは、点を明確に見えるようにするために、X軸に沿って僅かにディザリングされている。予測された線量が実際の線量に正確に一致する点は実線に該当する。破線の点は、本発明者らの線量予測精度基準を満たし、実際の線量(6Gy未満)の1.5Gy以内であり、または実際の線量(6Gyを超える)の25%以内である。挿入図は、本発明者らの精度基準内に収まる予測された線量のパーセンテージ、およびデータセット全体で予測された線量における平均二乗誤差の平方根を示す。
【
図22】放射線量によってマウス試料を分類するために、多重パラメータアルゴリズムの性能および最適な6重バイオマーカーパネル(CD27+Flt-3L+GM-CSF+CD45+IL-12+TPO)を示す図である。本研究で試験された全ての試料は、試験中および線量予測分析中に研究を行う個人に分からないようにした。このプロットにおいて示される分析の焦点は、マウスモデルにおいて5Gyにほぼ同等である、ヒトにおける重要な2Gy線量閾値を上回るまたは下回る試料を正確に分類するためのアルゴリズムの能力である。プロットは、6Gy以上の線量と非照射対照(青色)を区別し、6Gy以上の線量と3Gy以下の線量を区別するためのROC曲線を示す。ROC曲線は、試料を分類するために用いられる予測された線量の値を変更させることによって作成された。ヒストグラム挿入図は、0Gy、3Gyまたは6Gy線量を受けた試料についての予測線量の分布を示し、これらの分布の分離を示す。最適な予測線量の閾値での分類性能はプロット下の表に与えられる。
【
図23】マウスモデルにおいて放射線量を評価するために、多重パラメータアルゴリズムの性能および最適な6重バイオマーカーパネル(CD27+Flt-3L+GM-CSF+CD45+IL-12+TPO)に対する15%創傷傷害の効果を示す図である。試料セットは、皮膚創傷(15%の表面積にある刺創)を有するまたは有しない、0Gyまたは6Gy放射(
60Coγ線)を受けたマウスからの試料を含んだ。試料は、被曝後の最大7日まで異なる時点で回収された。それぞれの線量/傷害/時間条件について同数の反復とした。プロットは、照射後の1~7日の間に回収された試料についての実際の線量の関数として予測線量を示す。異なる色は、試料回収の時間に対応する。「傷害」データ点を三角として示し、「非傷害」データを丸として示す。データは、点を明確に見えるようにするために、X軸に沿って僅かにディザリングされている。予測された線量が実際の線量に正確に一致する点は実線に該当する。破線内の点は、本発明者らの線量予測精度基準を満たし、実際の線量(6Gy未満)の1.5Gy以内であり、または実際の線量(6Gyを超える)の25%以内である。挿入図は、本発明者らの精度基準内に収まる予測された線量のパーセンテージ、およびデータセット全体で予測された線量における平均二乗誤差の平方根を示す。
【
図24-1】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-2】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-3】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-4】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-5】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-6】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-7】アカゲザルにおける血漿バイオマーカー(それぞれ、Flt-3L、CD20、CD27、TPO、CD177、IL-12、SAA、EPO、G-CSF、唾液アミラーゼ(AMY)、CRP、TIMP-1およびTNF-RII)に対する放射線の効果を示す図である。プロットは、照射後の時間の関数としたレベルを示す。左に示されたパネルは、
60Coγ線に被曝した試料を用いた結果を反映し、右に示されたパネルは、3MV LINAC光子に被曝した試料を用いた結果を反映する。プロットにおけるそれぞれの点は、
60Coγ線試料について5~6匹の動物、最大9日の時点までの3MV LINAC試料について3~4匹の動物、9日を超えた時点について2匹の動物を表す。グラフは、対数である
図25(b)および(d)を除いて、線形である。
【
図24-8】照射されたNHP試料におけるCD20、CD177、好中球、およびリンパ球の分析を示し、血液細胞計数の代わりにサロゲート放射反応性バイオマーカーとしてのバイオマーカーの可能性を示す図である()。それぞれのグラフは、NHP中のバイオマーカーまたはバイオマーカー比に対する放射線の経時効果を示す(それぞれの線量および時間コホートについてn=6)。
【
図24-9】照射されたNHP試料におけるCD20、CD177、好中球、およびリンパ球の分析を示し、血液細胞計数の代わりにサロゲート放射反応性バイオマーカーとしてのバイオマーカーの可能性を示す図である()。それぞれのグラフは、NHP中のバイオマーカーまたはバイオマーカー比に対する放射線の経時効果を示す(それぞれの線量および時間コホートについてn=6)。
【
図25】(a)-(b)は、放射線量によって試料セット(A)からNHP試料を分類するための多重パラメータアルゴリズムの性能を示す図である。データセットは、トレーニングバイアスを避けるために、ランダムなサブサンプリングアプローチを用いてアルゴリズムをトレーニングし、試験するために用いた。このプロットにおいて示される分析の焦点は、NHPモデルにおいて3Gyにほぼ同等である、ヒトにおける重要な2Gy線量閾値を上回るまたは下回る試料を正確に分類するためのアルゴリズムの能力である。パネルAは、3.5Gy以上の線量と非照射対照(青色)を区別し、3.5Gy以上の線量と1Gy以下の線量を区別するためのROC曲線を示す。ROC曲線は、試料を分類するために用いられる予測された線量の値を変更させることによって作成された。ヒストグラム挿入図は、0Gy、1Gyまたは3.5Gy線量を受けた試料についての予測線量の分布を示し、これらの分布の分離を示す。最適な予測線量の閾値での分類性能はプロットを以下の表に与えられる。パネルBは、実際の線量の関数としてプロットされたNHP試料についての予測された線量を示す。
【
図26】正常なヒト集団から血漿、および罹患率の高い慢性疾患を有する個体からの血漿におけるバイオマーカーレベルの比較を示す図である。それぞれのグループ-正常、喘息、高血圧(HBP)および関節リウマチ(RA)-についてのデータは、中央値(箱の中央)、下方および上方四分位(箱の上部および下部)および1.5四分位範囲(ひげ)を与える箱ひげフォーマット(Box and Whisker format)で示される。異常値は、箱ひげの直接ボックスとウィスカーの真上または真下の黒い点として示される。濃度はpg/mLで与えられ、SAAおよびCRPは例外としてng/mLで与えられる。
【
図27】(a)-(b)は、非照射マウスと比較した正常なヒトにおけるベースライン変動の増加をモデル化する試みの結果を示す図である。データの観察された標準偏差(ログ領域における)は、正常なヒトレベルの研究において測定された類似したマーカーに対する正常なヒトレベルの研究における類似したマーカーについての観察された標準偏差と一致させるように、ランダムノイズは、バイオマーカー発見データにおける非照射マウスからのバイオマーカーレベルに加えられた。パネルAは、ノイズの添加前後でのバイオマーカーのうちの1つ(Flt-3L)のベースラインレベルにおける分布を比較するヒストグラムである。マウスおよびヒトにおける観察された標準偏差とノイズ投入後の標準偏差の表をプロット下に示す。パネルBは、ノイズの添加前後の盲検研究からの0Gy試料について予測された線量を示すスキャッタプロットである。比較のために、最適閾値が0Gyまたは6Gy以上として試料を分類するために元のデータを用いて選択されるように、6Gy試料について予測された線量もまた示される(添加ノイズなし)(
図27参照)。ノイズの添加は、いずれもの付加的な誤分類をもたらすことなく、分類特異性は100%のままであった。
【
図28】細胞移植療法の準備においてリンパ球を枯渇させる化学療法を受けたメラノーマ患者からの血漿中のバイオマーカーレベルを示す図である。研究は2つの治療群(arm)を有していた:一組の患者はまた、化学療法を受けた3日後にTBIを受け、他方の治療群はTBIないし化学療法を受けた。プロットは、非TBI患者からの試料(Mela-Cntrl-0Gy)、放射線治療前のTBI患者から回収された試料(Mela-TBI-0Gy)、および単一の2Gy画分を受けた5~6時間後のTBI患者から回収された試料(Mela-TBI-2Gy)におけるバイオマーカーレベルを比較する。また、40人の正常な血液ドナーからのバイオマーカーレベル(
図27参照)を比較のために与える。濃度はpg/mLで与えられ、SAAおよびCRPは例外としてng/mLで与えられる。2Gy画分を受けた患者のAMY1A(唾液アミラーゼ)レベルとp53レベルは、被曝前のレベルおよび研究の非TBI対照治療群におけるレベルと比較して有意な上昇を示した(p<0.05)。
【
図29】(a)-(b)は、局放射線治療(2Gyの画分、週5画分、6週間)を受けた肺癌患者(上部)およびGI癌患者(下部)からの血漿中のバイオマーカーレベルを示す図である。プロットは、放射線療法前、および30Gyと60Gy(肺)または54Gy(GI)の累積線量後のバイオマーカーレベルを示す。また、40人の正常な血液ドナーからのバイオマーカーレベル(
図27参照)を比較のために与える。濃度はpg/mLで与えられ、SAAおよびCRPは例外としてng/mLで与えられる。
【
図30】(a)-(e)は、Flt-3L、SAA、G-CSF、GM-CSFおよびIL-6の血漿レベルについての交絡効果マウス研究の結果を示す図である。Y軸は放射線反応が見えるようにスケーリングされる。いくつかの場合において、LPS反応はスケール外である。様々な条件についての最大反応は、図中のログスケールで表示することができる。放射線量研究から0Gyおよび6Gy実行の結果を比較のために並べてプロットする。
【
図31】(a)-(e)は、TPO、EPO、IL-12/23、IL-5およびIL-10の血漿レベルについての交絡効果マウス試験の結果を示す図である。Y軸は放射線反応が見えるようにスケーリングされる。いくつかの場合において、LPS反応はスケール外である。様々な条件についての最大反応は、図中のログスケールで表示することができる。放射線量研究から0Gyおよび6Gy実行の結果を比較のために並べてプロットする。
【
図32】(a)-(d)は、KC/GROとTNFαの血漿レベル、およびp53とγH2AXの血液細胞ペレットレベルについての交絡効果マウス試験の結果を示す図である。Y軸は放射線反応が見えるようにスケーリングされる。いくつかの場合において、LPS反応はスケール外である。様々な条件についての最大反応は、図中のログスケールで表示することができる。放射線量研究から0Gyおよび6Gy実行の結果を比較のために並べてプロットする。
【
図33】交絡効果の研究の概要を与える。それぞれのアッセイについて、バーグラフは、対照マウスの平均濃度、および放射線量研究と交絡効果研究の両方において試験された全ての条件でG-CSFおよびLPSに対する最大反応を生じさせる条件での平均濃度を示す図である。それぞれのアッセイについてのシグナルは、100%に設定される最大放射線反応に対して標準化される。
【
図34】(a)-(d)は、Flt-3L、EPO、CRPおよびSAAについて照射されたNHPからの保存された血漿試料の試験結果を示す図である。SAAを市販のELISAキットを用いて測定した。それぞれ点は、3つの異なる動物の平均値を表す。
【
図35】(a)-(d)は、IL-6、BPI、TPOおよびp53について照射されたNHPからの保存された血漿試料の試験結果を示す図である。それぞれ点は、3つの異なる動物の平均値を表す。
【
図36】(a)-(b)は、リンパ球細胞表面マーカーCD20および好中球細胞表面マーカーCD177について照射NHPから保存された血漿試料の試験結果を示す図である。2つの試験された用量(1.0および3.5Gy)についてのバイオマーカー濃度を黒丸として示し、y軸スケールはプロットの左側に与えられる。また、比較のために、同時間の同動物において測定されたリンパ球および好中球細胞計数を白丸で示し、y軸スケールはプロットの右側に与えられる。それぞれ点は、3つの異なる動物の平均値を表す。
【
図37】3.5Gy(ヒトにおける約2Gyと同等)超を受けた動物と3.5Gy未満を受けた動物の良好な識別を与える6つの血漿マーカー(Flt-3L、EPO、p53、CD20、CD177およびSAA)のパネルからの結果を示し、さらに、半定量の線量予測について高精度を与える。
【
図38a】患者試料において1つまたはそれ以上のバイオマーカーを分析し、それらのバイオマーカーのレベル(単数または複数)をそれぞれ傷害重症度値または放射線量と相関させることによって、患者試料からそれぞれ重症度値または放射線量を生じさせるための、本明細書に記載されている統計学的方法の使用を示す図である。
【
図38b】患者試料において1つまたはそれ以上のバイオマーカーを分析し、それらのバイオマーカーのレベル(単数または複数)をそれぞれ傷害重症度値または放射線量と相関させることによって、患者試料からそれぞれ重症度値または放射線量を生じさせるための、本明細書に記載されている統計学的方法の使用を示す図である。
【
図38c】本明細書に記載されている統計学的方法を用いて試料を分析するために使用されるシステムの1つの非制限的な例を示す図であり、ここで、該システムはプロセッサおよびアルゴリズムモジュールを含む。
【発明を実施するための形態】
【0024】
本明細書において別段定義がない限り、本明細書において使用される科学用語および技術用語は、当業者によって一般的に理解される意味を有するものとする。さらに、文脈によって別段必要とされない限り、単数形の用語は複数を含むものとし、複数の用語は単数形を含むものとする。冠詞「1つの(a)」および「1つの(an)」は、冠詞の文法上の目的語の1つまたは1を超えるもの(すなわち、少なくとも1つ)を指すように本明細書において使用される。一例として、「要素」は1つの要素または1を超える要素を意味する。
【0025】
本発明の一実施形態は、患者試料における電離放射線の吸収線量を評価するために用いることができる多重バイオドシメトリアッセイキットおよび方法である。本発明の方法およびキットは、急性放射線症候群(ARS)を発症する可能性もしくは危険性を評価し、および/または患者におけるARSの臨床的重症度を評価するために用いることができる。放射線被曝の種類に応じて、本発明の方法およびキットは、測定の任意の適切な単位で放射線量を評価するために用いてもよい。例えば、外部被曝後の電離放射線の吸収線量は、限定されないが、グレイ(またはrad)およびシーベルト(またはrem)を含む、測定の様々な適切な単位で測定することができる;内部汚染後の放射線量は、預託実効線量当量(CEDE)として測定される;外部および内部被曝に関連した線量は、総実効線量当量(TEDE)として測定される。
【0026】
本発明の特定の実施形態において使用されるアッセイパネル(単数または複数)は、放射線被曝を評価するために用いられる複数の放射線バイオマーカーを含む。放射線バイオマーカーは、限定されないが、タンパク質、核酸、炭水化物および代謝産物を含む、生物の放射線への被曝の指標として作用する任意の物質であってもよい。一実施形態において、パネルに含まれるバイオマーカーは全てタンパク質である。
【0027】
適切なアッセイパネルは、以下のバイオマーカーの種類:DNA損傷バイオマーカー、炎症反応バイオマーカー、組織損傷バイオマーカー、組織損傷修復バイオマーカー、および血液学サロゲートバイオマーカーのうちの少なくとも1つ、2つ、3つ、4つまたは5つから少なくとも1つの放射線バイオマーカーを含む。本明細書で使用されるとき、DNA損傷バイオマーカーは、放射線誘導性DNA損傷に対する宿主反応と関連付けられる放射線バイオマーカーである。炎症反応バイオマーカーは、放射線被曝に起因する全身性ま
たは局所性の炎症反応中に上方制御または下方制御される放射線バイオマーカーである。組織損傷バイオマーカーは、放射線に起因した局所性組織損傷の結果として組織から放出される放射線バイオマーカーであり、一方、組織損傷修復バイオマーカーは、組織損傷後の修復、再生、または線維芽細胞増殖期(fibroblastic phase)中に上方制御または下方制御されるタンパク質である。組織損傷修復バイオマーカーはまた、限定されないが、線維芽細胞形成、コラーゲン合成、組織リモデリング、および再編成を含む、軟組織修復過程に関連付けられるタンパク質を含んでもよい。最後に、血液サロゲートバイオマーカーは、特定の血液細胞集団に対する放射線の影響を評価するために、従来の血液細胞カウントの代用として用いることができる血液細胞の細胞表面マーカーである。有用な血液学サロゲートマーカーは、一般的な種類の細胞(例えば、白血球)、またはそれらの種類に含まれるより具体的な細胞型、例えば、リンパ球、好中球および血小板または、さらにより具体的には、T細胞またはB細胞に見出されるマーカーを含む。
【0028】
上述したバイオマーカーのカテゴリ間にいくつかの重複があってもよい。例えば、いくつかの炎症反応バイオマーカーはまた、組織損傷修復に関連してもよい。一実施形態において、放射線バイオマーカーパネルは、少なくとも1つの炎症反応バイオマーカーと少なくとも1つの組織損傷修復バイオマーカーを含む。代替の実施形態において、パネルは、炎症反応バイオマーカーと組織損傷修復バイオマーカーの両方であるバイオマーカーを含む。
【0029】
本発明に用いることができるバイオマーカーの非限定的リストを以下の表1に示す。
【0030】
【0031】
好ましい実施形態において、本発明において使用されるアッセイパネルは、試料における複数のバイオマーカーのレベルを測定するように構成され、ここで、複数のバイオマーカーは、Flt-3L、G-CSF、GM-CSF、EPO、CD27、CD45、SAA、CD26、IL-12、TPO、およびこれらの組み合わせのうちの1つまたはそれ以上、および/またはDNA損傷バイオマーカー、炎症反応バイオマーカー、組織損傷バイオマーカー、組織損傷修復バイオマーカー、血液学サロゲートバイオマーカー、およびこれらの組み合わせを含む追加のバイオマーカーを含む。具体的な実施形態において、パネルは、Flt-3L、GM-CSF、SAA、TPO、CD27、CD45、CD26、IL-12、およびこれらの組み合せを含む。一実施形態において、IL-12アッセイは、IL-12のp70ヘテロ二量体におけるIL-12のp40サブユニットに特異的であり、IL-23(p40サブユニットも含む)と交差反応する場合がある。別の実施形態において、IL-12アッセイは、完全なIL-12のp70ヘテロ二量体に特異的である。
【0032】
放射線への被曝を評価するための選択されたバイオマーカーは、好ましくは、糖尿病、喘息、高血圧、心臓病、関節炎および/または他の慢性炎症性疾患もしくは自己免疫疾患
のようなヒト集団において高い罹患率を伴う慢性疾患による影響を有意に受けない。放射線への被曝を評価するための選択されたバイオマーカーはまた、好ましくは、放射線事象において個人が経験する場合もある他のタイプの外傷(例えば、創傷、火傷および/または精神的ストレス)による影響を受けない。一実施形態において、全身放射線被曝(例えば、2、6、10または12Gy)に関連するバイオマーカー反応は、創傷、火傷および/または精神的外傷に関連するバイオマーカー反応に関連付けられるバイオマーカー反応よりも小さい。このような比較は、複合傷害動物モデルの使用を介して決定することができる。本発明者らは、交絡疾患または外傷からの有意な交絡効果を有するバイオマーカーがさらに選択され、線量評価アルゴリズムにおいて値を有することに気づく。一実施形態において、このような交絡効果によって影響を受ける可能性があるバイオマーカーが含まれ、このような交絡状態の存在または非存在に関する情報は線量評価のためのアルゴリズムに含まれる。例えば、潜在的な交絡状態が患者(例えば、交絡疾患または外傷)において特定される場合、線量評価アルゴリズムの精度に対する交絡状態の影響を最小限にするために取ることができるアプローチは、i)アルゴリズムを用いた分析から患者を排除すること;ii)アルゴリズムを適用するが、交絡状態におって影響される可能性があるバイオマーカーを排除し、または該バイオマーカーに小さな重みを適用する編集されたバイオマーカーパネルを用いること、またはiii)交絡状態に強固であるように選択されたバイオマーカーパネルを使用する異なるアルゴリズムを適用することを含む。
【0033】
本発明のキットは、末梢血細胞カウントなどの血液学的パラメータを測定し、または「急性期反応」(APR)バイオマーカーを測定するためのデバイス、試薬、および/または消耗品をさらに含むことができる。このようなアッセイコンポーネントは、C反応性タンパク質のレベルを測定するQuikread CRPフィンガープリックデバイス(Orion Diagnostica、Finland)などの、血液細胞カウントおよびARPバイオマーカーを評価するための市販製品の変形であってもよい。
【0034】
好ましい実施形態において、本発明は、リンパ球および好中球カウントの代用として有用であるリンパ球および好中球の細胞表面マーカーについてのアッセイを含む。本発明は、多重化された血液学サロゲートバイオマーカーアッセイを行う方法およびそのためのキットを提供し、試料中の複数のバイオマーカーのレベルを測定するように構成されたキットを含み、リンパ球細胞表面マーカーおよび/または好中球細胞表面マーカーを含む。一実施形態において、リンパ球表面マーカーは、CD5、CD20、CD26、CD27、CD40、またはこれらの組み合わせを含む。さらに、好中球細胞表面マーカーは、CD16b、CD177、またはこれらの組み合わせを含む。本発明の血液学サロゲートマーカーアッセイ法は、全血、血液細胞ペレット、血清、および/または血漿を含む試料に対して行うことができる。一実施形態において、測定は、乾燥血液スポットを再構成することによって調製された試料で行われる。別の実施形態において、このような測定は、血清および/または血漿試料を用いて行われる。好ましい実施形態において、測定は血漿試料を用いて行われる。驚くべきことに、本発明者らは、好中球およびリンパ球表面マーカーの遊離(すなわち、細胞非結合)形態が血漿中で測定することができ、放射線被曝後の血漿中のこれらのマーカーのレベルが、好中球およびリンパ球に対する放射線の影響を評価するために有用な診断情報を提供することを発見した。
【0035】
生物学的アッセイの技術分野における当業者は、本発明のバイオマーカーおよびバイオマーカーパネルを測定するための多くの適切なアプローチおよび器具を承知している。一実施形態において、キットは、イムノアッセイを用いてバイオマーカーレベルを測定するように構成される。好ましい実施形態において、キットは、1つまたはそれ以上の試料における複数のバイオマーカーを測定するように構成された複数のアッセイウェルを含むマルチウェルアッセイプレートを含む。好ましくは、ウェルは、複数の異なるバイオマーカーの多重化された測定を行うために個々のウェルの使用を可能にするように構成される。
1つのこのようなアッセイプレートにおいて、アッセイプレートのウェルは複数のアッセイドメインを含み、アッセイドメインのうちの少なくとも2つは異なるバイオマーカーを測定するための試薬を含む。代替の好ましい実施形態において、キットは、試料中のバイオマーカーを測定するためのアッセイカートリッジを含む。好ましくは、カートリッジは、入口、出口、および検出チャンバを有するフローセルを含み、該入口、検出チャンバおよび出口は該フローセルを通じる流路を画定し、該検出チャンバは試料中の複数のバイオマーカーのレベルを測定するように構成される。本発明の方法において使用されるキットは、アッセイに用いられる1つまたはそれ以上の追加のアッセイ試薬をさらに含んでもよく、それらの追加の試薬は、キットの1つまたはそれ以上のバイアル、容器、またはコンパートメントで提供され得る。さらに、放射線被曝を評価するためのキットはまた、(a)バーコード化された患者識別タグ;(b)例えば、試料識別を促進するために使用され得る、バーコードを含む乾燥血液スポット収集カード;(c)乾燥剤を含む試料搬送バッグ;(d)プランジャーを有するキャピラリー;および/または(e)ランセットを含むことができる。
【0036】
本発明のキットおよび方法において分析され得る試料は、限定されないが、対象の疾患、障害、または異常な状態のバイオマーカーを含むまたは潜在的に含む、任意の生体液、細胞、組織、器官、およびこれらの組み合わせまたはその一部を含む。例えば、試料は、生検によって得られた標本の組織学的切片、または組織培養に置かれたもしくは組織培養に適合された細胞であってもよい。さらに、試料は、細胞内画分もしくは抽出物、または粗製もしくは実質的に純粋な核酸分子またはタンパク質調製物であってもよい。一実施形態において、本発明のアッセイにおいて分析される試料は、血液ペレット、血清または血漿などの血液または血液画分である。他の適切な試料には、生検組織、腸粘膜、尿、耳下腺、血液学的組織、腸、肝臓、膵臓、または神経系が含まれる。試料は、任意の患者から採取されてもよく、限定されないが、動物、哺乳類、霊長類、非ヒト霊長類、ヒトなどが挙げられる。一実施形態において、レベルはイムノアッセイを用いて測定される。本明細書に開示されている放射線バイオマーカーパネルは、患者の健康を評価し、監視するために、開始時および急性放射線症候群の経過全体で用いてもよい。好ましい実施形態において、試料は、放射線被曝後の約1~7日以内に患者から回収される。
【0037】
本明細書で使用するとき、「バイオマーカー」は、疾患または異常状態であり得る特定の生物学的状態と関連付けられる物質である。バイオマーカーレベルの変化は、疾患または異常の危険性もしくは進行、または所定の治療に対する疾病もしくは異常の感受性と相関させることができる。バイオマーカーは、疾患の危険性または個体における疾患の存在の診断に有用であり得て、または個体の疾患に対する治療(薬物治療もしくは投与計画の選択肢)を調整するのに有用であり得る。潜在的な薬物療法の評価において、バイオマーカーは、生存または不可逆的な疾病率のような天然のエンドポイントの代用として用いることができる。治療が改善された健康に直接連結するバイオマーカーを変更する場合、バイオマーカーは、臨床的有用性を評価するための「代理のエンドポイント」として機能する。
【0038】
本明細書において使用するとき、用語「レベル」とは、バイオマーカーの量、濃度、または活性を指す。また、用語「レベル」とは、バイオマーカーの量、濃度または活性の変化の速度を指すことがある。レベルは、遺伝子によってコードされたメッセンジャRNA(mRNA)の量もしくは合成速度、遺伝子によってコードされた所定のアミノ酸配列に対応するポリペプチドの量もしくは合成速度、または細胞に蓄積されたバイオマーカーの生化学的形態の量もしくは合成速度によって表すことができ、例えば、ポリペプチド、核酸または小分子のような特定の合成修飾後のバイオマーカーの量が挙げられる。この用語は、試料中のバイオマーカーの絶対量、またはバイオマーカーの相対量を指すために用いることができ、定常状態または非定常状態の条件下で決定された量または濃度を含む。ま
た、レベルは、バイオマーカーの変化量、濃度、活動または速度と相関するアッセイシグナルを指してもよい。バイオマーカーのレベルは、試料中の対照マーカーと比較して決定することができる。
【0039】
正常と疾患/露出患者間の区別に有益な特定のバイオマーカーは、例えば、一次元もしくは多次元グラフ上にプロットされたデータの視覚的分類によって、または対照の個体と疾患患者間の統計学的に加重された差異を特徴付けるなどの統計学的方法を用いることによって、および/または受信者動作特性(ROC)曲線分析を用いることによって特定することができる。有用なバイオマーカーを同定し、検出閾値/アルゴリズムを設定するための適切な種々の方法は、当該技術分野において知られ、当業者に明らかである。
【0040】
例えば、限定されないが、診断的に価値のあるバイオマーカーは、先ず、
【数1】
として計算される、対照個体と被曝または異常患者間の統計学的に加重された差異を用いて同定することができる。上記式中、Dは、放射線に被曝されたものと診断された患者におけるバイオマーカーの中央値レベルであり、Nは、対照個体の中央値(または平均)であり、δ
Dは、Dの標準偏差であり、σ
Nは、Nの標準偏差である。マグニチュードが大きくなると、疾患集団と正常集団間の統計学的な差異が大きくなる。
【0041】
本発明の一実施形態によれば、対照個体と、例えば1、1.5、2、2.5または3よりも大きい疾患/被曝患者間の統計学的に加重された差異をもたらすバイオマーカーは、診断価値のあるマーカーを同定することができた。
【0042】
バイオマーカーを同定するための統計学的分析の別の方法は、例えば、Skatesら、(2007)Cancer Epidemiol.Biomarkers Prev.16(2):334-341に記載されるz-スコアの使用である。
【0043】
診断マーカーとして作用するための、特定のバイオマーカーのような特定の候補分析物の効力を決定するための本発明の独創的な方法において有用であり得る統計学的分析の別の方法は、ROC曲線分析である。ROC曲線は、陽性もしくは陰性の試料または対象を正しく同定するための診断の能力に対する、例えば、試料中のアッセイシグナルまたは分析物のレベルのような診断指標についてのカットオフ値などのカットオフ基準の効果を調べるための図式アプローチである。ROC曲線の1つの軸は、真陽性率(TPR、すなわち、真の陽性試料/対象が正しく陽性として同定される確率)、または偽陰性率(FNR=1-TPR、真の陽性試料/対象が誤って陰性として同定される確率)である。他の軸は、真陰性率、すなわち、TNR、真の陰性試料が正しく陰性として同定される確率、であり、あるいは、偽陽性率(FPR=1-TNR、真の陰性試料が誤って陽性と同定される確率)である。ROC曲線は、陽性または陰性として試料/対象を同定するために使用される診断カットオフ値を変化させ、それぞれのカットオフ値について、TRPまたはFNRおよびTNRまたはFPRの計算値をプロットすることによって、試料/対象の集団についてのアッセイ結果を用いて作成される。ROC曲線下の面積(本明細書においてAUCと称する)は、陽性および陰性の試料/対象を区別する診断の能力の1つの指標である。一実施形態において、バイオマーカーは、AUC≧0.7を与える。別の実施形態において、バイオマーカーは、AUC≧0.8を与える。別の実施形態において、バイオマーカーは、AUC≧0.9を与える。
【0044】
ROC曲線分析によって分析される診断指標は、分析物のレベル、例えばバイオマーカー、またはアッセイシグナルであってもよい。あるいは、診断指標は、複数の測定値の関数であってもよく、例えば、複数の分析物、例えば、複数のバイオマーカーのレベル/アッセイシグナルの関数、または患者の視覚的な放射線学的および/または組織学的評価に基づいて決定される患者のスコアリング値を伴う1つまたはそれ以上の分析物のレベルもしくはアッセイシグナルを合わせる関数であってもよい。マルチパラメータ分析は、単一マーカーの分析と比較してより正確な診断を与えることができる。
【0045】
マルチ分析物パネルの候補は、例えば、個々の分析物ROC面積、幾何学的な四分位範囲(LQR)などによって標準化されるグループ間の中央値の差などの基準を用いることによって選択され得る。目的は、グループ(例えば、正常および疾患集団)間の分離を改善し、または誤分類率を最小化するために分析物の空間を仕切ることである。
【0046】
1つのアプローチは、個々の分析物の反応の加重された組み合わせとしてパネル反応を定義し、次に、ROC面積、感度および特異性の生成物のような目的関数をコンピュータ計算することである。例えば、開示が全体として参照によって本明細書に組み入れられるWO2004/058055およびUS2006/0205012を参照されたい。加重係数は、仕分ける目的を定義する;線形組み合わせについては、目的は、2次元のライン、3次元の平面、より高次元の超平面である。最適な係数は、目的関数を最大化し、複数の次元における関数の極値を見つけるためのアルゴリズム、例えば、勾配降下法、滑降シンプレックス法、シミュレート化アニーリングなどを用いて決定することができる;より詳細には、「Numerical Recipes in C,The Art of Scientific Computing」、W.Pressら、Cambridge
University Press、1992年に見出すことができる。
【0047】
別のアプローチは、判別分析を用いることであり、この場合、多変量確率分布(正規、多項など)を用いて、それぞれのグループを記述する。いくつかの分布は、分析物空間における仕切り超平面をもたらす。このアプローチの利点の1つは、一度に2つというよりはむしろ、複数のグループ(例えば、正常、疾患1、疾患2)に測定値を同時に分類する能力である。さらに詳細には、「Principles of Multivariate Analysis,A User’s Perspective」、W.J.Krzanowski、Oxford University Press、2000年、および「Multivariate Observations」、G.A.F.Seber,John Wiley、2004年を参照された。
【0048】
仕切り超平面が決定されると、異なるアッセイパネルの構造安定性は、それぞれのグループについて分離超平面への距離メトリックを評価することによって比較することができる。上述したアルゴリズムは、グループ間の最良の分類を見出すように設計されていることは注目に値する;したがって、これらのアルゴリズムはまた、異なる疾患または同疾患の集団もしくはサブグループまたは集団を区別するために使用することができる。最後に、カテゴリーデータ(年齢、性別、人種、民族性など)はまた、異なるレベルにコード化され、この方法における最適化変数として用いることができる。
【0049】
一実施形態において、本発明は、(a)患者試料中の複数の放射線バイオマーカーのレベルを測定する工程;(b)放射線量または試料時間の関数として該バイオマーカーの反応について反応表面モデルに上記測定されたレベルを適合させる工程;(c)複数のバイオマーカーを組み合わせるためのコスト関数をコンピュータ計算する工程;(d)コスト関数を最小限にする計算された放射線量と計算された試料時間を選択する工程;場合により、(e)受けた線量に従って個体を分類するために(例えば、被曝していない個体から被曝した個体を区別するため、または処置オプションから恩恵を受ける患者を同定するた
めに)、閾値と上記計算された放射線量を比較する工程を含む放射線量-計算アルゴリズムを与える。
【0050】
試料時間は、本明細書で使用するとき、放射線被曝の事象と試料が収集された時間との間の時間を指す。試料時間が知られている、または知られることが期待されているという用途において、例えば、所定の時間枠において被曝が生じたとき、実際の試料時間をアルゴリズムに与えることができる。これらの場合において、計算された放射線量だけが、上記工程(d)において選択される必要がある。
【0051】
好ましい実施形態において、2パラメータ反応関数、すなわち、Mi(線量、時間)が
決定され、この場合、Miは、線量および試料時間の関数としてのマーカーiの期待レベ
ルである。あるいは、Miはまた、1つまたはそれ以上のバイオマーカーのレベルに由来
する派生値iの期待レベルを表してもよく、例えば、マーカーレベルの逆数、マーカーレベルのログ、2つのマーカーレベルの比率または生成物などが挙げられる。好ましくは、反応関数は、ヒト、動物またはインビトロ研究からの既存データに基づいて確立される。
【0052】
これらの確立された反応関数に基づいて、異なるマーカー(または派生値)のそれぞれの反応関数への最良の全フィットを与える放射線被曝線量(および、線量が知られているが、試料時間が知られていない場合、場合により試料時間)を決定することができる。最良のフィットを見出すために最小限にすることができるコスト関数の1つの一般的形態(F)は、以下の式によって与えられる。Eiは、バイオマーカーの測定されたレベル(ま
たは派生値)i(mi)と、所定の線量-時間条件について反応表面によって予期される
バイオマーカーの期待レベル(または派生値)(Mi(線量、時間))との間の不一致と
関連付けられる値を与える関数である。Wiは、それぞれのマーカーiについて、線量依
存的および/または時間依存的であってもよい加重関数である。加重関数は、特定の線量および時間の範囲における特定のマーカーに与えられる重要度を変化させるために使用されてもよい。一実施形態において、加重は、測定の統計学的有意性に基づいて、その線量および時間点で決定される。多数の異なる加重関数を用いることができ、例えば、その線量および時間でのバイオマーカーレベルの変動係数(CV)の逆数が挙げられる。場合により、加重関数を省略してもよい。
【0053】
【0054】
Eiを計算するための可能な方法の例としては、miとMiの差を計算し、その差の絶対
値を計算し、またはその差の二乗を計算することが挙げられる。一実施形態において、miとMiの値は、例えば、正常な試料について、または全ての期待される試料についての最小値、最大値、中央値もしくは平均値によってバイオマーカーを分割することによって、より多くのバイオマーカーを過度に強調することを避けるために標準化される。標準化係数を有する好ましいコスト関数の1つの具体例が以下に与えられ、これは、「最小二乗フィット」に対応し、それぞれの期間は、測定値とフィット値の生成物に標準化され、加重関数によってスケーリングされる。
【0055】
【0056】
また、コスト関数は、Miおよびmiの値を変換することができる。後述する好ましいコスト関数において、ログ値は、最大倍数変化を有するバイオマーカーに対して過剰な強調を最小限にし、さらに、より高い存在量を有するバイオマーカーについてバイアスを最小限にするために使用される。
【0057】
【0058】
また、バイオマーカーレベルについての測定値およびフィット値は、直線的にまたは直交して、検出限界(LOD)または定量の下限に加えられ、以下の関数におけるように、検出限界に近いレベルの変化のコスト関数への影響を最小限にしてもよい。
【0059】
【数5】
式中、m
iは、バイオマーカーiの測定値であり、M
iは、被曝後の既知時間での線量の関数として予測されるバイオマーカー値であり、LOD
iは、バイオマーカーiのアッセ
イ検出限界であり、nは、使用されるバイオマーカーの総数である。
【0060】
また、放射線量を評価するための上述のアルゴリズムは、重症度指数、すなわち、疾患または障害の段階を特徴付ける臨床医によって使用される分類スケールを用いて、臨床設定において評価することができる疾患状態により一般的に適用することができる。様々な状態を重症度指標を用いて評価する。例えば、外傷性脳傷害、脳卒中、塞栓症、肝疾患、腎疾患、心疾患、炎症性腸疾患、アルツハイマー病、認知症、甲状腺疾患、関節リウマチ、多発性硬化症、乾癬、全身性エリテマトーデス、橋本甲状腺炎、悪性貧血、アジソン病、I型糖尿病、皮膚筋炎、シェーグレン症候群、重症筋無力症、反応性関節炎、グレーブス病、セリアック病、または癌が挙げられる。
【0061】
この点に関して、上述したアルゴリズムは、傷害重症度値計算アルゴリズムとして用いることができ、該アルゴリズムは、(a)患者試料中の複数のバイオマーカーのレベルを測定する工程であって、複数のバイオマーカーの1つまたはそれ以上のバイオマーカーは、患者における傷害の事象において正常対照と比較して変更される、上記工程;(b)傷害重症度指数または時間の関数として反応表面モデルに測定されたレベルをフィットさせる工程;(c)複数のバイオマーカーを組み合わせるためのコスト関数をコンピュータ計算する工程;(d)既知の時間間隔でコスト関数を最小限にする傷害重症度値を同定する工程;場合により、(e)傷害重症度値を閾値と比較する工程を含み、閾値を超える傷害重大度値が傷害の相対的重症度を指示する。これは
図38(a)に示され、この図におい
て、ユーザ(3801)は、アッセイシステム(3803)(
図38(c)に図示されるプロセッサ(3804)とアルゴリズムモジュール(3805)を含む)を用いて、患者試料(3802)中の複数のバイオマーカーを測定する。アッセイシステムのプロセッサとアルゴリズムモジュールは、測定したバイオマーカーレベル(3806)を反応表面モデル(3807)にフィットさせ、コスト関数(3808)を計算し、重症度指数(3809)を同定する。同様に、試料中の放射線量を分析するための統計学的方法の使用を
図38(b)に図示し、この図において、放射線量(3810)を統計学的方法を用いて生じさせる。
【0062】
この実施形態において、コスト関数は以下の通りである。
【数6】
式中、m
iは、バイオマーカーiの測定値であり、M
iは、傷害後の既知時間での重症度指標(SI)の関数として予測されるバイオマーカー値であり、LOD
iは、バイオマー
カーiのアッセイ検出限界であり、またはnは、使用されるバイオマーカーの総数である。好ましくは、コスト関数は以下の通りである。
【数7】
式中、m
iは、バイオマーカーiの測定値であり、M
iは、傷害後の既知時間での重症度指標(SI)の関数として予測されるバイオマーカー値であり、またはnは、使用されるバイオマーカーの総数である。
【0063】
他の統計学的方法を用いて、バイオマーカーレベルの多変量分析を行うことができる。例えば、ニューラルネットアプローチを用いることができる(例えば、Musaviら、Neural Networks(1992年)(5):595-603;Wangら、Artif.Intell.Med.(2010年)48(2-3):119-127;Lancashire,L.ら、Computational Intelligence in Bioinformatics and Computational Biology(2005):pp.1-6,14-15を参照されたい)。ニューラルネットワークは、非線形システムをシミュレートするために用いられる幅広いクラスのフレキシブルモデルである。それらは、しばしば大多数の「神経細胞」、すなわち、単一の線形または非線形なコンピュータエレメントからなり、しばしば複雑な方法で相互接続され、しばしば層に体系化される。他のモデリングアプローチとしては、限定されないが、線形モデル、サポートベクターマシーンおよび判別分析が含まれる(Lancashireら、「Utilizing Artificial Neural Networks to Elucidate Serum Biomarker Patterns Which Discriminate Between Clinical Stages in Melanoma」Proceedings of the 2005 IEEE
Symposium on Computational Intelligence
in Bioinformatics and Computational Biology、Nov.14-15,2005年、pp.1-6;Wangら、「Method of regulatory network that can explore
protein regulations for disease classification」、Artif Intell Med.、48(2-3)(2010年)、pp.119-127)。
【0064】
したがって、本発明の方法は、試料中の複数のバイオマーカーのレベルを測定し、試料中の複数のバイオマーカーのレベルに基づいて、試料中の吸収線量を評価するためのアルゴリズムを適用することによって、患者試料における電離放射線の吸収線量を評価するために使用することができ、ここで、複数のバイオマーカーは、DNA損傷バイオマーカー、炎症反応バイオマーカー、組織損傷バイオマーカー、組織損傷修復バイオマーカー、または血液学サロゲートバイオマーカーを含む。好ましい実施形態において、アルゴリズムは、約1~10Gyの範囲、好ましくは約1~6Gyの間、より好ましくは約2~6Gyの間、または約6~10Gyの間において、電離放射線の吸収線量を定量する。
【0065】
本明細書に開示されている全てのまたは1つもしくはそれ以上の部分のアルゴリズムおよび統計学的方法は、プロセッサ、汎用もしくは専用もしくは他のこのようなマシーン、集積回路によって行われまたはそこで実行され、または任意のこれらの組み合わせによって行われ得る。さらに、本明細書に開示されているアルゴリズム(単数または複数)および統計学的方法(単数または複数)を行うためのソフトウェア指示は、コンピュータ、プロセッサ、汎用もしくは専用もしくは他のこのようなマシーン、または任意のこれらの組み合わせによって使用するために、コンピュータ読み取り可能な媒体、すなわち記憶デバイスに全体としてまたは部分的に記憶させてもよい。適切な記億デバイスの非限定的なリストとしては、限定されないが、コンピュータハードドライブ、コンパクトディスク、一時的な伝播シグナル、ネットワーク、または適切なドライブによってもしくは適切な接続を介して読み取られる携帯型媒体が挙げられる。
【0066】
バイオマーカー測定に加えて、バイオドシメトリ評価は、臨床症状に関する情報などの追加入力から恩恵を受けることができる。例えば、バイオドシメトリ評価ツール(BAT)は、ヒト放射線災害の管理に関連した診断情報(臨床徴候および症状、身体線量測定など)を医療サービス提供者に装備させるソフトウェアアプリケーションである。放射線事故後の速やかな使用のために予備的に設計されることで、ソフトウェアアプリケーションは、被曝したものから得られたデータの回収、統合、および保存を促進する。テンプレートで収集されたデータは、マルチパラメータ線量評価を提供するために、文献から得られた、確立された放射線量反応と比較される。プログラムは、災害管理に有用な臨床情報(放射能汚染の及ぶ範囲、創傷、感染など)を保存し、簡潔な形式で関連する診断情報を提示し、軍と民間の放射線事故の両方を管理するために使用することができる。
【0067】
バイオマーカーレベルは、当業者に利用可能な多数の技術のいずれかを用いて測定することができ、例えば、直接的な物理学的測定(例えば、質量分析)または結合アッセイ(例えば、イムノアッセイ、凝集アッセイ、およびイムノクロマトグラフィーアッセイ)が挙げられる。本明細書において同定されたバイオマーカーは、任意の適切な免疫測定法によって測定することができるが、該方法には、限定されないが、ELISA、マイクロスフェアベースのイムノアッセイ法、ラテラルフロー試験ストリップ、抗体ベースのドットブロットまたはウェスタンブロットが含まれる。この方法はまた、化学反応、例えば、光吸収の変化、蛍光の変化、化学発光または電気化学発光の生成、反射率、屈折率または光散乱の変化、表面からの検出可能な標識の蓄積または放出、酸化または還元または酸化還元種、電流または電位、磁場の変化に起因するシグナルを測定することを含むことができる。適切な検出技術は、フォトルミネッセンス(例えば、蛍光、時間分解蛍光、エバネセント波蛍光、アップコンバーティング蛍光体、多光子蛍光などの測定を介する)、化学発光、電気化学発光、光散乱、光吸収、放射活性、磁場、酵素活性(例えば、光学的吸収もしくは蛍光の変化を引き起こし、または化学発光を引き起こす酵素的反応を介した酵素活
性を測定することによる)を介して、標識の測定を通じて標識された結合試薬の関与を測定することによって結合事象を検出することができる。あるいは、標識の使用を必要としない検出技術、例えば、質量(例えば、表面音響波測定)、屈折率(例えば、表面プラズモン共鳴測定)、または分析物の固有の発光の測定に基づく技術を用いることができる。
【0068】
バイオマーカーレベルを測定するための結合アッセイは、固相または均質なフォーマットを用いることができる。適切なアッセイ法は、サンドイッチアッセイまたは競合結合アッセイを含む。サンドイッチイムノアッセイの例は、米国特許第4,168,146号および米国特許第4,366,241号に記載され、両者は、全体として参照によって本明細書に組み入れられる。競合イムノアッセイの例は、米国特許第4,235,601号、米国特許第4,442,204号および米国特許第5,208,535号に開示されているものが挙げられ、これらのそれぞれは、全体として参照によって本明細書に組み入れられる。
【0069】
多重バイオマーカーは、多重アッセイフォーマットを用いて測定することができ、例えば、結合試薬アレイの使用を介して多重化すること、標識のスペクトル識別を用いて多重化すること、粒子上で行われる結合アッセイのフローサイトメトリー分析の多重化、例えば、Luminex(登録商標)システムの使用が挙げられる。適切な多重化法には、対象とするバイオマーカーに指向された固相化抗体のパターン化されたアレイを用いるアレイベースの結合アッセイが含まれる。多重化アッセイを行うための様々なアプローチが報告されている(例えば、それぞれが参照によって本明細書に組み入れられるUS20040022677;US20050052646;US20030207290;US20030113713;US20050142033;およびUS20040189311を参照されたい。多重化結合アッセイへの1つのアプローチは、結合試薬のパターン化されたアレイの使用を伴い、例えば、より詳細には、米国特許第5,807,522号および第6,110,426号;Delehanty J-B.、Printing functional protein microarrays using piezoelectric capillaries、Methods Mol.Bio.(2004年)278:135-44;Lue R Yら、Site-specific immobilization of biotinylated proteins for
protein microarray analysis、Methods Mol. Biol.(2004年)278:85-100;Lovett、Toxicogenomics:Toxicologists Brace for Genomics Revolution、Science(2000年)289:536-537;Berns A、Cancer:Gene expression in diagnosis、nature(2000年)、403、491-92;Walt、Molecular
Biology:Bead-based Fiber-Optic Arrays、Science(2000年)287:451-52を参照されたい)。別のアプローチは、個々に同定され、詮索することができるビーズ上にコーティングされた結合試薬の使用を伴う。例えば、複数の分析物をアッセイするためにサイズが異なる磁性粒子の使用を記載するWO9926067を参照されたい;異なる別個のサイズ範囲に属する粒子は異なる分析物をアッセイするために使用される。粒子は、フローサイトメトリーによって個々に識別され、詮索されるように設計されている。Vignaliは、64個の異なるビーズセットの微粒子を使用する多重結合アッセイを報告し、それぞれは2つの色素を均一であって、明確な比率を有する(Vignali,D.A A、「Multiplexed
Particle-Based Flow Cytometric Assays」、J.Immunol Meth.(2000年)243:243-55)。異なる大きさおよび蛍光の15個の異なるビーズのセットを伴う類似のアプローチは、複数の肺炎球菌血清型の同時タイピングに有用なものとして開示されている(Park,M.Kら、「A
Latex Bead-Based Flow Cytometric Immuno
assay Capable of Simultaneous Typing of Multiple Pneumococcal Serotypes(Multibead Assay)」、Clin.Diag.Lab ImmunoL(2000年)7:4869)。Bishop,JEらは、6つのヒトサイトカインの同時定量化についての多重サンドイッチアッセイを報告している(Bishop,LE.ら、「Simultaneous Quantification of Six Human Cytokines in a Single Sample Using Microparticle-based Flow Cytometric Technology」、Clin.Chem(1999年)45:1693-1694)。
【0070】
診断テストは、例えば、アッセイプレートの単一のウェルまたはカートリッジのアッセイチャンバであるアッセイチャンバなどの単一のアッセイチャンバにおいて行うことができる。本発明に適したアッセイ測定を行うためのアッセイモジュール(例えば、アッセイプレートまたはカートリッジまたはマルチウェルアッセイプレート)、方法および本装置は、例えば、US20040022677;US20050052646;US20050142033;US20040189311に記載され、それぞれは、全体として参照によって本明細書に組み入れられる。アッセイプレートおよびプレートリーダーは、現在市販されている(MULTl-SPOT(登録商標)およびMULTI-ARRAY(登録商標)プレートおよびSECTOR(登録商標)機器、MESO SCALE DISCOVERY(登録商標)、Meso Scale Diagnostics,LLC、Gaithersburg、MDの一部門)。
【0071】
上記の構築物および方法を例示する具体的な実施例を参照されたい。実施例は、本発明の種々の実施形態の範囲を限定するというよりはむしろ、例示するために与えられることが理解されるべきである。
【実施例】
【0072】
方法
アッセイ。アッセイは、MSD MULTI-ARRAY96ウェルプレート中の多数の異なる一重化または多重化されたパネルとして開発され、MSDプレートリーダー上でECL検出を用いて分析された(例えば、Meso Scale Discoveryから市販されているプレートリーダーのSECTORまたはPR2ライン、Meso Scale Diagnostics,LLC、Gaithersburg、MDの一部門)。アッセイパネルにおいて分析されたバイオマーカーとしては、表1に列挙されるバイオマーカーが挙げられる。
【0073】
アッセイパネルを用いたアッセイ測定を行う前に、試料は、最初に、そのパネル用に特定された希釈まで、適切な試料希釈剤で希釈された。次に、希釈した試料(典型的には約10~25uL)は、パネル内の標的用の捕捉抗体のアレイを含むMULTI-ARRAYアッセイのウェル中に、追加体積の試料希釈剤(典型的には、希釈された試料体積の3分の1倍)と合わせられた。プレートを、振とうしながら約2時間インキュベートし、試料を取り出し、ウェルをリン酸緩衝生理食塩水で3回洗浄した。ウェル中の標的に対する標識された(MESO SCALE DISCOVERYからも市販されているECL標識であるMSD SULFO-TAG(商標)標識)検出抗体の混合物50μL体積を添加し、プレートを振とうしながら約1時間インキュベートした。ウェルをリン酸緩衝生理食塩水で3回洗浄し、約125μLのMSD T Read緩衝液(MESO SCALE DISCOVERYから市販されている)を添加した。プレートをMSD ECLプレートリーダー(MESO SCALE DISCOVERYから市販されている)を用いて読み取った。リーダーは、相対的ECL単位でそれぞれのアレイエレメントについてのアッセイシグナルを記録する。
【0074】
同じ手順を用いて血液細胞ペレット中の細胞内マーカーを分析した。ただし、初期試料は、ヒストン抽出緩衝液(50mMのTRIS pH7.5、500mMのNaCl、0.5%のデオキシコール酸Na、1%のTriton X100、2mMのEDTA、1%のPhIC、1%のPICおよび1mMのPMSF;106個の白血球あたり200μ
L)中で血液細胞ペレットを抽出することによって調製された。
【0075】
実験プレートレイアウトは、全て2点測定で行う陰性QC対照、陽性QC対照、および8点の較正曲線を含んでいた。較正曲線は、1/y2加重を用いて、4つのパラメータロジスティック(4-PL)フィットにフィットさせ、試料濃度を計算するために使用された。
【0076】
マウスにおける放射線量研究。雌マウス(菌株B6D2F1/J)は、60Coのγ線源を用いて、約0.6Gyの/分の線量率で、用量範囲(ある研究での用量は0、1.5、3、6、10Gyのおよび14Gyとを含む)での全身照射(TBI)に供した。これらの線量レベルからマウスを照射後6時間、1、2、3、5および7日でサンプリングした(表2を参照)。全血はサンプリング時間で収集し、乏血小板EDTA血漿画分および末梢血白血球ペレット(PBL)に加工した。全血の別個のアリコートを採取し、血球数を測定した。指定された研究では、一般的に6~8匹のマウスは、用量/時間条件毎に試験した。一つの研究(「盲検試験」)において、サンプルは、表3に示す条件をカバーするが、線量推定アルゴリズムの性能の不偏特性評価を可能にするために盲検様式で、分析のために提供された。
【0077】
マウスにおける複合傷害研究。この研究は、放射線バイオマーカーレベルにおける総体表面積の15%を覆う背部刺創の効果を調べた(創傷モデルはLedneyら、2010に記載されている)。次に、0(偽照射)、3、6、または10Gyに被曝させた雌性マウス(B6D2F1/J株)は、放射の1時間以内に15%の表面積を刺創された。血漿試料を照射後の6時間、1、2、3、5または7日目に回収した。照射条件および試料回収は、バイオマーカー発見研究のために上記した通りであった。非傷害対照として、同数のマウスは、傷害マウスと同じ線量/時間の条件および処理に供されたが、刺創を受けなかった。また、試料は、真の陰性対照マウスから回収され、偽創傷および照射処置に供されなかった。少なくとも8匹の同型マウスをそれぞれの線量/時間/創傷状態に供した。完全な複合傷害研究を行う前に、より小さな試験的な複合傷害研究を行い、これは、0と6Gy線量条件、およびそれぞれ線量/時間/傷害状態について6匹だけの同型マウスに限定された(試験的および完全な複合傷害研究についての試験条件の概要についてはそれぞれ表3および表4を参照されたい)。
【0078】
NHP試料を用いた放射線量試験。先の放射線研究からのレムナント非ヒト霊長類(NHP)試料(アカゲザル-マカカアカゲザル)を次のように評価した。レムナント試料セットAは、照射前に、および60Coγ線供給源から0、1.0、3.5、6.5、または8.5Gyを用いたTBI照射後の様々な時間で回収されたEDTA血漿試料を含み、レムナント試料セットBは、照射前に、および7.5、10.0、または11.5Gy(6MV LINAC光子、0.80Gy/分)を用いたTBI照射後の様々な時間で回収されたEDTA血漿試料を含んでいた。表5は、実施可能性試験において試験された試料をまとめたものである。試料セットAが提供され、試料回収時に測定された血液細胞カウントを含んでいた。
【0079】
ヒト試料。放射線バイオマーカーにおいて予期される正常なバリエーションを測定するために、レムナント血小板に乏しいEDTA血漿は、献血センター(Bioreclamation,LLC、Liverpool、NY経由)で提供された個々の血液試料から
回収された。試料は40人の正常な個体と、4つの有病率が高い慢性疾患(高血圧、糖尿病、喘息または慢性関節リウマチ)のそれぞれについて、最大10人の自己認識している個体から回収された。試料は、表6にまとめられ、性別、年齢および人種において多様であるように選択された。
【0080】
放射線被曝について潜在的な新規のヒトモデルを評価するために、レムナントヒト試料を放射線腫瘍患者から回収した。EDTA血漿試料を肺癌(15人の患者)およびGI癌(8人の患者)について標準的な放射線療法を受けている患者から回収した。これらの治療は、影響を受けた臓器の局所的であるが、相対的に大きな領域の照射を伴う。典型的な治療スケジュールは、1日あたり1.8または2.0Gyであって、1週あたり5日を6週間、全線量54~60Gyについて受ける患者を含む。試料は、照射前、3および6週の時点で回収された。EDTA血漿はまた、細胞移植療法用の準備におけるTBIを受けるメラノーマ患者(13人の患者)から回収された(試料は2Gy線量を受ける前と受けた後の6時間で回収された)。全ての治療はまた化学療法を含んでいた。試料およびプロトコルのより詳細については、表7に見出すことができる。
【0081】
【0082】
【0083】
【0084】
【0085】
【0086】
【0087】
データ分析。個々のバイオマーカーの線量および時間反応を評価する際に、異なる試験条件に観測された反応の差の有意性は、両側不対t検定を用いてp値を計算することによって決定された。個々のバイオマーカーの測定された線量および時間反応は、マウス放射線量試験で決定したように、線量を予測するためのマルチパラメータアルゴリズムを開発するために使用された。基本的なアプローチは、それぞれのバイオマーカーについての線
量および時間反応をモデル化することである。線量を予測するために、患者(または動物モデル)のバイオマーカーレベルを測定し、その反応表面モデルにそれぞれのバイオマーカーをフィットさせるための最良の妥協点を与える線量を計算する。本明細書に記載されている研究において、被曝時間が分かり、そのため、最良の妥協なフィットを与える線量だけが計算される必要があることが想定される。
【0088】
結果
マウス放射線量および複合傷害研究-個々のバイオマーカー反応。マウスの放射線量研究のためのバイオマーカー試験の結果を
図1~17に示す。それぞれの図は、それぞれの回収時間についてのバイオマーカーレベル対線量のプロット、およびそれぞれの線量についてのバイオマーカーレベル対時間のプロットを含む。パネルA~Dにおけるマーカーについてのそれぞれのデータポイントは、EPO、IL-5、IL10、KC/GROおよびTNF-α測定を除いて、対照条件については7~8匹のマウス全体の平均、ならびに偽条件および照射条件については10~12匹のマウス全体の平均を表す。これらのアッセイについてのデータポイントは、対照については3~4匹のマウス全体の平均、ならびに偽条件および照射条件については6~8匹のマウス全体の平均を表す。また、図は、非照射対照と比較した、それぞれの条件についてのバイオマーカーレベルの変化における有意性を示すp値の表を与える。
【0089】
線量/時間条件の範囲全体での有意な変化(p<0.05)を示す選択されたバイオマーカーについての図を与える。DNA損傷および炎症マーカーは、6時間または1日でピークに達し、2日までに大幅に低下する早期の放射線マーカーであったが、IL-6およびSAAが進行する急性放射線症候群と同様により高線量のために後期の時間点で上昇することを示すいくつかの証拠があった。例外は、後期の時間点で強い反応を示すIL-5とIL-12であった。IL-12は、濃度における強い線量依存性の減少を示す唯一のマーカーであった。組織損傷修復のバイオマーカーは、放射線後の2日またはそれを超えて上昇する傾向にあったが、G-CSFは、強い早期および後期反応を有し、Flt-3Lは全てであったが、最も早い(6時間の)時間点で有意な反応を示した。
【0090】
図1~17はまた、完全複合傷害研究において試験されたそれぞれの線量および傷害条件についてのバイオマーカーレベル対時間のプロットを含む。0Gy(非照射)条件に焦点を当て、非損傷マウス(黒丸)と損傷マウス(白丸)についてのバイオマーカーレベルを比較すると、放射線被曝していない、損傷によって変化しなかった多数のバイオマーカー(Flt-3L、GM-CSF、TPO、EPO、IL-5およびCD27)が存在することが示された。SAA、G-CSFおよびCD-26は対照的に、創傷によって有意に上昇し(p<0.05)、創傷の効果は、放射線被曝の効果よりも大きさにおいて大きかった。IL-12およびCD-45は、いくつかの時間点で統計学的に有意である中程度の創傷効果を示したが、放射線被曝の効果よりも大きさは低かった。複合傷害モデルを用いて得られた結果は、本明細書に記載されるように、LPS注射モデルを用いた結果とほぼ一致しているが、GM-CSFおよびIL-12レベルは、LPSに応答して強く上昇するが、創傷によって影響を受けず(GM-CSF)または僅かに弱く影響を受けた(IL-12)。
【0091】
バイオマーカーが非照射動物において創傷に対して非感受性である場合、創傷はまた、一般的に、放射線被曝後のバイオマーカーレベルに影響を与えなかった。唯一の例外はTPOであった;創傷は、照射動物において上昇したTPOレベルの出現に関して動態を加速するようであった。効果は、6Gy線量を受けた動物について最も顕著であった。照射後の5日目に、創傷した動物は、創傷していない動物よりもほぼ5倍高い平均TPOレベルを有していた。7日目まで、創傷動物と非創傷動物のレベルは、およそ同程度であった。本発明者らは、このタイプの効果を有するバイオマーカーの使用は、照射された患者を
同定する能力に影響を及ぼすことはないが、潜在的に線量の過大評価をもたらす可能性があることを予測する。しかしながら、創傷または他の外傷の情報に基づいて、線量評価アルゴリズムを調整することによってアルゴリズムの精度をさらに向上させることである。
【0092】
マウス放射線量研究-アルゴリズム開発および試験。5つのバイオマーカー(Flt-3L、G-CSF、GM-CSF、EPO、IL12/23)を用いたマルチパラメータアルゴリズム(方法セクションに記載したように)は、最初のマウス放射線量および時間研究からの全試料セットに適用された。それぞれの試料について、このセットのバイオマーカー測定とともに、予測された線量は、繰り返しのランダムサブサンプリングアプローチを用いて計算された(方法を参照されたい)。
図18(a)は、試料の完全セットについての予測線量対実際の所定線量のプロットを示す。破線は、0~6Gyから±1.5Gyの範囲を示し、6Gyを超えて±25%を示す。マウスモデルと比較して、放射線量に対して2.5倍高いヒトの感度を説明すると(B6D2F1/J雌性マウスモデルのLD50/30は約9.5Gy-Lednyeら、2010参照-対ヒトの約3~4Gyである)、対応するヒト同等線量範囲は0~2.4Gyから±0.6、および2.4Gyを超えて±25%であった。
【0093】
適切な範囲に線量を正しく分類するアルゴリズムの能力は、
図18(a)から計算することができる。被曝の1~7日後の時間窓全体で全ての投薬量について、
図18(a)における定義された境界内にある試料の割合は90±3%であり、この場合、標準偏差は、試験およびトレーニングセットの異なる組み合わせにわたって計算された割合における変動である。時間範囲は、6時間の時間点を含むように拡張される場合、精度は88±3%と僅かに減少することに留意されたい。
【0094】
アルゴリズムはまた、6Gyと非照射対照マウス(0Gy)から上回るものを識別し、6Gyの線量と3Gyから上回るものと下回るものを識別する、アルゴリズムの全体的な能力について特徴付けられた。ヒトと比較して、放射線量に対するマウスモデルの低い相対的な生存感受性を考慮すると(LD50/30はマウスモデルについてほぼ2.5倍高い)、この分類は、ヒトにおける約2~3Gyを上回るまたは下回る線量を分類する能力にほぼ対応しなければならない。
図19(a)は、試料を分類するために用いられる予測線量閾値を変化させることによって生成されたROC曲線を示す。ROC曲線は優れた分類能力を示し、曲線下面積(AOC)は、0Gyと≧6Gyの識別について0.999であり、≦3Gyと≧6Gyの識別について0.956であった。
【0095】
補足的マウス放射線量研究-アルゴリズム開発および試験。アルゴリズム開発は、第二マウス放射線量研究の結果を用いて進めた。本発明者らのマルチパラメータ線量-推定アルゴリズム(上記される)による使用のための最適なバイオマーカーパネルを選択するために、12個の最も放射線感受性であるバイオマーカーのそれぞれの可能な組み合わせの性能が、バイオマーカー発見研究のデータセットに対して試験された。トレーニングおよび試験試料は通常独立しているように、繰り返しのランダムサブサンプリングアプローチを用いた。アルゴリズム性能は、2つの異なる測定基準を用いて計算された:(i)完全な試料セット全体で予測される線量における二乗平均平方根誤差(RMSE)として与えられる予測誤差測定基準;(ii)正確な測定基準、この場合、本発明者らは、予測される線量が0~6Gyから±1.5Gy、および6Gyを超える±25%の試料の割合であるものとして精度を定義した。マウスモデルと比較して、放射線量に対して2.5倍高いヒトの感度を説明すると(B6D2F1/J雌性マウスモデルのLD50/30は約9.5Gy-Lednyeら、2010参照-対ヒトの約3~4Gyである)、対応するヒト同等線量範囲は0~2.4Gyから±0.6Gy、および2.4Gyを超えて±25%であった。
【0096】
図20は、異なる可能なバイオマーカーの組み合わせについてのRMSEおよび精度測定基準を示す(グラフ中のそれぞれの点は1から12個のバイオマーカーの異なる組み合わせを表す)。それぞれの可能なパネルサイズについて最も高い性能を示す組み合わせに焦点を当て(それぞれパネルサイズについて最上位点)、この図は、6つのマーカーよりも大きなパネルサイズに対して利点がないことを示す。表8は、それぞれのパネルについて2つの上位性能を示すパネルに関する性能測定基準を示す:3つの高い損傷感受性バイオマーカー(SAA、G-CSFおよびCD26)のうちの1つを含む上位性能パネル、およびこれらの3つのマーカーをいずれも含まない上位性能パネル。傷害感受性マーカーは最適な性能について要求される証拠はないため、傷害感受性バイオマーカーを含まない6つのマーカーパネル(CD27、Flt-3L、GM-CSF、CD45、IL12およびTPO)は、さらなる性能の特徴付けのための好ましいパネルとして選択された。
【0097】
【0098】
盲目試料の線量を予測するアルゴリズムの性能。マルチパラメータアルゴリズムのためのトレーニングセットとしての完全なバイオマーカー発見データを用いて、最適な6バイオマーカーパネルは、盲検研究からのそれぞれの試料の推定線量を計算するために用いた。この分析では、サンプリング時間情報が利用可能であり、線量推定に使用されたが、線量推定が完了するまで、実際の線量情報をアナリストに見えないようにした。
図21は、
予測された線量と実際の線量の相関を示し、上記される本精度基準を表す点線を含む。このアプローチを用いて、94.7%の予測された線量は、被曝後の1~7日に、時間窓全体で全ての線量について本精度基準内であった。線量推定におけるRMS誤差は1.14Gyであった(ヒトでは±0.46Gyにほぼ同等である必要がある)。また、
図21は、本精度基準の外側にある大部分の点が、放射の1日後に回収された試料を示し、これは、追加の早期のバイオマーカーを同定し、それらにより重く加重することによって性能を高める機会があり得ることを指示している。
【0099】
また、アルゴリズムは、6Gy以上の線量と非照射対照マウス(0Gy)を区別し、6Gy以上と3Gy以下の線量を区別するその全体的な能力について特徴付けられた。ヒトよりも放射線に対するマウスモデルの感度が低いことを考慮すると(LD50/30はマウスモデルについてほぼ2.5倍高い)、この分類は、ヒトにおける重大な2Gy閾値あたりの線量を分類する能力にほぼ対応する必要がある。
図22は、試料を分類するために使用された予測された線量閾値を変化させることによって生成されたROC曲線を示す。ROC曲線は優れた分類能を示し、曲線下面積(AOC)の1.000は0Gyと≧6Gyを区別し、0.998は≦3Gyと≧6Gyを区別する。ROC分析によって決定された最適な分類を用いて、0Gyと≧6Gy試料を完全に分離し(100%感度、100%特異性)、≦3Gyと≧6Gy試料をほぼ完全に分離した(99.2%感度および100%特異性)。
【0100】
アルゴリズムの性能における複合傷害の効果。傷害の潜在的な交絡効果に対するアルゴリズムの堅牢性の予備的見解を提供するために、アルゴリズム(選択された最適な6バイオマーカーパネルを用いる)は、パイロット複合傷害研究(0および6Gy、15%表面創傷の有無による)からの試料において線量を予測するために使用された。
図23は、予測された線量対実際の線量のプロットを与える。線量予測精度についての本基準内にあった試料の割合は93.3%であり、傷害コンポーネントを含まない研究について観察された値とほぼ一致している(盲検研究について精度%は94.7%であった)。線量のRMSE誤差(0.85Gy)は、盲検研究(1.14Gy)ついて観察された値よりも低く、おそらくこれは、盲目研究がより高い線量を含んでいたためである。傷害を受けた動物が含まれるにもかかわらず、非照射動物と照射動物を完全に区別した(100%感度、100%特異性)、予測された線量における分類閾値を設定する可能性もあった。
【0101】
NHP試料中の放射線バイオマーカーの予備試験。照射されたNHP(アカゲザル)からの保存された血漿試料は、NHPバイオマーカーアッセイパネルを用いて試験された。しかしながら、ほぼ全ての線量/時間条件については、6つの反復試料の少なくとも5つが全てのアッセイについて試験された。
【0102】
図24(a~z)は、放射線感受性のために選択された13個のバイオマーカーについての放射線量反応を示す。
図24(a~z)は、マウス線量評価アルゴリズムのために選択された6つバイオマーカーのうちの5つがNHPにおいて放射線反応性であり(Flt-3L、CD27、TPO、およびIL-12)、および/またはNHPにおいて放射線反応性であって機械的類似体を有していた(すなわち、マウスにおけるCD45についての類似体としての好中球表面マーカーCD177、およびマウスにおけるCD27についての類似体としてのリンパ球表面マーカーCD20)を示す。マウスパネルからの1つのマーカーであるGM-CSFは、対照および照射されたNHPにおいて検出されなかった;アッセイは、単に、天然のアカゲザルGM-CSFに対して十分な感受性を有してしない可能性がある。
図24(a~z)は、マウスモデル(SAA、EPOおよびG-CSF)における放射線感受性を示したが、線量評価アルゴリズムにおいて使用するために選択されなかった3つのマーカーはまたNHPモデルにおいて放射線に反応したことを示す。
図24(a~z)は、マウスでは有用ではないが、ヒトにおいて放射線被曝を評価するた
めに使用されている2つマーカー(CRPおよび唾液アミラーゼ)の反応を示し、これらのバイオマーカーがNHPモデルにおいて放射線に反応することを確認する。最終的に、
図24(a~z)は、癌バイオマーカーパネルをスクリーニングすることによって同定された放射線に対する2つの新規な早期応答因子(TIMP-1およびTNF-RII)についての線量反応を示す。TIMP-1(メタロプロテイナーゼ1の組織阻害剤)は、メタロプロテアーゼの阻害を介して種々の生理学的過程を調節し、さらに、赤血球増強活性を有する。可溶性TNF-RII(可溶性TNFレセプターII)は、細胞結合型TNF受容体のタンパク質分解的切断によって血漿中に放出され、多数の炎症状態が上昇する。
【0103】
NHPモデルにおける線量評価のためのマルチパラメータアルゴリズムを用いる最初のパス試験は、好ましいマウスパネルにほぼ対応するように選択されたバイオマーカーパネルを用いて実施された。パネルは、Flt-3L、TPO、IL-12、CD20、CD27、CD177および唾液アミラーゼを含んでいた。CD20およびCD177は、マウスのパネルにおいてCD27およびCD45と機械的に類似している。NHP GM-CSFアッセイは正常マウスまたは照射されたマウスから血漿中の天然GM-CSFを検出するのに十分な感度であるようには見えないため、GM-CSFを含めなかった。マウスパネルにおける類似体を含まない1つマーカーは、NHPにおいて確立されたマーカーである唾液アミラーゼであったが、マウスにおいて放射線によって影響を受けない。NHP試料セットAから収集されたデータセットはマウス研究について用いられたアルゴリズムに対して僅かな変更を用いて分析され、ここでは、異なるマーカーの寄与は、特定の時間範囲においてこれらの線量反応性に基づいて加重された。アルゴリズムは、トレーニングバイアスを回避するためにランダムサブサンプリング法を用いてデータセットについてトレーニングし、試験された。
図24(a~z)は、3.5Gy以上の線量を受けた動物と非照射対照動物(0Gy)を区別し、3.5Gy以上の線量を受けた動物と1Gy以下を受けた動物を区別するためのアルゴリズムの性能を示す。ヒトよりも放射線に対するNHPモデルの感度が低いことを考慮すると(LD50/30はマウスモデルついてほぼ1.5倍で高い)、この分類は、ヒトにおける重大な2Gy閾値あたりの線量を分類する能力にほぼ対応する必要がある(NHPにおいて3Gy)。
図25は、試料を分類するために使用された予測された線量閾値を変化させることによって生成されたROC曲線を示す。ROC曲線は優れた分類能を示し、曲線下面積(AOC)の1.000は0Gyと≧3.5Gyを区別し、0.995は≦1Gyと≧3.5Gyを区別する。ROC分析によって決定された最適な分類を用いて、0Gyと≧3.5Gy試料を完全に分離し(100%感度、100%特異性)、≦1Gyと≧3.5Gy試料をほぼ完全に分離した(96.9%感度および98.5%特異性)。
図25はまた、予測された線量と実際の線量の相関を示し、この相関は重大な3Gyポイントの近くで非常に良好であることを示す。
【0104】
ヒト正常試料および疾患試料。ヒトバイオマーカーパネルは、42人の正常な健常個体を含んだ血液ドナーからのレムナント血漿試料(表6)、ならびに4つの罹患率が高い慢性疾患:高血圧(10試料)、関節リウマチ(6試料)、喘息(10試料)および糖尿病(9試料)のうちの1つを被っているものとして自己報告しているドナーからの試料のセットを用いて試験された。結果は、
図26においてバーおよびウィスカー形式でプロットされる。疾患集団が、バイオマーカーのいずれかについての正常集団よりも有意に異なっている(p<0.05)という証拠はなかった。
【0105】
ヒトにおける線量-評価アルゴリズムの使用をサポートするマウスモデルデータの能力を判断する場合、1つの考慮は、正常の増加範囲1が多様なヒト集団において(近交系マウス系統に対して)バイオマーカーに期待し、偽陽性の可能性を増加させるかどうかである。本発明者らは、バイオマーカー発見研究において非照射マウスから測定されたバイオマーカーレベルにランダムノイズを加えることによって、この問題を研究するにように決定し、そのため、「正常な」マウスレベルにおける変動は、正常なヒト集団において観察
された変動と一致する。本発明者らは、好ましい6バイオマーカーパネルにおけるバイオマーカーのうちの4つ(Flt-3L、CD27、GM-CSF、およびIL-12)にこのノイズを適用する。CD45は、ヒト試料セットにおいて測定されなかった。そのため、比較のための参照がなかった。TPOは、マウス試料セットよりもヒト試料セットにおいて低い変動を実際に示したので、マウスレベルを変化させないままにした。
【0106】
次に、データは、どの非照射対照マウスが6Gyに被曝させたマウスと区別し得るかによって、追加されたノイズがどのように特異性に影響を及ぼすかを決定するために分析された。0Gyまたは≧6Gyの分類は、注入されたノイズの不在下で選択された最適な閾値を用いて行われた。
図27に示すように、ベースラインバイオマーカーの変動の増加は、いずれもの追加の誤分類、および100%で保持される分類について測定された特異性を生じさせなかった。
【0107】
放射線腫瘍学を受けている患者からのヒト試料。放射線を受けている癌患者からの試料セット(表7)は、バイオドシメトリアルゴリズムを評価するための潜在的なモデルとして評価された。一組の試料は、細胞移植療法前のリンパ球を枯渇させる化学療法を受けた黒色腫患者由来であった。この研究は、全身照射(化学療法後の3日間)も受けた1つの治療群と、受けなかった1つ治療群を含んでいた。試料は、照射前、最初の2Gy分画後の5~6時間にのみ利用可能であり、そのため、試料セットは早期発症バイオマーカーに関連した。
図28に示した結果は、放射前の描写(draw)および非TBI治療群の患者におけるバイオマーカーレベルは、化学療法処方に起因して、正常な範囲とは実質的に相違し得ることを示す。それにもかかわらず、2つのバイオマーカーは、照射前グループおよび非TBI治療群と比較して、照射後グループにおいて有意に上昇するものとして現れた:唾液アミラーゼ(p=0.0012)、周知な早期発症放射線マーカーおよびp53(p=0.013 )、初期(1日未満)マーカーとして同定されたマーカー。
【0108】
また、試料は、ネオアジュバントまたは同時化学療法を併用して、GI癌の肺に対して限局放射(1日あたり2Gy、週5回、6週間)を受けた患者から試験された。バイオマーカーレベルは、放射前および30と54~60Gyの累積線量後に採取された試料において測定された(
図29)。全体的に、これらの限局放射療法の結果として、バイオマーカーレベルにおいて有意な変化は観察されなかった。造血マーカー(Flt-3LとTPO)の平均レベルの小さな増加、および可溶性リンパ球表面マーカー(CD5とCD20)のレベルの小さな下降について証拠があったが、変化は中程度(約2倍)であり、分布間に顕著な重複があった。
【0109】
マウス交絡効果研究-個々のバイオマーカー反応。予備的なマウス交絡効果研究の結果は、放射線感受性を示すバイオマーカーについて
図30~32に示される。図は、交絡因子の不存在下またはLPSまたはG-CSFの注射後のバイオマーカーレベル対回収時間を示す。プロットは、非照射マウスと、交絡因子での処理後の2時間で6Gyに被曝させたマウスの両方について与えられる。予備的な交絡効果研究は、放射線線量-反応研究(γ線)とは異なる放射線源(X線)を使用したため、放射線量研究からの0および6Gyの条件は、研究間の結果の一貫性を評価するために重ね合わせられた。
図33は、観察された最大放射線反応(放射線反応研究からの試料を含む)と比較して、観察された最大LPSおよびG-CSF反応の相対的な大きさを示すバーグラフを与え、どのマーカーが交絡効果に供され得るかの迅速な評価を可能にする。
【0110】
図33は、いくつかのアッセイ(SAA、G-CSF、GM-CSF、IL-6、IL-12、IL-12/23およびKC/GRO)が、最大放射線反応と同じスケールでまたはそれより大きいスケールでLPS反応を示したことを示す。これらのアッセイは、主に、サイトカインまたは炎症反応マーカーであった。Flt-3L、EPO、TPO、p
53およびγH2AXは、対照的に、非感受性であり、またはLPSに反応して僅かな上昇を示した。興味深いことに、TNF-αは、放射線反応がほとんどないかまたはまったくないが、LPSに強く反応し、重大な炎症を有する試料を同定するための有用性を有することができる。ほとんどのマーカーは、G-CSF処置に対する反応を示さなかった。反応が観察された場合であっても、例えばEPOについては、反応は放射線反応のスケールに対して比較的小さかった。
【0111】
マウス交絡効果研究-減少したLPS非感受性バイオマーカーセットを用いたアルゴリズム。非放射線関連の炎症反応の交絡効果に対処する1つのアプローチは、明らかな外傷または感染を有する患者に対して線量評価アルゴリズムから炎症性バイオマーカーを除くことである。アルゴリズム性能は、2つのバイオマーカーLPS非感受性パネル(Flt-3LおよびG-CSF)を生じさせるために、好ましい5パネルバイオマーカーセットからLPS感受性バイオマーカーを除いた後に特徴付けられた。
図18bおよび19bは、予測された線量対実際の線量のプロット、および線量が≧6Gyである試料を分類するためのROC曲線を与え、完全な5マーカーパネルについて
図18aおよび19aにおいて与えられた曲線と同様に生じさせた。減少したパネルは線量の予測になおも有用であったが、完全なパネルと比較して、性能において幾分低下していた。最大6Gyの線量について1.5Gy以内または6Gyより大きい線量について25%以内で線量を分類する精度は、完全パネルについての91±3%と比較して、74±4%であった。線量≧6Gyと非照射対照を区別するためのROC曲線についてのAUCは、完全なパネルについての0.999と比較して、0.989であった。線量≧6Gyと線量≦6Gyを区別するためのAUCは、完全なパネルについての0.956と比較して、0.882であった。
【0112】
NHP試料の予備試験。
図34~35は、1または3.5Gy(線量あたり3匹)を用いたTBI後に0~9日間で回収されたアカゲザル血漿試料のサブセットの予備試験に基づいて得られた結果を示す。結果は、大部分、マウスモデルを用いた観察された結果を裏付ける;違いを以下に強調する。NHPモデルは、一般に、約3Gyでより強い反応を伴うより高い放射線感受性を示した。多くのマーカーは1Gyで良好な反応を示した。EPOおよびSAAは、マウスにおいて観察されたものよりも広い時間範囲(EPOについて1~9日間、SAAについて1~3日間)にわたって応答した。CRPは、マウスにおいて非放射線反応性でありながら、NHPにおいて強い初期反応を示した。BPIおよびp53はともに、非常に初期(6時間)マーカーとして観察された。GM-CSFは、NHPモデルにおける放射線に応答しなかった(データ示さず)。
【0113】
図36は、血漿試料がCD20(リンパ球)およびCD177(好中球)サロゲートマーカーを用いて試験されたときに得られた興味深い結果を示す。照射後の0、1または2日に回収された、保存された血液ペレット試料の小さなセットを用いた予備試験は、CD20およびCD177レベルが、細胞カウントによって観察される(データ示さず)。さらに興味深いことに、
図36は、1および3.5Gyコホートからの血漿試料に関して、血漿中に遊離した(細胞に結合していない)CD-20とCD-177が測定可能なレベルで存在し、これらのマーカーの血漿レベルの線量と時間経過の変化は有用な診断情報を提示することを示す。
【0114】
NHPモデルについての追加のNHP試料テストおよび線量評価アルゴリズムの開発。NHPモデルからのデータを用いて、それぞれのバイオマーカーについての時間-線量反応表面に多重化バイオマーカーデータをフィットさせることによって放射線量を評価するアプローチを評価した(マウスデータについて上述された同一のアプローチ)。結果は、6血漿マーカー(Flt-3L、EPO、p53、CD20、CD177およびSAA)のパネルが、3.5Gy超を受けた動物(ヒトでは約2Gyに相当する)と、3.5Gy未満を受けた動物との良好な区別を与えることができることを示し、さらに、半定量的な
線量予測に対して高精度を与えた。これらの6つのバイオマーカーについての結果を以下の表26および
図37に示す。また、表26は、本研究において測定された追加のバイオマーカーの識別有効性を示す。
【0115】
【0116】
CD177/CD20比を有するモデルにおけるCD20およびCD177の個々の値を置き換える影響は、この変更が、アルゴリズムの精度を改善するかどうかを決定するために評価された(血液学的結果に基づく線量評価について好中球/リンパ球比の使用に類似する)。表27(a)-(b)に示すように、比の使用は、個々の値の使用にほぼ同等の精度を与えた。
【0117】
【0118】
線量評価のための代替アルゴリズムもまた評価した。単純な線形モデル(用量=A1C1+A2C2+A3C3+・・・、ここで、Ciはマーカーiの濃度であり、Aiは経験的に決定された係数である)は、0と3.5Gyに被曝させた動物を区別するための反応表面に基づくモデルに同等であった(両方のモデルは、これらの2つのグループにおける動物から全ての試料を正しく分類することができた)。線形モデルは、露出と試料回収の間の時間の知識を必要としないという利点があるが、線量および表面モデルを定量しない(最適なパネルの線量評価についての二乗平均平方根誤差は反応表面モデルについて約1Gy対約0.3Gyであった)。
【0119】
様々な刊行物および試験方法が本明細書に引用され、これらの開示は、全体として参照によって本明細書に組み入れられる。本明細書に参照によって組み入れられおよび/また
は本明細書において言及される本明細書および資料が、相反する開示、および/または技術用語の一貫性のない使用を含み、および/または組み入れられた/言及された資料が、本明細書において使用されもしくは定義されるものとは異なって使用または定義している場合、本明細書が優先する。
【0120】
References
1. Baranov AE, Guskova AK, Nadejina NM, Nugis VY. (1995). Chernobyl experience:
biological indicators of exposure to ionizing radiation. Stem Cells. 13(Suppl 1): 69-77.
2. Bertho JM, Roy L. (2009) A rapid multiparametric method for victim triage in
cases of accidental protracted irradiation or delayed analysis. Br J Radiol. Aug;82(981):764-70.
3. Bertho JM, Roy L, Souidi M, Benderitter M, Bey E, Racine R, Fagot T, Gourmelon P. (2009) Initial evaluation and follow-up of acute radiation syndrome in two
patients from the Dakar accident.Biomarkers. Mar;14(2):94-102.
4. Bertho J-M, Demarquay C, Frick J, Joubert C, Arenales S, Jacquet N, Sorokine-Durm I, Quang Chau, Lopez M, Aigueperse J, Gorin N-C, Gourmelon P. (2001). Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int. J. Radiat. Biol. 77(6): 703-712.
5. Blakely WF, Ossetrova NI, Whitnall MH, Sandgren DJ, Krivokrysenko VI, Shakhov A, Feinstein E. (2010) Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications. Health Phys. Feb;98(2):153-9.
6. Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM. (2003) The hematologist and radiation casualties. Hematology Am Soc Hematol Educ Program.:473-96. Review.
7. Dainiak, N. (2002). Hematologic consequences of exposure to ionizing radiation. Exp. Hematol. 30, 513-28.
8. Fliedner TM, Friesecke I., and Beyrer K. ( 2001). Medical management of radiation accidents. Manual on the acute radiation syndrome. The British Institute of Radiology, London, United Kingdom.
9. Goans, R.E., Holloway, E.C., Berger, M.E., Ricks, R.C. (1997). Early dose assessment following severe radiation accidents, Health Phys. 72(4), 513-18.
10. Huchet A, Belkacemi Y, Frick J, Prat M, Muresan-Kloos I, Altan D, Chapel A,
Gorin NC, Gourmelon P, Bertho JM. (2003) Plasma Flt-3 ligand concentration correlated with radiation-induced bone marrow damage during local fractionated radiotherapy. Int J Radiat Oncol Biol Phys. Oct 1;57(2):508-15.
11. Ledney G.D.and Elliot T.B. (2010). Combined injury: factors with potential to impact radiation dose assessments. Health Physics 98: 145-152.
12. Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A,
Bouffler S, Badie C. (2011) Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol. Feb;87(2):115-29.
13. Koc M., Taysi S., Sezen O., Bakan N. (2003). Levels of some acute-phase proteins in the serum of patients with cancer during radiotherapy. Biology Pharmaceutical Bulletin 26(10):1494-1497.
14. MacVittie TJ, Monroy RL, Patchen ML, Souza LM. (1990): Therapeutic use of recombinant human G-CSF in a canine model of sublethal and lethal whole-body irradiation. Int J Radiat Biol 57:723.
15. Mal'tsev VN, Strel'nikov VA, and Ivanov AA. (1978). C-reactive protein in t
he blood serum as an indicator of the severity of radiation lesion. Doklady Akademii Nauk SSR 239(3):750-2.
16. Mal'tsev VN, Ivanov AA, Mikhailov VF, Mazurik VK. (2006) [The individual prognosis of the gravity and of the outcome of acute radiation disease based on immunological indexes]. Radiats Biol Radioecol. Mar-Apr;46(2):152-8.
17. Metcalf D. (1985) The granulocyte-macrophage colony-stimulating factors. Science, 229:16-22.
18. Monroy RL, Skelly RR, MacVittie TJ, Davis TA, Sauber JJ, Clark SC, Donahue RE. (1987) The effect of recombinant GM-CSF on the recovery of monkeys transplanted with autologous bone marrow. Blood 70:1696.
19. Mouthon MA, Vandamme M, Gourmelon P, Vainchenker W, Wendling F. (1999)Preferential liver irradiation enhances hematopoiesis through a thrombopoietin-independent mechanism. Radiat Res. Oct;152(4):390-7.
20. Ossetrova NI, Sandgren DJ, Gallego S, Blakely WF. (2010) Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Phys. Feb;98(2):204-8.
21. Ossetrova NI, Farese AM, MacVittie TJ, Manglapus GL, Blakely WF. (2007). The use of discriminant analysis for evaluation of early-response multiple biomarkers of radiation exposure using non-human primate 6-Gy whole-body radiation model. Radiation Measurements 42(6-7): 1158-1163.
22. Ossetrova NI, Blakely WF. Multiple blood-proteins approach for early-response exposure assessment using an in vivo murine radiation model. International Journal of Radiation Biology. 2009. 85(10): 837-850.
23. Ossetrova NI, Sandgren DJ, Blakely WF. C-reactive Protein and Serum Amyloid
A as Early-phase and Prognostic Indicators of Acute Radiation Exposure in Nonhuman Primate Total-body Irradiation Model. Radiation Measurements. 2011. 46:1019-1024.
24. Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM. (2011) Recent developments in the use of γ-H2AX as a quantitative DNA double-strand break biomarker. Aging (Albany NY). Feb;3(2):168-74.
25. Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human
primates. (2010) PLoS One. Nov 23;5(11):e15544.
26. Rothkamm K, Horn S.( 2009) gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita. 45(3):265-71.
27. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR..
(2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. Journal of Biological Chemistry 279:2273-2280.
28. Tukachinski S.E. and Moiseeva V.P.(1961). Cx-reactive protein in radiation injury. Bulletin of Experimental Biology and Medicine, 52:48-52.
29. Welte K, Bonilla MA, Gillio AP, Boone TC, Potter GK, Gabrilove JL, Moore MAS, OReilly RJ, Souza LM. (1987) Recombinant human granulocyte colony-stimulating
factor. Effects on hemopoiesis in normal and cyclophosphamide-treated primates.
J Exp Med 165:941.
30. Wilson JW, Pritchard DM, Hickman JA, Potten CS. (1998 ) Radiation-induced p53 and p21WAF-1/CIP1 expression in the murine intestinal epithelium: apoptosis and cell cycle arrest. Am J Pathol. Sep;153(3):899-909.
31. WO 2008/140463; Blakely, et al., “Biomarker Panels for Assessing Radiation
Injury and Exposure.”